
https://doi.org/10.31449/inf.v45i5.3497 Informatica 45 (2021) 731–739 731

Optimized Training for Convolutional Neural Network Using

Enhanced Grey Wolf Optimization Algorithm

Akram Guernine

Laboratory of Embedded Systems, Department of Computer Science

University of Badji Mokhtar-Annaba, Po Box.12, Sidi Amar, Annaba, Algeria

E-mail: guernine24@yahoo.fr

Mohamed Tahar Kimour

Laboratory of Embedded Systems, Department of Computer Science

University of Badji Mokhtar-Annaba, Po Box.12, Sidi Amar, Annaba, Algeria

Center of research on environment, Annaba, Algeria

E-mail: rahatkimm@gmail.com

Keywords: deep learning, convolutional neural network (CNN), training algorithm, grey wolf optimization algorithm

Received: April 4, 2021

Convolutional Neural Networks (CNNs) are widely used in image classification tasks and have achieved

significant performance. They have different applications with great success, especially in the medical

field. The choice of architecture and hyperparameter settings of the CNN, highly influences both

accuracy and its convergence speed. The empirical design and optimization of a new CNN architecture

require a lot of expertise and can be very time-consuming. This paper proposes an enhanced Grey Wolf

Optimization (GWO) algorithm to efficiently explore a defined space of potentially suitable CNN

architectures, and simultaneously optimize their hyperparameters. Moreover, we introduce a spatial

resolution reduction for a given image processing task, while taking skin cancer detection as a practical

application. Through conducted experiments, we have shown that the obtained results are better than

other classification methods in terms of accuracy and convergence speed.

Povzetek: Opisan je Gray Wolf Optimization (GWO) algoritem za iskanje primerne arhitekture

konvolucijskih nevronskih mrež.

1 Introduction
As a class of deep neural network architectures,

Convolutional neural networks (CNNs) has been recently

presented as the most efficient solution towards

achieving better recognition accuracy including pattern

recognition, computer vision, speech recognition,

graphical modeling, and signal processing, artificial

intelligence, and many other fields [1-8],[27-30].

Especially, they have made huge impacts in the medical

imaging domain. They are mostly applied to two-

dimensional data such as images and videos. CNNs were

inspired by the organization of the animal visual cortex

[28]. CNNs can automatically learn hand-engineered

filters as they were used in traditional computer vision

algorithms. This independence from prior knowledge and

human intervention in feature design is the main

advantage of CNNs[8]. Sparse interaction, equivariant

representation, and parameter sharing are three factors

that play an important role in the learning process of a

CNN [29].

There are different architectures for CNN

implementation, and an optimal performance may not be

achievable if the same architecture is applied on several

tasks, and the CNN architecture must be specified for

specific tasks However, it is computationally

complicated to design an efficient CNN architecture for

specific tasks, as several types of machine learning tasks

exist in the industries [9].

Despite the robustness of the CNNs, some of its

parameters still need to be optimized; such parameters

can be roughly categorized into those for learning and

those for network configurations. The network

configuration has been reported to influence the

recognition performance of CNNs [10], [11]. Therefore,

the performance of a CNN is highly dependent on its

architecture and hyperparameter settings.

Several studies have strived to provide the

theoretical basis for the better performance of CNNs, but

yet to provide the strategies for optimizing its

parameters. This implies a shift in the concepts from

visual features extraction to network structure

configuration and parameters optimization [11] [28-32].

Traditionally, CNNs have been designed manually

by researchers with a lot of experience in this area. Since

the architecture of a well-performing CNN model can

depend on the problem characteristics, the optimal choice

of hyper-parameters is one of the major challenges when

applying CNN-based methods. Often, it is unclear for a

specific application how the CNN structure relates to the

mailto:guernine24@yahoo.fr

732 Informatica 45 (2021) 731–739 A. Guernine et al.

accuracy; this is why it is not trivial to find the best

performing CNN structure.

In this paper, we propose a framework for finding

the optimal configuration of a CNN using an enhanced

version of the Grey Wolf Optimizer (GWO) algorithm,

with application on skin cancer detection. GWO [1] is a

meta-heuristic optimization framework, which is inspired

by the behavior of the grey wolves. We have modified

the original GWO by introducing chaos theory with

adaptive mechanisms to prevent the algorithm from

falling into local optimum ad speed up its convergence,

leading to high accuracy. In this study, the major

contribution is the proposal of a novel training algorithm

called acGWO-CNN for the training of the CNN model

based on the acGWO algorithm. Here, the adaptive

GWO, we call acGWO algorithm is used to establish the

optimal CNN parameters.

The optimization performance of these algorithms

was compared using several criteria such as their

calculated errors and accuracy. This study used the

digital images of skin cancer dataset. In this dataset, the

digital size of the images is 28 x 28 pixels. The set of

80% images are used to train the model while 20% of

them are for the model testing.

The structure of this paper is as follows: Section 2

covers some related works. Section 3 provides the basics

of the CNN and its use in image processing. Section 4 is

devoted to the GWO algorithm and the improvement we

gave to it. In Section 5, the proposed acGWO-CNN

method is described in detail. Experiments and

discussion are presented in Section 6. Finally, Section 7

concludes the paper and defines some future works.

2 Related works
Recently, deep learning algorithms have attracted

researchers in both academically and industrially fields.

