
https://doi.org/10.31449/inf.v48i6.5425   Informatica 48 (2024) 157-172   157
  

Data Transmission with Aggregation and Mitigation Model through 

Probabilistic Model in Data Centre 

 

Manikandan J1 *, Uppalapati Srilakshmi2 

1Vignan’s Foundation for Science, Technology & Research, Vadlamudi, Guntur, Andhra Pradesh, India. 
2 VFSTR Deemed to be University, Department of CSE, Koneru Lakshmaiah Education Foundation, Hyderabad-

500045, Telangana, India. 

*Corresponding author 

E-mail: jmanikandan025@gmail.com,   druppalapati2019@gmail.com 

 

Keywords: data transmission, aggregation, mitigation, probabilistic model, data centre, energy consumption 

 

Received: November 16, 2023 

 

With the increasing demand for data storage and processing, data centers have become critical 

infrastructures. Efficient data transmission and aggregation in data centers are essential for improving 

performance and reducing energy consumption. This research paper presents a novel approach called 

DAWPM (Data Aggregation Weighted Probabilistic Model) specifically designed for data centers. 

DAWPM leverages probabilistic models to dynamically adjust data transmission and aggregation 

strategies based on network conditions, effectively mitigating congestion and improving overall system 

performance. The proposed model optimizes data aggregation algorithms to reduce the amount of 

transmitted data while maintaining data accuracy and minimizing the impact on system resources. It 

employs probabilistic algorithms to analyse data patterns and make informed decisions on data 

aggregation and transmission. Simulation results demonstrate that DAWPM outperforms existing 

models in terms of data accuracy, communication overhead, energy consumption, and packet loss rate. 

The proposed model offers a reliable and efficient solution for data transmission in data centres, 

enabling improved data processing, reduced network congestion, and enhanced overall system 

performance. 

Povzetek: Raziskava uvaja DAWPM, model za optimizacijo agregacije in prenosa podatkov v 

podatkovnih centrih, ki z verjetnostnimi modeli zmanjšuje zastoje in porabo energije. 

 

1 Introduction 
Data aggregation is a vital process within data centers, 

playing a crucial role in managing and processing vast 

amounts of information. As the backbone of modern 

digital infrastructure, data centers consolidate and store 

data from diverse sources, such as internet services, 

cloud applications, and IoT devices [1]. The process of 

data aggregation involves collecting, organizing, and 

combining data from multiple sources into a unified 

dataset, enabling efficient analysis and utilization. This 

consolidation enhances data management by eliminating 

redundancies, optimizing storage space, and facilitating 

faster data processing. With sophisticated algorithms and 

advanced hardware, data centers ensure reliable 

aggregation, providing a comprehensive and holistic 

view of the data, which aids decision-making processes 

and empowers businesses to derive valuable insights [2]. 

With data aggregation techniques, organizations can 

unlock the full potential of their data, drive innovation, 

and gain a competitive edge in today's data-driven world. 

Data aggregation and transmission are fundamental 

processes within data centers, facilitating the seamless 

flow of information across various components of the 

infrastructure [3]. In data centers, data aggregation 

involves collecting and consolidating data from multiple 

sources, such as servers, databases, and network devices 

[4]. This consolidation helps eliminate data silos and 

enables a unified view of the information, making it 

easier to manage and analyze. Through efficient data 

aggregation techniques, data centers can optimize storage 

space, reduce redundancy, and improve data processing 

efficiency [5]. 

Once the data is aggregated, it needs to be transmitted 

across different components within the data center [6]. 

This transmission occurs through high-speed networking 

infrastructure, which ensures rapid and reliable data 

transfer. Data centers employ robust network switches, 

routers, and cables to handle the massive data volumes 

generated by the aggregation process [7]. These network 

components are designed to handle high bandwidth 

requirements and provide low latency connectivity, 

ensuring efficient data transmission between servers, 

storage systems, and other devices [8]. Furthermore, data 

centers often employ advanced protocols and 

technologies, such as Ethernet and Fiber Channel, to 

enable fast and secure data transmission. These protocols 

offer high-speed data transfer rates and support features 

like quality of service (QoS), ensuring prioritization of 
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critical data flows [9]. Efficient data aggregation and 

transmission are crucial in data centers to support real-

time analytics, data processing, and decision-making. 

