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Abstract

The thickness of a graph G is the minimum number of planar subgraphs whose union
is G. In this paper, we obtain the thickness of complete 3-partite graph K ;, ,,, K2 and
complete 4-partite graph K 1 5 .
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1 Introduction

The thickness 0(G) of a graph G is the minimum number of planar subgraphs whose
union is G. It was first defined by W. T. Tutte [7] in 1963, then a few authors obtained the
thickness of hypercubes [5], complete graphs [1, 2, 8] and complete bipartite graphs [3].
Naturally, people wonder about the thickness of the complete multipartite graphs.

A complete k-partite graph is a graph whose vertex set can be partitioned into k parts,
such that every edge has its ends in different parts and every two vertices in different
parts are adjacent. Let K, ,, . . denote a complete k-partite graph in which the ith
part contains p; (1 < i < k) vertices. For the complete 3-partite graph, Poranen proved
0(Knnn) < [%] in [6], then Yang [10] gave a new upper bound for 6(K, »), ie.,

0(Knnn) < [2] + 1 and obtained 6(K,, ,,.,) = [%41], when n = 3 (mod 6). And

also Yang [9] gave the thickness number of Kj ., ,(I < m < n) when !+ m < 5 and
showed that 0/(K ,, ,) = [“5™] when ! + misevenand n > (1 +m —2)% or L + m is
oddandn > (I+m —2)(I+m —1).

In this paper, we obtain the thickness of complete 3-partite graph K ,, ,, and Ky, p,

and we also deduce the thickness of complete 4-partite graph K 1, 5, from that of K ,, ;,.
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2 The thickness of K ,, ,

In [3], Beineke, Harary and Moon gave the thickness of complete bipartite graphs K,
for most value of m and n, and their theorem implies the following result immediately.

Lemma 2.1 ([3]). The thickness of the complete bipartite graph K, ,, is

b5 = |

n+ 2}

In [4], Chen and Yin gave a planar decomposition of the complete bipartite graph
K4y, 4p with p 41 planar subgraphs. Figure 1 shows their planar decomposition of Ky, 4,
in which {u1,...,usp} = U and {v1,...,v4p} = V are the 2-partite vertex sets of it.
Based on their decomposition, we give a planar decomposition of K5 ,, ,, with p + 1 sub-
graphs when n = 0 or 3 (mod 4) and prove the following lemma.

V4r—3
A
U {vwai—3,u4,—2} = U]
i=1,i#r
A
{vai—2, v} = V5
ugr Ugr—2
P A
U Avgi—3ivai-1} = R
i=1,i#r {ugi_1,ug;} 2 US

(a) The graph G (1 <7 < p).

vl u2 Uqp—1 Udp
vy vy V4p—1 [ V4p
(b) The graph Gp41.

Figure 1: A planar decomposition of Ky, 4.

Lemma 2.2. The thickness of the complete 3-partite graph K1 ,, n, and Ko y, ,, is

+ 2
H(Klm,n) = 9(K27n,n) = ’Vn -‘ )

4
whenn =0 or 3 (mod 4).

Proof. Let the vertex partition of Ky, , be (X,U,V), where X = {x1,22}, U =
{u,...,uptand V ={vy,..., v, }.
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When n = 0 (mod 4), let n = 4p (p > 1). Let {G1,...,Gps1} be the planar
decomposition of K, ,, constructed by Chen and Yin in [4]. As shown in Figure 1, the
graph G4 consists of n paths of length one. We put all the n paths in a row, place vertex
x1 on one side of the row and the vertex x5 on the other side of the row, join both
and z3 to all vertices in G1. Then we get a planar graph, denote it by G),1. It is easy
to see that {G1,...,G,, épﬂ} is a planar decomposition of K ,, . Therefore, we have
0(K2.nn) <p+1. Since K, , C K15.n C Ko, combining it with Lemma 2.1, we
have

p+1=0Knn) <O(Kinn) <OKznn) <p+1,

3Ty

that is, (K1,5,,n) = 0(K2nn) =p+1whenn =0 (mod 4).

