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Abstract

The thickness of a graph G is the minimum number of planar subgraphs whose union
is G. In this paper, we obtain the thickness of complete 3-partite graph K1,n,n,K2,n,n and
complete 4-partite graph K1,1,n,n.
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1 Introduction
The thickness θ(G) of a graph G is the minimum number of planar subgraphs whose

union is G. It was first defined by W. T. Tutte [7] in 1963, then a few authors obtained the
thickness of hypercubes [5], complete graphs [1, 2, 8] and complete bipartite graphs [3].
Naturally, people wonder about the thickness of the complete multipartite graphs.

A complete k-partite graph is a graph whose vertex set can be partitioned into k parts,
such that every edge has its ends in different parts and every two vertices in different
parts are adjacent. Let Kp1,p2,...,pk

denote a complete k-partite graph in which the ith
part contains pi (1 ≤ i ≤ k) vertices. For the complete 3-partite graph, Poranen proved
θ(Kn,n,n) ≤

⌈
n
2

⌉
in [6], then Yang [10] gave a new upper bound for θ(Kn,n,n), i.e.,

θ(Kn,n,n) ≤
⌈
n+1
3

⌉
+ 1 and obtained θ(Kn,n,n) =

⌈
n+1
3

⌉
, when n ≡ 3 (mod 6). And

also Yang [9] gave the thickness number of Kl,m,n(l ≤ m ≤ n) when l + m ≤ 5 and
showed that θ(Kl,m,n) = d l+m

2 e when l +m is even and n > 1
2 (l +m− 2)2; or l +m is

odd and n > (l +m− 2)(l +m− 1).
In this paper, we obtain the thickness of complete 3-partite graph K1,n,n and K2,n,n,

and we also deduce the thickness of complete 4-partite graph K1,1,n,n from that of K2,n,n.
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2 The thickness of K1,n,n

In [3], Beineke, Harary and Moon gave the thickness of complete bipartite graphs Km,n

for most value of m and n, and their theorem implies the following result immediately.

Lemma 2.1 ([3]). The thickness of the complete bipartite graph Kn,n is

θ(Kn,n) =

⌈
n+ 2

4

⌉
.

In [4], Chen and Yin gave a planar decomposition of the complete bipartite graph
K4p,4p with p+ 1 planar subgraphs. Figure 1 shows their planar decomposition of K4p,4p,
in which {u1, . . . , u4p} = U and {v1, . . . , v4p} = V are the 2-partite vertex sets of it.
Based on their decomposition, we give a planar decomposition of K2,n,n with p + 1 sub-
graphs when n ≡ 0 or 3 (mod 4) and prove the following lemma.
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Figure 1: A planar decomposition of K4p,4p.

Lemma 2.2. The thickness of the complete 3-partite graph K1,n,n and K2,n,n is

θ(K1,n,n) = θ(K2,n,n) =

⌈
n+ 2

4

⌉
,

when n ≡ 0 or 3 (mod 4).

Proof. Let the vertex partition of K2,n,n be (X,U, V ), where X = {x1, x2}, U =
{u1, . . . , un} and V = {v1, . . . , vn}.
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When n ≡ 0 (mod 4), let n = 4p (p ≥ 1). Let {G1, . . . , Gp+1} be the planar
decomposition of Kn,n constructed by Chen and Yin in [4]. As shown in Figure 1, the
graph Gp+1 consists of n paths of length one. We put all the n paths in a row, place vertex
x1 on one side of the row and the vertex x2 on the other side of the row, join both x1
and x2 to all vertices in Gp+1. Then we get a planar graph, denote it by Ĝp+1. It is easy
to see that {G1, . . . , Gp, Ĝp+1} is a planar decomposition of K2,n,n. Therefore, we have
θ(K2,n,n) ≤ p + 1. Since Kn,n ⊂ K1,n,n ⊂ K2,n,n, combining it with Lemma 2.1, we
have

p+ 1 = θ(Kn,n) ≤ θ(K1,n,n) ≤ θ(K2,n,n) ≤ p+ 1,

that is, θ(K1,n,n) = θ(K2,n,n) = p+ 1 when n ≡ 0 (mod 4).
When n ≡ 3 (mod 4), then n = 4p + 3 (p ≥ 0). When p = 0, from [9], we have

θ(K1,3,3) = θ(K2,3,3) = 2. When p ≥ 1, since Kn,n ⊂ K1,n,n ⊂ K2,n,n ⊂ K2,n+1,n+1,
according to Lemma 2.1 and θ(K2,4p,4p) = p+ 1, we have

p+ 2 = θ(Kn,n) ≤ θ(K1,n,n) ≤ θ(K2,n,n) ≤ θ(K2,n+1,n+1) = p+ 2.

