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A Comparison of Methods for the Estimation
of Weibull Distribution Parameters

Felix Noyanim Nwobiand Chukwudi Anderson Ugomma

Abstract

In this paper we study the different methods fstireation of the
parameters of the Weibull distribution. These methare compared in
terms of their fits using the mean square error By1&nd the Kolmogorov-
Smirnov (KS) criteria to select the best methodo@ueess-of-fit tests show
that the Weibull distribution is a good fit to tlsguared returns series of
weekly stock prices of Cornerstone Insurance PLEsURs show that the
mean rank (MR) is the best method among the methodbe graphical
and analytical procedures. Numerical simulationdsta carried out show
that the maximum likelihood estimation method (MLE)gnificantly
outperformed other methods.

| ntroduction

The Weibull Distribution has been widely studiedcs its introduction in 1951
by Professor Wallodi Weibull (Weibull, 1951). Thestidies range from parameter
estimation; see for example, Mann et al. (1974h)n3on et al. (1994) and Al-
Fawzan (2000) to diverse applications in reliabikingineering especially in Tang
(2004) and lifetime analysis in Lawless (1982, 2008he popularity of the
distribution is attributable to the fact that itoprdes a useful description for many
different kinds of data, especially in emergingaarsuch as wind speed and finance
(stock prices and actuarial data) in addition te traditional engineering
applications.
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Engineers and statisticians relied mainly on prdigbplots, referred to as
graphical procedure, to analyze life data priotthte advent of desktop computers
and reliability analysis software became availabée discuss the three methods;
the mean rank (MR), the median rank (MDR) and tlgenreetric cumulative
distribution function (SCDF) in Section 2. Also fBection 2 we review three
methods in the objective analytical procedure; tieximum likelihood estimation
(MLE), the method of moments (MOM) and the leasteasgs method (LSM). These
methods are compared in Section 3, using the mgaars error (MSE) and the
maximum likelihood (LLH) criteria.

2 Methodsfor parameter estimation

Let §,S,-.+R be a random sample of si2¢ from a population. Define

r=In(s/S4). I, 0(—00,00) as returns of the stock prices (sa{/ﬁ : $>q. Let
x; = r# € R* be hereinafter referred to as the squared returns.

2.1 TheWaeibull distribution

The general form of a three-parameter Weibull pbdltg density function (pdf)

is given by
p-1 5
f (x) :g(%j exp{—(%) } , Xp=0g B> C (2.1)

where; X, is the data vector at timte S is the shape parameteamis the scale

parameter that indicates the spread of the digtobwof sampled data and is the
location parameter. The Weibull probability dendiiyction satisfies the following
properties:

a) If 0<f<1, fisdecreasing withf (x) -~ @ asx » 0
b) If #=1, f is decreasing withf (x) ~1asx - 0
c) If B>1, fat first increases and then decreases, with a marim
value at the modec=a (1-Y8)"" .
d) Forall 8>0,f(X) > 0asx - o
The cumulative distribution function (cdf) of the &ldull distribution is

mathematically given as:
F(x)=1- exp{—()“;”)} . (2.2)
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In case ofv =0, the pdf in (2.1) reduces to (2.3)

o l[E1E) e} e

0, otherwise
with a corresponding cdf as

F(x)=1" exp{‘(gjﬂ}, X0

0, otherwise

(2.3)

(2.4)

Cheng and Chen (1988) observed that the distributiterpolates between the
exponential distributior{ 3 =1) and Raleigh distributiofj3 = 2). The mean and variance

of the Weibull distribution are  E(X)=al (1+¥p)

and

V(X)=a®[T(1+2/B)-T?*(1+1B)| respectively, wherd™ (n) is a gamma function

evaluated an.

2.2 Estimation procedures

2.2.1 Graphical procedure

If both sides of the cdf in (2.4) are transformegdif(1/ (1- X)), we get

so that

In{ln(rl()ﬁ)ﬂ =BInx -Bna.

Here, x; actually represents the order statistgs< X,, <...< X,

(2.5)

If we let Y:In[ln(il/(l— F(x)))} X =Inx and c=-pIna, then (2.5) represents a

simple linear regression function corresponding to
Y=[X+cC

The unbiased estimate of, the scale parameter, is calculated as

ot ()

(2.6)

(2.7)
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wherec is the intercept of the linear regression (2.6).
Thus, we perform the estimation af and £ using the following methods of

estimation in Table 1.
Table 1: Methods of estimation by graphical procedure

M ethod F(x)
Mean Rank i/(n+1)
Median Rank (i-0.3)/(n+0.9
Symmetric CDF (i-0.5)/n

We plotY,, which is a function of (x ), versusX, (=In(x)), using the following
procedure:

a) Rank the datgx} in ascending order of magnitude;

b) EstimateF (x )of thei th rank order; and

c) PlotY, versusX;.