When n = 3 (mod 4), thenn = 4p + 3 (p > 0). When p = 0, from [9], we have
0(K1,3,3) = 9(K2,3,3) = 2. When p > 1, since Kn,n - Kl,n,n - K2,n,n C K2,7L+1,TL+19
according to Lemma 2.1 and 6( K3 4p 4,) = p + 1, we have

p+ 2= e(Kn,n) < H(Kl,nm) < H(KQ,n,n) < 9(K2,n+1,n+1) =p-+ 2.

Then, we get 0(K1 ) = 0(K2n,n) =p+2whenn =3 (mod 4).
Summarizing the above, the lemma is obtained. O

Lemma 2.3. There exists a planar decomposition of the complete 3-partite graph
Ky apt2,4p+2 (p = 0) with p + 1 subgraphs.

Proof. Suppose the vertex partition of the complete 3-partite graph K ,, , is (X, U, V),
where X = {z}, U = {uy,...,up} and V = {v1,...,v,}. When n = 4p + 2, we will
construct a planar decomposition of K1 4p+2 4p+2 With p+ 1 planar subgraphs to complete
the proof. Our construction is based on the planar decomposition {G1, Ga, ..., Gp11} of
Kyp,4p given in [4], as shown in Figure 1 and the reader is referred to [4] for more details
about this decomposition. For convenience, we denote the vertex set Uf:u 7,ér{uéh;_g,
wgi—2}s Uimy iz d0ai-1, waits Up—y iz {vai—s,vai-1} and Up_, ;4 {vai—2,vai} by U7,
U3, Vi and V3 respectively. We also label some faces of G- (1 < r < p), as indicated
in Figure 1, for example, the face 1 is bounded by vy, _3u4,v;u4,—1 in Which v; is some
vertex from V;.

In the following, for 1 < r < p 4 1, by adding vertices &, Uap1, Uap+2, Vap+1, Vap+2
and some edges to G, and deleting some edges from G- such edges will be added to the
graph Gp+1, we will get a new planar graph G, such that {G1,...,Gpy1} is a planar
decomposition of Ky 4542, 4pt2. Because vy, —3 and v, —1 in G, (1 < r < p) is joined by
2p — 2 edge-disjoint paths of length two that we call parallel paths, we can change the order
of these parallel paths without changing the planarity of GG,.. For the same reason, we can
do changes like this for parallel paths between wu4,—1 and w4, v4-—2 and vy, Ug,-—3 and
uqr—2. We call this change by parallel paths modification for simplicity. All the subscripts
of vertices are taken modulo 4p, except that of V4,41, Vap42, Uap41 and uy,4o (the vertices
we added to G,.).

Case 1. When p is even and p > 2.

(a) The construction for @T ,1 <r <p,andris odd.
Step 1: Place the vertex x in the face 1 of GG, delete edges vy, 34, and ug,v4,—1 from
G. Do parallel paths modification, such that w46 € U7, var11 € Vi and wgr_3, war—_1,
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Ugr, Var—3, Var_2, V41 are incident with a common face which the vertex x is in. Join x
O Ugr—3, Udr—1, Udr, Vir—3, Var—2, Var—1 aNd Usgr 46, Vary1.

Step 2: Do parallel paths modification, such that %4,411, u4r+12 € U3 are incident with a
common face. Place the vertex v4;,41 in the face, and join it to both 4,11 and ug,412.
Step 3: Do parallel paths modification, such that w4, 7, 448 € Uj are incident with a
common face. Place the vertex vy4,42 in the face, and join it to both 4,17 and w4, 4.
Step 4: Do parallel paths modification, such that v4,410, v4r4+12 € V4 are incident with a
common face. Place the vertex u4,41 in the face, and join it to both v4,19 and v4,412.
Step 5: Do parallel paths modification, such that v4,16,v4r4+s € V45 are incident with a
common face. Place the vertex 4,42 in the face, and join it to both v4, 16 and vy, 4.

(b) The construction for @T, 1 <r <p,andriseven.

