
Informatica 22 (1998) 207-217 207

Experimental evaluation of three partition selection criteria for
decision table decomposition

Blaž Zupan and Marko Bohanec
Jožef Štefan Institute,
Jamova 39, Ljubljana, Slovenia
Phone: +386 61 177 3900
Fax: +386 61 125 1038
E-mail: b l az . zupanSi j s . s i , marko. bohanecSi j s. s i

Keywords: decision table decomposition, partition selection criteria, intermediate concepts, concept hierarchy,
knowledge discovery

Edi ted by: Rudi Murn

Received: May 20, 1997 Revised: March 7, 1998 Accepted: April 18, 1998

Decision table decomposition is a machine learning approach that decomposes a given decision
table into an equivalent hierarcby of decision tables. Tlie appioach aims to discover decision tables
that are overall less complex than the initial one, potentially easier to interpret, and introduce
new and meaningful intermediate concepts. Since an exhaustive search for an optimal hierarchy
of decision tables is prohibitively complex, the decomposition ušes a suboptimal iterative algo­
rithm that requires the so-called partition selection critcrion to decide among possihle candidates
for decomposition. This article introduces two such criteria and experimentally compares their
performance with a critcrion originally used for the decomposition of Boolean functions. The
experiments highlight the differences bet\veen the criteria, but also sho\v that in aH three cases
the decomposition may discover meaningful intermediate concepts and relatively compact decision
tables.

1 Introduction bles. As each decision table represents a concept, the
result of decomposition can be regarded also as a con-

A decision table provides a simple means for concept cept hierarchij.
representation. It represents a concept with labeled Each single decomposition step aims to minimize the
instances, each relating a set of attribute values to a joint complexity of G and H and executes the decom-
class. Decision table decomposition is a method based position only if this is lower than the complexity of F.
on the "divide and conquer" approach: given a deci- Moreover, it is of crucial importance for the algorithm
sion table, it decomposes it to a hierarchy of decision to find such partition of attributes X into sets A and
tables. The method aims to construct the hierarchy B that yields G and H of the lowest complexity. The
so that the new decision tables are less complex and criteria that guide the selection of such partition are
easier to interpret than the original decision table. called partition selection criteria.

The decision table decomposition method is based Let us illustrate the decomposition by a simple ex-
on function decomposition, an approach originally de- ample (Table 1). The decision table relates the input
veloped for the design of digital circuits [2]. The attributes xi, X2, and X3 to the class y, such that
method iteratively applies a sinj/e rfecom/)05«i«on sie;?, V - F{xx,xi,x-i). There are three possible parti-
vvhose goal is to decompose a function ?/ = F(X) into tions of attributes that yield three different decomposi-
2/ = G{A,H{B)), where X is a set of input attributes tions %j = Gi{xx,Hx{x2,X'i)), y = G2{x2,H2{xi,X3)),
xi,... ,xn, and y is the class variable. F, G and i? V = G3{x3,H3{xi,X2)): The first two are given in
are functions represented by decision tables, i.e., pos- Figure 1, and the comparison shows that:
sibly incomplete sets of attribute-value vectors with
assigned classes. A and B are nonempty subsets of ' l ' f ^°" '̂̂ '̂̂ ^ ,, '" *̂ °̂ decomposition y =
input attributes such that AuB = X.The functions f î "̂ '̂ .̂ f̂''""̂ l̂ """^ T '
G and H are developed by decomposition and are not . ^^"^ V - G2(x2,H2(xi,X3)),
predefined in any way. Such a decomposition also dis- _ t^e new concept a = H^ (a;2,^3) ušes only three
covers a new intermediate concept c = H{B). Since ^^lues, whereas that for H2{xi,X3) ušes five,
the decomposition can be applied recursively on G and
H, the result in general is a hierarciuj of decision ta- — it is hard to interpret decision tables G2 and H2,

208 Informatica 22 (1998) 207-217 B. Zupan et al.

XI

l o
l o
l o
l o
l o
l o
med
med
med
med
med
med
h i
h i
h i
h i
h i
h i

X2

l o
l o
med
med
h i
h i
l o
l o
med
med
h i
h i
l o
l o
med
med
h i
h i

X3

l o
h i
l o
h i
l o
h i
l o
h i
l o
h i
l o
h i
l o
h i
l o
h i
l o
h i

y
l o
l o
l o
med
l o
h i
med
med
med
med
med
h i
h i
h i
h i
h i
h i
h i

Table 1: An example decision table.

•vvhereas by inspecting Gi and Hi it can be ea3y to
see that ci = MIN(a;2,a;3) and y = MAX(a;i,ci).
This can be even more evident with the reassign-
ment of ci's values: 1 to lo, 2 to med, and 3 to
h i .

Oi:

^ }

lo
lo
lo
n«d
mad
m« d
hi
hi
hi

c i
t

U

u Ded
hi
med
med
hi
hi
hi
hI

" 1 C9
lo 1

lo 3
lo 4
lo S
ned 1
med 3
D«d 3
ned 4
nad S
hi 1
hi 3
hi 3
hi 4
hi G

y
lo
lo
ned
ned
hi
lo
med
ned
med
hi
lo
hI
med
hi
hI

^•?
U
lo
ned
ned
hi
hi

*a
lo
hi
l o
hi
lo
hi

c i
i
1
1
3
1
3

"2-

^^
lo
lo
mod
mod
hI
m

*ri
lo
hI
lo
hI
lo
hi

c->.
1

^3

Figure 1: Two different decompositions of the decision
table from Table 1.