This plot produces a straight line from which weaixh),é’ anda (see (2.6) and (2.7)).

2.2.2 Analytical procedure

Maximum Likelihood Estimation (MLE)

The method of maximum likelihood estimation is anooonly used procedure for
estimating parameters, see, e.g., Cohen (1965)Harter and Moore (1965). Let
X, %,...,% be a random sample of sizedrawn from a population with probability

density functionf (x,A) where A =(,a)is an unknown vector of parameters, so that

the likelihood function is defined by
L:f(a,ﬁ):rj f(x[,il) (2.8)

The maximum likelihood of A=(B,a), maximizes L or equivalently, the

logarithm of L when

dinL
0A

=0, (2.9)
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see, for example, Mood et al (1974). Consider thabll pdf given in equation (2.3),

its likelihood function is given as:

tunsn=( )] oo (2]
(B gt 3] o

Taking the natural logarithm of both sides yields

InL= nIn(’BJ (B- 1)ZX[ In(a’“) ni%f (2.11)

and differentiating (2.11) partially w.r 8 and a in turn and equating to zero, we

obtain the estimating equations as follows

%InL——+Zlnxt— ZX[’In)g 0 (2.12)
and
0 n 13
—InL=-—+=) x# =0. 2.13
aan a aZZ‘Xt (2.13)

From (2.13) we obtain an estimator af as

G= =24 (2.14)
n=
and on substitution of (2.14) in (2.12) we obtain
#1n x
Zm X — 2. 2 X g (2.15)
IB N'=1 z _1)(t

which may be solved to obtain the estimatefbfusing Newton-Raphson method or
any other numerical procedure because (2.15) doebave a closed form solution.
When /?m,e is obtained, the value af follows from (2.14).

Method of Moments (MOM)

The second procedure we consider here is the MOMwis also commonly
used in parameter estimation. Lgtx,,...,x, represent a set of data for which we
seek an unbiased estimator for therkoment. Such an estimator is generally given

by
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M, =EZHZ X (2.16)

N
where iy is the estimate ok™ moment. For the Weibull distribution given in

(2.3), thek™ moment is given by

k
1)»% k
== T1+— 2.17
i (akj ( ﬂj @10
where I is as defined in subsection 2.1. From (2.17), &g find the ' and 2

moments about zero as follows
1

" - 1)z 1
m=ag=|—| lNi+= 2.18

a

o et LV (102 or (10 2)
m, =’ +d _(G’J {r(&ﬁ} I'(1+’8J} (2.19)

When we divide the square a@f by m,, we get an expression which is a function

7 r(“ljr(“lJ
N VAR (2.20)
o r(“zj

i

and

of only 53,

where g=E(X)= Zn“)g, 6°=g(X)-( g X))’ and letting z= A8 (2.19) is

easily transformed in order to estimatf so that the scale parameter

a...., can be estimated with the following relation

a..= [1/ r[1+;j . (2.21)

The Least Squares Method (LSM)
The Least Squares method is commonly applied igineering and
mathematics problems that are often not thoughdsofin estimation problem. We

assume that there is a linear relationship betweenvariables. Assume a dataset

that constitute a paifx,, y;) = (%, ¥1).(%, ¥5).---( % . ¥) were obtained and plotted.

The least squares principle minimizes the vertdiatance between the data points
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and the straight line fitted to the data, the Begghg line to this data is the straight
line: y, =a+ B% such that

Q(xa.8)=>(w-a-Bx)

t=1
To obtain the estimators af andf we differentiate Q w.r.tv andf. Equating

to zero subsequently yields the following systenegfiations:

a_Q j— Y —_ —_ 2
og - 22 -a=Bx) (2.22)
and
32 =23 (v -a - px) 1 =0 (2.23)
B =
Expanding and solving equations (2.21) and (2.22ulaneously, we have
B= DRIDRIW] (2.24)
DESIIR]
and
c=y-fB%X; 4= ex;{—%} (2.25)

where & andﬁ are the unbiased estimators @fandfS respectively.