Step 1: Place the vertex x in the face 3 of G, delete edges vy, 4,3 and g, 304, o from
G. Do parallel paths modification, such that w4, 47 € U3, v4r14 € V5 and wgr_3, Uar_2,
U4y, Var—_2, Var_1, Vg are incident with a common face which the vertex z is in. Join x to
Udr—3, Udr—2, Udr, Vir—2, Vir—1, Var aNd Ugr 47, Vgrpa.
Step 2: Do parallel paths modifications, such that ws, 45, Uar16 € U7, Uars1, Uar+2 € U7,
Var+5, Var+7 € V'y Vary1, vary3 € V] are incident with a common face, respectively. Join
V4p+1 to both 1y, 5 and uyg,46, join V4,42 to both uy, 1 and 1y, 2, join w41 to both
V4r45 and V447, jJOIN Ugp4o to both v, 41 and v, 3.

Table 1 shows how we add edges to G- (1 < r < p) in Case 1. The first column lists
the edges we added, the second and third column lists the subscript of vertices, and we also
indicate the vertex set which they belong to in brackets.

Table 1: The edges we add to G,.(1 < r < p) in Case 1.

subscript \_case
ris odd r is even
edge
TUj 4r — 3,4r — 1,4r dr+6 (U7) | 4r —3,4r —2,4r | 4r +7(UT)
zV; dr —3,4r —2,4r —1 | dr+1 (V) | 4r —2,4r — 1,4r | 4r +4(V])
V4pt1U; 4r 4+ 11,4r + 12 (U3) 4r 4+ 5,4r + 6 (U7)
V4pt2Uj dr +7,4r + 8 (UT) 4r +1,4r 4+ 2 (U7)
Udp41Vj 4r +10,4r + 12 (V) dr +5,4r + 7 (V7))
Udp42Vj 4r +6,4r + 8 (V) dr +1,4r +3 (V7))

(¢) The construction for @pH.

From the construction in (a) and (b), the subscript set of u; that zu; is an edge in @,.
forsomer € {1,...,p}is

{4r = 3,4r — 1,4r,4r + 6 (mod 4p) | 1 <r < p,and r is odd}
U{dr —3,4r — 2,4r,4r +7 (mod 4p) |1 <r < p,andriseven} = {1,...,p}.
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The subscript set of u; that v4,41u; is an edge in G, for some r € {1,...,p}is

{4r + 11,4r + 12 (mod 4p) | 1 < r < p,and r is odd}
U{4r+5,4r+6 (mod 4p) |1 <r <p,andr iseven}
={4r —3,4r —2,4r — 1,4r | 1 <r < p,and r is even}.

Using the same procedure, we can list all the edges incident with x, Vap41, Vapt2, Udp+1
and u4p4o in @T (1 <r < p), so we can also list the edges that are incident with x, V4,11,
Vap42, Udpt1 10 K1 4p49 4540 but not in any @,. (1 < r < p). Table 2 shows the edges
that belong to K 4542 4p+2 but not to any (/jr, 1 < r < p, in which the the fourth and
fifth rows list the edges deleted form G,. (1 < r < p) in step one of (a) and (b), and the
sixth row lists the edges of Gp1. The G is the graph consists of the edges in Table 2,
Figure 2 shows ém_l is a planar graph.

Table 2: The edges of @,,.H in Case 1.

edges subscript
TU4p+1, TULp+1, Vap+1Uyj, Udp4+1V5 | J =4r —3,4r —2,4r — 1, 4r,dp+2(r=1,3,...,p—1)
TV4p+2, TULP+2, Vap+2Uj, Udp4+2V; J=4r —3,4r —2,4r — 1, 4r,dp+1(r =2,4,...,p)
V4r—3U4r, UdrVar—1 r=13,...,p—1
VarUdr—3, Udr—3V4r—2 r=2,4,...,p
UjU; j=1,...,4p+2

vap+1 wap+2

Figure 2: The graph ép_H in Case 1.

A planar decomposition {(A;l, e, ép+1} of Ky 4p+2,4p+2 18 obtained as above in this
case. In Figure 3, we draw the planar decomposition of K 13 1s, it is the smallest example
for the Case 1. We denote vertex u; and v; by ¢ and 7’ respectively in this figure.

Case 2. When p is odd and p > 3. The process is similar to that in Case 1.

