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Decision table decomposition is a machine learning approach that decomposes a given decision 
table into an equivalent hierarcby of decision tables. Tlie appioach aims to discover decision tables 
that are overall less complex than the initial one, potentially easier to interpret, and introduce 
new and meaningful intermediate concepts. Since an exhaustive search for an optimal hierarchy 
of decision tables is prohibitively complex, the decomposition ušes a suboptimal iterative algo­
rithm that requires the so-called partition selection critcrion to decide among possihle candidates 
for decomposition. This article introduces two such criteria and experimentally compares their 
performance with a critcrion originally used for the decomposition of Boolean functions. The 
experiments highlight the differences bet\veen the criteria, but also sho\v that in aH three cases 
the decomposition may discover meaningful intermediate concepts and relatively compact decision 
tables. 

1 Introduction bles. As each decision table represents a concept, the 
result of decomposition can be regarded also as a con-

A decision table provides a simple means for concept cept hierarchij. 
representation. It represents a concept with labeled Each single decomposition step aims to minimize the 
instances, each relating a set of attribute values to a joint complexity of G and H and executes the decom-
class. Decision table decomposition is a method based position only if this is lower than the complexity of F. 
on the "divide and conquer" approach: given a deci- Moreover, it is of crucial importance for the algorithm 
sion table, it decomposes it to a hierarchy of decision to find such partition of attributes X into sets A and 
tables. The method aims to construct the hierarchy B that yields G and H of the lowest complexity. The 
so that the new decision tables are less complex and criteria that guide the selection of such partition are 
easier to interpret than the original decision table. called partition selection criteria. 

The decision table decomposition method is based Let us illustrate the decomposition by a simple ex-
on function decomposition, an approach originally de- ample (Table 1). The decision table relates the input 
veloped for the design of digital circuits [2]. The attributes xi, X2, and X3 to the class y, such that 
method iteratively applies a sinj/e rfecom/)05«i«on sie;?, V - F{xx,xi,x-i). There are three possible parti-
vvhose goal is to decompose a function ?/ = F(X) into tions of attributes that yield three different decomposi-
2/ = G{A,H{B)), where X is a set of input attributes tions %j = Gi{xx,Hx{x2,X'i)), y = G2{x2,H2{xi,X3)), 
xi,... ,xn, and y is the class variable. F, G and i? V = G3{x3,H3{xi,X2)): The first two are given in 
are functions represented by decision tables, i.e., pos- Figure 1, and the comparison shows that: 
sibly incomplete sets of attribute-value vectors with 
assigned classes. A and B are nonempty subsets of ' l ' f ^°" '̂̂ '̂̂ ^ ,, '" *̂ °̂ decomposition y = 
input attributes such that AuB = X.The functions f î "̂ '̂ .̂ f̂''""̂ l̂ """^ T ' 
G and H are developed by decomposition and are not . ^^"^ V - G2(x2,H2(xi,X3)), 
predefined in any way. Such a decomposition also dis- _ t^e new concept a = H^ (a;2,^3) ušes only three 
covers a new intermediate concept c = H{B). Since ^^lues, whereas that for H2{xi,X3) ušes five, 
the decomposition can be applied recursively on G and 
H, the result in general is a hierarciuj of decision ta- — it is hard to interpret decision tables G2 and H2, 
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Table 1: An example decision table. 

•vvhereas by inspecting Gi and Hi it can be ea3y to 
see that ci = MIN(a;2,a;3) and y = MAX(a;i,ci). 
This can be even more evident with the reassign-
ment of ci's values: 1 to lo, 2 to med, and 3 to 
h i . 
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Figure 1: Two different decompositions of the decision 
table from Table 1. 

The above comparison indicates that the decompo­
sition y = G2ix2,H2(xi,X3)) yields more complex and 
less interpretable decision tables than the decomposi­
tion y — Gi{xi,Hi{x2,X3)). The questions of interest 
are thus: 

1. How do we measure the overall complexity of orig­
inal decision table and of the decomposed system? 

2. Which are the criteria that can guide the single 
decomposition step to chose among possible de­
compositions? 

3. How much Information is contained within the hi-
erarchical structure itself? 

4. How does interpretability relate to the overall 
complexity of decision tables in the decomposed 
system? Is a less complex system also easier to 
interpret? 

