
https://doi.org/10.31449/inf.v46i9.4481 Informatica 46 (2022) 1–6 1

Software: Protection, Licensing and Rewarding Researchers in Computer

Science – an Overview of Challenges in the European Innovation

Ecosystem

Urška Fric, Špela Stres1, Robert Blatnik2

Faculty of Information Studies in Novo mesto Slovenia
1,2Jožef Stefan Institute

E-mail: urska.fric@fis.unm.si, spela.stres@ijs.si, robert.blatnik@ijs.si

Keywords: software, protection, licensing, researchers, computer science, rewarding, challenges

Received: November 2, 2022

With the transition of innovation to the digital sphere, software has become an essential part of

contemporary inventions and creations. It is also an essential part of intellectual property. The state of

software protection in the European innovation ecosystem still needs to be considered fully regulated.

However, researchers in computer science also face several challenges when exploiting intellectual

property rights in the software. The field, therefore, offers opportunities for researching, which should

steer research to (1) present the critical points, and (2) update some of the legal frameworks to address

more clearly the field that deals with the issue of remuneration for researchers in computer science. The

overview paper discusses software, focusing mainly on the challenges that researchers in computer

science face in protecting and licensing software in the European innovation ecosystem. The following

paper presents the state of the researchers’ remuneration under protection and licensing.

Povzetek: Pregledni članek obravnava področje programske opreme. Prvotno se posveča izzivom, s

katerimi se raziskovalci na področju računalništva soočajo pri zaščiti in licenciranju programske opreme,

nadalje pa predstavlja ključne izzive nagrajevanja raziskovalcev iz naslova zaščite in licenciranja.

1 Introduction
Patent applications for computer-based inventions are

amongst those with the highest growth rate across all

planet categories arriving at the European Patent Office

(EPO). A thorough examination process awaits all new

applications in this field. The crucial aim is to distinguish

genuine technological innovations – which contribute to

the overall level of progress of technology – from

straightforward and inventiveness of computer-

implemented inventions. [1, 2]

Over the last decade, there has been equally intense

debate over how software should be the subject of patent

protection instead of a program's copyright protection.

Different answers have been reached in the US, Europe,

and the rest of the world. Many companies in the software

industry feel that the perceived difficulty of defining the

scope of software patents still needs to be determined. A

plaintiff can sue under such patents, relying on their

ambiguity and one of the significant legal fees involved in

obtaining clarity on the scope to force a settlement.

However, others feel equally strongly that the software

industry needs patents. [2, 3]

Software that does not demonstrate a technical

contribution can only be protected by copyright, which

does not protect ideas. The appearance of a command line

or graphical interface can be protected as a registered

design. In contrast, a patent for computer or mobile

applications can be granted if a technical contribution is

demonstrated. Under EPO rules, the software must relate

to the hardware in case of such. [3]

At least part of the reason why there is still no

appropriate legal base is that such inventions are particular

and proving their technical contribution and industrial

applicability can be challenging. [3]

To successfully market software, the Public Research

Organization (PRO) system needs to regulate the

motivation and reward of researchers in computer science

from successful marketing. Currently, the European

innovation ecosystem is nothing to motivate researchers in

computer science.

The current situation calls for the study identification

of the most critical points to update some of the legal

bases, to address this field more clearly and to address the

issue of rewarding researchers in computer science –

which is therefore addressed in this paper with a focus on

software.

The paper is overview oriented and presents software,

(1) focusing mainly on the challenges researchers in

computer science face in protecting and licensing software

in the European innovation ecosystem, and (2) the state of

researchers’ remuneration under protection and licensing.

While the starting points of the conceptual framework

are based on secondary data derived from the current and

updated legal frameworks of the European innovation

ecosystem, the presentation of the current state-of-the-art

of rewarding researchers in computer science is based on

primary data derived from the knowledge of operating in

PROs.

mailto:urska.fric@fis.unm.si
mailto:spela.stres@ijs.si
mailto:robert.blatnik@ijs.si

2 Informatica 44 (2020) 501–505 admin

2 Software in theory and practice

2.1 Software and related terms

Before addressing the matter of this paper, let us clarify

the key concepts related to the software and, therefore,

necessary for the understanding of this paper:

1. Software: a group of computer programs that,

together with the hardware in a computer, form a

whole.

2. Computer Program: an algorithm written in one of

the programming languages that can be executed on a

computer.

3. Algorithm: a sequence of defined rules and

commands that allow a problem to be solved in a

finite number of steps.