The above comparison indicates that the decompo­
sition y = G2ix2,H2(xi,X3)) yields more complex and
less interpretable decision tables than the decomposi­
tion y — Gi{xi,Hi{x2,X3)). The questions of interest
are thus:

1. How do we measure the overall complexity of orig­
inal decision table and of the decomposed system?

2. Which are the criteria that can guide the single
decomposition step to chose among possible de­
compositions?

3. How much Information is contained within the hi-
erarchical structure itself?

4. How does interpretability relate to the overall
complexity of decision tables in the decomposed
system? Is a less complex system also easier to
interpret?

Some of these questions were already addressed in
the area of computer aided circuit design where de­
composition is used to find a circuit of minimal com-
plexity that implements a specific tabulated Boolean
function. There, the methods mostly rely on the com-
plexity and partition selection criterion known as De­
composed Function Cardinality (DFC, see [21]). How-
ever, a question is whether this criterion can be used
for the decomposition of decision tables of interest to
machine learning, where attributes and classes usu-
ally take more than two yalues. Moreover, the main
concern of Boolean function decomposition is the min-
imization of digital circuit, leaving aside the question
of comprehensibility and interpretability of the result-
ing hierarchy.

This article is organized as follows. The next section
reviews related work on decision table decomposition
with the emphasis on its use for machine learning. The
decomposition algorithm to be used throughout the
article is presented in section 3. Section 4 introduces
two new partition selection criteria that are based on
the Information content of decision tables (DTIC) and
on the cardinality of newly discovered concepts (CM).
That section also discusses how DFC and DTIC may
be used to estimate the overall complexity of derived
decision tables, and shows how DTIC may be used to
assess the Information content of the discovered hier-
archical structure itself. Section 5 experimentally eval-
uates the different criteria and complexity measures.
Section 6 summarizes the results and concludes the
article.

2 Related work

The decomposition approach to machine learning was
used early by a pioneer of artificial intelligence, A.
Samuel. He proposed a method based on a signature
table system [22] and successfully used it as an evalu-
ation mechanism for checkers playing programs. This
approach was later improved by Biermann et al. [3].
Their method, however, did not address the problem
of deriving the hierarchy of concepts, which was sup-
posed to be given by a domain expert.

A similar approach had been defined even earlier
vvithin the area of switching circuit design. In 1956,

PARTITION SELECTION CRITERIA FOR DECOMPOSITION Informatica 22 (1998) 207-217 209

R.L. Ashenhurst reported on a unified theory of de­
composition of stvitching functions [2]. The decom­
position method proposed by Ashenhurst was used
to decompose a completely specified truth table of a
Boolean function to be then realized with standard
binary gates. Thus, the method could construct con-
cept hierarchies as well as their corresponding decision
tables. Most of other related work of those times is re­
ported and reprinted by Curtis [8].

Recently, the Ashenhurst-Curtis approach was sub-
stantially improved by research groups of M. A.
Perkowski, T. Luba, and T. D. Ross. In [18],
Perkowski et al. report on the decomposition ap­
proach for incom,pletely specified switching functions.
Luba [12] proposed a method for the decomposition of
multi-valued sniitching functions in which each multi-
valued variable is encoded by a set of Boolean vari-
ables. A decomposition of fc-valued functions was pro­
posed by Files et al. [10]. The authors identify the
potential usefulness of function decomposition for ma-
chine learning, and Goldman [11] indicates that the
decomposition approach to switching function design
might be termed knoivledge discovertj, since a func­
tion not previously foreseen might be discovered. From
the viewpoint of machine learning, however, the main
drawbacks of these methods are that they are mostly
limited to Boolean functions and incapable of dealing
with noise.

Feature discovery has been at large investigated by
constructive induction [14]. Perhaps closest to func­
tion decomposition are the constructive induction sys-
tems that use a set of existing attributes and a set of
constructive operators to derive new attributes. Sev-
eral such systems are presented in [13, 19, 20].

Within machine learning, there are other approaches
that are based on problem decomposition, but where
the problem is decomposed by the expert and not by
a machine. A \vell-known example is structured induc­
tion, developed by Shapiro [23]. His approach is based
on a manual decomposition of the problem. For every
intermediate concept either a special set of learning
examples is used or an expert is consulted to build a
corresponding decision tree. In comparison with stan­
dard decision tree induction techniques, Shapiro's ap­
proach exhibits about the same classification accuracy
with the increased transparency and lower complexity
of the developed models. Michie [15] emphasizes the
important role the structured induction will have in
the future development of machine learning and lists
several real problems that were solved in this way.

The work presented here is based on our own decom­
position algorithm [25] in which we took the approach
of Curtis [8] and Perkowski et al. [18], and extended
it to handle multi-valued categorical attributes and
functions. The algorithm was demonstrated to per-
form well in terms of generalization [26], discovery of
relevant concept hierarchies [7], and feature construc-

tion [27] in fairly complex problem domains.

