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Convolutional Neural Networks (CNNs) are widely used in image classification tasks and have achieved 

significant performance. They have different applications with great success, especially in the medical 

field. The choice of architecture and hyperparameter settings of the CNN, highly influences both 

accuracy and its convergence speed. The empirical design and optimization of a new CNN architecture 

require a lot of expertise and can be very time-consuming. This paper proposes an enhanced Grey Wolf 

Optimization (GWO) algorithm to efficiently explore a defined space of potentially suitable CNN 

architectures, and simultaneously optimize their hyperparameters. Moreover, we introduce a spatial 

resolution reduction for a given image processing task, while taking skin cancer detection as a practical 

application. Through conducted experiments, we have shown that the obtained results are better than 

other classification methods in terms of accuracy and convergence speed. 

Povzetek: Opisan je Gray Wolf Optimization (GWO) algoritem za iskanje primerne arhitekture 

konvolucijskih nevronskih mrež. 

 

1 Introduction 
As a class of deep neural network architectures, 

Convolutional neural networks (CNNs) has been recently 

presented as the most efficient solution towards 

achieving better recognition accuracy including pattern 

recognition, computer vision, speech recognition, 

graphical modeling, and signal processing, artificial 

intelligence, and many other fields [1-8],[27-30]. 

Especially, they have made huge impacts in the medical 

imaging domain. They are mostly applied to two-

dimensional data such as images and videos. CNNs were 

inspired by the organization of the animal visual cortex 

[28]. CNNs can automatically learn hand-engineered 

filters as they were used in traditional computer vision 

algorithms. This independence from prior knowledge and 

human intervention in feature design is the main 

advantage of CNNs[8]. Sparse interaction, equivariant 

representation, and parameter sharing are three factors 

that play an important role in the learning process of a 

CNN [29]. 

There are different architectures for CNN 

implementation, and an optimal performance may not be 

achievable if the same architecture is applied on several 

tasks, and the CNN architecture must be specified for 

specific tasks However, it is computationally 

complicated to design an efficient CNN architecture for 

specific tasks, as several types of machine learning tasks 

exist in the industries [9]. 

Despite the robustness of the CNNs, some of its 

parameters still need to be optimized; such parameters 

can be roughly categorized into those for learning and 

those for network configurations. The network 

configuration has been reported to influence the 

recognition performance of CNNs [10], [11]. Therefore, 

the performance of a CNN is highly dependent on its 

architecture and hyperparameter settings. 

Several studies have strived to provide the 

theoretical basis for the better performance of CNNs, but 

yet to provide the strategies for optimizing its 

parameters. This implies a shift in the concepts from 

visual features extraction to network structure 

configuration and parameters optimization [11] [28-32]. 

Traditionally, CNNs have been designed manually 

by researchers with a lot of experience in this area. Since 

the architecture of a well-performing CNN model can 

depend on the problem characteristics, the optimal choice 

of hyper-parameters is one of the major challenges when 

applying CNN-based methods. Often, it is unclear for a 

specific application how the CNN structure relates to the 
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accuracy; this is why it is not trivial to find the best 

performing CNN structure. 

In this paper, we propose a framework for finding 

the optimal configuration of a CNN using an enhanced 

version of the Grey Wolf Optimizer (GWO) algorithm, 

with application on skin cancer detection. GWO [1] is a 

meta-heuristic optimization framework, which is inspired 

by the behavior of the grey wolves. We have modified 

the original GWO by introducing chaos theory with 

adaptive mechanisms to prevent the algorithm from 

falling into local optimum ad speed up its convergence, 

leading to high accuracy. In this study, the major 

contribution is the proposal of a novel training algorithm 

called acGWO-CNN for the training of the CNN model 

based on the acGWO algorithm. Here, the adaptive 

GWO, we call acGWO algorithm is used to establish the 

optimal CNN parameters.  

The optimization performance of these algorithms 

was compared using several criteria such as their 

calculated errors and accuracy. This study used the 

digital images of skin cancer dataset. In this dataset, the 

digital size of the images is 28 x 28 pixels. The set of 

80% images are used to train the model while 20% of 

them are for the model testing. 

The structure of this paper is as follows: Section 2 

covers some related works. Section 3 provides the basics 

of the CNN and its use in image processing. Section 4 is 

devoted to the GWO algorithm and the improvement we 

gave to it. In Section 5, the proposed acGWO-CNN 

method is described in detail. Experiments and 

discussion are presented in Section 6. Finally, Section 7 

concludes the paper and defines some future works.  