4. Source Code: code in a form suitable for translation

into an appropriate programming language.

5. Machine Code: text or operating code in the form of

executable files.

6. Computer-Implemented Invention (CII): an invention

implemented using the computer, computer network

or other programmable devices, with one or more

features that are either partially or fully implemented

using one or more computer programs [4].

7. Technical Contribution: a contribution to the state-of-

the-art in a field of technology which is new and not

apparent to a person skilled in the art; it is not assessed

in the light of the difference between state-of-the-art

and the patent application, which must contain

technical features, whether non-technical features

accompany them [4].

8. Command Line Interface (CLI): connects the user to

a computer program or operating system, where users

interact with the system or application through a CLI

by entering text.

9. Graphical User Interface (GUI): computer

environment that allows a user to interact with the

computer through visual elements [5].

2.2 Legal framework in european

innovation ecosystem

Computer programs are defined both in Directive

2009/24/EC of the European Parliament and of the

Council of 23 April 2009 on the legal protection of

computer programs [6], and in the European Patent

Convention. The latter stipulates in Article 52(2) (c) that

programs for computers are not regarded as inventions [7].

In this Article, the European Patent Convention excludes

computer programs from patentability. It is important to

stress the distinction between "software patents", which

are excluded according to the Article mentioned above,

and the so-called "computer-implemented inventions",

which are accepted at the EPO [8].

Software that does not demonstrate a technical

contribution can only be protected by copyright, which

does not protect ideas. The appearance of a command line

interface or a graphical user interface can be protected as

a registered design. In contrast, a computer or mobile

application patent can be granted if a technical

contribution is demonstrated. Under EPO rules, the

software must relate to the hardware in case of such. [9]

Although the European Patent Convention excludes

computer programs from patentability to the extent that a

patent application relates to a computer program as such,

this is interpreted to mean that any invention that makes a

non-obvious technical contribution or solves a technical

problem in a non-obvious way is patentable, even if the

technical problem can be solved by running a computer

program. [10]

The problem of strictly classifying software as a

literary work appears when one considers computer

programs have other elements that are usually not

protected by copyright – software is not just a literary

expression; lines of code have a function that does not

depend on their grammatical construction. Problems with

the protection of additional elements of computer

programs have created a perceived need for software

patentability.

Today, the world's three most prominent patent

offices, the European, US and Japanese, allow the

patenting of specific software. However, there are

differences between the criteria used in accepting

applications in these offices. All new and non-obvious

software that produces valuable concrete and tangible

results are eligible for patent protection in the US. In

contrast, in Europe, the invention’s technical contribution

must be defined as described above, which is the same in

Slovenia.

These discussions led to the now widely accepted

principle that computer programs should be protected by

copyright, while apparatus using software or software-

related inventions should be protected by patent.

Protecting and obtaining intellectual property rights

(IPR) in fast-growing areas such as artificial intelligence

is challenging. Artificial intelligence enables entirely new

approaches to creating intellectual property (IP).

Questions arise regarding the eligibility of patent

protections, authorship and rights ownership of a newly

developed technical solution or creation autonomously

created, enabled, or co-created by a program. The subject

of intense debate and accelerated activity at the EPO is

how these issues will be resolved in a way that does not

stifle innovation potential [11].

3 Software and exploitation of

intellectual property rights
3.1 Ways of licensing software

IP is an essential tool for protecting the value created by

the software. As a rule, almost all software is protected,

including the smallest libraries and subroutines. IPRs are

divided into economic and moral rights. [12]

Economic rights give the holder the right to exploit the

work, prevent others from using it without consent, and

aim for financial gain. The license can grant the right to

use; if it is exclusive, it allows the holder to exclude others

from using the IP in question. If it is transferable, it will

enable the holder to grant third parties the rights to use it.

A license is a permission granted by the licensee to use an

Software: Protection, Licensing and Rewarding Researcher… Informatica 46 (2022) 1–6 3

identified asset under certain conditions. In doing so, the

licensor may determine at its discretion the extent of the

exclusive IPRs granted in respect of the support (and,

conversely, the rights it reserves for itself).

Moral rights include the right to authorship, the right

to publish the work anonymously or under a pseudonym,

and the right to the integrity of the work. In most countries

(including all EU countries), copyright protection lasts

throughout the author's lifetime and for 70 years after his

death.

As far as IP is concerned, the software can be protected

by several IPRs on the borderline between pure creations

of the mind and technical inventions. However, even more

complexity arises from the intangible nature of software,

the variety of uses and the different means of creating

value from software.