Some of these questions were already addressed in 
the area of computer aided circuit design where de­
composition is used to find a circuit of minimal com-
plexity that implements a specific tabulated Boolean 
function. There, the methods mostly rely on the com-
plexity and partition selection criterion known as De­
composed Function Cardinality (DFC, see [21]). How-
ever, a question is whether this criterion can be used 
for the decomposition of decision tables of interest to 
machine learning, where attributes and classes usu-
ally take more than two yalues. Moreover, the main 
concern of Boolean function decomposition is the min-
imization of digital circuit, leaving aside the question 
of comprehensibility and interpretability of the result-
ing hierarchy. 

This article is organized as follows. The next section 
reviews related work on decision table decomposition 
with the emphasis on its use for machine learning. The 
decomposition algorithm to be used throughout the 
article is presented in section 3. Section 4 introduces 
two new partition selection criteria that are based on 
the Information content of decision tables (DTIC) and 
on the cardinality of newly discovered concepts (CM). 
That section also discusses how DFC and DTIC may 
be used to estimate the overall complexity of derived 
decision tables, and shows how DTIC may be used to 
assess the Information content of the discovered hier-
archical structure itself. Section 5 experimentally eval-
uates the different criteria and complexity measures. 
Section 6 summarizes the results and concludes the 
article. 

2 Related work 

The decomposition approach to machine learning was 
used early by a pioneer of artificial intelligence, A. 
Samuel. He proposed a method based on a signature 
table system [22] and successfully used it as an evalu-
ation mechanism for checkers playing programs. This 
approach was later improved by Biermann et al. [3]. 
Their method, however, did not address the problem 
of deriving the hierarchy of concepts, which was sup-
posed to be given by a domain expert. 

A similar approach had been defined even earlier 
vvithin the area of switching circuit design. In 1956, 
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R.L. Ashenhurst reported on a unified theory of de­
composition of stvitching functions [2]. The decom­
position method proposed by Ashenhurst was used 
to decompose a completely specified truth table of a 
Boolean function to be then realized with standard 
binary gates. Thus, the method could construct con-
cept hierarchies as well as their corresponding decision 
tables. Most of other related work of those times is re­
ported and reprinted by Curtis [8]. 

Recently, the Ashenhurst-Curtis approach was sub-
stantially improved by research groups of M. A. 
Perkowski, T. Luba, and T. D. Ross. In [18], 
Perkowski et al. report on the decomposition ap­
proach for incom,pletely specified switching functions. 
Luba [12] proposed a method for the decomposition of 
multi-valued sniitching functions in which each multi-
valued variable is encoded by a set of Boolean vari-
ables. A decomposition of fc-valued functions was pro­
posed by Files et al. [10]. The authors identify the 
potential usefulness of function decomposition for ma-
chine learning, and Goldman [11] indicates that the 
decomposition approach to switching function design 
might be termed knoivledge discovertj, since a func­
tion not previously foreseen might be discovered. From 
the viewpoint of machine learning, however, the main 
drawbacks of these methods are that they are mostly 
limited to Boolean functions and incapable of dealing 
with noise. 

Feature discovery has been at large investigated by 
constructive induction [14]. Perhaps closest to func­
tion decomposition are the constructive induction sys-
tems that use a set of existing attributes and a set of 
constructive operators to derive new attributes. Sev-
eral such systems are presented in [13, 19, 20]. 

Within machine learning, there are other approaches 
that are based on problem decomposition, but where 
the problem is decomposed by the expert and not by 
a machine. A \vell-known example is structured induc­
tion, developed by Shapiro [23]. His approach is based 
on a manual decomposition of the problem. For every 
intermediate concept either a special set of learning 
examples is used or an expert is consulted to build a 
corresponding decision tree. In comparison with stan­
dard decision tree induction techniques, Shapiro's ap­
proach exhibits about the same classification accuracy 
with the increased transparency and lower complexity 
of the developed models. Michie [15] emphasizes the 
important role the structured induction will have in 
the future development of machine learning and lists 
several real problems that were solved in this way. 