3 Decomposition algorithm
Let F be a decision table consisting of attribute-value
vectors that map the attributes X = {xi,... ,a;„} to
the class y, so that y = F{X). A single decompo­
sition step searches through ali the partitions of at­
tributes X into a free set A and bound set B, such
that AnB = <!), AUB = X, and A and B each con-
tain at least one attribute. Let us denote such a par-
tition with A\B and assume that a partition selection
criterion tj){A\B) exists that measures the appropri-
ateness of this partition for decomposition (partitions
with lower V îre more appropriate). The partition
with the lowest ip is selected and F is decomposed to
G and H, so that y = G{A,c) and c = H{B). Pro-
vided there exists a complexity measure 6 for F, G,
and H, F is decomposed only if the complexity condi-
tion 6{F) > 6{G) + 6{H) is satisfied. Several partition
selection {tj}) and complexity {9) measures are intro-
duced in the next section.

The algorithm that implements the single decom­
position step and decomposes a decision table F to G
and H is described in detail in [25]. Here, we illustrate
it informalIy using the decision table from Table 1.
For every attribute partition, the method constructs
a partition matrix with the attributes of bound set in
columns and of free set in rows. Each column in the
partition matrix denotes the behavior of F for a spe-
cific combination of values of bound attributes. The
same columns can be represented with the same value
of C. The number of different columns is equal to the
minimal number of values for c to be used for decom­
position. In this way, every column is assigned a value
of C, and G and H are straightforwardly derived from
such an annotated partition matrix. For each of three
partitions for our example decision table F, the par­
tition matrices with the corresponding values of c are
given in Figure 2.

The assignment of c's values is trivial when de­
cision table instances completely cover the attribute
space. When this is not the čase, Wan and Perkowski
[24] proposed an approach that treats missing deci­
sion table entries as "don't cares". Each partition ma-
trix can then have several assignments of values for
C. The problem of finding the assignment that ušes
the fewest values is then equivalent to optimal graph
coloring. Graph coloring is an NP-hard problem and
the computation time of an exhaustive search algo­
rithm is prohibitive even for small graphs. Instead,
Wan and Perkowski suggested a heuristic Color In-
fluence Method of polynomial complexity and showed
that the method performed well compared to the op­
timal algorithm. Although the examples used in this
articie use decision tables that completely cover the at­
tribute space, the complexity and partition measures

file:///vell-known

210 Informatica 22 (1998) 207-217 B. Zupan et al.

Xl

lo
med
hi
C

X2

X3

lo
lo
lo
med
hi
1

lo
hi
lo
med
hi
1

med
lo
lo
med
hi
1

med
hi
med
med
hi
2

hi
lo
lo
med
hi
1

hi
hi
hi
hi
hi
3

a;i

X2 X3

lo
med
hi
C

lo
lo
lo
lo
lo
1

lo
hi
lo
med
hi
2

med
lo
med
med
med
3

med
hi
med
med
hi
4

hi
lo
hi
hi
hi
5

hi
hi
hi
hi
hi
5

X3

lo

hi

C

Xl

X2

lo

lo

lo

lo

1

lo

med

lo

med

2

lo

hi

lo

hi

3

med

lo

med

med

4

med

med

med

med

5

med

hi

med

hi

5

hi

lo

hi

hi

6

hi

med

hi

hi

6

hi

hi

hi

hi

6

Figure 2: Partition matrices for Table 1 using three different partitions of attributes a;i, X2, and 13.

introduced apply with no difference to incompletely
covered cases as well.

The decomposition algorithm examines ali decision
tables in the evolving concept hierarchy and tlien ap-
plies a single decomposition step to the decision ta­
ble and its partition that was evaluated as the most
appropriate by ip and that satisfies the complexity
condition e{F) > Q{G) + 6{H). If several partitions
are scored equal, the algorithm arbitrarily selects one
among those with the lowest number of elements in
the bound set. The process is repeated until no de­
composition is found that would satisfy the complexity
condition.

We illustrate this stepwise decomposition using the
CAR domain that is described in section 5. Figure 3
shows a possible evolving concept hierarchy obtained
by decomposition. Each consecutive hirarchy is a re-
sult of a single decomposition step. Only the hierar-
chical structure without decision tables is shown.

The overall time complexity of decision table decom­
position algorithm is polynomial in the number of ex-
amples, number of attributes, and maximal number of
columns in partition matrices [26]. As the latter grows
exponentially with the number of bound attributes, it
is advantageous to limit the size of the bound set. In
the experiments presented in Section 5, however, the
problems were sufficiently small to examine ali possible
bound sets.

The above decomposition algorithm was imple-
mented in the C language as a part of the system called
HINT (Hierarchy INduction Tool) [25]. HINT runs on
several UNIX platforms, including HP/UX and SGI
Iris.

4 Partition selection criteria
and complexity measures

This section reviews one and introduces two new par­
tition selection criteria. For each, it also defines
the complexity measure and corresponding complexity

condition. Furthermore, two overall complexity mea­
sures for the hierarchy of decision tables are defined,
and, finally, a measure for estimating the Information
content of the hierarchy itself is presented.