Therefore, the means of creating value from software

can vary considerably depending on the exploitation

scheme chosen and the associated ecosystem to which the

use of the software in question is directed.

Nevertheless, licensing is essential in creating value by

managing the IP associated with software development.

Business models are formalised in a contract, usually in

the form of licensing agreements, which impose specific

rules of use on third parties who intend to exploit the

software. Figure 1 shows typical software licensing

models.

Figure 1: Classification of typical software licenses

Free and open-source software rights include use,

inspection and modification, and distribution of modified

and unmodified copies. It typically allows use for any

purpose without restriction; in the case of reviewing and

changing code, it requires that the modified code be made

available again under the same conditions; and it also

provides for the possibility of distributing modified and

unmodified copies. When free and open-source software

is modified, derivative works are created, and when

various software components are assembled, composite

parts of the underlying components are made. Component

A and Component B are formed, and Component A is also

modified. Component C is created as both a derivative

work of Component A and a composite work of

Component B. Different economic rights may arise from

open-source and free software. Free software derives from

licenses granted by the Free Software Foundation, while

open-source software is defined by the Open-Source

Initiative, which has a more business-oriented approach.

We consider the following:
1. Academic licenses

a. Extremely open, "permissive licenses".

b. Licensees can perform, modify, and distribute

derivative works without restrictions.

c. Licenses for derivative works may lead to new

licensing terms, including proprietary ones.

d. Generally accepted in academia.

2. Contextual licenses

a. Licensees may use, modify, and distribute derivative

works, provided that the derivative or composite

works are distributed under the same license.

b. "Copyleft license": copyleft grants the right to freely

distribute and modify IP, with the requirement to

preserve the same rights in derivative works created

from that property [13]. The main advantage of such

licenses is to ensure joint investment, as no derivative

or significant works can be licensed under another

license. They allow the original licensor to be granted

the same rights in the derivatives as those initially

acquired by the original code licensees. [13]

3. Reciprocal licenses

a. Very complex.

b. Licenses of major works using an unmodified version

of the original component under a contextual license

are not limited by the original license.

c. A derivative product containing a modified component

must be released under the same license.

Many different contractual relationships contend with

actual sets of rules derived from proprietary licenses, all of

which typically require a financial contribution from the

user. We consider the following:

1. Freeware, where the software is available free of

charge, but any code modification is prohibited.

2. Shareware, where the user is free to use the software

for a limited period or with limited functionality but

to gain access to the full unrestricted version, an

additional license must be obtained.

All proprietary licenses prohibit software

modification, impose strict use conditions, and

usually do not allow access to the source code. We

consider the following typical models:

1. End-user licensing, where the license is allowed to be

used by a specific user, but sharing with other users is

not allowed, but the same user on different devices

can use the license.

2. Node licensing, where the license can be used by

multiple users but on the same device rather than at

the same time; site licensing, where the software may

be used by multiple users on various devices in a

specific area or company but the number of users may

be limited.

3. Network licensing (floating licensing), where the

same software may be used by multiple users

simultaneously, but a central server authorises access

to the application.

3.2 Management of intellectual property

rights for software

Managing IP in software requires the strategic and

complementary use of different types of IP. Exploitation

and licensing strategies must be carefully considered,

considering all associated costs and market opportunities.

Two fundamental issues should be addressed in the

assessment and planning process:

4 Informatica 44 (2020) 501–505 admin

1. Why was the software created: was it intended to

generate income through licensing to end-users or

was it developed as part of a scientific project without

an exploitation strategy in mind? Even if we focus

only on the technical challenges of R&D, we should

pay attention to the long-term benefits of protecting

IP, not only from a revenue perspective but also

because in research work, we may want to reuse the

developed software in future applications.

2. How was the software developed: what are our

components and what have we obtained from

elsewhere, and if so, under which licenses? Designing

based on foreign parts can bring legal challenges, as

the individual licenses of different third-party

software may not be compatible.

Derivative works based on licensed academic software

components may be re-licensed under the same license

type or upgraded to contextual or reciprocal (mutually

compatible) licenses. If necessary, contextual licensing

code can be re-licensed by reusing the same license,

upgrading the license to a newer version that remains in

the same contextual field, or switching to reciprocal

licenses. We cannot embed free and open-source software

in proprietary software. However, combining copyleft

software without copyright and some contextual rights is

possible.