(a) The construction for @,., 1 <r < p,andrisodd.
Step 1: Place the vertex x in the face 1 of GG, delete edges vy, 34, and ug,v4,—1 from
G, for1 <r < p, and delete vou; from GGy additionally.
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For 1 < r < p, do parallel paths modification to G, such that u,+¢ € U], var+1 €
VI and war_3, Uar—1, Udr, Var—3, Var—2, Var—1 are incident with a common face which the
vertex x is in. Join x to U4y 3, Ugyr_1, User, Vag—3, Var—_2, Vapr_1 and Udr 465> Vdr41-

Similarly, in G1, join  to u1, ug, u4, v1, v2, v3, v4 and u1g € U}, v5 € Vi In G, join

T 10 Ugp—3,U4p—1,Udp,Vip—3,Vip—2,Vap—1 and uy € U{)
Step 2: For 1 < r < p, do parallel paths modification to G, such that w11, U412 €
UQT, Ugr47, Usr48 € Ug, V4r4+10, Var+12 € V2T and V4r4+6,Var+8 € Vg are incident with
a common face, respectively. Join vy4;,41 to both ug.411 and 4,12, join v4y,4o to both
Ugr+7 and U4r+8, join U4qp+1 to both V4r+10 and Var+12, jOiIl U4p+2 to both Var+6 and
V4r48-

Similarly, in G, join v4pi1 to us, ug € UY, join vapio to uz, ug € U, join ugpiq to
vg, Vs € V3, join Uap 4o t0 v5, v7 € V.

(b) The construction for G’T, 1 <r <p,andr iseven.
Step 1: Place the vertex x in the face 3 of G, delete edges vy, 14,3 and g, _3v4,—o from
G,1<r<p-1

Do parallel paths modification to G, 1 < r < p—1, such that uy, 7 € U, Var4q € V5
and U4, _3, Ugr_2, Udy, Var_2, Vsr_1, U4, are incident with a common face which the vertex
z is in. Join x tO Ugr_3, Usr—2, Udr, Vir—2, Var—1, Var and Ugpt7, Varyq. Similarly, in
Gp_l, jOiIl T 10 Ugp—7, Udp—6, Udp—4, Vip—65 Vip—5, Vip—4 and u; € Ug_ >, U4p € ‘/QP_l.
Step 2: Do parallel paths modifications, such that 14,5, Usr+6 € U7, Uar41, Usary2 € U7,
Vart5, Var+7 € V1'y Vary1, Vary3 € V] are incident with a common face, respectively. Join
V4p+1 to both Ugr+5 and Udr+6, join V4p+2 to both Ugr+1 and Ugr+2, join U4qp+1 to both
V4r+5 and Va7, jOIN Ugp4 2 to both v 41 and v4, 3.

Table 3 shows how we add edges to G- (1 < r < p) in Case 2.

(¢) The construction for ép+1-

With a similar argument to that in Case 1, we can list the edges that belong to
K1 .4p+2,4p+2 but not to any GT, 1 < r < p, in this case, as shown in Table 4. Then
Gp+1 is the graph that consists of the edges in Table 4. Figure 4 shows Gp+1 is a planar
graph.

Therefore, {CAv'l, e @,,H} is a planar decomposition of K 442.4p+2 in this case.

Figure 4: The graph CAJPH in Case 2.
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Table 3: The edges we add to G- (1 < r < p) in Case 2.

subscript case
ris odd ris even
edge
=3\ drg6r£p@) [ T3 a4 Tr £p—1(U)
TUuj 4r — 1, dr — 2,
4r 27T:p(U1T) 4r 75T:p_1(U£)
41“—3, 4.5.r=1 47“—2,
TV; 4r — 2, 4r — 1, dr +4 (V7))
4r — 1 4,’,_’_1’7,#171)(‘/17“) 4r
dr + 11, 4r + 12,7 # p (U3)
Vap1U; : 4r +5,4r +6 (U7)
5,6,7 =p (U1)
Vaptoll; dr +7,4r + 8 (U3) 4r +1,4r + 2 (UY)
4r +10,4r + 12,7 # p (V)
Ugp410V; : dr +5,4r +7 (V)
6,8,r =p (V)
dr +6,4r + 8,7 # p (V)
Udp+2V; 2 dr+1,4r + 3 (Vf)
57,r=p (W)