4.1 Partition selection criteria

4.1.1 Decomposed funetion cardinali ty

Decomposed funetion cardinality (DFC) was originally
proposed by Abu-Mostafa [1] as a general measure
of complexity and used in decomposition of Boolean
functions [21]. DFC is based on the cardinality of the
funetion. Given a decision table F{X), DFC-based
complexity is defined as:

^DFc(î) = ||A'|| = ni^'i | ' ""^^^ (1)

where [a;, j represents the cardinality of attribute Xj,
i.e., the number of values it ušes.

The DFC partition selection criterion for decompo­
sition F{X) = G{A, c) and c = H{B) is then:

^l>mc{A\B) = ^DFc(C?) + exivc{H)
\\A\\ + \\B\\ = C

(2)

The complexity condition using the above defini-
tions is 6DVC{F) > OOFC{G) + ODFC{H), or equiva-
len t ly | |X | |> | c | | | y l | | + | |B| | .

For our example decision table (Table 1) and the
corresponding partition matrices (Figure 2), the parti­
tion selection criteria are: i/'DFc(2:i|3;2a'"3) — 9+6 = 15,
ipDFG{x2\'J:iX3) = 15 -I- 6 = 21, and 'i/'DFc(a;3|a;i3;2) =
12 + 9 = 21. 6DFC{F) is 18. The only partition that
satisfies the DFC decomposition criterion is a;i|a;2a;3.

DFCs ability to guide the decomposition of Boolean
functions has been illustrated in several references in­
cluding [21, 11]. For multi-valued logic synthesis, a
DFC-guided decomposition was proposed in [10].

4.1.2 Information content of decision tables

Decision table Information content (DTIC) is based on
the idea of Biermann et al. [3] who counted the num-

PARTITION SELECTION CRITERIA FOR DECOMPOSITION Informatica 22 (1998) 207-217 211

O buying

buying / / \ \ ^̂ *̂ *y

maint / \ lugboot

doors persons

car car

^ c2

safety y ^
maint cl buying

doors

mamt

lugboot doors

safety

lugboot
persons persons

doors persons
doors persons

Figure 3: Evolving concept hierarchy discovered by decomposition of the CAR decision table. Each consecutive
hierarchy results from a single-step decomposition of its predecessor.

ber of different functions that can be represented by
a given signature table schema, i.e., a tree of concepts
whose cardinality is predefined.

A decision table y = F{X) can represent Iž/l"^" dif­
ferent functions. Assuming the uniform distribution of
functions, the number of bits to encode such a decision
table is then

^DTIc(i^) = | |X| | l0g2|2/ | bits (3)

Note that for binary functions where \y\ = 2, this is
equal to 6DFC{F).

When decomposing y = F{X) to y = G{A,c) and
C = H{B), we assign a single value from the set
{1,2 , . . . , |c|} to each of the columns of partition ma-
trix. But, each of the values has to be assigned to at
least one instance. In other words, from |y|"^" differ­
ent functions we have to subtract ali those that use less
than \c\ values. The number of different functions with
exactly \c\ possible values is therefore N{\c\), where Â
is defined as:

N{x) = a;ll^l

Nil)= 1

x - l

-E N(i)
(4)

Furthermore, since the actual label (value of c) of
the column is not important, there are |c|! such equiv-
alent assignments and therefore |c|! equivalent decision
tables H. A specific H therefore uniquely represents
A'^(|c|)/|c|! functions with exactly |c| values, and the

corresponding Information content is:

^ D T I c (^) = l 0 g 2 i V (| c |) - l 0 g 2 (| c | !) b i t s (5)

The DTIC partition selection criterion prefers the
decompositions with simple decision tables G and H
and low Information content, so that;

V'DTIC(A|B) = ^DTICCG) + e[)TIc(^) (6)

The DTIC-based complexity condition is:

^DTIC (F) > ^DTIC (G) + 0[)TIC (H) (7)

For Table 1, DTIC evaluates to: V'DTic(a:i|a;2a;3) =
20.76 bits, VDTic(3;2|a:ia;3) = 27.68 bits, and
^DTic(a;3|a;ia;2) = 30.39 bits. 5DTIC(-F) is 28.53 bits,
and, in contrast to DFC, two partitions qualify for de­
composition. Among these, as with DFC, the partition
a;i |a.-22;3 is preferred.

4.1.3 Column inultiplicity

Column multiphcity (CM) is the simplest complexity
measure introduced in this article and equals to the
cardinality of c (|c|), also referred to by Ashenhurst
and Curtis as column multiplicity number of partition
matrix [2, 8]. Formally,

i^cu{A\B) = \c\ (8)

The idea for this measure came from practical
experience with DEX decision support system [5].

212 Informatica 22 (1998) 207-217 B. Zupan et al.

There, the hierarchical system of decision tables is con-
structed manually and it has been found that decision
tables with small number of output values are easier
to construct and interpret.

For our example and similarly to DFC and DTIC,
CM also selects the partition a;i 1x2x3 with IIJCM — 3.
The remaining two partitions have V'CM(3;2|3;ia;3) = 5
and i/'CM(a;3|a;i2;2) = 6 .

Unlike DTIC and DFC, CM can not be simply
summed up to determine the joint complexity of a set
of decision tables, which is needed to determine the
complexity condition. Consequently, when we employ
CM to guide the partition selection, we use DTIC to
determine the decomposability.