However, suppose the software is protected

exclusively by copyright. In that case, it is possible to

circumvent all prior rights easily but effortlessly if we

have access to the source code: we must implement the

same idea in another source code. A new implementation

of the code is the only legal way if we want to convert

academic or reciprocal software code into proprietary

code and sell and license it.

3.3 Software marketing and challenges of

rewarding researchers in computer

science: typical examples

The applied and commercially attractive results of

R&D, such as computer programs, (graphical) user

interfaces, databases, and other software, represent a

potential value for customers or users in a commercial

activity (sale of rights) and, in some instances, a more

comprehensive use value for society, for which the rights

holders decide to make the rights available free of charge

under certain conditions.

The following are some typical examples of software

development and commercial exploitation and the

difficulties in providing an incentive environment and

reward mechanisms for creators or authors.

1. The authors develop the software, publish it online

and make it free to use under certain conditions.

These cases may be conditional on a funding contract

for the R&D project that resulted in the software, or it

may be a decision by the wider research team (not

necessarily the authors) that the software is for the

broader good of society and a reference that,

alongside the wider use of the software, brings

specific other results that are important to the research

team (e.g. raising the impact factor through published

papers, completed projects, number of citations,

raising the international reputation of the R&D team

and the PRO, which in turn makes it more successful

in obtaining new funding). It can also be a business

model to acquire a critical mass of users or

developers, allowing later market exploitation (open-

source marketing models). There are no legally

required ways of rewarding authors for such

successful results (demonstrably used for the benefit

of society but not valued through the direct income of

the PRO). Rewarding is possible through other

mechanisms, e.g., internal rules at the group level,

which provide rewards or incentives to collaborators

for successful work. In cases where project funding

agreements do not already limit this, the decision to

grant rights (e.g., free use) is left to the group or

project leaders, and authors' involvement in such

decision-making processes is only sometimes

guaranteed. The absence of decision-making

mechanisms that weigh the pros and cons of the

chosen model for the allocation of software usage

rights on expert grounds, such as assessments of

technological and market potential, reviews of the

feasibility and options of different open source

models for software protection or licensing, estimates

of the academic and broader societal benefit potential,

leads to a less stimulating environment for the

commercial exploitation of R&D results in the field

of software creation.

2. Authors develop software based on third-party

software, restricting them from commercially

exploiting or even publishing freely the newly

designed software based on prior rights. These cases

arise, for example, when a newcomer to a long-

running project takes over work on software which,

during development and contribution by the

newcomer, is found to have commercial value

(perhaps because of the newcomer's innovation or

contribution). Practical realisation of the market value

through the sale of the rights to such software is not

possible because the design of the software or the

project itself needs to consider the limitations of the

third-party rights of the authors of the selected

software or the potential business opportunity.

3. Authors develop software and, due to the limitations

of the reward possibilities in the PRO, prefer to use it

in their own company or a third company with private

business links to the authors. These cases arise for

several reasons:

a. There are no established mechanisms for

rewarding authors of commercially exciting

software, which, to be successful on the market,

also requires personal involvement in the

development of a specific, customer-tailored

application, its sale, the establishment of

marketing, user support and all the business

model-related factors for the successful sale or

realisation of the company on the market.

b. A problem related to the previous point is the

need for mechanisms for fast and efficient

software registration as trade secrets (e.g.,

Software: Protection, Licensing and Rewarding Researcher… Informatica 46 (2022) 1–6 5

technical improvements) at the PRO. This would

allow the registration of an intangible asset and

the related determination of its value and impact

on the PRO's business result or open the

possibility of a transparent transfer of the rights

to use the asset to a company (spin-off or

external, unrelated to the PRO, through a license

agreement) or through a capital injection in a

newly created company (a spin-out, in the case of

legal possibilities).

4. The authors develop the knowledge and software used

in a software development project commissioned by

the customer (R&D or commercial contract with

industry). Under the contract, the buyer acquires all

rights to the newly developed software. However, the

rights to the previously developed software and

know-how that made the deal for the PRO or the

innovative potential of the newly designed software

for the buyer possible in the first place are not defined

in the contract. They are indirectly valued through the

value of the contract, which is cost-accounted for in

terms of person-hours worked on this commercial

R&D project. There is no legally required

remuneration to authors for exploiting the innovation

resulting from the innovative potential of the

previously developed software. The problem

manifests itself on several levels:

a. Researchers at the PROs primarily seek funding

through projects that cover person-hours and

material costs. The value of the IP that enables

the sale of TR hours is generally ignored or

forgotten, as the need and responsibility of R&D

teams to secure sufficient funding or projects to

cover the hours is at the forefront. Obtaining

R&D contracts directly from the industry is

highly scarce or requires significantly more

commitment from researchers than getting

publicly available resources through calls for

tenders. On the other hand, TR projects represent

a particular reference. R&D groups are willing to

give up rights to previously generated IPs.