2  Related works  
Recently, deep learning algorithms have attracted 

researchers in both academically and industrially fields. 

Neural network shows considerable performance on 

various domains. However, for complex systems, neural 

network's accuracy significantly deteriorates. This is 

why, research works focused on deep neural networks to 

learn hyperparameters and network structures [33-36, 38-

39] using evolutionary algorithms (EAs). Indeed, in [33-

35], the authors proposed an appropriate method to 

optimize hyper-parameters in CNNs using (EAs). The 

numbers of filters in each CNN layer with the size of the 

kernel are examples of the studied hyperparameters. 

In [11], to improve the recognition accuracy by 

optimizing the results of the solution vectors on CNN, 

the training process was supported by the PSO algorithm. 

In [17], an approach based on whale optimization 

algorithm (WOA) is utilized for optimizing the weight 

and biases in the CNN model. In [38], an integrated CNN 

with a genetic algorithm was proposed to learn the 

structure of deep neural networks. This is based on a new 

coding scheme, which used a binary sequence with a 

fixed length for representing the structure of the network. 

In [40], genetic algorithms were used to determine the 

optimal initial weights of the CNN. In [39,41], the 

authors have proposed an optimization mechanism of the 

Convolutional Neural Networks (CNNs) using Particle 

Swarm Optimization (PSO).  

In the above-mentioned existing works, meta-heuristics 

have been used to optimize CNN parameters for 

classification and object recognition. CNN Parameters 

concern hidden units, learning rates, and a determined 

number of epochs. They are optimized to decrease 

learning time and error rate. Different from the above-

mentioned existing works, we introduce a spatial 

resolution reduction for a given image processing task, 

while applying an improved grey wolf algorithm to 

generate new efficient individuals and to select the best 

CNN architecture.  

3 Convolutional networks based 

image processing 
Compared to a traditional neural network, CNN is 

structured differently. A traditional neural network works 

with 3-dimensional layers in width, height, and depth 

manner, while composed of a set of neurons. Each layer 

is connected to all neurons. In CNN, a layer is only 

connected to a small portion of neurons in the previous 

layer.  

It is worth noting that a CNN is a multi-layer neural 

network that basically consists of two types of layers: 

convolutional layers and pooling layers. The 

convolutional layers are the core building block of a 

Convolutional network. To produce the feature maps, the 

input is convolved with trainable filters of a specific size 

called the receptive field. 

The pooling layers that are located between the 

convolutional layers progressively reduce the spatial size 

of the layers and thereby decrease the computational 

volume and the number of parameters. The pooling 

layers down-sample each depth slice of the input 

independently, according to the defined filter size. The 

commonly used pooling layer between a sequence of the 

convolutional layer has a filter size of 2×2 with a stride 

of 2. CNN architectures also include other types of layers 

such as a fully connected layer, normalization layer etc. 

Therefore, there are many parameters in a CNN structure 

such as the number of layers, number of feature maps, 

receptive field or filter size, and stride size that can be 

evolved by a genetic algorithm based on the nature of the 

problem and the available data (Figure 1). 

CNNs can automatically learn hand-engineered 

filters as they were used in traditional computer vision 

algorithms. This independence from prior knowledge and 

human intervention in feature design is the main 

advantage of CNNs. Sparse interaction, equivariant 

representation, and parameter sharing are three factors 

that play an important role in the learning process of a 

CNN [29]. 

 In traditional artificial neural networks (NNs), the 

relationship between input and output components was 

derived from matrix multiplication. But in CNNs, by 

using sparse interaction and creating kernels smaller than 

the inputs, and applying that to the whole image, this 

computational burden was reduced considerably. 

Because of parameters haring, the network only needs to 
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learn one set of parameters at each location which 

improves the performance of CNNs over traditional NNs. 

Moreover, parameter sharing results in a deceptive 

property called equivariance in which by changing input, 

the output changes in the same way [30].  