Then, we get θ(K1,n,n) = θ(K2,n,n) = p+ 2 when n ≡ 3 (mod 4).
Summarizing the above, the lemma is obtained.

Lemma 2.3. There exists a planar decomposition of the complete 3-partite graph
K1,4p+2,4p+2 (p ≥ 0) with p+ 1 subgraphs.

Proof. Suppose the vertex partition of the complete 3-partite graph K1,n,n is (X,U, V ),
where X = {x}, U = {u1, . . . , un} and V = {v1, . . . , vn}. When n = 4p + 2, we will
construct a planar decomposition of K1,4p+2,4p+2 with p+1 planar subgraphs to complete
the proof. Our construction is based on the planar decomposition {G1, G2, . . . , Gp+1} of
K4p,4p given in [4], as shown in Figure 1 and the reader is referred to [4] for more details
about this decomposition. For convenience, we denote the vertex set

⋃p
i=1,i6=r{u4i−3,

u4i−2},
⋃p

i=1,i6=r{u4i−1, u4i},
⋃p

i=1,i6=r{v4i−3, v4i−1} and
⋃p

i=1,i6=r{v4i−2, v4i} by Ur
1 ,

Ur
2 , V r

1 and V r
2 respectively. We also label some faces of Gr (1 ≤ r ≤ p), as indicated

in Figure 1, for example, the face 1 is bounded by v4r−3u4rvju4r−1 in which vj is some
vertex from V r

1 .
In the following, for 1 ≤ r ≤ p + 1, by adding vertices x, u4p+1, u4p+2, v4p+1, v4p+2

and some edges to Gr, and deleting some edges from Gr such edges will be added to the
graph Gp+1, we will get a new planar graph Ĝr such that {Ĝ1, . . . , Ĝp+1} is a planar
decomposition of K1,4p+2,4p+2. Because v4r−3 and v4r−1 in Gr (1 ≤ r ≤ p) is joined by
2p−2 edge-disjoint paths of length two that we call parallel paths, we can change the order
of these parallel paths without changing the planarity of Gr. For the same reason, we can
do changes like this for parallel paths between u4r−1 and u4r, v4r−2 and v4r, u4r−3 and
u4r−2. We call this change by parallel paths modification for simplicity. All the subscripts
of vertices are taken modulo 4p, except that of v4p+1, v4p+2, u4p+1 and u4p+2 (the vertices
we added to Gr).

Case 1. When p is even and p > 2.

(a) The construction for Ĝr , 1 ≤ r ≤ p, and r is odd.
Step 1: Place the vertex x in the face 1 of Gr, delete edges v4r−3u4r and u4rv4r−1 from
Gr. Do parallel paths modification, such that u4r+6 ∈ Ur

1 , v4r+1 ∈ V r
1 and u4r−3, u4r−1,



358 Ars Math. Contemp. 15 (2018) 355–373

u4r, v4r−3, v4r−2, v4r−1 are incident with a common face which the vertex x is in. Join x
to u4r−3, u4r−1, u4r, v4r−3, v4r−2, v4r−1 and u4r+6, v4r+1.
Step 2: Do parallel paths modification, such that u4r+11, u4r+12 ∈ Ur

2 are incident with a
common face. Place the vertex v4p+1 in the face, and join it to both u4r+11 and u4r+12.
Step 3: Do parallel paths modification, such that u4r+7, u4r+8 ∈ Ur

2 are incident with a
common face. Place the vertex v4p+2 in the face, and join it to both u4r+7 and u4r+8.
Step 4: Do parallel paths modification, such that v4r+10, v4r+12 ∈ V r

2 are incident with a
common face. Place the vertex u4p+1 in the face, and join it to both v4r+10 and v4r+12.
Step 5: Do parallel paths modification, such that v4r+6, v4r+8 ∈ V r

2 are incident with a
common face. Place the vertex u4p+2 in the face, and join it to both v4r+6 and v4r+8.