Neural network shows considerable performance on

various domains. However, for complex systems, neural

network's accuracy significantly deteriorates. This is

why, research works focused on deep neural networks to

learn hyperparameters and network structures [33-36, 38-

39] using evolutionary algorithms (EAs). Indeed, in [33-

35], the authors proposed an appropriate method to

optimize hyper-parameters in CNNs using (EAs). The

numbers of filters in each CNN layer with the size of the

kernel are examples of the studied hyperparameters.

In [11], to improve the recognition accuracy by

optimizing the results of the solution vectors on CNN,

the training process was supported by the PSO algorithm.

In [17], an approach based on whale optimization

algorithm (WOA) is utilized for optimizing the weight

and biases in the CNN model. In [38], an integrated CNN

with a genetic algorithm was proposed to learn the

structure of deep neural networks. This is based on a new

coding scheme, which used a binary sequence with a

fixed length for representing the structure of the network.

In [40], genetic algorithms were used to determine the

optimal initial weights of the CNN. In [39,41], the

authors have proposed an optimization mechanism of the

Convolutional Neural Networks (CNNs) using Particle

Swarm Optimization (PSO).

In the above-mentioned existing works, meta-heuristics

have been used to optimize CNN parameters for

classification and object recognition. CNN Parameters

concern hidden units, learning rates, and a determined

number of epochs. They are optimized to decrease

learning time and error rate. Different from the above-

mentioned existing works, we introduce a spatial

resolution reduction for a given image processing task,

while applying an improved grey wolf algorithm to

generate new efficient individuals and to select the best

CNN architecture.

3 Convolutional networks based

image processing
Compared to a traditional neural network, CNN is

structured differently. A traditional neural network works

with 3-dimensional layers in width, height, and depth

manner, while composed of a set of neurons. Each layer

is connected to all neurons. In CNN, a layer is only

connected to a small portion of neurons in the previous

layer.

It is worth noting that a CNN is a multi-layer neural

network that basically consists of two types of layers:

convolutional layers and pooling layers. The

convolutional layers are the core building block of a

Convolutional network. To produce the feature maps, the

input is convolved with trainable filters of a specific size

called the receptive field.

The pooling layers that are located between the

convolutional layers progressively reduce the spatial size

of the layers and thereby decrease the computational

volume and the number of parameters. The pooling

layers down-sample each depth slice of the input

independently, according to the defined filter size. The

commonly used pooling layer between a sequence of the

convolutional layer has a filter size of 2×2 with a stride

of 2. CNN architectures also include other types of layers

such as a fully connected layer, normalization layer etc.

Therefore, there are many parameters in a CNN structure

such as the number of layers, number of feature maps,

receptive field or filter size, and stride size that can be

evolved by a genetic algorithm based on the nature of the

problem and the available data (Figure 1).

CNNs can automatically learn hand-engineered

filters as they were used in traditional computer vision

algorithms. This independence from prior knowledge and

human intervention in feature design is the main

advantage of CNNs. Sparse interaction, equivariant

representation, and parameter sharing are three factors

that play an important role in the learning process of a

CNN [29].

 In traditional artificial neural networks (NNs), the

relationship between input and output components was

derived from matrix multiplication. But in CNNs, by

using sparse interaction and creating kernels smaller than

the inputs, and applying that to the whole image, this

computational burden was reduced considerably.

Because of parameters haring, the network only needs to

Optimized Training for Convolutional Neural Network... Informatica 45 (2021) 731–739 733

learn one set of parameters at each location which

improves the performance of CNNs over traditional NNs.

Moreover, parameter sharing results in a deceptive

property called equivariance in which by changing input,

the output changes in the same way [30].

To date, in the image processing field, CNNs are the

most efficient models for classifying images[33]. They

have two distinct parts. As input, an image is provided in

the form of an array of pixels. It has two dimensions for a

grayscale image. The color is represented by a third

dimension, of depth three to represent the fundamental

colors (Red, Green, Blue). To learn spatial hierarchies of

features through backpropagation, CNN is based on an

adaptive approach and the fully connected layer is placed

at its last building block, with other components such as

convolution layers, pooling layers [16]. Features are

extracted by the convolution layer, which typically

performs the convolution operation and activation

function. If an image is considered, they take advantage

of the fact that proximity has a relation with similarity in

it. To make the image processing computationally

manageable, CNNs perform the filtering of connections

by the proximity. In a given layer, each neuron is

responsible for processing only a certain portion of the

image and CNNs restrict the connections that any neuron

accepts the inputs only.

Thus, the first part of a CNN is the actual

convolutional part. It works as a feature extractor from

images. An image is passed through a succession of

filters, or convolution kernel, creating new images called

convolution maps. Some intermediate filters reduce the

image resolution by a local maximum operation. Finally,

the convolution maps are flattened and concatenated into

a feature vector. This CNN code at the output of the

convolutional part is then plugged into the input of a

second part, made up of fully connected layers. The role

of this part is to combine the characteristics of the CNN

code to classify the image. The output is a final layer

with one neuron per category. The numerical values

obtained are generally normalized between 0 and 1, of

sum 1, to produce a probability distribution over the

categories.

Creating a new CNN is costly in terms of expertise,

materials, and the amount of annotated data required.

The first step is to set up the architecture of the CNN,

that is, the number of layers, their sizes, and the matrix

operations that connect them. The training then consists

of optimizing the coefficients of the network to minimize

the classification error at the output.

4 Grey wolf optimization algorithm
In this study, the nature-inspired grey wolf optimizer

(GWO) algorithm [1] was chosen due to several

advantages including having a few tuning parameters,

fast convergence, and its good capability to address

optimization problems. In addition, we have given our

proper improvement to yet enhance its accuracy, while

preventing it from falling into the local optimum.