b. Often, there is even a free assignment of all rights

of newly created inventions in favour of

companies and the clients of the R&D services

(e.g. PRO is not even listed as the applicant of a

patent application based on software code

authored by the researchers of the PRO).

c. Under the pressure of securing a deal with the

industry, with all the conditions of negotiating

the best price for the solution that is still

acceptable to the company, the authors are

forced to compromise or set calculations that

only cover the person-hours for the development

of the ordered solution, which in the analysis

does not cover the rewards for the authors of the

previously developed software, which, due to its

innovative potential, made it possible to obtain

the deal in the first place. The rewards are only

made possible through the source, i.e., the

business, which also covers the compensation

financially.

5. Undergraduate students work with the research team

on a student-placement basis. They may be students

whose graduate advisors are employed by a PRO or a

research group developing software. There are no

copyright agreements with the students to regulate the

transfer of copyright and other rights (e.g., in the case

of a working invention of other authors, employees of

the research group members in which the students are

involved). There is an interplay between the roles of

the advisor of the first PRO, the project implementer,

within which an individual graduation problem is

being solved or is related to the project, who trains the

student through a graduation thesis, in which a

professor employed by another PRO participates as

an advisor. Thus, on the one hand, the student thesis

is the basis for the diploma thesis, over which certain

rights belong to the university. On the other hand, the

project's outcome belongs to the PRO, which has

certain obligations towards the project funder, wishes

and commercialising the work results. The problem

arises for several reasons:

a. Project managers hire students for routine

programming tasks under time pressure.

Collaboration, involving the student in the

projects, and training the students through

advising lead to more complex tasks that result in

original works and inventions.

b. The results of the student work are usually based

on already created original work or tacit

knowledge, which the advisors make available to

the student for use to develop new versions of the

software, or this may lead to registered

inventions at the PRO.

c. Due to the unregulated mechanisms in the field

of software IP, the tacit pitfalls of unregulated IP

rights concerning student work are not known to

the employees of the PROs, which, in the case of

late regulation of rights over IP created with

students, usually in the past, requires an

additional investment of time and participation in

the subsequent regulation procedures, typically

between the PRO, the project promoter, and the

PRO, the pedagogical program promoter. This

may inhibit or even prevent the commercial

exploitation of IP for which a market interest has

been identified, e.g. industry demand requiring

rapid response, contracting and delivery of the

solution.

4 Conclusion
The PRO system needs to motivate and reward

researchers for marketing the software. Software is legally

the property of the employer, who also has all economic

rights over it, without having to take possession of it, as is

required by law for patentable inventions. As a result,

although the software is the property of the employer as

soon as it is created, the inventor has no interest in

participating in its marketing, as he is not additionally

remunerated for any successful sale or licensing due to the

6 Informatica 44 (2020) 501–505 admin

exemption of the Inventions under the Employment-

Related Inventions Act (in Slovenia).

Nevertheless, it should be remembered that any

invention that makes a non-obvious technical contribution

or solves a technical problem in a non-obvious way may

be patentable, even if that technical problem can be solved

by running a computer program. Consequently, a program

code whose technical effect (even if in a non-obvious way)

constitutes a technical improvement which is patentable

by its very nature. At the same time, the trade secret

segment is important since disclosure of program code

without a proper proprietary license, or even without any

license, may result in commercial damage. By combining

the technical effect of the software code with the trade

secret effect, it is possible to register the invention also for

the software code case and, consequently, to reward the

researcher accordingly.

We, therefore, propose, also in the case of software

code, regular reflection among researchers within the

PROs should be facilitated concerning new, commercially

viable software code, a check should be introduced

concerning any technical contribution and, consequently,

an appropriate registration of the invention based on the

software code should be made. TTOs have a crucial role

in this respect. Their expertise can contribute to the proper

assessment and registration of service inventions and the

broader popularisation of the possibility of

commercialising software (also protected and registered in

this way). At the same time, the proposed method allows

researchers working in the field of software code

development to be rewarded for their work on an equal

footing with those working in the fields of new materials,

medical devices, or biotechnology.