(b) The construction for Ĝr, 1 ≤ r ≤ p, and r is even.
Step 1: Place the vertex x in the face 3 of Gr, delete edges v4ru4r−3 and u4r−3v4r−2 from
Gr. Do parallel paths modification, such that u4r+7 ∈ Ur

2 , v4r+4 ∈ V r
2 and u4r−3, u4r−2,

u4r, v4r−2, v4r−1, v4r are incident with a common face which the vertex x is in. Join x to
u4r−3, u4r−2, u4r, v4r−2, v4r−1, v4r and u4r+7, v4r+4.
Step 2: Do parallel paths modifications, such that u4r+5, u4r+6 ∈ Ur

1 , u4r+1, u4r+2 ∈ Ur
1 ,

v4r+5, v4r+7 ∈ V r
1 , v4r+1, v4r+3 ∈ V r

1 are incident with a common face, respectively. Join
v4p+1 to both u4r+5 and u4r+6, join v4p+2 to both u4r+1 and u4r+2, join u4p+1 to both
v4r+5 and v4r+7, join u4p+2 to both v4r+1 and v4r+3.

Table 1 shows how we add edges to Gr (1 ≤ r ≤ p) in Case 1. The first column lists
the edges we added, the second and third column lists the subscript of vertices, and we also
indicate the vertex set which they belong to in brackets.

Table 1: The edges we add to Gr(1 ≤ r ≤ p) in Case 1.

edge

subscript case
r is odd r is even

xuj 4r − 3, 4r − 1, 4r 4r + 6 (Ur
1 ) 4r − 3, 4r − 2, 4r 4r + 7 (Ur

2 )

xvj 4r − 3, 4r − 2, 4r − 1 4r + 1 (V r
1 ) 4r − 2, 4r − 1, 4r 4r + 4 (V r

2 )

v4p+1uj 4r + 11, 4r + 12 (Ur
2 ) 4r + 5, 4r + 6 (Ur

1 )

v4p+2uj 4r + 7, 4r + 8 (Ur
2 ) 4r + 1, 4r + 2 (Ur

1 )

u4p+1vj 4r + 10, 4r + 12 (V r
2 ) 4r + 5, 4r + 7 (V r

1 )

u4p+2vj 4r + 6, 4r + 8 (V r
2 ) 4r + 1, 4r + 3 (V r

1 )

(c) The construction for Ĝp+1.

From the construction in (a) and (b), the subscript set of uj that xuj is an edge in Ĝr

for some r ∈ {1, . . . , p} is

{4r − 3, 4r − 1, 4r, 4r + 6 (mod 4p) | 1 ≤ r ≤ p, and r is odd}
∪ {4r − 3, 4r − 2, 4r, 4r + 7 (mod 4p) | 1 ≤ r ≤ p, and r is even} = {1, . . . , p}.
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The subscript set of uj that v4p+1uj is an edge in Ĝr for some r ∈ {1, . . . , p} is

{4r + 11, 4r + 12 (mod 4p) | 1 ≤ r ≤ p, and r is odd}
∪ {4r + 5, 4r + 6 (mod 4p) | 1 ≤ r ≤ p, and r is even}

= {4r − 3, 4r − 2, 4r − 1, 4r | 1 ≤ r ≤ p, and r is even}.

Using the same procedure, we can list all the edges incident with x, v4p+1, v4p+2, u4p+1

and u4p+2 in Ĝr (1 ≤ r ≤ p), so we can also list the edges that are incident with x, v4p+1,
v4p+2, u4p+1 in K1,4p+2,4p+2 but not in any Ĝr (1 ≤ r ≤ p). Table 2 shows the edges
that belong to K1,4p+2,4p+2 but not to any Ĝr, 1 ≤ r ≤ p, in which the the fourth and
fifth rows list the edges deleted form Gr (1 ≤ r ≤ p) in step one of (a) and (b), and the
sixth row lists the edges of Gp+1. The Ĝp+1 is the graph consists of the edges in Table 2,
Figure 2 shows Ĝp+1 is a planar graph.