4.1 Grey wolf optimizer algorithm

GWO algorithm is based on the principle of hunting.

Wolves are a member of a group in which a number of

the grey wolves, which contribute to hunting. Wolves in

a group are classified according to the leadership quality.

There are four types of wolves in a group, identified as

alpha (α), beta (β), delta (δ), and omega (ω). The

decision-maker in the group is α that is the leader of the

hunting process.

The rest of the wolves have their dominance

decreasing sequentially in this order: beta (β), delta (δ)

and omega (ω). Wolves of type ω are involved in the

hunting process, and they transfer their better positions to

their superiors. In this process, which is the course of the

chasing, the first grey wolves search the location of prey

and enclose them. α, β, and δ have better information

about the potential area of prey for mathematical

simulation of hunting action. The mathematical model of

the enclosing has the form below:

 (1)

 (2)

where t is the existing iteration, A and C are

coefficient vectors, Xp is the location vector of the prey,

and X indicates the location vector of a grey wolf. The

vectors A and C are calculated as follows:

 (3)

 (4)

where components of a linearly decreased from 2 to

0 over the course of iterations.

a = 2(1-t/T) (5)

Figure 1: A typical architecture of a CNN Model.

734 Informatica 45 (2021) 731–739 A. Guernine et al.

where “t” stands for the minimum iteration number,

and “T” is the maximum iteration number.

and r1, r2 are random values in [0, 1]. Grey wolf

hunting process is calculated as following equations:

 (6)

where respectively, are the distance

vectors between the and the , , , ,

and are the coefficient vectors;

are the direction vectors for calculating the next position

of a grey wolf;  is the random coefficient factor; d is

the dimension of the search space; the variable for

adjusting the movement freedom is denoted by M.

4.2 Improving GWO

As a new meta-heuristic search algorithm, GWO is

inspired by the social behavior of leadership and the

hunting process of grey wolves. In the original GWO, a

great part of the iterations is dedicated to the exploration

and the rest part is concerned with the exploitation. In

doing so, the impact of the right balance is overlooked,

between these two parts, to guarantee an accurate

approximation of the global optimum. Despite of having

a good convergence rate, the convergence rate of the

algorithm is affected because GWO still cannot always

perform a good balance in finding the global optima. The

solutions are still prone to falling into the local optimum

at the later phase of the search. The consequence is

premature convergence leading to suboptimal solutions.

 So, to reduce this effect and enhance its efficiency, we

propose some improvements to GWO, by introducing

combined adaptation and chaotic mechanisms, while

considering different proportions according to the

hierarchy of grey wolves: alpha, beta, and delta, in a way

that allows guiding the search process towards the best

elements.

Chaos system. Chaos is a category of unique

deterministic random-like process found in a non-linear

dynamical system, which is a non-periodic, non-

converging; and confined it has been applied extensively

in different fields including computer science, operations

research, physics, biology, etc. A lot of chaotic maps

have been explored [6]. Specifically in this work, for

GWO algorithm, instead of the random number

generator, we introduce a chaotic logistic map system in

the first GWO stage to generate the initial population

with high diversity. Moreover, we use this type of

chaotic map in the second GWO phase to select different

trial individuals from the population in the mutation

operation. The logistic map is one of the most well-

known one-dimensional discrete-time systems with a

chaotic behavior. It is widely used in especially the

computer science field, due to its simple and elegant

form. It is expressed as follows.

Logistic map, Xn+1 = 4 Xn (1-Xn), (7)

where X represents the population at any given time

t, and  is a control parameter that represents the growth

rate. Generally, the  constant is in the range of [3.57, 4].

In the study, its value was determined as 3.9, for the

logistic map to be totally in a chaotic state [11].

We use this type of logistic chaotic system at the

generation of the initial population phase, and at the

population evolution phase.

Initial population generation. In the initial

population generation, every element of an individual is

generated using:

minValue + chaos(maxValue-minValue) (8)

where, minValue and maxValue stand for minimum

and maximum values of every element of an individual.

Chaos is a chaotic randomly generated value ranging in

[0, 1]. The initial population is generated by the chaotic

maps, which can form a feasible solution space, with a

good distribution by the properties of randomicity, and

ergodicity of chaos. Chaotic sequences can guarantee the

diversity of the initial population, speed up its

convergence, and enhance global search capability.

At the evolution phase, the transition between

exploration and exploitation phases is generated by the

adaptive values of “a “, and “A”. To find a global

optimum with a fast convergence speed, in acGWO , we

balance these two phases by fine-adjusting the

parameters “a” and “A”, guiding the value of “a” to

decrease from 2 to 0 as follows:

 = (1-t)2/T2

a = 2-chaos(t) (9)

where chaos(t) is a logistic map chaotic random

value ranging in [0, 1] , “T” stands for the maximum

number of the iterations, and “t” stands for the current

iteration. Associated with “A” in equation (3), the

parameter “a” decreases linearly from “2” to “0” over the

courses of the iterations. To efficiently manage the

exploration and the exploitation, we modify the original

equation of the parameter “a” as follows:

A = 2a chaos(t)-a , (10)

 where chaos is a chaos-based random value in [0, 1].

The parameter “C” exhibits a random behavior in the

range of [0,1] using the equation (4). It is very useful

when the local optima stagnation occurs, especially in the

final iterations. It directly affects the exploration of

GWO in a way to avoid the local optima, though it is

pure random walk behavior. We introduce the chaos

theory, via reformulating the parameter C as follows:

C (t) = 2chaos(t), (11)

Optimized Training for Convolutional Neural Network... Informatica 45 (2021) 731–739 735

where t is the current iteration and chaos(t)is a

chaos-based random value in [0, 1].