Acknowledgement
The operation is partially co-financed by the European

Union from the European Regional Development Fund

and the Ministry of Education, Science and Sport of the

Republic of Slovenia. The operation is implemented under

the Operational Program for the Implementation of

European Cohesion Policy for 2014–2020, priority axis 1,

strengthening research, technological development, and

innovation.

References
[1] Closa, D., Gardiner, A., Giemsa, F. and Machek, J. (2011).

Patent Law for Computer Scientists. Steps to Protect

Computer Scientists. Springer-Verlag, Berlin, Heilderberg,

Dordrecht, London, New York.

[2] Fric, U., Stres, Š. and Blatnik, R. (2021). Software

Protection and Licensing Challenges in Europe: An

Overview. 14th International Technology Transfer

Conference.

http://library.ijs.si/Stacks/Proceedings/InformationSociety/

2021/IS2021_Volume_E.pdf

[3] Johnson, S. (2015). Guide to Intellectual Property. What it

is, how to protect it, and how to exploit it. The Economist

in Association with Profile Books Ltd. And PublicAffairs,

New York.

[4] Zakon o industrijski lastnini (Uradni list RS, št. 51/06 –

uradno prečiščeno besedilo, 100/13 in 23/20).

[5] Stigler, R. (2014). Ooey GUI: The Messy Protection of

Graphical User Interfaces. Northwestern Journal of

Technology and Intellectual Property, 12, 3, 215–252.

[6] EUR-Lex. (2009). Access to European Union Law.

Directive 2009/24/EC of the European Parliament and of

the Council of 23 April 2009 on the legal protection of

computer programs. https://eur-lex.europa.eu/legal-

content/EN/TXT/?qid=1598852616560&uri=CELEX:320

09L0024

[7] European Patent Office. (2007). European Patent

Convention (EPC 1973). https://www.epo.org/law-

practice/legal-texts/html/epc/1973/e/ar52.html

[8] European IP Helpdesk. (2020). Copyright or Patent – how

to protect my Software?

https://www.iprhelpdesk.eu/news/copyright-or-patent-

how-protect-my-software

[9] Fric, U. and Tomić Starc, N. (2021). Computer-

Implemented Inventions and Computer Programs – Status

Quo in Slovenia and EU. Informatica, 45, 5, 667–673,

DOI: https://doi.org/10.31449/inf.v45i5.3468

[10] Neuhäusler, P. and Frietsch, R. (2019). Computer-

Implemented Inventions in Europe. In Springer Handbook

of Science and Technology Indicators, W. Glänzel, H. F.

Moed, U. Scmoch, and M. Thelwall, Eds. Springer Nature

Switzerland AG, Switzerland, Cham, 1007–1022.

[11] European Patent Office. (2020). The Role of Patents in an

AI Driven World. Digital Conference. 17–18 December

2020. https://www.epo.org/news-

events/events/conferences/ai2020.html

[12] European IPR Helpdesk. (2014). Fact Sheet IPR

Management in Software Development.

https://iprhelpdesk.eu/sites/default/files/newsdocuments/F

act-Sheet-IPR-Management-in-Software-Development.pdf

[13] Cunningham, R. (2007). The Road of Computer Code

Featuring the Political Economy of Copyleft and Legal

Analysis of the General Public License. In Handbook of

Research on Open Access Software: Technological,

Economic, and Social Perspectives, K. St. Amant and B.

Still, Eds. IGI-Global, 348–362, DOI:

https://doi.org/10.4018/978-1-59140-999-1

http://www.uradni-list.si/1/objava.jsp?sop=2006-01-2178
http://www.uradni-list.si/1/objava.jsp?sop=2013-01-3601
https://www.uradni-list.si/glasilo-uradni-list-rs/vsebina/2020-01-0555?sop=2020-01-0555
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1598852616560&uri=CELEX:32009L0024
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1598852616560&uri=CELEX:32009L0024
https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1598852616560&uri=CELEX:32009L0024
https://www.epo.org/law-practice/legal-texts/html/epc/1973/e/ar52.html
https://www.epo.org/law-practice/legal-texts/html/epc/1973/e/ar52.html
https://www.iprhelpdesk.eu/news/copyright-or-patent-how-protect-my-software
https://www.iprhelpdesk.eu/news/copyright-or-patent-how-protect-my-software
https://doi.org/10.31449/inf.v45i5.3468
https://www.epo.org/news-events/events/conferences/ai2020.html
https://www.epo.org/news-events/events/conferences/ai2020.html