3 Method assessment and selection

3.1 Comparison of estimation methods

The Mean Squared Error (MSE) criterion is giv®n
1G 1,
MSE==3 [ F(x)- F(x)] (3.2)

where ﬁ()g) is obtained by substituting the estimates @fandfB (for each
method) in (2.4) whileF(x)=i/n is the empirical distribution function. The

method with the minimum mean squared er(MSE,,,) becomes the best method
for the estimation of Weibull parameters amongdhedidate methods.
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3.2 Goodness-of-fit tests

Goodness-of-fit test procedures are intended ttectlethe existence of a
significant difference between the observed (eroglyifrequency of occurrence of an
item and the theoretical (hypothesized) patterroafurrence of that item. Here, we
assume that the Weibull distribution is a goodtditthe given dataset; otherwise, this
assumption is nullified if, for this test, the comt@d statistic is greater or equal to a
defined critical value.

Kolmogorov—Smirnov test

The Kolmogorov-Smirnov test is used to decide isample comes from a
population with specific distribution. It is basegon a comparison between the
empirical distribution function (ECDF) and the thetical one defined as

F(x):j:f(y,e)dy where f (x,8) is the pdf of the Weibull distribution. Given
ordered data pointsX,, X,,...,X,, the ECDF is defined a¥ (X;)=N(i)/n where

N (i) is the number of points less th¢ (X, are ordered from smallest to highest value).
The test statistic used is

D, =SuplF (x)=F (x) (32

The statisticD, converges to zero almost surelyras. .

4 Implementation

4.1 Data

The data used for this study is the weekly stoiges N = 100 weeks) collected
from Cornerstone Insurance Company PLC, a pubdbillty company listed in the
Nigerian Stock Exchange (Appendix I). The squaretiirns,r? earlier defined in
Section 2 are a measure of volatility in the stpeices and are multiplied by 100
without loss of generality. In Figure 1 we presangraphic relationship between the
weekly stock prices and its squared returns. Wioparthe estimation of the parameters
using theR software for the graphical and analytical proceduwith 106* as the
dataset and is now of lengthn. R is a language and environment for statistical
computing and graphics (from the Foundation for Statistical Computing (2013)) ran
on the Platform: i386-w64-mingw32/i386 (32-bit).
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Figure 1: Plot showing relationship between Weekly Stoclc@siand its Squared
Returns*100

4.2 Simulation study

We carry out a numerical simulation study in ortteinvestigate the behavior of
the shape and scale parameters of the Weibullliston. In the simulation experiment
we set the Weibull distribution on the random Jalea X with shape parameter

L =0.54 with the aim of mimicking the squared retur(ﬁOOrz). For the Weibull
distribution on X , generate independently and identically distridutendom sample
(X, %,....,%,) of sizen (= 25, 50, 75, 100, 125, 150, 175, 200). Comphéerhean of
this sample and replicate this process N timedtaio a series. For each series of size
n, estimate § anda using the methods described in Section 2, the M8& the
Kolmogorov-Smirnov ~ (KS)  statistic. This sequence i®f the form
XD :mear(xf,_,,;f)l ,mea(mg ,_,>§')2 ,_,_,mg(aﬁ ,g)N, N =1000C times; and is

accomplished in R for Windows 2013 by the replicate function:
replicate(N , meafi rweiblh , shape 0)5)4

We remark here that the least squares method (LiSVBlated to the graphical
procedure in the estimation of Weibull parametersrough (2.6), where

Y = In[ln(]/(l— F( x)))} is dependent upon the particular graphical metfed.,
F(x)=i/(n+1) for the mean rank) and = In x ; see also equations (2.7) and (2.25).
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4.3 Results and Discussion

All computations and simulations in this investigatwere done in R version 3.0.0.
We relied on the functions fitdist() and fitdistr(espectively from R packages
fitdistrplus and MASS (see, e.g., Delignette-Mullgtr al (2013) and Ripley (2013)
respectively) for maximum likelihood estimation tife parameters and plots while
codes were developed for the other methods. Refsulthie graphical procedure (MR,
MDR and SCDF) were verified using the approach anmier (1999) on Microsoft Excel
2013. The R code used for this study is availatdmfthe first author on request.