Table 4: The edges of ép+1 in Case 2.

edges

subscript

LV4p+1, Vap+1Uj

Jg=4r—=3,4r —2,4r — 1,4r,7,8,4p + 2
(r=3,57...,p)

TU4p+1, U4p+17Vj

g =4r—3,4r —2,4r — 1,4r,5,7,4p + 2
(r=3,57,...,p)

TVap+2, Vap+2U;j

J=4r—3,4r — 2, 4r — 1,4r,5,6,4p + 1

(r=1,4,6,8,...,p—1)
| = 4r — — _
TUdp 2, Uips20; J r—3,4r — 2,4r — 1,4r,6,8,4p + 1
(r=1,4,6,8,...,p—1)
U1V2, Var—3Udr, UdrVar—1 r=13,...,p
VarUdr—3, U4r—3Var—2 r=2,4,...,p—1

U;j;5

j=1,...,4p+2
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Case 3. When p < 3.

When p = 0, Ky 2 is a planar graph. When p = 1,2, 3, we give a planar decomposi-
tion for K1 6,6, K1,10,10 and K 14,14 With 2, 3 and 4 subgraphs respectively, as shown in
Figure 5, Figure 6 and Figure 7.

vy
ug v1 ul vs
v3e » pu2
ug )
ve uy vy us
vgq

Figure 5: A planar decomposition of K ¢ 6.

70

v8

v4

Figure 6: A planar decomposition of K7 19,10.

Lemma follows from Cases 1, 2 and 3. O
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Theorem 2.4. The thickness of the complete 3-partite graph K , y, is

0K ) — [n + 2} '

4

Proof. When n = 4p, 4p + 3, the theorem follows from Lemma 2.2.
When n = 4p + 1,n = 4p + 2, from Lemma 2.3, we have 0(K1 4pt2,4p+2) < p+ 1.
Since 0(K4p74p) =p+ 1and K4p74p - K174p+174p+1 C K174p+274p+2, we obtain

p+1<O0(K1apti,apr1) < O(Kiapr2apt2) <p+ 1.

Therefore, 0<K174p+174p+1) = 9(K1,4p+2,4p+2) =Dp —+ 1.
Summarizing the above, the theorem is obtained. O

3 The thickness of K ,, ,,

Lemma 3.1. There exists a planar decomposition of the complete 3-partite graph
K3 4p+1,4p+1 (p > 0) with p + 1 subgraphs.

Proof. Let (X,U,V) be the vertex partition of the complete 3-partite graph K5 ,, »,, in
which X = {z1,22}, U = {u1,...,up}and V = {vq,...,v,}. Whenn = 4p + 1, we
will construct a planar decomposition of K5 44,41,4p+1 With p + 1 planar subgraphs.

The construction is analogous to that in Lemma 2.3. Let {G1, Ga,...,Gp41} be a
planar decomposition of Ky, 4, given in [4]. In the following, for 1 < r < p 4 1, by
adding vertices X1, T2, Uap+1, Vap+1 to G, deleting some edges from G, and adding some
edges to G, we will get a new planar graph CAY',, such that {CAv'h ey @pﬂ} is a planar
decomposition of K3 45,11, 4p+1. All the subscripts of vertices are taken modulo 4p, except
that of ugp41 and v4p41 (the vertices we added to G.).

Case 1. When p is even and p > 2.

(a) The construction for ér , 1< r<np.
Step 1: When 7 is odd, place the vertex x1, 2 and u4p41 in the face 1, 2 and 5 of G,
respectively. Delete edges vy, —3uy, and ugy—1v4,—o from G,..

When r is even, place the vertex x1, 2 and u4p+1 in the face 3, 4 and 5 of G, respec-
tively. Delete edge vy, u4,—3 and g, 204,71 from G,..
Step 2: Do parallel paths modifications, then join x1, T2, t4p+1 and v4py1 to some u; and
v;, as shown in Table 5.

(b) The construction for @p+1.

We list the edges that belong to K 45,41,4p+1 but not to any @r, 1 < r < p, as shown
in Table 6. Then G, is the graph that consists of the edges in Table 6. Figure 8 shows

ép-H is a planar graph.