To date, in the image processing field, CNNs are the 

most efficient models for classifying images[33]. They 

have two distinct parts. As input, an image is provided in 

the form of an array of pixels. It has two dimensions for a 

grayscale image. The color is represented by a third 

dimension, of depth three to represent the fundamental 

colors (Red, Green, Blue). To learn spatial hierarchies of 

features through backpropagation, CNN is based on an 

adaptive approach and the fully connected layer is placed 

at its last building block, with other components such as 

convolution layers, pooling layers [16]. Features are 

extracted by the convolution layer, which typically 

performs the convolution operation and activation 

function.  If an image is considered, they take advantage 

of the fact that proximity has a relation with similarity in 

it. To make the image processing computationally 

manageable, CNNs perform the filtering of connections 

by the proximity. In a given layer, each neuron is 

responsible for processing only a certain portion of the 

image and CNNs restrict the connections that any neuron 

accepts the inputs only.  

Thus, the first part of a CNN is the actual 

convolutional part. It works as a feature extractor from 

images. An image is passed through a succession of 

filters, or convolution kernel, creating new images called 

convolution maps. Some intermediate filters reduce the 

image resolution by a local maximum operation. Finally, 

the convolution maps are flattened and concatenated into 

a feature vector. This CNN code at the output of the 

convolutional part is then plugged into the input of a 

second part, made up of fully connected layers. The role 

of this part is to combine the characteristics of the CNN 

code to classify the image. The output is a final layer 

with one neuron per category. The numerical values 

obtained are generally normalized between 0 and 1, of 

sum 1, to produce a probability distribution over the 

categories. 

Creating a new CNN is costly in terms of expertise, 

materials, and the amount of annotated data required. 

The first step is to set up the architecture of the CNN, 

that is, the number of layers, their sizes, and the matrix 

operations that connect them. The training then consists 

of optimizing the coefficients of the network to minimize 

the classification error at the output.  

4 Grey wolf optimization algorithm 
In this study, the nature-inspired grey wolf optimizer 

(GWO) algorithm [1] was chosen due to several 

advantages including having a few tuning parameters, 

fast convergence, and its good capability to address 

optimization problems. In addition, we have given our 

proper improvement to yet enhance its accuracy, while 

preventing it from falling into the local optimum. 

4.1 Grey wolf optimizer algorithm 

GWO algorithm is based on the principle of hunting. 

Wolves are a member of a group in which a number of 

the grey wolves, which contribute to hunting. Wolves in 

a group are classified according to the leadership quality. 

There are four types of wolves in a group, identified as 

alpha (α), beta (β), delta (δ), and omega (ω). The 

decision-maker in the group is α that is the leader of the 

hunting process.  

The rest of the wolves have their dominance 

decreasing sequentially in this order: beta (β), delta (δ) 

and omega (ω). Wolves of type ω are involved in the 

hunting process, and they transfer their better positions to 

their superiors. In this process, which is the course of the 

chasing, the first grey wolves search the location of prey 

and enclose them. α, β, and δ have better information 

about the potential area of prey for mathematical 

simulation of hunting action. The mathematical model of 

the enclosing has the form below: 

                            (1) 

                                  (2) 

where t is the existing iteration, A and C are 

coefficient vectors, Xp is the location vector of the prey, 

and X indicates the location vector of a grey wolf. The 

vectors A and C are calculated as follows: 

                                                    (3) 

                                                               (4) 

where components of a linearly decreased from 2 to 

0 over the course of iterations.  

a = 2(1-t/T)                                                              (5) 

 

Figure 1: A typical architecture of a CNN Model. 
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where “t” stands for the minimum iteration number, 

and “T” is the maximum iteration number. 

and r1, r2 are random values in [0, 1]. Grey wolf 

hunting process is calculated as following equations: 

 

 

 

 

 

                                      (6) 

where  respectively, are the distance 

vectors between the  and the , , , , 

and  are the coefficient vectors;  

are the direction vectors for calculating the next position 

of a grey wolf;  is the random coefficient factor; d is 

the dimension of the search space; the variable for 

adjusting the movement freedom is denoted by M. 

4.2 Improving GWO  

As a new meta-heuristic search algorithm, GWO is 

inspired by the social behavior of leadership and the 

hunting process of grey wolves. In the original GWO, a 

great part of the iterations is dedicated to the exploration 

and the rest part is concerned with the exploitation. In 

doing so, the impact of the right balance is overlooked, 

between these two parts, to guarantee an accurate 

approximation of the global optimum. Despite of having 

a good convergence rate, the convergence rate of the 

algorithm is affected because GWO still cannot always 

perform a good balance in finding the global optima. The 

solutions are still prone to falling into the local optimum 

at the later phase of the search. The consequence is 

premature convergence leading to suboptimal solutions. 