The chaotic varying value can mitigate the local

optima due to the non-repetition and the ergodicity

property of the chaos [1,4]. Thus, the enhanced GWO

algorithm we call acGWO with a better hunting

mechanism is proposed. It focuses on a proper balance

between the exploration and the exploitation, leading to

optimal performance, and promising candidate solutions.

Adapting the weighted factors. In the original

GWO, individuals are updated by considering the

average combination of the alpha, beta, and delta wolves.

This mechanism guides individuals in the same

proportion towards the best elements. However, it has

been proved that this is not the best strategy [14], since

that mechanism produces a limited exploration of the

search space. To remedy this problem, we defined the

weights in a way that allows guiding the search process

towards the best elements, but considering different

proportions according to the hierarchy of the grey

wolves. Therefore, in acGWO, wolves are updated using

the following formulation:

X = chaos(t) (X1 + X2/2 + X3/3) (12)

where X1, X2, and X3 are the solutions of alpha, eta

ad delta wolves. We have conducted experiments on

some benchmark functions, to compare acGWO with the

GWO and other popular metaheuristics, including

genetic algorithms, differential evolution algorithm, PSO

algorithm, and BA. We have found that acGWO exhibits

faster convergence and better accuracy over all these

metaheuristics.

The CNN was trained in this study using an

enhanced algorithm for two reasons, the first is its simple

structure and its ease of implementation, and the second

is its parameter-less nature.

5 The proposed method
As mentioned earlier, the main contribution of this paper

is to develop a training algorithm for CNN, meaning that

finding the best values for the parameters of CNN. In this

paper, our enhanced Grey Wolf optimizer algorithm is

used as the training algorithm, for two reasons: first, it

has a simple structure, while the second reason; it does

not have any controlling parameters.

In the proposed method, the main configuration of

the CNN architecture is based on LeNet-5 [31-32]. This

is a relatively simple architecture consisting of two

convolutional layers, two pooling layers, two fully

connected layers, and an output layer. We choose it

because it is often used as comparison architecture in

experiments. The pooling layer uses max pooling.

In Table 1, we reuse original parameter values that

have been also used in [31] to facilitate comparison. It

shows the baseline parameters and optimization

parameters of LeNet-5 where the convolution layers are

C1 and C2, and the total coupling layers are FC1 and

FC2. The number of filters in the convolution layers C1

and C2 is optimized between 4 and 100, and the kernel

size is 3, 5, and 7. The number of neurons in full connect

layers optimizes between 4 and 200. The activation

function of each layer uses sigmoid, relu, and tanh, and

the batch size is optimized from 10 to 100. The optimizer

uses Adam or Stochastic Gradient Descent (SGD) with a

learning rate of 0.01, respectively. In building the model,

we used the open-source neural network library Keras.

All experiments are performed on a machine with an

Intel Core i7-6600K processor, 8GB RAM, GeForce

GT650M -2GB.

5.1 The encoding of the wolves

A CNN is composed of two basic parts of feature

extraction and classification. Feature extraction includes

several convolution layers followed by max-pooling and

an activation function. The classifier usually consists of

fully connected neural network layers. In the proposed

method, the weights set of the neural network is

considered as the structure of each star. For this purpose,

a vector of real values has been used. This vector

contains all the weights of the neural network.

5.2 Initialization of the wolves

In terms of the population initialization, after the size of

the population is set up, wolves are randomly created

until reaching the population size. Each wolf is initialized

using equation (8). The value of the classification error

parameter baseline optimization value

number of filters in C1 6 4-100

number of filters in C2 16 4-100

kernel size in C1 5 3,5,7

kernel size in C2 5 3,5,7

activation function in C1 sigmoid sigmoid, relu, tanh

activation function in C2 sigmoid sigmoid, relu, tanh

activation function in FC1 sigmoid sigmoid, relu, tanh

activation function in FC2 sigmoid sigmoid, relu, tanh

number of neurons in FC1 120 4-200

number of neurons in FC2 84 4-200

batch size in the training 10 10-100

optimizer SGD SGD

Table 1: Wolf definition in our approach.

736 Informatica 45 (2021) 731–739 A. Guernine et al.

depends on the correctly classified samples, meaning

that, the CNN is used to classify the samples.

6 Experiments and discussion
In this study, we experiment with DermIS Digital

Database. Each image is given a defined label. In the

experiment, optimization has been performed with

acGWO-CNN every 5 epochs, and learning is performed

based on the obtained parameters. Each experiment is

performed 10 times, to finally take only the average

value.

Table 2 depicts the comparison between our methods

and the above-mentioned existing ones using the

accuracy and variance metrics. At the epoch 5 of the

learning, the accuracy of CNN optimized with acGWO

has 98.78%, which is higher than 93.01% of CNN

without optimization. When looking at any epoch, it is

found that acGWO-CNN can obtain higher accuracy than

Baseline CNN. Especially in the 1st epoch, Baseline

CNN is 19.24%, while acGWO-CNN has a high

accuracy of 96.52%, and the variance value is also low at

0.12, so it can see that the optimized CNN converges to

high accuracy at an early stage. From this, it is thought

that the proposed acGWO-CNN can find the optimal

parameters and can obtain better results compared to the

baseline CNN. Also, the average optimization calculation

time for acGWO-CNN is 2621 seconds. Thus, as

depicted by Table 2, compared to the four other existing

methods, the proposed acGWO-CNN presents the best

results according to the accuracy and variance metrics.