Table 2: The edges of Ĝp+1 in Case 1.

edges subscript

xv4p+1, xu4p+1, v4p+1uj , u4p+1vj j = 4r − 3, 4r − 2, 4r − 1, 4r, 4p+ 2 (r = 1, 3, . . . , p− 1)

xv4p+2, xu4p+2, v4p+2uj , u4p+2vj j = 4r − 3, 4r − 2, 4r − 1, 4r, 4p+ 1 (r = 2, 4, . . . , p)

v4r−3u4r, u4rv4r−1 r = 1, 3, . . . , p− 1

v4ru4r−3, u4r−3v4r−2 r = 2, 4, . . . , p

ujvj j = 1, . . . , 4p+ 2
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Figure 2: The graph Ĝp+1 in Case 1.

A planar decomposition {Ĝ1, . . . , Ĝp+1} of K1,4p+2,4p+2 is obtained as above in this
case. In Figure 3, we draw the planar decomposition of K1,18,18, it is the smallest example
for the Case 1. We denote vertex ui and vi by i and i′ respectively in this figure.

Case 2. When p is odd and p > 3. The process is similar to that in Case 1.

(a) The construction for Ĝr, 1 ≤ r ≤ p, and r is odd.
Step 1: Place the vertex x in the face 1 of Gr, delete edges v4r−3u4r and u4rv4r−1 from
Gr, for 1 ≤ r ≤ p, and delete v2u1 from G1 additionally.
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Figure 3: A planar decomposition of K1,18,18.
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For 1 < r < p, do parallel paths modification to Gr, such that u4r+6 ∈ Ur
1 , v4r+1 ∈

V r
1 and u4r−3, u4r−1, u4r, v4r−3, v4r−2, v4r−1 are incident with a common face which the

vertex x is in. Join x to u4r−3, u4r−1, u4r, v4r−3, v4r−2, v4r−1 and u4r+6, v4r+1.
Similarly, in G1, join x to u1, u3, u4, v1, v2, v3, v4 and u10 ∈ U1

1 , v5 ∈ V 1
1 . In Gp, join

x to u4p−3,u4p−1,u4p,v4p−3,v4p−2,v4p−1 and u2 ∈ Up
1 .

Step 2: For 1 ≤ r < p, do parallel paths modification to Gr, such that u4r+11, u4r+12 ∈
Ur
2 , u4r+7, u4r+8 ∈ Ur

2 , v4r+10, v4r+12 ∈ V r
2 and v4r+6, v4r+8 ∈ V r

2 are incident with
a common face, respectively. Join v4p+1 to both u4r+11 and u4r+12, join v4p+2 to both
u4r+7 and u4r+8, join u4p+1 to both v4r+10 and v4r+12, join u4p+2 to both v4r+6 and
v4r+8.

Similarly, in Gp, join v4p+1 to u5, u6 ∈ Up
1 , join v4p+2 to u7, u8 ∈ Up

2 , join u4p+1 to
v6, v8 ∈ V p

2 , join u4p+2 to v5, v7 ∈ V p
1 .

(b) The construction for Ĝr, 1 ≤ r ≤ p, and r is even.
Step 1: Place the vertex x in the face 3 of Gr, delete edges v4ru4r−3 and u4r−3v4r−2 from
Gr, 1 ≤ r ≤ p− 1.

Do parallel paths modification toGr, 1 ≤ r < p−1, such that u4r+7 ∈ Ur
2 , v4r+4 ∈ V r

2

and u4r−3, u4r−2, u4r, v4r−2, v4r−1, v4r are incident with a common face which the vertex
x is in. Join x to u4r−3, u4r−2, u4r, v4r−2, v4r−1, v4r and u4r+7, v4r+4. Similarly, in
Gp−1, join x to u4p−7, u4p−6, u4p−4, v4p−6, v4p−5, v4p−4 and u7 ∈ Up−1

2 , v4p ∈ V p−1
2 .

Step 2: Do parallel paths modifications, such that u4r+5, u4r+6 ∈ Ur
1 , u4r+1, u4r+2 ∈ Ur

1 ,
v4r+5, v4r+7 ∈ V r

1 , v4r+1, v4r+3 ∈ V r
1 are incident with a common face, respectively. Join

v4p+1 to both u4r+5 and u4r+6, join v4p+2 to both u4r+1 and u4r+2, join u4p+1 to both
v4r+5 and v4r+7, join u4p+2 to both v4r+1 and v4r+3.