Estimates of the parameters based upon both thphigeh and theoretical
procedures described in Section 2.2 are presentd@ble 2. The shape paramejr
lies within the interval (0, 1) which implies, agicated in Section 2.1, that the function
(irrespective of the method) decreases exponenthle ranked the performance of the
methods based on the least MSE criterion. In coisparthe Mean Rank (MR) method
has the least MSE (3.88x1%) and at the same time has the leas{@0563) making it
the best among the five methods under study (gcaplnd analytical procedures) for
this particular dataset. The Maximum Likelihoodifsttion (MLE) method is, however,
superior to Method of Moments in the analyticalgadure. From these results the best
estimate for the shape and scale parameters gpecteely (3,5)=(0_5325,0_453;

based on our dataset.

The visual assessments of fit are shown in thediam (Figure 2(a)) overlaid with
the Weibull densities generated from the differeméthods and in the empirical
cumulative distribution function plot of Figure 2(lfhe MOM is clearly different from
other methods given their MSEs but this differemgenot very clear in Figure 2.
However, simulation results show (Table 3) that MeE performed best 86% of the
time when they; simulations are run 10,000 timeé&3milar result was obtained when the KS
goodness-of-fit test was conducted to test the watggof the Weibull distribution in fittinthe
simulation data.

Table 2: Summary of results and comparison of methods fabWleparameter estimation

A

Procedure  Method a B MSE KS
MR 0.4539 0.5325 3.88xfH 0.0563
Graphical MDR 0.4494 0.5452 4.21x®  0.0615
SCDF 0.4461 0.5553 4.49xfb  0.0656
MLE 0.4563 0.5421 6.59x18  0.0617
MOM 0.5244 0.6026 1.18x1®  0.1055

Analytical
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Table 3 Simulation results (based on 10,000 iterations)

Method
n Measure MR MDR SCDF MLE MOM
MSE 3.5726 3.5815 3.5837 1.2557 1.6770
25 KS 0.0600 0.0600 0.0601 0.0501 0.9821
MSE 4.6281 4.6323 4.6282 1.4930 3.5122
50 KS 0.0681 0.0682 0.0683 0.0540 0.9596
MSE 4.9234 4.9502 4.9407 1.5438 4.2108
75 KS 0.0683 0.0684 0.0684 0.0563 0.9741
MSE 4.8839 4.9119 4.8985 1.3216 4.4869
100 KS 0.0653 0.0654 0.0654 0.0587 0.0964
MSE 5.2496 5.2389 5.2598 1.4261 4.9398
125 KS 0.0750 0.0750 0.0751 0.0590 0.9600
MSE 5.4266 5.4118 5.4341 1.4671 5.2043
150 KS 0.0672 0.0671 0.0673 0.0604 0.9665
MSE 6.4067 6.3872 6.4096 1.7235 6.0586
175 KS 0.0726 0.0726 0.0726 0.0657 0.9720
200 MSE 5.1548 5.1831 1.3525 1.4170 5.0833

KS 0.0674 0.0675 0.0818 0.0614 0.9816
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Figure 2: Fit of different methods (a) Density and HistogrdohECDF
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5 Conclusion

The performances of five methods in the estimatibthe parameters of the
Weibull distribution were compared in this studyneTMR was selected as the best
method that gives the best estimates of the twaipater model for square returns
dataset, while the MLE is preferred over the MOM fhe analytical procedure.
These decisions were based on the minimum MSErmiteWhen these methods
were compared based upon simulation results, theiman likelihood estimate
method showed superiority over other methods. Haestl squares method (LSM),
we remark, is also known as the rank regressionhotet(RRM) because the
estimation of the parameters of the Weibull disitibn is dependent upon
regressing some form of log and rank transformatioha given dataset according
to the rank plotting position.
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Appendix

Table A1l: Weekly stock prices (read row-wise)
1.03 1.06 0.99 1.03 099 095 0.96 0.98 0.93 1.05

092 099 097 09 091 094 097 099 1.15 1.27
146 183 231 249 273 270 252 249 276 3.00
3.18 388 384 3.79 376 3.75 3.89 4.04 470 4.34
455 420 419 412 413 3.77 325 314 312 2382
3.24 344 350 3.64 3.72 3.68 341 3.24 326 342
3.38 4.02 421 423 4.04 411 428 484 446 4.87
500 591 736 734 723 7.19 6.79 6.03 597 5.69
6.42 6.23 5.86 546 471 432 479 462 454 4.22
428 408 395 416 350 365 322 350 397 296