Input: dataset, #Epoch, #PopSize, Upper Bound, Lower Bound

Output: Best Solution

Procedure:

build the initial population Xi (i = 1, 2, …, N), using equation (8)

Update the weights and biases of CNN using each wolf in the

population

Calculate the fitness of each wolf of the population via equation (13)

Xα = the first-best wolf

Xβ = the second-best wolf

Xδ = the third-best wolf

while (t < Max number of iterations)

 for each wolf

 Update the position of the current wolf by equation (12)

 Check the boundaries of the current wolf

 Update the weights and biases of CNN using the current wolf

 Evaluate the fitness value of the current wolf via equation (12)

 end for

 Update a by equation (9)

 Update A and C by equation (10) and (11), respectively

 Update Xα, Xβ and Xδ

 t = t+ 1

end while

return Xα as the best solution

Figure 2: Pseudocode of the acGWO-CNN algorithm.

epoch baseline CNN GA-CNN PSO-CNN WOA-CNN acGWO-CNN
 accuracy variance

value

accuracy variance

value

accuracy variance

value

accuracy variance

value

accuracy variance

value

1 19.24 46.21 86.21 0.28 89. 04 0.173 91.09 0.163 96.52 0.12

2 76.22 38.85 87.82 0.21 90.16 0.148 92.87 0.141 97.97 0.048

3 87.45 2.45 90.12 0.20 91.04 0.123 93.13 0.118 98.02 0.08

4 91.02 0.54 93.17 0.19 94. 05 0.114 95. 12 0.113 98. 35 0.06

5 93.01 0.22 94.22 0.18 95.48 0.110 96.13 0.082 98.78 0.02

Table 2: Comparison using the accuracy and the variance metrics.

Optimized Training for Convolutional Neural Network... Informatica 45 (2021) 731–739 737

Moreover, we have conducted other experiments

with greater numbers of iterations. From these

experiments, the acGWO-CNN has found parameters

that can be successfully learned through optimization.

These parameters define a best CNN architecture. The

population size used in this study is equal to 40 wolves,

while the maximum number of iterations is equal to 20.

The proposed method is compared against four existing

deep learning methods, that are, standard CNN, GA-

based CNN [8], PSO-based CNN [11], and Whale

optimization algorithm-based CNN[17]. The competitive

accuracy and loss are illustrated in Figure 3.

7 Conclusion and future work
This paper proposed a new automatic CNN architecture

design approach, based on adaptive Grey Wolf Optimizer

(acGWO) algorithm for Convolutional Neural Network

(CNN). Experiments are performed using a skin dataset,

and achieved better results than the baseline CNN. In the

results using the skin cancer dataset, the accuracy of the

baseline CNN is 93.01% at the 5th epoch, compared to

98.78% for acGWO-CNN. Baseline CNN has a higher

variance value at the beginning of the first epoch, such as

46.21, while acGWO-CNN is 0.12, and it has been found

that it converged with high accuracy from the first epoch.

In addition, baseline CNN has a large variance value of

0.22 at the 5th epoch, and a stable learning is not

possible. On the other hand, acGWO-CNN exhibited a

variance of 0.08 at the 3rd epoch at the highest and can

be stably learned. From these results, it is considered that

the optimization by acGWO can find very good

hyperparameters and can provide high classification

accuracy. As a future work, we plan to investigate the

effectiveness of the proposed method by applying it to

images in various fields. We also plan to investigate

other metaheuristics-based CNN architectures to

compare the effectiveness of the computational cost and

complexity.

References
[1] Mirjalili, S. M., Lewis, A. Grey wolf optimizer.

(2014).Advances in Engineering Software, Elsevier,

69, 46–61.

https://www.sciencedirect.com/science/article/abs/p

ii/S0965997813001853

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh. (2006).

A fast learning algorithm for deep belief nets.

Neural Comput., vol. 18, no. 7, pp. 1527–1554,

2006.

http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf

[3] Ali Bakhshi, Nasimul Noman, Zhiyong Chen.

(2019) Fast Automatic Optimization of CNN

Architectures for Image Classification Using

Genetic Algorithm, IEEE Congress on Evolutionary

Computation (CEC), IEEE, pp. 1283-1290

https://ieeexplore.ieee.org/abstract/document/

8790197

[4] C. Letellier. (2013). Chaos in nature. World

Scientific Publishing Company, pp.81

https://www.deboecksuperieur.com/ouvrage/97827

11791408-le-chaos-dans-la-nature

[5] K. Price, R. Storn. (1997). Differential evolution: a

simple evolution strategy for fast optimization. Dr

Dobb’s J Software Tools 22(4).pp 18–24.

https://link.springer.com/article/10.1023/A:1008202

821328

[6] Coelho Ld, Ayala HV, Mariani VC.(2014). A self-

adaptive chaotic differential evolution algorithm

using gamma distribution for unconstrained global

optimization. Appl Math Comput, Elsevier, 234.

452-459.

https://www.sciencedirect.com/science/article/abs/p

ii/S0096300314002124

[7] U. Yüzgeç, M. Eser. (2018). Chaotic based

differential evolution algorithm for optimization of

baker’s yeast drying process. Egyptian Informatics

Journal, Elsevier, 19. 151–163

https://www.sciencedirect.com/science/article/pii/S

1110866517302839

[8] M. Suganuma, S. Shirakawa, and T. Nagao. (2017).