Table 3 shows how we add edges to Gr (1 ≤ r ≤ p) in Case 2.

(c) The construction for Ĝp+1.
With a similar argument to that in Case 1, we can list the edges that belong to

K1,4p+2,4p+2 but not to any Ĝr, 1 ≤ r ≤ p, in this case, as shown in Table 4. Then
Ĝp+1 is the graph that consists of the edges in Table 4. Figure 4 shows Ĝp+1 is a planar
graph.

Therefore, {Ĝ1, . . . , Ĝp+1} is a planar decomposition of K1,4p+2,4p+2 in this case.
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Figure 4: The graph Ĝp+1 in Case 2.
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Table 3: The edges we add to Gr (1 ≤ r ≤ p) in Case 2.

edge

subscript case

r is odd r is even

xuj

4r − 3,
4r − 1,

4r

4r + 6, r 6= p (Ur
1 )

2, r = p (Ur
1 )

4r − 3,
4r − 2,

4r

4r + 7, r 6= p− 1 (Ur
2 )

7, r = p− 1 (Ur
2 )

xvj

4r − 3,
4r − 2,
4r − 1

4, 5, r = 1

4r + 1, r 6= 1, p (V r
1 )

4r − 2,
4r − 1,

4r

4r + 4 (V r
2 )

v4p+1uj

4r + 11, 4r + 12, r 6= p (Ur
2 )

5, 6, r = p (Ur
1 )

4r + 5, 4r + 6 (Ur
1 )

v4p+2uj 4r + 7, 4r + 8 (Ur
2 ) 4r + 1, 4r + 2 (Ur

1 )

u4p+1vj
4r + 10, 4r + 12, r 6= p (V r

2 )

6, 8, r = p (V r
2 )

4r + 5, 4r + 7 (V r
1 )

u4p+2vj
4r + 6, 4r + 8, r 6= p (V r

2 )

5, 7, r = p (V r
1 )

4r + 1, 4r + 3 (V r
1 )

Table 4: The edges of Ĝp+1 in Case 2.

edges subscript

xv4p+1, v4p+1uj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 7, 8, 4p+ 2

(r = 3, 5, 7, . . . , p)

xu4p+1, u4p+1vj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 5, 7, 4p+ 2

(r = 3, 5, 7, . . . , p)

xv4p+2, v4p+2uj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 5, 6, 4p+ 1

(r = 1, 4, 6, 8, . . . , p− 1)

xu4p+2, u4p+2vj
j = 4r − 3, 4r − 2, 4r − 1, 4r, 6, 8, 4p+ 1

(r = 1, 4, 6, 8, . . . , p− 1)

u1v2, v4r−3u4r, u4rv4r−1 r = 1, 3, . . . , p

v4ru4r−3, u4r−3v4r−2 r = 2, 4, . . . , p− 1

ujvj j = 1, . . . , 4p+ 2
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Case 3. When p ≤ 3.

When p = 0, K1,2,2 is a planar graph. When p = 1, 2, 3, we give a planar decomposi-
tion for K1,6,6, K1,10,10 and K1,14,14 with 2, 3 and 4 subgraphs respectively, as shown in
Figure 5, Figure 6 and Figure 7.
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Figure 5: A planar decomposition of K1,6,6.
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Figure 6: A planar decomposition of K1,10,10.

Lemma follows from Cases 1, 2 and 3.
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Figure 7: A planar decomposition of K1,14,14.
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Figure 8: The graph Ĝp+1 in Case 1.
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Theorem 2.4. The thickness of the complete 3-partite graph K1,n,n is

θ(K1,n,n) =

⌈
n+ 2

4

⌉
.

Proof. When n = 4p, 4p+ 3, the theorem follows from Lemma 2.2.
When n = 4p + 1, n = 4p + 2, from Lemma 2.3, we have θ(K1,4p+2,4p+2) ≤ p + 1.

Since θ(K4p,4p) = p+ 1 and K4p,4p ⊂ K1,4p+1,4p+1 ⊂ K1,4p+2,4p+2, we obtain

p+ 1 ≤ θ(K1,4p+1,4p+1) ≤ θ(K1,4p+2,4p+2) ≤ p+ 1.

Therefore, θ(K1,4p+1,4p+1) = θ(K1,4p+2,4p+2) = p+ 1.
Summarizing the above, the theorem is obtained.