The work presented here is based on our own decom­
position algorithm [25] in which we took the approach 
of Curtis [8] and Perkowski et al. [18], and extended 
it to handle multi-valued categorical attributes and 
functions. The algorithm was demonstrated to per-
form well in terms of generalization [26], discovery of 
relevant concept hierarchies [7], and feature construc-

tion [27] in fairly complex problem domains. 

3 Decomposition algorithm 
Let F be a decision table consisting of attribute-value 
vectors that map the attributes X = {xi,... ,a;„} to 
the class y, so that y = F{X). A single decompo­
sition step searches through ali the partitions of at­
tributes X into a free set A and bound set B, such 
that AnB = <!), AUB = X, and A and B each con-
tain at least one attribute. Let us denote such a par-
tition with A\B and assume that a partition selection 
criterion tj){A\B) exists that measures the appropri-
ateness of this partition for decomposition (partitions 
with lower V îre more appropriate). The partition 
with the lowest ip is selected and F is decomposed to 
G and H, so that y = G{A,c) and c = H{B). Pro-
vided there exists a complexity measure 6 for F, G, 
and H, F is decomposed only if the complexity condi-
tion 6{F) > 6{G) + 6{H) is satisfied. Several partition 
selection {tj}) and complexity {9) measures are intro-
duced in the next section. 

The algorithm that implements the single decom­
position step and decomposes a decision table F to G 
and H is described in detail in [25]. Here, we illustrate 
it informalIy using the decision table from Table 1. 
For every attribute partition, the method constructs 
a partition matrix with the attributes of bound set in 
columns and of free set in rows. Each column in the 
partition matrix denotes the behavior of F for a spe-
cific combination of values of bound attributes. The 
same columns can be represented with the same value 
of C. The number of different columns is equal to the 
minimal number of values for c to be used for decom­
position. In this way, every column is assigned a value 
of C, and G and H are straightforwardly derived from 
such an annotated partition matrix. For each of three 
partitions for our example decision table F, the par­
tition matrices with the corresponding values of c are 
given in Figure 2. 

The assignment of c's values is trivial when de­
cision table instances completely cover the attribute 
space. When this is not the čase, Wan and Perkowski 
[24] proposed an approach that treats missing deci­
sion table entries as "don't cares". Each partition ma-
trix can then have several assignments of values for 
C. The problem of finding the assignment that ušes 
the fewest values is then equivalent to optimal graph 
coloring. Graph coloring is an NP-hard problem and 
the computation time of an exhaustive search algo­
rithm is prohibitive even for small graphs. Instead, 
Wan and Perkowski suggested a heuristic Color In-
fluence Method of polynomial complexity and showed 
that the method performed well compared to the op­
timal algorithm. Although the examples used in this 
articie use decision tables that completely cover the at­
tribute space, the complexity and partition measures 

file:///vell-known
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Figure 2: Partition matrices for Table 1 using three different partitions of attributes a;i, X2, and 13. 

introduced apply with no difference to incompletely 
covered cases as well. 

The decomposition algorithm examines ali decision 
tables in the evolving concept hierarchy and tlien ap-
plies a single decomposition step to the decision ta­
ble and its partition that was evaluated as the most 
appropriate by ip and that satisfies the complexity 
condition e{F) > Q{G) + 6{H). If several partitions 
are scored equal, the algorithm arbitrarily selects one 
among those with the lowest number of elements in 
the bound set. The process is repeated until no de­
composition is found that would satisfy the complexity 
condition. 

We illustrate this stepwise decomposition using the 
CAR domain that is described in section 5. Figure 3 
shows a possible evolving concept hierarchy obtained 
by decomposition. Each consecutive hirarchy is a re-
sult of a single decomposition step. Only the hierar-
chical structure without decision tables is shown. 