 So, to reduce this effect and enhance its efficiency, we 

propose some improvements to GWO, by introducing 

combined adaptation and chaotic mechanisms, while 

considering different proportions according to the 

hierarchy of grey wolves: alpha, beta, and delta, in a way 

that allows guiding the search process towards the best 

elements. 

Chaos system. Chaos is a category of unique 

deterministic random-like process found in a non-linear 

dynamical system, which is a non-periodic, non-

converging; and confined it has been applied extensively 

in different fields including computer science, operations 

research, physics, biology, etc. A lot of chaotic maps 

have been explored [6]. Specifically in this work, for 

GWO algorithm, instead of the random number 

generator, we introduce a chaotic logistic map system in 

the first GWO stage to generate the initial population 

with high diversity. Moreover, we use this type of 

chaotic map in the second GWO phase to select different 

trial individuals from the population in the mutation 

operation. The logistic map is one of the most well-

known one-dimensional discrete-time systems with a 

chaotic behavior. It is widely used in especially the 

computer science field, due to its simple and elegant 

form. It is expressed as follows. 

Logistic map, Xn+1 = 4 Xn (1-Xn),                     (7) 

where X represents the population at any given time 

t, and  is a control parameter that represents the growth 

rate. Generally, the  constant is in the range of [3.57, 4]. 

In the study, its value was determined as 3.9, for the 

logistic map to be totally in a chaotic state [11]. 

We use this type of logistic chaotic system at the 

generation of the initial population phase, and at the 

population evolution phase.  

Initial population generation. In the initial 

population generation, every element of an individual is 

generated using: 

minValue + chaos(maxValue-minValue)             (8) 

where, minValue and maxValue stand for minimum 

and maximum values of every element of an individual. 

Chaos is a chaotic randomly generated value ranging in 

[0, 1]. The initial population is generated by the chaotic 

maps, which can form a feasible solution space, with a 

good distribution by the properties of randomicity, and 

ergodicity of chaos. Chaotic sequences can guarantee the 

diversity of the initial population, speed up its 

convergence, and enhance global search capability. 

At the evolution phase, the transition between 

exploration and exploitation phases is generated by the 

adaptive values of “a “, and “A”. To find a global 

optimum with a fast convergence speed, in acGWO , we 

balance these two phases by fine-adjusting the 

parameters “a” and “A”, guiding the value of “a” to 

decrease from 2 to 0 as follows: 

 = (1-t)2/T2 

a = 2-chaos(t)                                                       (9) 

where chaos(t) is a logistic map chaotic random 

value ranging in [0, 1] , “T” stands for the maximum 

number of the iterations, and “t” stands for the current 

iteration. Associated with “A” in equation (3), the 

parameter “a” decreases linearly from “2” to “0” over the 

courses of the iterations. To efficiently manage the 

exploration and the exploitation, we modify the original 

equation of the parameter “a” as follows: 

A = 2a chaos(t)-a ,                                             (10) 

 where chaos is a chaos-based random value in [0, 1].  

The parameter “C” exhibits a random behavior in the 

range of [0,1] using the equation (4). It is very useful 

when the local optima stagnation occurs, especially in the 

final iterations. It directly affects the exploration of 

GWO in a way to avoid the local optima, though it is 

pure random walk behavior. We introduce the chaos 

theory, via reformulating the parameter C as follows:  

C (t) = 2chaos(t),                                                (11) 
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where t is the current iteration and chaos(t)is a 

chaos-based random value in [0, 1]. 

The chaotic varying value can mitigate the local 

optima due to the non-repetition and the ergodicity 

property of the chaos [1,4]. Thus, the enhanced GWO 

algorithm we call acGWO with a better hunting 

mechanism is proposed. It focuses on a proper balance 

between the exploration and the exploitation, leading to 

optimal performance, and promising candidate solutions.  

Adapting the weighted factors. In the original 

GWO, individuals are updated by considering the 

average combination of the alpha, beta, and delta wolves. 