3 The thickness of K2,n,n

Lemma 3.1. There exists a planar decomposition of the complete 3-partite graph
K2,4p+1,4p+1 (p ≥ 0) with p+ 1 subgraphs.

Proof. Let (X,U, V ) be the vertex partition of the complete 3-partite graph K2,n,n, in
which X = {x1, x2}, U = {u1, . . . , un} and V = {v1, . . . , vn}. When n = 4p + 1, we
will construct a planar decomposition of K2,4p+1,4p+1 with p+ 1 planar subgraphs.

The construction is analogous to that in Lemma 2.3. Let {G1, G2, . . . , Gp+1} be a
planar decomposition of K4p,4p given in [4]. In the following, for 1 ≤ r ≤ p + 1, by
adding vertices x1, x2, u4p+1, v4p+1 to Gr, deleting some edges from Gr and adding some
edges to Gr, we will get a new planar graph Ĝr such that {Ĝ1, . . . , Ĝp+1} is a planar
decomposition of K2,4p+1,4p+1. All the subscripts of vertices are taken modulo 4p, except
that of u4p+1 and v4p+1 (the vertices we added to Gr).

Case 1. When p is even and p > 2.

(a) The construction for Ĝr , 1 ≤ r ≤ p.
Step 1: When r is odd, place the vertex x1, x2 and u4p+1 in the face 1, 2 and 5 of Gr

respectively. Delete edges v4r−3u4r and u4r−1v4r−2 from Gr.
When r is even, place the vertex x1, x2 and u4p+1 in the face 3, 4 and 5 of Gr, respec-

tively. Delete edge v4ru4r−3 and u4r−2v4r−1 from Gr.
Step 2: Do parallel paths modifications, then join x1, x2, u4p+1 and v4p+1 to some uj and
vj , as shown in Table 5.

(b) The construction for Ĝp+1.

We list the edges that belong to K2,4p+1,4p+1 but not to any Ĝr, 1 ≤ r ≤ p, as shown
in Table 6. Then Ĝp+1 is the graph that consists of the edges in Table 6. Figure 8 shows
Ĝp+1 is a planar graph.

Therefore, {Ĝ1, . . . , Ĝp+1} is a planar decomposition of K2,4p+1,4p+1 in this case. In
Figure 9, we draw the planar decomposition of K2,17,17 it is the smallest example for the
Case 1. We denote vertex ui and vi by i and i′ respectively in this figure.
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Table 5: The edges we add to Gr (1 ≤ r ≤ p) in Case 1.

edge

subscript case
r is odd r is even

x1uj 4r − 1, 4r 4r + 5 (Ur
1 ) 4r − 3, 4r − 2 4r + 8 (Ur

2 )

x1vj 4r − 3, 4r − 1 4r + 1 (V r
1 ) 4r − 2, 4r 4r + 4 (V r

2 )

x2uj 4r − 1, 4r 4r + 3 (Ur
2 ) 4r − 3, 4r − 2 4r + 2 (Ur

1 )

x2vj 4r − 2, 4r 4r + 7 (V r
1 ) 4r − 3, 4r − 1 4r + 6 (V r

2 )

u4p+1vj 4r − 2, 4r − 1

v4p+1uj 4r + 4, 4r + 8 (Ur
2 ) 4r − 11, 4r − 7 (Ur

1 )

Table 6: The edges of Ĝp+1 in Case 1.

edges subscript

x1uj
j = 4r − 2, 4r + 3, 4p+ 1 (r = 1, 3, . . . , p− 1)

x1vj

x2uj
j = 4r − 7, 4r, 4p+ 1 (r = 2, 4, . . . , p)

x2vj

u4p+1vj j = 4r − 3, 4r (r = 1, 2, . . . , p)

v4p+1uj j = 4r − 2, 4r − 1 (r = 1, 2, . . . , p)

v4r−3u4r, v4r−2u4r−1 r = 1, 3, . . . , p− 1

u4r−3v4r, u4r−2v4r−1 r = 2, 4, . . . , p

ujvj j = 1, . . . , 4p+ 1
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Figure 9: A planar decomposition of K2,17,17.
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Case 2. When p is odd and p > 3.