A genetic programming approach to designing

convolutional neural network architectures. in

Proceedings of the Genetic and Evolutionary

Computation Conference, ACM, Germany, 497–

504.

https://dl.acm.org/doi/10.1145/3071178.3071229

[9] B. Wang, Y. Sun, B. Xue, and M. Zhang. (2018).

Evolving Deep Convolutional Neural Networks by

Figure 3: Model accuracy and loss.

https://www.sciencedirect.com/science/article/abs/pii/S0965997813001853
https://www.sciencedirect.com/science/article/abs/pii/S0965997813001853
http://www.cs.toronto.edu/~fritz/absps/ncfast.pdf
https://ieeexplore.ieee.org/abstract/document/%0b8790197
https://ieeexplore.ieee.org/abstract/document/%0b8790197
https://www.deboecksuperieur.com/ouvrage/9782711791408-le-chaos-dans-la-nature
https://www.deboecksuperieur.com/ouvrage/9782711791408-le-chaos-dans-la-nature
https://link.springer.com/article/10.1023/A:1008202821328
https://link.springer.com/article/10.1023/A:1008202821328
https://www.sciencedirect.com/science/article/abs/pii/S0096300314002124
https://www.sciencedirect.com/science/article/abs/pii/S0096300314002124
https://www.sciencedirect.com/science/article/pii/S1110866517302839
https://www.sciencedirect.com/science/article/pii/S1110866517302839
https://dl.acm.org/doi/10.1145/3071178.3071229

738 Informatica 45 (2021) 731–739 A. Guernine et al.

Variable-Length Particle Swarm Optimization for

Image Classification. IEEE Congress on

Evolutionary Computation, IEEE, Brazil. 1-8.

https://ieeexplore.ieee.org/abstract/

document/8477735

[10] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y.

LeCun. (2009). What is the best multi-stage

architecture for object recognition?. IEEE

International Conference on Computer Vision,

IEEE, Japan, 12. 2146-2153

https://ieeexplore.ieee.org/document/5459469

[11] T. Yamasaki, T. Honma, and K. Aizawa. (2017).

Efficient Optimization of Convolutional Neural

Networks Using Particle Swarm Optimization.

IEEE 3rd International Conference on Multimedia

Big Data, IEEE, Usa, 3. 70-73.

https://ieeexplore.ieee.org/document/7966719

[12] J. Kennedy, R. Eberhart. (1995). Particle swarm

optimization. IEEE International Conf. on Neural

Networks, IEEE, Australia, 4. pp.1942-1948.

https://ieeexplore.ieee.org/abstract/document/48896

8

[13] S. Kumar, D. Datta, S. Kumar Singh, A. T. Azar,

and S. Vaidyanathan. (2015). Black hole algorithm

and its applications. Computational Intelligence

Applications in Modeling and Control., Springer

International Publishing,

https://www.springerprofessional.de/en/black-hole-

algorithm-and-its-applications/2262522

[14] H. J. Kelley. (1960). Gradient Theory of Optimal

Flight Paths. .aiaa., vol. 30, no. 10, pp. 947–954.

https://arc.aiaa.org/doi/10.2514/8.5282

[15] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu.(

2017). Towards Better Analysis of Deep

Convolutional Neural Networks, IEEE Trans Vis

Comput Graph, IEEE,pp. 91 – 100

https://ieeexplore.ieee.org/document/7536654/metri

cs#metrics

[16] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H.

Lipson. (2015). Understanding neural networks

through deep visualization, ICML Deep Learning

Workshop, ArXiv, France.

https://arxiv.org/abs/1506.06579

[17] Long Zhang, Hong Jie Gao, Jianhua Zhang,

Benjamin Badami. (2020). Optimization of the

Convolutional Neural Networks for Automatic

Detection of Skin Cancer, Open Medcine, De

Gruyter Open Access, 15: 27-37.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC70

26744/#

A. A. Alzaidi, M. Ahmad, H. S. Ahmed, and E. Al

Solami. (2018). sine-Cosine Optimization-Based

Bijective Substitution-Boxes Construction Using

Enhanced Dynamics of Chaotic Map. Complexity,

hindawi, vol. 2018. https://www.hindawi.com/

journals/complexity/

2018/9389065/

[18] A. M. Taha, S.-D. Chen, and A. Mustapha. (2015).

Bat Algorithm Based Hybrid Filter- Wrapper

Approach. Adv Oper Res, hindawi, vol. 2015.

https://www.hindawi.com/journals/aor/2015/96149

4/

A. M. Taha, S.-D. Chen, and A. Mustapha. (2015).

Natural Extensions: Bat Algorithm with Memory. J.

Theor. Appl. Inf. Technol., vol. 79, no. 1, pp. 1–9.

http://dspace.uniten.edu.my/handle/123456789/

10127

Ogudo, K.A.; Muwawa Jean Nestor, D.; Ibrahim

Khalaf, O.; Daei Kasmaei, H. (2019). A Device

Performance and Data Analytics Concept for

Smartphones’ IoT Services and Machine-Type

Communication in Cellular Networks. Symmetry,

11, 593. https://www.mdpi.com/2073-8994/11/4/

593

[19] S. Q. Salih, A. A. Alsewari, B. Al- Khateeb, and M.