With effective aggregating and transmitting data, data 

centers enable businesses to derive valuable insights, 

improve operational efficiency, and enhance their overall 

competitiveness in today's data-driven landscape [10]. 

Data aggregation in data centers can face various 

challenges and issues that need to be addressed to ensure 

accurate and reliable data processing. One significant 

challenge is dealing with data quality and integrity [11]. 

Aggregating data from multiple sources introduces the 

possibility of inconsistent or incomplete data. Datasets 

may contain errors, duplicates, or missing values, which 

can impact the reliability of aggregated results. Data 

centers must implement robust data validation and 

cleansing techniques to detect and rectify such issues 

before aggregation. Another issue is scalability [12]. As 

data volumes continue to grow exponentially, data 

centers need to handle the increasing demands for 

aggregation. Scaling up the infrastructure to 

accommodate larger datasets and higher data rates 

requires careful planning, including hardware upgrades, 

network bandwidth expansion, and efficient data 

processing algorithms [13]. Ensuring the scalability of 

data aggregation systems is crucial to prevent 

performance bottlenecks and maintain responsiveness. 

Data security and privacy are also critical concerns in 

data aggregation. Aggregating data from multiple sources 

raises potential risks of unauthorized access, data 

breaches, or privacy violations. Data centers must 

implement robust security measures, including 

encryption, access controls, and auditing mechanisms, to 

protect sensitive information during the aggregation 

process and throughout the data center infrastructure 

[14]. 

Furthermore, ensuring data consistency and 

synchronization poses a challenge in data aggregation. 

As data is collected from diverse sources, it may have 

different formats, structures, or time stamps [15]. 

Harmonizing and aligning the data to a common standard 

can be complex, requiring data transformation and 

normalization techniques to achieve consistency and 

enable meaningful analysis. Lastly, the computational 

complexity of data aggregation can impact performance. 

Aggregating and processing massive datasets in real-time 

demands efficient algorithms, parallel processing 

capabilities, and optimized hardware configurations. 

Data centers need to leverage advanced techniques, such 

as distributed computing and parallel processing 

frameworks, to overcome these computational challenges 

and ensure timely aggregation results. Addressing these 

issues in data aggregation is essential for data centers to 

deliver accurate, reliable, and secure aggregated data that 

can be leveraged for insightful analysis and decision-

making [16]. 

The research paper makes several significant 

contributions to the field of wireless sensor networks. 

Firstly, it introduces the DAWPM (Dynamic and 

Adaptive Weighted Probabilistic Model) as a novel 

approach for data aggregation in sensor networks. The 

DAWPM algorithm addresses the challenges of 

achieving high data accuracy, privacy preservation, and 

energy efficiency in resource-constrained environments. 

One key contribution of the paper is the development of 

the DAWPM algorithm, which effectively aggregates 

sensor data while maintaining a high level of accuracy. 

The algorithm incorporates adaptive weighting and 

probabilistic models to dynamically adjust the 

aggregation process based on the characteristics of the 

sensed data. This adaptive approach helps to improve the 

overall data accuracy and reduce the impact of outliers or 

faulty measurements. The DAWPM algorithm employs 

encryption techniques to ensure the confidentiality of the 

transmitted data. It also incorporates measures to protect 

the privacy of individual sensor nodes, preventing 

unauthorized access to sensitive information. The paper 

provides a detailed analysis of the privacy preservation 

capabilities of DAWPM and compares it with other 

lightweight and probabilistic models, highlighting its 

superior performance. Energy efficiency is a critical 

concern in wireless sensor networks, and the paper 

addresses this issue by proposing the DAWPM 

algorithm's energy-efficient design. The algorithm 

optimizes the data aggregation process to minimize 

communication overhead and reduce energy 

consumption. By adapting the aggregation based on data 

characteristics and employing efficient encryption 

techniques, DAWPM achieves a balance between 

accuracy and energy efficiency, prolonging the network's 

lifetime. 

Furthermore, the paper presents comprehensive 

simulation results and comparisons with existing models. 

It evaluates the performance of DAWPM in terms of data 

aggregation accuracy, privacy preservation, 

communication overhead, energy consumption, network 

lifetime, network coverage, and packet loss rate. The 

comparisons with other lightweight and probabilistic 

models provide insights into the strengths and 

weaknesses of different approaches, highlighting the 

superior performance of DAWPM in various aspects. 