4.2 Complexity estimation for
decision table hierarchy

Using DFC, the overall complexity of decision tables
in the concept hierarchy is the sum of ^DFC for each
decision table. Similarly, for DTIC, the complexity
estimation is again the sum.of DTIC complexities of
each of the decision tables, with the distinction that
^DTic is used for the decision table at the root of the
hierarchy and ^DTIC ^̂ ^ ^^^ other decision tables.

For example, consider the two concept hierarchies
from Figure 1. Their overall complexities as measured
by DFC are 15 and 21, respectively, and 20.76 bits
and 27.68 bits as measured by DTIC. These measures
confirm that the first decomposition is less complex
and thus preferred to the second one. The original un-
decomposed decision table had DFC equal to 18 and
DTIC equal to 28.53 bits. Therefore, in terms of DTIC
both decompositions reduced the complexity, while us­
ing DFC this happened only with the first one.

Note that the so-obtained DTIC complexity estima­
tion is just an approximation of the exact complex-
ity that would take into account the actual number
of functions representable by a multi-level hierarchy.
This is because DTIC is designed for a single table
only and does not consider the reducibility [3] that oc-
curs in multi-level hierarchies and effectively decreases
the number of representable functions. Therefore, the
estimated overall DTIC is the upper bound of the ac­
tual complexity.

4.3 Structure information content

Using DTIC we can assess both the amount of informa­
tion contained in the original decision table and con-
tained in the resulting decision tables that were con-
structed by decomposition. The difference of the two
is the information contained in the hierarchical struc­
ture itself. We call this measure structure information
content (SIC). The more informative the hierardiy, the
overall less complex the resulting decision tables.

For the two decompositions in Figure 1, the corre-
sponding structure information contents are 7.77 bits
and 0.85 bits, respectively. Since the first SIC is con-
siderably greater than the second one, the first struc­
ture is more informative and its decision tables more
compact.

5 Experimental evaluation

To evaluate the proposed partition selection criteria
and complexity measures, we used three artificial and
three real-world domains that were selected so that
their concept hierarchies vvere either known in advance
or could have been easily anticipated. For each do-
main, the decomposition aimed to discover this hierar-
chy. For evaluation, we qualitatively assess the similar-
ity of the two hierarchies and quantitatively compare
them by using the proposed complexity measures.

Each of six domains is represented with the ini-
tial decision table containing instances that completely
cover the attribute space. Although the experiments
could as well be done with sparser decision tables (see
[25]), we wanted to focus in this article only on the dis-
covery of concept hierarchies. Note that the proposed
partition selection measures depend only on cardinal-
ities of attributes and concepts, and not on the actual
number of instances in decision tables. Furthermore,
we have shown in [26] that by increasing the prob­
lem space coverage by training instances, the discov­
ered concepts converge to those from complete training
sets.

The results of decompositions are shown as concept
hierarchy structures, where, unless otherwise noted,
the labels of intermediate concepts indicate the order
in which they were discovered.

5.1 Artificial domains

Three artificial domains vvere investigated:

1. a Boolean function

y = (xi OR X2) AND X3 AND (14 XOR sg),

2. a six-attribute palindrome function,

3. a three-valued function
2/= MIN(a;i, AVG(a;2,MAX(a;3,X4),X5)).

For the first function, the initial decision table has
2^ = 32 instances, 6IDFC = 32 and 6IDTIC = 32 bits.
While decomposition with DTIC and CM discovered
the anticipated hierarchy, the DFC-guided decomposi­
tion terminated too soon because the complexity con­
dition did not allow to decompose the decision tables
any further (see Figure 4). Note that the overall DFC
is the same for ali discovered hierarchies, while the
structure information content is higher for those dis­
covered by DTIC and CM. The decision tables (not

PARTITION SELECTION CRITERIA FOR DECOMPOSITION Informatica 22 (1998) 207-217 213

DFC = 16
DTIC = 12.42 bits
SIC = 19.58 bits

2//2

cl/2 c3/2

2:3/2 c2/2 0:4/2 15/2

a;i/2 0:2/2

DFC = 16
DTIC = 14.99 bits
SIC = 17.01 bits 3:1/2 0:2/2 0:3/2

Figure 4: Decomposition of decision table representing the function y = (a:i OR 0:2) AND 0:3 AND (0:4 XOR
0:5) guided by DTIC and CM (left), and DFC (right).

DFC = 20
DTIC = 15.23 bits
SIC = 48.77 bits

y/2

c l / 2 c2/2

c3/2

/ \
a:i/2 XQ/2

c4/2 0:3/2 0:4/2

X2/2 0:5/2

DFC
DTIC
SIC =

2:3/2

2//2

0:4/2 c l / 2

0:2/2 0:5/2 c2/2

= 20 / \
= 17.80 bits ^ ^

•• 46.20 bits a:i/2 0:5/2

Figure 5: Decomposition of decision table representing the palindrome function guided by DTIC and CM (left),
and DFC (right).

2//3

XxlZ c l / 3

0:2/3 c2/3 0:5/3

0:3/3 0:4/3

DFC = 45
DTIC = 66.04 bits
SIC = 319.11 bits

1

0:1/3

c3/5

0:2/3 0:5/3

f/3

c2/3

c l / 3

0:3/3 0:4/3

DFC =
DTIC =

sic = .