F. Zolkipli. (2019). Novel Multi-swarm Approach

for Balancing Exploration and Exploitation in

Particle Swarm Optimization. Recent Trends in

Data Science and Soft Computing, pp. 196–206.

https://link.springer.com/chapter/10.1007/

978-3-319-99007-1_19

[20] Z. A. Al Sudani, S. Q. Salih, Z. M. Yaseen, and

others. (2019). Development of Multivariate

Adaptive Regression Spline Integrated with

Differential Evolution Model for Streamflow

Simulation. J. Hydrol, Elsevier, pp. 1–15.

https://www.sciencedirect.com/science/article/abs/p

ii/S0022169419302513

[21] A. P. Piotrowski, J. J. Napiorkowski, and P. M.

Rowinski. (2014). How novel is the novel black

hole optimization approach?. Inf. Sci. (Ny),

Elsevier,v 267. pp 191-200

https://www.sciencedirect.com/science/article/abs/p

ii/S0020025514000462

[22] L. M. R. Rere, M. I. Fanany, and A. M. Arymurthy.

(2015). Simulated Annealing Algorithm for Deep

Learning. in Procedia Computer Science,

Elsevier,V 72, 2015, pp 137-144

https://www.sciencedirect.com/science/article/pii/

S1877050915035759

[23] A. R. Syulistyo, D. M. J. Purnomo, M. F.

Rachmadi, and A. Wibowo. (2016). Particle swarm

optimization (PSO) for training optimization on

convolutional neural network (CNN). J. Ilmu

Komput. dan Inf, vol. 9, no. 1, pp. 52–58,

https://jiki.cs.ui.ac.id/index.p

hp/jiki/article/view/366

[24] Boukaye Boubacar Traore, Bernard Kamsu-

Foguem, Fana Tangara. (2018). Deep convolution

neural network for image recognition, Ecological

Informatics, Elsevier, pp257-268.

https://www.sciencedirect.com/science/article/abs/

pii/S1574954118302140

I. Arel, D. C. Rose, T. P. Karnowski, et al. (2010).

Deep machine learning new frontier in artificial

intelligence research. IEEE Computational

Intelligence Magazine, IEEE, vol. 5, no. 4, pp. 13–

18. https://ieeexplore.ieee.org/document/5605630

[25] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda. (

2003). Subject independent facial expression

recognition with robust face detection using a

https://ieeexplore.ieee.org/abstract/%0bdocument/8477735
https://ieeexplore.ieee.org/abstract/%0bdocument/8477735
https://ieeexplore.ieee.org/document/5459469
https://ieeexplore.ieee.org/document/7966719
https://ieeexplore.ieee.org/abstract/document/488968
https://ieeexplore.ieee.org/abstract/document/488968
http://www.springer.com/
http://www.springer.com/
https://www.springerprofessional.de/en/black-hole-algorithm-and-its-applications/2262522
https://www.springerprofessional.de/en/black-hole-algorithm-and-its-applications/2262522
https://arc.aiaa.org/doi/10.2514/8.5282
https://ieeexplore.ieee.org/document/7536654/metrics#metrics
https://ieeexplore.ieee.org/document/7536654/metrics#metrics
https://arxiv.org/abs/1506.06579
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026744/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026744/
https://www.hindawi.com/%20journals/complexity/%0b2018/9389065/
https://www.hindawi.com/%20journals/complexity/%0b2018/9389065/
https://www.hindawi.com/%20journals/complexity/%0b2018/9389065/
https://www.hindawi.com/journals/aor/2015/961494/
https://www.hindawi.com/journals/aor/2015/961494/
http://dspace.uniten.edu.my/handle/123456789/%2010127
http://dspace.uniten.edu.my/handle/123456789/%2010127
https://www.mdpi.com/2073-8994/11/4/%20593
https://www.mdpi.com/2073-8994/11/4/%20593
https://link.springer.com/chapter/10.1007/%0b978-3-319-99007-1_19
https://link.springer.com/chapter/10.1007/%0b978-3-319-99007-1_19
https://www.sciencedirect.com/science/article/abs/pii/S0022169419302513
https://www.sciencedirect.com/science/article/abs/pii/S0022169419302513
https://www.sciencedirect.com/science/article/abs/pii/S0020025514000462
https://www.sciencedirect.com/science/article/abs/pii/S0020025514000462
https://www.sciencedirect.com/science/journal/18770509/72/supp/C
https://www.sciencedirect.com/science/article/pii/%0bS1877050915035759
https://www.sciencedirect.com/science/article/pii/%0bS1877050915035759
https://jiki.cs.ui.ac.id/index.p%20hp/jiki/article/view/366
https://jiki.cs.ui.ac.id/index.p%20hp/jiki/article/view/366
https://www.sciencedirect.com/science/article/abs/%0bpii/S1574954118302140
https://www.sciencedirect.com/science/article/abs/%0bpii/S1574954118302140
https://ieeexplore.ieee.org/document/5605630

Optimized Training for Convolutional Neural Network... Informatica 45 (2021) 731–739 739

convolutional neural network. Neural Networks,

Elsevier, vol. 16, no. 5-6, pp. 555–559.

https://www.sciencedirect.com/science/article/abs/p

ii/S0893608003001151

[26] I. Goodfellow, Y. Bengio, A. Courville, and Y.

Bengio. (2016). Deep learning, vol. 1. MIT press

Cambridge

https://www.deeplearningbook.org/

[27] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F.

E. Alsaadi. (2017). A survey of deep neural

network architectures and their applications.

Neurocomputing, Elsevier, vol. 234, pp. 11–26.

https://www.sciencedirect.com/science/article/abs/p

ii/S0925231216315533#!

[28] Tatsuki Serizawaa, and Hamido Fujita. (2017).