The overall time complexity of decision table decom­
position algorithm is polynomial in the number of ex-
amples, number of attributes, and maximal number of 
columns in partition matrices [26]. As the latter grows 
exponentially with the number of bound attributes, it 
is advantageous to limit the size of the bound set. In 
the experiments presented in Section 5, however, the 
problems were sufficiently small to examine ali possible 
bound sets. 

The above decomposition algorithm was imple-
mented in the C language as a part of the system called 
HINT (Hierarchy INduction Tool) [25]. HINT runs on 
several UNIX platforms, including HP/UX and SGI 
Iris. 

4 Partition selection criteria 
and complexity measures 

This section reviews one and introduces two new par­
tition selection criteria. For each, it also defines 
the complexity measure and corresponding complexity 

condition. Furthermore, two overall complexity mea­
sures for the hierarchy of decision tables are defined, 
and, finally, a measure for estimating the Information 
content of the hierarchy itself is presented. 

4.1 Partition selection criteria 

4.1.1 Decomposed funetion cardinali ty 

Decomposed funetion cardinality (DFC) was originally 
proposed by Abu-Mostafa [1] as a general measure 
of complexity and used in decomposition of Boolean 
functions [21]. DFC is based on the cardinality of the 
funetion. Given a decision table F{X), DFC-based 
complexity is defined as: 

^DFc(î ) = ||A'|| = ni^'i | ' ""^^^ (1) 

where [a;, j represents the cardinality of attribute Xj, 
i.e., the number of values it ušes. 

The DFC partition selection criterion for decompo­
sition F{X) = G{A, c) and c = H{B) is then: 

^l>mc{A\B) = ^DFc(C?) + exivc{H) 
\\A\\ + \\B\\ = C 

(2) 

The complexity condition using the above defini-
tions is 6DVC{F) > OOFC{G) + ODFC{H), or equiva-
len t ly | |X | |> | c | | | y l | | + | |B| | . 

For our example decision table (Table 1) and the 
corresponding partition matrices (Figure 2), the parti­
tion selection criteria are: i/'DFc(2:i|3;2a'"3) — 9+6 = 15, 
ipDFG{x2\'J:iX3) = 15 -I- 6 = 21, and 'i/'DFc(a;3|a;i3;2) = 
12 + 9 = 21. 6DFC{F) is 18. The only partition that 
satisfies the DFC decomposition criterion is a;i|a;2a;3. 

DFCs ability to guide the decomposition of Boolean 
functions has been illustrated in several references in­
cluding [21, 11]. For multi-valued logic synthesis, a 
DFC-guided decomposition was proposed in [10]. 

4.1.2 Information content of decision tables 

Decision table Information content (DTIC) is based on 
the idea of Biermann et al. [3] who counted the num-
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Figure 3: Evolving concept hierarchy discovered by decomposition of the CAR decision table. Each consecutive 
hierarchy results from a single-step decomposition of its predecessor. 

ber of different functions that can be represented by 
a given signature table schema, i.e., a tree of concepts 
whose cardinality is predefined. 

A decision table y = F{X) can represent Iž/l"^" dif­
ferent functions. Assuming the uniform distribution of 
functions, the number of bits to encode such a decision 
table is then 

^DTIc(i^) = | |X| | l0g2|2/ | bits (3) 

Note that for binary functions where \y\ = 2, this is 
equal to 6DFC{F). 

When decomposing y = F{X) to y = G{A,c) and 
C = H{B), we assign a single value from the set 
{1,2 , . . . , |c|} to each of the columns of partition ma-
trix. But, each of the values has to be assigned to at 
least one instance. In other words, from |y|"^" differ­
ent functions we have to subtract ali those that use less 
than \c\ values. The number of different functions with 
exactly \c\ possible values is therefore N{\c\), where Â  
is defined as: 

N{x) = a;ll^l 

Nil)= 1 

x - l 

-E N(i) 
(4) 

Furthermore, since the actual label (value of c) of 
the column is not important, there are |c|! such equiv-
alent assignments and therefore |c|! equivalent decision 
tables H. A specific H therefore uniquely represents 
A'^(|c|)/|c|! functions with exactly |c| values, and the 

corresponding Information content is: 