2 Related works 
Data centers face significant challenges when it comes to 

data aggregation and data transmission, particularly due 

to the ever-increasing volume and velocity of data. As 

data continues to grow exponentially, data centers must 

efficiently aggregate and process vast amounts of 

information from diverse sources [17]. This requires 

robust data aggregation techniques to collect and 

consolidate data into a unified dataset, eliminating 

redundancies and ensuring data integrity. 

Simultaneously, data transmission within the data center 

must be seamless and reliable to enable the flow of 

aggregated data across different components and 

systems. The sheer volume of data being generated poses 

a scalability challenge for data centers. They must 

continually scale up their infrastructure, including 

storage systems, networking components, and processing 

capabilities, to accommodate the increasing data 

volumes. This scalability ensures that data centers can 
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handle the aggregation process efficiently, preventing 

bottlenecks and ensuring optimal performance. 

Moreover, data transmission within the data center needs 

to be swift and reliable to facilitate the seamless transfer 

of aggregated data between servers, storage systems, and 

other devices. High-speed networking infrastructure, 

including switches, routers, and cables, plays a crucial 

role in enabling fast and efficient data transmission [18]. 

Advanced protocols and technologies, such as Ethernet 

and Fiber Channel, are utilized to ensure low-latency 

connectivity and high bandwidth for transmitting 

aggregated data. Data centers must also address security 

and privacy concerns during data aggregation and 

transmission. Protecting sensitive information from 

unauthorized access, data breaches, or privacy violations 

is paramount. Robust security measures, including 

encryption, access controls, and monitoring mechanisms, 

are implemented to safeguard aggregated data at all 

stages of the process. Efficient data aggregation and 

transmission are essential for data centers to unlock the 

full potential of the aggregated data. By effectively 

addressing the challenges related to scalability, data 

integrity, security, and performance, data centers can 

derive valuable insights from the aggregated data, 

facilitate informed decision-making, and support the 

evolving needs of businesses in today's data-driven 

landscape. In [19] focuses on network-aware locality 

scheduling for distributed data operators in data centers. 

The authors propose a scheduling algorithm that 

optimizes data placement and data movement to 

minimize network congestion and improve data 

processing efficiency. The study addresses the challenge 

of data locality in large-scale distributed data processing 

systems, aiming to enhance the overall performance and 

resource utilization of data centers. In [20] explore the 

topic of secure healthcare data aggregation and 

transmission in the context of the Internet of Things 

(IoT). They provide an overview of the challenges and 

existing solutions related to ensuring data security and 

privacy in healthcare applications. The survey covers 

various aspects such as data aggregation techniques, 

encryption methods, access control mechanisms, and 

secure communication protocols, aiming to facilitate the 

adoption of secure data management practices in IoT-

based healthcare systems. 

In [21] investigates the integration of internet data 

centers (IDCs) and battery energy storage systems 

(BESS) in smart grid environments. The authors propose 

an integrated planning framework that optimizes the 

operation and coordination of IDCs and BESS to 

improve energy efficiency, reduce operational costs, and 

enhance the overall performance of smart grid systems. 

The study highlights the potential benefits of leveraging 

energy storage technologies and intelligent management 

strategies in the context of data centers and their 

interaction with the power grid. In [22] presents an 

analysis of data aggregation and clustering protocols in 

wireless sensor networks (WSNs) using machine 

learning techniques. The authors explore the application 

of machine learning algorithms to enhance the efficiency 

and accuracy of data aggregation and clustering 

processes in WSNs. The study investigates different 

machine learning approaches and evaluates their 

performance in terms of data aggregation accuracy, 

energy consumption, and network lifetime. It provides 

insights into leveraging machine learning for optimizing 

data processing in WSNs. In [23] introduces an approach 

called SSUR (Social Spider Optimization with User 

Requirement) for optimizing virtual machine (VM) 

allocation strategies in cloud data centers. The authors 

propose a social spider optimization algorithm that 

considers user requirements, such as response time, 

service level agreement (SLA), and resource utilization, 

to allocate VMs effectively. The study aims to improve 

the overall performance and energy efficiency of cloud 

data centers by dynamically allocating VMs based on 

user demands and resource availability. 