Optimization of Convolutional Neural Network

Using the Linearly Decreasing Weight Particle

Swarm Optimization, Computer Science, ArXiv.

https://arxiv.org/abs/2001.05670

[29] Haiman Tian et al. (2018). Automatic

Convolutional Neural Network Selection for Image

Classification Using Genetic Algorithms, IEEE

International Conference on Information Reuse and

Integration, Usa. Pp 444-451.

https://ieeexplore.ieee.org/abstract/document/84247

42

[30] D. Hossain, G. Capi, and M. Jindai. (2018).

Optimizing deep learning parameters using genetic

algorithm for object recognition and robot grasping,

Journal of Electronic Science and Technology, vol.

16, no. 1, pp. 11–15.

http://www.journal.uestc.edu.cn/article/doi/10.1198

9/JEST.1674-862X.61103113

[31] O. E. David and I. Greental. (2014). Genetic

algorithms for evolving deep neural networks, in

Genetic and Evolutionary Computation Conference,

Usa. pp. 1451–1452.

https://dl.acm.org/doi/proceedings/10.1145/257676

8

[32] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H.

Lim, and R. M. Patton. (2015). Optimizing deep

learning hyper-parameters through an evolutionary

algorithm, in Workshop on Machine Learning in

High-Performance Computing Environments,

ACM, pp. 4:1–4:5.

https://dl.acm.org/doi/10.1145/2834892.2834896

[33] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, and P. K.-

S. Tam. (2003). Tuning of the structure and

parameters of a neural network using an improved

genetic algorithm, IEEE Transactions on Neural

networks, vol. 14, no. 1, pp. 79–88.

https://ieeexplore.ieee.org/document/1176129

[34] L. Xie and A. Yuille. (2017). Genetic CNN. in

IEEE International Conference on Computer

Vision, pp. 1388–1397.

https://ieeexplore.ieee.org/document/8237416/

[35] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H.

Lim, and R. M. Patton. (2015). Optimizing deep

learning hyper-parameters through an evolutionary

algorithm, in Workshop on Machine Learning in

High-Performance Computing Environments, Usa.

p. 4.

https://www.osti.gov/biblio/1567643-optimizing-

deep-learning-hyper-parameters-through-

evolutionary-algorithm-mlhpc-proceedings-

workshop-machine-learning-high-performance-

computing-environments-article

[36] E. P. Ijjina and K. M. Chalavadi. (2016). Human

action recognition using genetic algorithms and

convolutional neural networks, Pattern

Recognition, Elsevier, vol. 59, pp. 199–212.

https://www.sciencedirect.com/science/article/abs/p

ii/S0031320316000169

[37] Arie Rachmad Syulistyo et al. (2016). Particle

Swarm Optimization (PSO) For Training

Optimization on Convolutional Neural Network

(CNN), Journal of Computer Science and

Information. 9/1,pp 52-58

https://jiki.cs.ui.ac.id/index.php/jiki/article/view/36

6

https://www.sciencedirect.com/science/article/abs/pii/S0893608003001151
https://www.sciencedirect.com/science/article/abs/pii/S0893608003001151
https://www.sciencedirect.com/science/article/abs/pii/S0925231216315533#!
https://www.sciencedirect.com/science/article/abs/pii/S0925231216315533#!
https://arxiv.org/abs/2001.05670
https://ieeexplore.ieee.org/xpl/conhome/8424521/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8424521/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8424521/proceeding
https://ieeexplore.ieee.org/abstract/document/8424742
https://ieeexplore.ieee.org/abstract/document/8424742
http://www.journal.uestc.edu.cn/article/doi/10.11989/JEST.1674-862X.61103113
http://www.journal.uestc.edu.cn/article/doi/10.11989/JEST.1674-862X.61103113
https://dl.acm.org/doi/proceedings/10.1145/2576768
https://dl.acm.org/doi/proceedings/10.1145/2576768
https://dl.acm.org/doi/10.1145/2834892.2834896
https://ieeexplore.ieee.org/document/1176129
https://ieeexplore.ieee.org/document/8237416/
https://www.osti.gov/biblio/1567643-optimizing-deep-learning-hyper-parameters-through-evolutionary-algorithm-mlhpc-proceedings-workshop-machine-learning-high-performance-computing-environments-article
https://www.osti.gov/biblio/1567643-optimizing-deep-learning-hyper-parameters-through-evolutionary-algorithm-mlhpc-proceedings-workshop-machine-learning-high-performance-computing-environments-article
https://www.osti.gov/biblio/1567643-optimizing-deep-learning-hyper-parameters-through-evolutionary-algorithm-mlhpc-proceedings-workshop-machine-learning-high-performance-computing-environments-article
https://www.osti.gov/biblio/1567643-optimizing-deep-learning-hyper-parameters-through-evolutionary-algorithm-mlhpc-proceedings-workshop-machine-learning-high-performance-computing-environments-article
https://www.osti.gov/biblio/1567643-optimizing-deep-learning-hyper-parameters-through-evolutionary-algorithm-mlhpc-proceedings-workshop-machine-learning-high-performance-computing-environments-article
https://www.sciencedirect.com/science/article/abs/pii/S0031320316000169
https://www.sciencedirect.com/science/article/abs/pii/S0031320316000169
https://jiki.cs.ui.ac.id/index.php/jiki/article/view/366
https://jiki.cs.ui.ac.id/index.php/jiki/article/view/366

740 Informatica 45 (2021) 731–739 A. Guernine et al.