^ D T I c ( ^ ) = l 0 g 2 i V ( | c | ) - l 0 g 2 ( | c | ! ) b i t s (5) 

The DTIC partition selection criterion prefers the 
decompositions with simple decision tables G and H 
and low Information content, so that; 

V'DTIC(A|B) = ^DTICCG) + e[)TIc(^) (6) 

The DTIC-based complexity condition is: 

^DTIC (F) > ^DTIC (G) + 0[)TIC (H) (7) 

For Table 1, DTIC evaluates to: V'DTic(a:i|a;2a;3) = 
20.76 bits, VDTic(3;2|a:ia;3) = 27.68 bits, and 
^DTic(a;3|a;ia;2) = 30.39 bits. 5DTIC(-F) is 28.53 bits, 
and, in contrast to DFC, two partitions qualify for de­
composition. Among these, as with DFC, the partition 
a;i |a.-22;3 is preferred. 

4.1.3 Column inultiplicity 

Column multiphcity (CM) is the simplest complexity 
measure introduced in this article and equals to the 
cardinality of c (|c|), also referred to by Ashenhurst 
and Curtis as column multiplicity number of partition 
matrix [2, 8]. Formally, 

i^cu{A\B) = \c\ (8) 

The idea for this measure came from practical 
experience with DEX decision support system [5]. 
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There, the hierarchical system of decision tables is con-
structed manually and it has been found that decision 
tables with small number of output values are easier 
to construct and interpret. 

For our example and similarly to DFC and DTIC, 
CM also selects the partition a;i 1x2x3 with IIJCM — 3. 
The remaining two partitions have V'CM(3;2|3;ia;3) = 5 
and i/'CM(a;3|a;i2;2) = 6 . 

Unlike DTIC and DFC, CM can not be simply 
summed up to determine the joint complexity of a set 
of decision tables, which is needed to determine the 
complexity condition. Consequently, when we employ 
CM to guide the partition selection, we use DTIC to 
determine the decomposability. 

4.2 Complexity estimation for 
decision table hierarchy 

Using DFC, the overall complexity of decision tables 
in the concept hierarchy is the sum of ^DFC for each 
decision table. Similarly, for DTIC, the complexity 
estimation is again the sum.of DTIC complexities of 
each of the decision tables, with the distinction that 
^DTic is used for the decision table at the root of the 
hierarchy and ^DTIC ^̂ ^ ^^^ other decision tables. 

For example, consider the two concept hierarchies 
from Figure 1. Their overall complexities as measured 
by DFC are 15 and 21, respectively, and 20.76 bits 
and 27.68 bits as measured by DTIC. These measures 
confirm that the first decomposition is less complex 
and thus preferred to the second one. The original un-
decomposed decision table had DFC equal to 18 and 
DTIC equal to 28.53 bits. Therefore, in terms of DTIC 
both decompositions reduced the complexity, while us­
ing DFC this happened only with the first one. 

Note that the so-obtained DTIC complexity estima­
tion is just an approximation of the exact complex-
ity that would take into account the actual number 
of functions representable by a multi-level hierarchy. 
This is because DTIC is designed for a single table 
only and does not consider the reducibility [3] that oc-
curs in multi-level hierarchies and effectively decreases 
the number of representable functions. Therefore, the 
estimated overall DTIC is the upper bound of the ac­
tual complexity. 

4.3 Structure information content 

Using DTIC we can assess both the amount of informa­
tion contained in the original decision table and con-
tained in the resulting decision tables that were con-
structed by decomposition. The difference of the two 
is the information contained in the hierarchical struc­
ture itself. We call this measure structure information 
content (SIC). The more informative the hierardiy, the 
overall less complex the resulting decision tables. 

For the two decompositions in Figure 1, the corre-
sponding structure information contents are 7.77 bits 
and 0.85 bits, respectively. Since the first SIC is con-
siderably greater than the second one, the first struc­
ture is more informative and its decision tables more 
compact. 