2//3

0:1/3 c3/3

0:5/3 c l / 5

0:2/3 c2/3

42 0:3/3 0:4/3
= 59.77 bits
325.38 bits

Figure 6: Decompositions of the function y = MIN(o:i, AVG(o:2,MAX(a;3,o:4),o;5)): the anticipated hierarchy
(left), the hierarchy discovered using CM (middle), and DFC and DTIC (right). The complexity and information
measures for the latter two decompositions are the same.

214 Informatica 22 (1998) 207-217 B. Zupan et al.

shown in the figure) were checked for interpretability
and were found to represent the expected functions.

The second function y = PAL(a;i,a;2,-•• ,X6) re-
turns 1 if the string a;i . . . ^e is a palindrome and re-
turns O othervvise, i.e., y = {xi = xe) AND (0:2 =
zs) AND (3:3 = 14). In the first experiment, six
Boolean attributes xi .. .XG were used. The initial
decision table has ^DFC = 64 and ^DTIC = 64 bits.
Again, the decomposition with DFC stops sooner
and the domain favors the decomposition using CM
and DTIC. However, for both this and previous čase
a DFC-guided decomposition could discover the ex-
pected hierarchy if the corresponding complexity con-
dition would be changed to ^ D F C (^) > ^DFC(G) +
^DFc(-f^)- The same experiment was repeated with
three-valued attributes ari.. .X6- This tirne, however,
aH three criteria lead to the same and anticipated con­
cept hierarchy.

The third function y = MIN(a;i, AVG(x2,
MAX(a;3,a;4),a;5)) ušes ordinal attributes Xi...X5
that can take the values 1, 2, and 3. While MIN
and MAX have the standard interpretation, AVG com-
putes the average of its arguments and rounds it to
the closest integer. The initial decision table has
6'DFC = 243 and 6IDTIC - 385.15 bits. The antici­
pated and discovered hierarchies are shown in Figure 6.
Quite surprisingly, in ali three cases the decomposition
yields a hierarchy with a higher structure Information
content than expected by introducing an additional
five-yalued intermediate concept. If this were removed,
the discovered hirarchy and decision tables would have
been the same as anticipated. It is also interesting to
note that the hierarchy discovered using CM on one
side and DFC or DTIC on the other are different but
of the same complexity. This example illustrates that
for a specific domain there may exist several optimal
concept hierarchies with regard to complexity.

5.2 D E X models
An area where concept hierarchies have been used ex-
tensively is decision support. There, the problem is
to select an option from a set of given options so
that it best satisfies the aims or goals of the decision
maker. DEX [5] is a multi-attribute decision support
system that has been extensively used to solve real-
world decision making problems. DEX ušes categori-
cal attributes and expects the concept structure and
corresponding decision tables to be defined by the ex-
pert. The formalism used to describe the DEX model
and its interpretation are essentially the same as with
concept hierarchies studied in this article. This makes
decision models developed by DEX ideal benchmarks
for the evaluation of decision table decomposition. In
this article, we use the following three DEX models:

CAR: A model for evaluating cars based on their priče
and technical characteristics. This simple model

was developed for educational purposes and is de-
scribed in [4].

EMPLOY: This is a simplified version of the mod­
els that were developed with DEX for a common
problem of personnel management: selecting the
best candidate for a particular job. While the
realistic models that were practically used in sev­
eral mid- to large-size companies in Ljubljana and
Sarajevo consisted of more than 40 attributes, the
simplified version ušes only 7 attributes and 3 in­
termediate concepts and was presented in [6].

NURSERV: This model was developed in 1985 to rank
applications for nursery schools [17]. It was used
during several years when there was excessive en-
rollment to these schools in Ljubljana, and the
rejected applications frequently needed an objec-
tive explanation. The final decision depended on
three subproblems: (1) occupation of parents and
child's nursery, (2) family structure and financial
standing, and (3) social and health picture of the
family.

The CAR and NURSERV datasets are available from
the UCI Machine Learning Repository [16].

The goal of this experiment was to reconstruct these
DEX models from examples. The learning instances
were derived from the original models, vvhere for aH
combinations of input attributes the class was deter-
mined by the corresponding model. The examples
were stated as attribute-value vectors, hiding from
the decomposition method any underlying conceptual
structure of the domain.

The discovered hierarchies are given in Figures 7, 8,
and 9. In ali cases, the decomposition guided by DFC,
DTIC, and CM found the same hierarchical structures
and corresponding decision tables. Using DFC and
DTIC, the order in which new intermediate concepts
were found was the same but different to the one us­
ing CM. For example, in EMPLOV, DFC and DTIC-
guided decomposition discovered cl first, vvhile, using
CM, this concept was discovered as the last one.

AH the discovered hierarchies have higher Informa­
tion content than the original ones. Also, the over-
all complexity of decision tables is lower according to
both DFC and DTIC. Most importantly, the discov­
ered concept hierarchies are very similar to the origi­
nal ones. In fact, if c3 would be removed from CAR
(making c4 directly dependent on lugboot, doors, and
persons), the two Jiierarchies would be the same. The
same applies to EMPLOV and NURSERV if cl and
c2 are removed, respectively. In other words, the de­
composition found the same concept hierarchies as the
original ones but additionally decomposed the deci­
sion tables for comfort (CAR), employ (EMPLOV),
and struct+f inan (NURSERV). In this way it obtained
less complex decision tables.