This mechanism guides individuals in the same 

proportion towards the best elements. However, it has 

been proved that this is not the best strategy [14], since 

that mechanism produces a limited exploration of the 

search space. To remedy this problem, we defined the 

weights in a way that allows guiding the search process 

towards the best elements, but considering different 

proportions according to the hierarchy of the grey 

wolves. Therefore, in acGWO, wolves are updated using 

the following formulation: 

X = chaos(t) (X1 + X2/2 + X3/3)                                (12) 

where X1, X2, and X3 are the solutions of alpha, eta 

ad delta wolves. We have conducted experiments on 

some benchmark functions, to compare acGWO with the 

GWO and other popular metaheuristics, including 

genetic algorithms, differential evolution algorithm, PSO 

algorithm, and BA. We have found that acGWO exhibits 

faster convergence and better accuracy over all these 

metaheuristics. 

The CNN was trained in this study using an 

enhanced algorithm for two reasons, the first is its simple 

structure and its ease of implementation, and the second 

is its parameter-less nature. 

5 The proposed method 
As mentioned earlier, the main contribution of this paper 

is to develop a training algorithm for CNN, meaning that 

finding the best values for the parameters of CNN. In this 

paper, our enhanced Grey Wolf optimizer algorithm is 

used as the training algorithm, for two reasons: first, it 

has a simple structure, while the second reason; it does 

not have any controlling parameters.  

In the proposed method, the main configuration of 

the CNN architecture is based on LeNet-5 [31-32]. This 

is a relatively simple architecture consisting of two 

convolutional layers, two pooling layers, two fully 

connected layers, and an output layer. We choose it 

because it is often used as comparison architecture in 

experiments. The pooling layer uses max pooling. 

In Table 1, we reuse original parameter values that 

have been also used in [31] to facilitate comparison. It 

shows the baseline parameters and optimization 

parameters of LeNet-5 where the convolution layers are 

C1 and C2, and the total coupling layers are FC1 and 

FC2. The number of filters in the convolution layers C1 

and C2 is optimized between 4 and 100, and the kernel 

size is 3, 5, and 7. The number of neurons in full connect 

layers optimizes between 4 and 200. The activation 

function of each layer uses sigmoid, relu, and tanh, and 

the batch size is optimized from 10 to 100. The optimizer 

uses Adam or Stochastic Gradient Descent (SGD) with a 

learning rate of 0.01, respectively. In building the model, 

we used the open-source neural network library Keras. 

All experiments are performed on a machine with an 

Intel Core i7-6600K processor, 8GB RAM, GeForce 

GT650M -2GB. 

5.1 The encoding of the wolves 

A CNN is composed of two basic parts of feature 

extraction and classification. Feature extraction includes 

several convolution layers followed by max-pooling and 

an activation function. The classifier usually consists of 

fully connected neural network layers. In the proposed 

method, the weights set of the neural network is 

considered as the structure of each star. For this purpose, 

a vector of real values has been used. This vector 

contains all the weights of the neural network.  

5.2 Initialization of the wolves 

In terms of the population initialization, after the size of 

the population is set up, wolves are randomly created 

until reaching the population size. Each wolf is initialized 

using equation (8). The value of the classification error 

parameter baseline  optimization value 

number of filters in C1 6 4-100 

number of filters in C2 16 4-100 

kernel size in C1 5 3,5,7 

kernel size in C2 5 3,5,7 

activation function in C1 sigmoid sigmoid, relu, tanh 

activation function in C2 sigmoid sigmoid, relu, tanh 

activation function in FC1 sigmoid sigmoid, relu, tanh 

activation function in FC2 sigmoid sigmoid, relu, tanh 

number of neurons in FC1 120 4-200 

number of neurons in FC2 84 4-200 

batch size in the training 10 10-100 

optimizer SGD SGD 

Table 1: Wolf definition in our approach. 
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depends on the correctly classified samples, meaning 

that, the CNN is used to classify the samples. 

6 Experiments and discussion 
In this study, we experiment with DermIS Digital 

Database. Each image is given a defined label. In the 

experiment, optimization has been performed with 

acGWO-CNN every 5 epochs, and learning is performed 

based on the obtained parameters. Each experiment is 

performed 10 times, to finally take only the average 

value. 