5 Experimental evaluation 

To evaluate the proposed partition selection criteria 
and complexity measures, we used three artificial and 
three real-world domains that were selected so that 
their concept hierarchies vvere either known in advance 
or could have been easily anticipated. For each do-
main, the decomposition aimed to discover this hierar-
chy. For evaluation, we qualitatively assess the similar-
ity of the two hierarchies and quantitatively compare 
them by using the proposed complexity measures. 

Each of six domains is represented with the ini-
tial decision table containing instances that completely 
cover the attribute space. Although the experiments 
could as well be done with sparser decision tables (see 
[25]), we wanted to focus in this article only on the dis-
covery of concept hierarchies. Note that the proposed 
partition selection measures depend only on cardinal-
ities of attributes and concepts, and not on the actual 
number of instances in decision tables. Furthermore, 
we have shown in [26] that by increasing the prob­
lem space coverage by training instances, the discov­
ered concepts converge to those from complete training 
sets. 

The results of decompositions are shown as concept 
hierarchy structures, where, unless otherwise noted, 
the labels of intermediate concepts indicate the order 
in which they were discovered. 

5.1 Artificial domains 

Three artificial domains vvere investigated: 

1. a Boolean function 

y = (xi OR X2) AND X3 AND (14 XOR sg), 

2. a six-attribute palindrome function, 

3. a three-valued function 
2/= MIN(a;i, AVG(a;2,MAX(a;3,X4),X5)). 

For the first function, the initial decision table has 
2^ = 32 instances, 6IDFC = 32 and 6IDTIC = 32 bits. 
While decomposition with DTIC and CM discovered 
the anticipated hierarchy, the DFC-guided decomposi­
tion terminated too soon because the complexity con­
dition did not allow to decompose the decision tables 
any further (see Figure 4). Note that the overall DFC 
is the same for ali discovered hierarchies, while the 
structure information content is higher for those dis­
covered by DTIC and CM. The decision tables (not 
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Figure 4: Decomposition of decision table representing the function y = (a:i OR 0:2) AND 0:3 AND (0:4 XOR 
0:5) guided by DTIC and CM (left), and DFC (right). 
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and DFC (right). 

2//3 

XxlZ c l / 3 

0:2/3 c2/3 0:5/3 

0:3/3 0:4/3 

DFC = 45 
DTIC = 66.04 bits 
SIC = 319.11 bits 

1 

0:1/3 

c3/5 

0:2/3 0:5/3 

f/3 

c2/3 

c l / 3 

0:3/3 0:4/3 

DFC = 
DTIC = 

sic = . 

2//3 

0:1/3 c3/3 

0:5/3 c l / 5 

0:2/3 c2/3 

42 0:3/3 0:4/3 
= 59.77 bits 
325.38 bits 

Figure 6: Decompositions of the function y = MIN(o:i, AVG(o:2,MAX(a;3,o:4),o;5)): the anticipated hierarchy 
(left), the hierarchy discovered using CM (middle), and DFC and DTIC (right). The complexity and information 
measures for the latter two decompositions are the same. 
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shown in the figure) were checked for interpretability 
and were found to represent the expected functions. 

The second function y = PAL(a;i,a;2,-•• ,X6) re-
turns 1 if the string a;i . . . ^e is a palindrome and re-
turns O othervvise, i.e., y = {xi = xe) AND (0:2 = 
zs) AND (3:3 = 14). In the first experiment, six 
Boolean attributes xi .. .XG were used. The initial 
decision table has ^DFC = 64 and ^DTIC = 64 bits. 
Again, the decomposition with DFC stops sooner 
and the domain favors the decomposition using CM 
and DTIC. However, for both this and previous čase 
a DFC-guided decomposition could discover the ex-
pected hierarchy if the corresponding complexity con-
dition would be changed to ^ D F C ( ^ ) > ^DFC(G) + 
^DFc(-f^)- The same experiment was repeated with 
three-valued attributes ari.. .X6- This tirne, however, 
aH three criteria lead to the same and anticipated con­
cept hierarchy. 