Therefore, {é Tyeees CA;'pH} is a planar decomposition of K 4p11,4p+1 in this case. In
Figure 9, we draw the planar decomposition of K 17,17 it is the smallest example for the
Case 1. We denote vertex u; and v; by 7 and ¢’ respectively in this figure.
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Table 5: The edges we add to G- (1 < r < p) in Case 1.

subscript \ case
r is odd T is even
edge
ZT1u; dr — 1,4r dr+5(U7) | 4r —3,4r—2 | 4r +8(U3)
105 dr —3,4r —1 | 4r+1 (V) dr —2,4r dr +4 (V3)
ToUj 4r —1,4r dr+3(U3) | 4r —3,4r—2 | 4r+2(U7)
Tov; 4dr — 2, 4r dr4+7 (V) | dr—3,4r—1 | 4r+6 (V3)
U4p+10V5 4r — 2, 4r — 1
Vap 41U dr +4,4r + 8 (U3) 4r — 11,4r — 7(U7)
Table 6: The edges of GPH in Case 1.
edges subscript
T1Uy
j=4r—-2,4r+3,4p+1 (r=1.3,....,p—1)
T1U;
TaU; .
j=4r—"T4rdp+1 (r=2,4,...,p)
T2V;
Udp 4105 j=4r—-3,4r (r=12,...,p)
Vap+1U; j=4r—-2,4r—-1 (r=12,...,p)
V4r—3Udr, Var—2Udr—1 r=13,...,p—1
Ugr—3UV4r, U4r—2V4r—1 T = 2, 4, ..., P
U;V; j=1,...,4p+1
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Case 2. When p is odd and p > 3.

(a) The construction for @r, 1<r<np.
Step 1: When 7 is odd, place the vertex x;, 2 and u4,41 in the face 1, 2 and 5 of G,
respectively. Delete edges vy, 34, and uyy,—1v4,—o from G,..

When r is even, place the vertex 1, z2 and w41 in the face 3, 4 and 5 of G, respec-
tively. Delete edge v4,tuq,-—3 and ug,_ov4,-—1 from G,..
Step 2: Do parallel paths modifications, then join x1, T2, t4p+1 and v4p 41 to some u; and
v;, as shown in Table 7.

Table 7: The edges we add to G- (1 < r < p) in Case 2.

subscript case
ris odd ris even
edge
- ar—1, | Ar+5rFpUD) | 4y —3, | r+8r#p—1(U3)
j
ar Lr=p(U7) dr—2 8r=p—1(U3)
4r —3 4r — 2
T1vj Tl Ar+1r 1% ’ r
o 4r —1 #p (V1) Ar ar +4(V2)
dr—1, | r+3,7#£pU3) | 4 —
Tau; rh . 4r + 2 (UY)
ar 8r=p(Us) | -2
_— ar—2, | Ar+TrFEpWV) | gp—3, | 4r+6,r#£p—1(V3)
j
4r 3,r=p (V) 4r — 1 6,r=p—1 (V)
Udp+1Vj 4r —2,4r — 1
dr +4,4r + 8,r #£ p (Uy
Vapt+1U; 7P (U3) 4r — 11, 4r — 7 (UY)
4,7 =p (U3)

(b) The construction for épH.

We list the edges that belong to K5 45,41,4p+1 but not to any ér, 1 < r < p, as shown
in Table 8. Then @pﬂ is the graph that consists of the edges in Table 8. Figure 10 shows
ép-&-l is a planar graph.

Therefore, {@1, ey ép—&-l} is a planar decomposition of K5 4,41 4p+1 in this case.
Case 3. When p < 3.

When p = 0, K51 is a planar graph. When p = 1,2, 3, we give a planar decomposi-
tion for Ky 55, K299 and Ky 13,13 with 2, 3 and 4 subgraphs respectively, as shown in
Figure 11, Figure 12 and Figure 13.