(a) The construction for Ĝr, 1 ≤ r ≤ p.
Step 1: When r is odd, place the vertex x1, x2 and u4p+1 in the face 1, 2 and 5 of Gr

respectively. Delete edges v4r−3u4r and u4r−1v4r−2 from Gr.
When r is even, place the vertex x1, x2 and u4p+1 in the face 3, 4 and 5 of Gr, respec-

tively. Delete edge v4ru4r−3 and u4r−2v4r−1 from Gr.
Step 2: Do parallel paths modifications, then join x1, x2, u4p+1 and v4p+1 to some uj and
vj , as shown in Table 7.

Table 7: The edges we add to Gr (1 ≤ r ≤ p) in Case 2.

edge

subscript case

r is odd r is even

x1uj
4r − 1,

4r

4r + 5, r 6= p (Ur
1 )

1, r = p (Ur
1 )

4r − 3,
4r − 2

4r + 8, r 6= p− 1 (Ur
2 )

8, r = p− 1 (Ur
2 )

x1vj
4r − 3,
4r − 1

4r + 1, r 6= p (V r
1 )

4r − 2,
4r

4r + 4 (V r
2 )

x2uj
4r − 1,

4r

4r + 3, r 6= p (Ur
2 )

8, r = p (Ur
2 )

4r − 3,
4r − 2

4r + 2 (Ur
1 )

x2vj
4r − 2,

4r

4r + 7, r 6= p (V r
1 )

3, r = p (V r
1 )

4r − 3,
4r − 1

4r + 6, r 6= p− 1 (V r
2 )

6, r = p− 1 (V r
2 )

u4p+1vj 4r − 2, 4r − 1

v4p+1uj

4r + 4, 4r + 8, r 6= p (Ur
2 )

4, r = p (Ur
2 )

4r − 11, 4r − 7 (Ur
1 )

(b) The construction for Ĝp+1.
We list the edges that belong to K2,4p+1,4p+1 but not to any Ĝr, 1 ≤ r ≤ p, as shown

in Table 8. Then Ĝp+1 is the graph that consists of the edges in Table 8. Figure 10 shows
Ĝp+1 is a planar graph.

Therefore, {Ĝ1, . . . , Ĝp+1} is a planar decomposition of K2,4p+1,4p+1 in this case.

Case 3. When p ≤ 3.

When p = 0, K2,1,1 is a planar graph. When p = 1, 2, 3, we give a planar decomposi-
tion for K2,5,5, K2,9,9 and K2,13,13 with 2, 3 and 4 subgraphs respectively, as shown in
Figure 11, Figure 12 and Figure 13.

Summarizing Cases 1, 2 and 3, the lemma follows.
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Table 8: The edges of Ĝp+1 in Case 2.

edges subscript

x1uj j = 2, 4r + 3, 4r + 6, 4p+ 1 (r = 1, 3, . . . , p− 2)

x1vj j = 2, 4, 4r + 3, 4r + 6, 4p+ 1 (r = 1, 3, . . . , p− 2)

x2uj j = 1, 2, 9, 4r, 4r + 1, 4p+ 1 (r = 4, . . . , p− 1)

x2vj j = 1, 8, 9, 4r, 4r + 1, 4p+ 1 (r = 4, . . . , p− 1)

u4p+1vj j = 4r − 3, 4r (r = 1, 2, . . . , p)

v4p+1uj j = 4r − 2, 4r − 1, 4p− 7 (r = 1, 2, . . . , p)

v4r−3u4r, v4r−2u4r−1 r = 1, 3, . . . , p

u4r−3v4r, u4r−2v4r−1 r = 2, 4, . . . , p− 1

ujvj j = 1, . . . , 4p+ 1
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Figure 10: The graph Ĝp+1 in Case 2.
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Figure 12: A planar decomposition K2,9,9.