The third function y = MIN(a;i, AVG(x2, 
MAX(a;3,a;4),a;5)) ušes ordinal attributes Xi...X5 
that can take the values 1, 2, and 3. While MIN 
and MAX have the standard interpretation, AVG com-
putes the average of its arguments and rounds it to 
the closest integer. The initial decision table has 
6'DFC = 243 and 6IDTIC - 385.15 bits. The antici­
pated and discovered hierarchies are shown in Figure 6. 
Quite surprisingly, in ali three cases the decomposition 
yields a hierarchy with a higher structure Information 
content than expected by introducing an additional 
five-yalued intermediate concept. If this were removed, 
the discovered hirarchy and decision tables would have 
been the same as anticipated. It is also interesting to 
note that the hierarchy discovered using CM on one 
side and DFC or DTIC on the other are different but 
of the same complexity. This example illustrates that 
for a specific domain there may exist several optimal 
concept hierarchies with regard to complexity. 

5.2 D E X models 
An area where concept hierarchies have been used ex-
tensively is decision support. There, the problem is 
to select an option from a set of given options so 
that it best satisfies the aims or goals of the decision 
maker. DEX [5] is a multi-attribute decision support 
system that has been extensively used to solve real-
world decision making problems. DEX ušes categori-
cal attributes and expects the concept structure and 
corresponding decision tables to be defined by the ex-
pert. The formalism used to describe the DEX model 
and its interpretation are essentially the same as with 
concept hierarchies studied in this article. This makes 
decision models developed by DEX ideal benchmarks 
for the evaluation of decision table decomposition. In 
this article, we use the following three DEX models: 

CAR: A model for evaluating cars based on their priče 
and technical characteristics. This simple model 

was developed for educational purposes and is de-
scribed in [4]. 

EMPLOY: This is a simplified version of the mod­
els that were developed with DEX for a common 
problem of personnel management: selecting the 
best candidate for a particular job. While the 
realistic models that were practically used in sev­
eral mid- to large-size companies in Ljubljana and 
Sarajevo consisted of more than 40 attributes, the 
simplified version ušes only 7 attributes and 3 in­
termediate concepts and was presented in [6]. 

NURSERV: This model was developed in 1985 to rank 
applications for nursery schools [17]. It was used 
during several years when there was excessive en-
rollment to these schools in Ljubljana, and the 
rejected applications frequently needed an objec-
tive explanation. The final decision depended on 
three subproblems: (1) occupation of parents and 
child's nursery, (2) family structure and financial 
standing, and (3) social and health picture of the 
family. 

The CAR and NURSERV datasets are available from 
the UCI Machine Learning Repository [16]. 

The goal of this experiment was to reconstruct these 
DEX models from examples. The learning instances 
were derived from the original models, vvhere for aH 
combinations of input attributes the class was deter-
mined by the corresponding model. The examples 
were stated as attribute-value vectors, hiding from 
the decomposition method any underlying conceptual 
structure of the domain. 

The discovered hierarchies are given in Figures 7, 8, 
and 9. In ali cases, the decomposition guided by DFC, 
DTIC, and CM found the same hierarchical structures 
and corresponding decision tables. Using DFC and 
DTIC, the order in which new intermediate concepts 
were found was the same but different to the one us­
ing CM. For example, in EMPLOV, DFC and DTIC-
guided decomposition discovered cl first, vvhile, using 
CM, this concept was discovered as the last one. 

AH the discovered hierarchies have higher Informa­
tion content than the original ones. Also, the over-
all complexity of decision tables is lower according to 
both DFC and DTIC. Most importantly, the discov­
ered concept hierarchies are very similar to the origi­
nal ones. In fact, if c3 would be removed from CAR 
(making c4 directly dependent on lugboot, doors, and 
persons), the two Jiierarchies would be the same. The 
same applies to EMPLOV and NURSERV if cl and 
c2 are removed, respectively. In other words, the de­
composition found the same concept hierarchies as the 
original ones but additionally decomposed the deci­
sion tables for comfort (CAR), employ (EMPLOV), 
and struct+f inan (NURSERV). In this way it obtained 
less complex decision tables. 
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car/4 car/4 

price/4 tech/4 c2/4 cl/4 

buying/4 maint/4 comfort/4 safety/3 buying/4 maint/4 c4/3 

lugboot/3 doors/4 persons/3 

safety/3 

lugboot/3 c3/4 

DFC = 77 
DTIC = 126.75 bits 
SIC = 3329.25 bits 

DFC = 65 doors/4 persons/3 
DTIC ^ 107.90 bits 
SIC = 3348.10 bits 

Figure 7: The original concept hierarchy of CAR (left) and the decompositions based on CM, DFC and DTIC 
(right). 