PARTITION SELECTION CRITERIA FOR DECOMPOSITION Informatica 22 (1998) 207-217 215

car/4 car/4

price/4 tech/4 c2/4 cl/4

buying/4 maint/4 comfort/4 safety/3 buying/4 maint/4 c4/3

lugboot/3 doors/4 persons/3

safety/3

lugboot/3 c3/4

DFC = 77
DTIC = 126.75 bits
SIC = 3329.25 bits

DFC = 65 doors/4 persons/3
DTIC ^ 107.90 bits
SIC = 3348.10 bits

Figure 7: The original concept hierarchy of CAR (left) and the decompositions based on CM, DFC and DTIC
(right).

einploy/4 employ/4

educat/3

/ \ per-char/3
for_lang/3 \

degree/5

exper/5

age/5

DFC = 91
DTIC = 145 bits
SIC = 35855 bits

i n t e l / 4 work_app/3 /x
coinm/4 manag/3

c2/3
c5/3

for_lang/3
degrež/5 / exper/5

age/5
DFC = 85 coDrai/4 nianag/3
DTIC = 128 bits
SIC = 35872 bits

Figure 8: The original concept hierarchy of EMPLOY (left) compared to the hierarchy discovered by CM, DFC,
and DTIC-guided decomposition (right).

nursery/5 nursery/5

employ/4

parents/3 struct+finan/3

soc+health/3

health/3

c4/4 c5/3

soc ia l /3
has_nurs/5

finance/2 / housing/3

structure/3

parents/3
has_nurs/5

c l / 3
health/3

soc ia l /3

c3/3 c2/3

DFC = 94 form/4 chi lds/4
DTIC = 169.20 bits
SIC = 29922.99 bits

form/4 \ \ housing/3

I3PQ _ 82 chi lds/4 finance/2
DTIC = 132.95 bits
SIC = 29959,24 bits

Figure 9: The original (left) and discovered concept hierarchy using CM, DFC and DTIC criteria (right) for
NURSERY.

216 Informatica 22 (1998) 207-217 B. Zupan et al.

The derived decision tables were compared to the
original ones and found to be the same but in the
names used for instance labels (the decomposition ušes
abstract labels while the original decision tables use
meaningful names). The only exception are decision
tables for tech and comf ort in the CAR domain, where
the decomposition succeeded to find a more compact
representation.

6 Conclusion

We investigated the appropriateness of three partition
selection measures for decision table decomposition:
decision table Information content (DTIC) and col-
umn multiplicity (CM) introduced in this article, and
decomposed function cardinality (DFC) that has al-
ready been used primarily for the decomposition of
Boolean functions.

The experimental evaluation exposed the deficiency
of DFC when decomposing a decision table that ex-
presses a Boolean function. This may be alleviated
by relaxing the DFC compIexity condition. In more
complex domains with multi-valued attributes, the de­
composition guided by any of the proposed criteria
discovered concept hierarchies that were very similar
to those expected. Furthermore, the discovered hi­
erarchies were equal to or even better than the an-
ticipated ones in terms of the complexity of decision
tables and structure Information content. The order
under which the intermediate concepts were discov­
ered was the same for DFC and DTIC, but different
for CM. A qualitative evaluation of derived hierarchies
reveals that, in general, the discovered decision tables
represent meaningful and interpretable concepts.

Although less complex in definition and easier to
compute, DFC and CM both stand well in compari-
son with a more complex partition selection measure
DTIC. Also comparable is the utility of DFC and
DTIC to assess the complexity of the original and de­
rived decision tables, although we have shown that
DFC-based measure performed worse on two Boolean
functions. Overall, while DFC and DTIC have better
theoretical foundations than an intuitive partition se­
lection measure CM, the experimental evaluation does
not indicate that any of these is to be strictly preferred
over the other.

The decision table decomposition was primarily de-
veloped for switching circuit design. However, ex-
periments in non-trivial domains like DEX's strongly
encourage further research and development of this
method for machine learning and knowledge discov-
ery. As the method has recently been extended to deal
with continuous attributes [9] and noise [25], further
research is needed to assess the quality of correspond-
ing partition selection criteria under these extensions.

References
[1] Y. S. Abu-Mostafa. Complexity in Information

Theonj. Springer-Verlag, New York, 1988.

[2] R. L. Ashenhurst. The decomposition of switching
functions. Technical report, Bell Laboratories BL-
1(11), pages 541-602, 1952.

[3] A. W. Biermann, J. Fairfield, and T. Beres. Sig-
nature table systems and learning. IEEE Trans.
Syst. Man Cijbem., 12(5):635-648, 1982.

[4] M. Bohanec and V. Rajkovič. Knowledge acquisi-
tion and explanation for multi-attribute decision
making. In 8th Intl Workshop on Expert Sijs-
tems and their Applications, pages 59-78, Avi-
gnon, France, 1988.

[5] M. Bohanec and V. Rajkovič. DEX: An ex-
pert system shell for decision support. Sistemica,
1(1):145-157, 1990.

[6] M. Bohanec, B. Urh, and V. Rajkovič. Evaluating
options by combined qualitative and quantitative
methods. Acta Psijchologica, 80:67-89, 1992.