Summarizing Cases 1, 2 and 3, the lemma follows. O
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Table 8: The edges of ép+1 in Case 2.

edges subscript
T1Uj j=2,4r+3,4r+6,4p+1 (r=13,....,p—2)
T1V§ j=2,4,4r+3,4r+6,4p+1 (r=13,...,p—2)
ToUj 1=1294rdr+1,4p+1 (r=4,...,p—1)
T2vj 7=1894r,4r+1,4p+1 (r=4,...,p—1
Udp4+1V; j=4r—-3,4r (r=12,...,p)
Vap 41U J=4r—-24r—1,4p—-7 (r=12,...,p)
Var—3U4r, Vir—2Udr—1 r=13,...,p
Udr—3Vdr, Udr—2Vdr—1 r=24...,p—1
U;jV;j j=1,...,4p+1

«11,\? ul
]
wapt1
Figure 10: The graph G, in Case 2.
2
U5 v3
vl
z2
]
o1 i
u4q
N~
v2
v5 u3 vq

Figure 11: A planar decomposition Ky 5 5.
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Theorem 3.2. The thickness of the complete 3-partite graph K ., y, is
n+3
Q(szn"”) = " 4 -‘ .
Proof. When n = 4p,4p + 3, from Lemma 2.2, the theorem holds.
When n = 4p + 1, from Lemma 3.1, we have 0(K24pt1,4p+1) < p + 1. Since
9(K4p’4p) =p+1 and K4p’4p C K2’4p+174p+1, we have

p+1=0(Kypap) <O(K2apr1ap41) <p+ 1.

Therefore, 0(K2 apt1,4p+1) =D + 1.

When n = 4p + 2, since Kyp43.4p+3 C K2 4py2,apt2, from Lemma 2.1, we have
p+ 2 = 0(Kapysaprs) < 0(Kzapyoapr2). On the other hand, it is easy to see
O(K2ap+2.apt+2) < 0(K2apt14p+1) +1=p+ 2,50 we have 0(K2 4pt24p12) =p + 2.

Summarizing the above, the theorem is obtained. O

4 The thickness of K1 1.,
Theorem 4.1. The thickness of the complete 4-partite graph K1 1 5, p is
n+3

|
Proof. When n = 4p + 1, we can get a planar decomposition for K 1 4541,4p+1 from that
of Ko 4p+1,4p+1 as follows.

(1) When p = 0, K3 11,1 is a planar graph, §(K7111) = 1. Whenp = 1,2 and
3, we join the vertex x; to x2 in the last planar subgraph in the planar decomposition for
Ko 55, K299 and K5 1313 which was shown in Figure 11, 12 and 13. Then we get the
planar decomposition for K 1 5.5, K1.1,9,0 and K1 1,13,13 with 2, 3 and 4 planar subgraphs
respectively. N

(2) When p > 4, we join the vertex 1 to x2 in G4 in the planar decomposition for
K5 4p+1,4p+1 Which was constructed in Lemma 3.1. The épﬂ is shown in Figure 8 or 10
according to p is even or odd. Because z; and x2 lie on the boundary of the same face,
we will get a planar graph by adding edge =122 to G+1. Then a planar decomposition for
K1 1,4p+1,4p+1 With p + 1 planar subgraphs can be obtained.

Summarizing (1) and (2), we have K1 1 4p+1,4p+1 <D+ 1.

On the other hand, from Lemma 2.1, we have §(Kupyi14p41) = p+ 1. Due to
Kapi1,ap+1 C Ki,1,4p,ap C K1 1,4p+1,4p+1, WE get

p+1<O0(Kq1,4pap) < O(K1 1 ap4i1,aps1)-

O(K11,nn) = [

So we have
O(K1,1,4p,ap) = O(K1 1 apt1,4p+1) =P+ 1.

When n = 4p + 3, from Theorem 3.2 , we have 0(K3 api24pt2) = p + 2. Since
Ko apr2apre C Kijgaproapre C Ki1ap3ap+3 C Ki14(p+1),4(p+1)» and the ideas
from the previous case establish, we have

p+2 < O(Ki1aproapr2) < O(K11apt3.4ps3) < O(K1 1 apr1),a0+1) =P+ 2,
which shows

O(K1,1,4p12,4p+2) = O(K11,4p13,4p13) =D + 2.
Summarizing the above, the theorem follows. O
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