X. Guo and Y. Yang: The thickness of K1,n,n and K2,n,n 371

u1
u2

v6
v10

u13

v12

v8

u4v9
u3

v11

v5

v7

v3

v1

u5 u6 u9 u10

v2

v4

u8
u11 u12

v13
u7

x2

x1

u8u7

v3

u13

v11

v1

v9

u5

v2

u6

v4

v12

v10

v6

v8

u3 u4 u11

u12

v7

v5

u1 v13

u2
u9 u10

x2

x1

u12u11

v3

v5

u13

v7

v1

u9
v6

u10

v4

v8

v2

v10

v12

u8u7u4
u3

v11

v9

u1
v13

u5
u6u2

x2

x1

x2 x1

u1

v2

v4

u3

v1
u4

u2
v3

v8

u5

u6

v7

u8 v6

v5 u7

u10

v11

v9

u12

v10

u9

u11 v12

u13

v13

Figure 13: A planar decomposition of K2,13,13.
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Theorem 3.2. The thickness of the complete 3-partite graph K2,n,n is

θ(K2,n,n) =

⌈
n+ 3

4

⌉
.

Proof. When n = 4p, 4p+ 3, from Lemma 2.2, the theorem holds.
When n = 4p + 1, from Lemma 3.1, we have θ(K2,4p+1,4p+1) ≤ p + 1. Since

θ(K4p,4p) = p+ 1 and K4p,4p ⊂ K2,4p+1,4p+1, we have

p+ 1 = θ(K4p,4p) ≤ θ(K2,4p+1,4p+1) ≤ p+ 1.

Therefore, θ(K2,4p+1,4p+1) = p+ 1.
When n = 4p + 2, since K4p+3,4p+3 ⊂ K2,4p+2,4p+2, from Lemma 2.1, we have

p + 2 = θ(K4p+3,4p+3) ≤ θ(K2,4p+2,4p+2). On the other hand, it is easy to see
θ(K2,4p+2,4p+2) ≤ θ(K2,4p+1,4p+1) + 1 = p+ 2, so we have θ(K2,4p+2,4p+2) = p+ 2.

Summarizing the above, the theorem is obtained.

4 The thickness of K1,1,n,n

Theorem 4.1. The thickness of the complete 4-partite graph K1,1,n,n is

θ(K1,1,n,n) =

⌈
n+ 3

4

⌉
.

Proof. When n = 4p+1, we can get a planar decomposition for K1,1,4p+1,4p+1 from that
of K2,4p+1,4p+1 as follows.

(1) When p = 0, K1,1,1,1 is a planar graph, θ(K1,1,1,1) = 1. When p = 1, 2 and
3, we join the vertex x1 to x2 in the last planar subgraph in the planar decomposition for
K2,5,5, K2,9,9 and K2,13,13 which was shown in Figure 11, 12 and 13. Then we get the
planar decomposition for K1,1,5,5, K1,1,9,9 and K1,1,13,13 with 2, 3 and 4 planar subgraphs
respectively.

(2) When p ≥ 4, we join the vertex x1 to x2 in Ĝp+1 in the planar decomposition for
K2,4p+1,4p+1 which was constructed in Lemma 3.1. The Ĝp+1 is shown in Figure 8 or 10
according to p is even or odd. Because x1 and x2 lie on the boundary of the same face,
we will get a planar graph by adding edge x1x2 to Ĝp+1. Then a planar decomposition for
K1,1,4p+1,4p+1 with p+ 1 planar subgraphs can be obtained.

Summarizing (1) and (2), we have K1,1,4p+1,4p+1 ≤ p+ 1.
On the other hand, from Lemma 2.1, we have θ(K4p+1,4p+1) = p + 1. Due to

K4p+1,4p+1 ⊂ K1,1,4p,4p ⊂ K1,1,4p+1,4p+1, we get

p+ 1 ≤ θ(K1,1,4p,4p) ≤ θ(K1,1,4p+1,4p+1).

So we have
θ(K1,1,4p,4p) = θ(K1,1,4p+1,4p+1) = p+ 1.

When n = 4p + 3, from Theorem 3.2 , we have θ(K2,4p+2,4p+2) = p + 2. Since
K2,4p+2,4p+2 ⊂ K1,1,4p+2,4p+2 ⊂ K1,1,4p+3,4p+3 ⊂ K1,1,4(p+1),4(p+1), and the ideas
from the previous case establish, we have

p+ 2 ≤ θ(K1,1,4p+2,4p+2) ≤ θ(K1,1,4p+3,4p+3) ≤ θ(K1,1,4(p+1),4(p+1)) = p+ 2,

which shows
θ(K1,1,4p+2,4p+2) = θ(K1,1,4p+3,4p+3) = p+ 2.

Summarizing the above, the theorem follows.
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