einploy/4 employ/4 

educat/3 

/ \ per-char/3 
for_lang/3 \ 

degree/5 

exper/5 

age/5 

DFC = 91 
DTIC = 145 bits 
SIC = 35855 bits 

i n t e l / 4 work_app/3 /x 
coinm/4 manag/3 

c2/3 
c5/3 

for_lang/3 
degrež/5 / exper/5 

age/5 
DFC = 85 coDrai/4 nianag/3 
DTIC = 128 bits 
SIC = 35872 bits 

Figure 8: The original concept hierarchy of EMPLOY (left) compared to the hierarchy discovered by CM, DFC, 
and DTIC-guided decomposition (right). 

nursery/5 nursery/5 

employ/4 

parents/3 struct+finan/3 

soc+health/3 

health/3 

c4/4 c5/3 

soc ia l /3 
has_nurs/5 

finance/2 / housing/3 

structure/3 

parents/3 
has_nurs/5 

c l / 3 
health/3 

soc ia l /3 

c3/3 c2/3 

DFC = 94 form/4 chi lds/4 
DTIC = 169.20 bits 
SIC = 29922.99 bits 

form/4 \ \ housing/3 

I3PQ _ 82 chi lds/4 finance/2 
DTIC = 132.95 bits 
SIC = 29959,24 bits 

Figure 9: The original (left) and discovered concept hierarchy using CM, DFC and DTIC criteria (right) for 
NURSERY. 
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The derived decision tables were compared to the 
original ones and found to be the same but in the 
names used for instance labels (the decomposition ušes 
abstract labels while the original decision tables use 
meaningful names). The only exception are decision 
tables for tech and comf ort in the CAR domain, where 
the decomposition succeeded to find a more compact 
representation. 

6 Conclusion 

We investigated the appropriateness of three partition 
selection measures for decision table decomposition: 
decision table Information content (DTIC) and col-
umn multiplicity (CM) introduced in this article, and 
decomposed function cardinality (DFC) that has al-
ready been used primarily for the decomposition of 
Boolean functions. 

The experimental evaluation exposed the deficiency 
of DFC when decomposing a decision table that ex-
presses a Boolean function. This may be alleviated 
by relaxing the DFC compIexity condition. In more 
complex domains with multi-valued attributes, the de­
composition guided by any of the proposed criteria 
discovered concept hierarchies that were very similar 
to those expected. Furthermore, the discovered hi­
erarchies were equal to or even better than the an-
ticipated ones in terms of the complexity of decision 
tables and structure Information content. The order 
under which the intermediate concepts were discov­
ered was the same for DFC and DTIC, but different 
for CM. A qualitative evaluation of derived hierarchies 
reveals that, in general, the discovered decision tables 
represent meaningful and interpretable concepts. 

Although less complex in definition and easier to 
compute, DFC and CM both stand well in compari-
son with a more complex partition selection measure 
DTIC. Also comparable is the utility of DFC and 
DTIC to assess the complexity of the original and de­
rived decision tables, although we have shown that 
DFC-based measure performed worse on two Boolean 
functions. Overall, while DFC and DTIC have better 
theoretical foundations than an intuitive partition se­
lection measure CM, the experimental evaluation does 
not indicate that any of these is to be strictly preferred 
over the other. 

The decision table decomposition was primarily de-
veloped for switching circuit design. However, ex-
periments in non-trivial domains like DEX's strongly 
encourage further research and development of this 
method for machine learning and knowledge discov-
ery. As the method has recently been extended to deal 
with continuous attributes [9] and noise [25], further 
research is needed to assess the quality of correspond-
ing partition selection criteria under these extensions. 
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