[7] M. Bohanec, B. Zupan, I. Bratko, and B. Cestnik.
A function decomposition method for develop­
ment of hierarchical multi-attribute decision mod-
els. In Proč. 4th Confercnce of the International
Societij for Decision Support Sijstems (ISDSS-07),
pages 503-514, Lausanne, Switzerland, July 1997.

[8] H. A. Curtis. A New Approach to the Design of
Smitching Functions. Van Nostrand, Princeton,
N..I., 1962.

[9] J. Demšar, B. Zupan, M. Bohanec, and I. Bratko.
Constructing intermediate concepts by decompo­
sition of real functions. In M. van Someren and
G. Widmer, editors. Proč. European Confercnce
on Machine Learning, ECML-97, pages 93-107,
Prague, April 1997. Springer.

[10] C. Files, R. Drechsler, and M. Perkowski. Func-
tional decomposition of MVL functions using
multi-valued decision diagrams. In International
Sijmposium on Multi- Valued Logic, may 1997.

[11] J. A. Goldman. Pattern theoretic knowledge dis-
covery. In Proč. the Sixth Int'1 IEEE Confercnce
on Tools with Al, 1994.

[12] T. Luba. Decomposition of multiple-valued func­
tions. In 25th Intl. Symposium on Multiple-Valued
Logic, pages 256-261, Bloomigton, Indiana, May
1995.

[13] R. S. Michalski. A theory and methodology of
inductive learning. In R. Michalski, J. Carbon-
nel, and T. Mitchell, editors, Machine Learning:

PARTITION SELECTION CRITERIA FOR DECOMPOSITION Informatica 22 (1998) 207-217 217

An Artificial Intelligence Approach, pages 83-134.
Kaufmann, Paolo Alto, CA, 1983.

[14] R. S. Michalski. Understanding the nature
of learning: Issues and research directions. In
R. Michalski, J. Carbonnel, and T. Mitchell, edi-
tors, Machine Learning: An Artificial Intelligence
Approach, pages 3-25. Kaufmann, Los Atlos, CA,
1986.

[15] D. Michie. Problem decomposition and the learn­
ing of skills. In N. Lavrač and S. Wrobel, edi-
tors, Machine Learning: ECML-05, Notes in Ar­
tificial Intelligence 912, pages 17-31. Springer-
Verlag, 1995.

[16] P. M. Murphy and D. W. Aha. UCI
Repository of machine learning databases
[http://vvww.ics.uci .edu/ "mlearn/mlrepository.litml].
Irvine, CA: University of California, Department
of Information and Computer Science, 1994.

[17] M. Olave, V. Rajkovič, and M. Bohanec. An ap-
plication for admission in public school systems.
In I. Th. M. Snellen, W. B. H. J. van de Donk, and
J.-P. Baquiast, editors, Expert Systems in Puhlic
Administration, pages 145-160. Elsevier Science
Pubhshers (North Holland), 1989.

[18] M. A. Perkovvski et al. Unified approach to
functional decompositions of switching functions.
Technical report, Warsaw University of Tech-
nology and Eindhoven University of Technology,
1995.

[19] B. Pfahringer. Controlling constructive induction
in CiPF. In F. Bergadano and L. De Raedt, ed­
itors, Machine Learning: ECML-94, pages 242-
256. Springer-Verlag, 1994.

[20] H. Ragavan and L. Rendell. Lookahead feature
construction for learning hard concepts. In Proč.
Tenth International Machine Learning Confer-
ence, pages 252-259. Morgan Kaufman, 1993.

[21] T. D. Ross, M. J. Noviskey, D. A. Gadd, and
J. A. Goldman. Pattern theoretic feature extrac-
tion and constructive induction. In Proč. ML-
COLT '94 Workshop on Constructive Induction
and Change of Representation, New Brunswick,
New Jersey, July 1994.

[22] A. Samuel. Some studies in machine learning us-
ing the game of checkers II: Recent progress. IBM
J. Res. Develop., 11:601-617, 1967.

[23] A. D. Shapiro. Structured induction in expert sys-
tems. Turing Institute Press in association with
Addison-Wesley Publishing Company, 1987.

[24] W. Wan and M. A. Perkowski. A new approach to
the decomposition of incompletely specified func­
tions based on graph-coloring and local transfor-
mations and its application to FPGA mapping.
In Proč. of the IEEE EURO-DAC '92, pages 230-
235, Hamburg, September 1992.

[25] B. Zupan. Machine learning based on func-
tion decomposition. PhD thesis, University of
Ljubljana, April 1997. Available at http://www-
ai.ij.s.si/BlazZupan/papers.html.

[26] B. Zupan, M. Bohanec, I. Bratko, and J. Demšar.
Machine learning by function decomposition. In
Jr. D. H. Fisher, editor, Proč. Fourteenth Interna­
tional Conference on Machine Learning (ICML-
97), pages 421-429, San Mateo, CA, 1997. Mor­
gan Kaufmann.

[27] B. Zupan, M. Bohanec, ,J. Demšar, and I. Bratko.
Feature transformation by function decomposi­
tion. IEEE Intelligent Sijstems & Their Appli­
cations, 13(2):38-43, March/April 1998.

http://vvww.ics.uci
http://www-