Table 2 depicts the comparison between our methods 

and the above-mentioned existing ones using the 

accuracy and variance metrics. At the epoch 5 of the 

learning, the accuracy of CNN optimized with acGWO 

has 98.78%, which is higher than 93.01% of CNN 

without optimization. When looking at any epoch, it is 

found that acGWO-CNN can obtain higher accuracy than 

Baseline CNN. Especially in the 1st epoch, Baseline 

CNN is 19.24%, while acGWO-CNN has a high 

accuracy of 96.52%, and the variance value is also low at 

0.12, so it can see that the optimized CNN converges to 

high accuracy at an early stage. From this, it is thought 

that the proposed acGWO-CNN can find the optimal 

parameters and can obtain better results compared to the 

baseline CNN. Also, the average optimization calculation 

time for acGWO-CNN is 2621 seconds. Thus, as 

depicted by Table 2, compared to the four other existing 

methods, the proposed acGWO-CNN presents the best 

results according to the accuracy and variance metrics. 

Input: dataset, #Epoch, #PopSize, Upper Bound, Lower Bound 

Output: Best Solution  

Procedure: 

build the initial population Xi (i = 1, 2, …, N), using equation (8) 

Update the weights and biases of CNN using each wolf in the 

population 

Calculate the fitness of each wolf of the population  via equation  (13) 

Xα = the first-best wolf 

Xβ = the second-best wolf 

Xδ = the third-best wolf 

while (t < Max number of iterations) 

       for each wolf 

             Update the position of the current wolf by equation (12) 

             Check the boundaries of the current wolf 

             Update the weights and biases of CNN using the current wolf 

             Evaluate the fitness value of the current wolf via equation (12) 

       end for 

       Update a by equation (9) 

       Update A and C by equation (10) and (11), respectively 

       Update Xα, Xβ and Xδ 

       t = t+ 1 

end while 

return Xα   as the best solution 

Figure 2: Pseudocode of the acGWO-CNN algorithm. 

epoch baseline CNN GA-CNN PSO-CNN WOA-CNN acGWO-CNN 
 accuracy variance 

value 

accuracy variance 

value 

accuracy variance 

value 

accuracy variance 

value 

accuracy variance 

value 

1 19.24 46.21 86.21 0.28 89. 04 0.173 91.09 0.163 96.52 0.12 

2 76.22 38.85 87.82 0.21 90.16 0.148 92.87 0.141 97.97 0.048 

3 87.45 2.45 90.12 0.20 91.04 0.123 93.13 0.118 98.02 0.08 

4 91.02 0.54 93.17 0.19 94. 05 0.114 95. 12 0.113 98. 35 0.06 

5 93.01 0.22 94.22 0.18 95.48 0.110 96.13 0.082 98.78 0.02 

Table 2: Comparison using the accuracy and the variance metrics. 
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Moreover, we have conducted other experiments 

with greater numbers of iterations. From these 

experiments, the acGWO-CNN has found parameters 

that can be successfully learned through optimization. 

These parameters define a best CNN architecture. The 

population size used in this study is equal to 40 wolves, 

while the maximum number of iterations is equal to 20. 

The proposed method is compared against four existing 

deep learning methods, that are, standard CNN, GA-

based CNN [8], PSO-based CNN [11], and Whale 

optimization algorithm-based CNN[17]. The competitive 

accuracy and loss are illustrated in Figure 3.  

7 Conclusion and future work 
This paper proposed a new automatic CNN architecture 

design approach, based on adaptive Grey Wolf Optimizer 

(acGWO) algorithm for Convolutional Neural Network 

(CNN). Experiments are performed using a skin dataset, 

and achieved better results than the baseline CNN. In the 

results using the skin cancer dataset, the accuracy of the 

baseline CNN is 93.01% at the 5th epoch, compared to 

98.78% for acGWO-CNN. Baseline CNN has a higher 

variance value at the beginning of the first epoch, such as 

46.21, while acGWO-CNN is 0.12, and it has been found 

that it converged with high accuracy from the first epoch. 

In addition, baseline CNN has a large variance value of 

0.22 at the 5th epoch, and a stable learning is not 

possible. On the other hand, acGWO-CNN exhibited a 

variance of 0.08 at the 3rd epoch at the highest and can 

be stably learned. From these results, it is considered that 

the optimization by acGWO can find very good 

hyperparameters and can provide high classification 

accuracy. As a future work, we plan to investigate the 

effectiveness of the proposed method by applying it to 

images in various fields. We also plan to investigate 

other metaheuristics-based CNN architectures to 

compare the effectiveness of the computational cost and 

complexity. 
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