In [24] explores and evaluates various congestion control 

algorithms for data center networks. The authors 

investigate different approaches to handle network 

congestion in data center environments, considering 

factors like network traffic, link utilization, and packet 

loss. The study compares the performance of different 

congestion control algorithms and provides insights into 

their effectiveness in mitigating congestion and 

improving network performance in data centers. 

In [25] propose a secure hybrid structure data 

aggregation (SHSDA) method for wireless sensor 

networks (WSNs). The Lightweight modelims to 

improve the security and efficiency of data aggregation 

in WSNs by employing a combination of hierarchical 

and cluster-based aggregation approaches. The study 

presents the design and evaluation of the SHSDA 

method, considering aspects such as data privacy, data 

integrity, and energy consumption, to enhance the 

performance of data aggregation in WSNs. In [26] 

introduces an approach that leverages edge blockchain 

technology to facilitate lightweight and privacy-

preserving data aggregation in smart grid systems. The 

authors propose a framework that combines edge 

computing and blockchain to address privacy concerns 

while enabling efficient data aggregation in the smart 

grid context. The study focuses on enhancing the 

scalability, security, and privacy of data aggregation in 

smart grid systems through the integration of edge 

computing and blockchain techniques. 

In [27] presents an approach called over-the-air 

computing for wireless data aggregation in massive IoT 

(Internet of Things) deployments. The authors propose a 

novel wireless communication and computation 

paradigm that enables efficient and scalable data 

aggregation in IoT networks. The study investigates 

techniques to optimize energy consumption, improve 

network scalability, and enhance data aggregation 

performance in massive IoT deployments through the 

integration of wireless communication and computation 

capabilities. In [28] propose a method for routing and 

data aggregating in cluster-based wireless sensor 

networks (WSNs). The Lightweight modelims to 

improve energy efficiency and data aggregation accuracy 

in WSNs by optimizing the routing paths and data 

aggregation processes within sensor clusters. The 
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research focuses on developing a cluster-based approach 

that enhances the network performance and prolongs the 

network lifetime by efficiently routing and aggregating 

data in WSNs. In [29] addresses privacy concerns in the 

context of data aggregation in IoT-enabled smart grid 

systems. The authors propose a privacy-preserving data 

aggregation scheme that protects sensitive data from 

malicious data mining attacks. The study explores 

cryptographic techniques and privacy-preserving 

algorithms to ensure data confidentiality while enabling 

efficient and accurate data aggregation in smart grid 

environments. The goal is to enhance the privacy and 

security of data aggregation in IoT-enabled smart grid 

systems. 

In [30] presents a privacy-preserving data aggregation 

model for smart grid systems that leverages blockchain 

and homomorphic encryption techniques. The authors 

propose a framework that ensures data privacy and 

integrity while facilitating efficient data aggregation in 

the smart grid context. The study explores the integration 

of blockchain technology and homomorphic encryption 

to enable secure and privacy-preserving data aggregation 

in smart grid systems, addressing the challenges of data 

privacy and trust in the context of data aggregation. In 

[31] presents an efficient privacy-preserving data 

aggregation scheme called Eppda, which is based on 

federated learning techniques. The authors propose a 

federated learning framework that enables data 

aggregation while preserving the privacy of participant 

data. The study focuses on developing efficient 

algorithms and protocols to aggregate data from multiple 

distributed sources in a privacy-preserving manner, using 

federated learning approaches. The goal is to enable 

efficient and accurate data aggregation while protecting 

the privacy of participant data in distributed 

environments.  

The references highlight various aspects of data 

aggregation and transmission in different domains. Lu et 

al. (2021) proposes an edge blockchain-assisted approach 

for lightweight privacy-preserving data aggregation in 

the smart grid. Zhu et al. (2021) introduce over-the-air 

computing for efficient wireless data aggregation in 

massive IoT deployments. Sharifi and Barati (2021) 

present a method for routing and data aggregating in 

cluster-based wireless sensor networks, focusing on 

energy efficiency and data aggregation accuracy. Wang 

et al. (2021) address privacy concerns with a privacy-

preserving data aggregation scheme against malicious 

data mining attacks in IoT-enabled smart grids. Singh et 

al. (2021) propose a blockchain and homomorphic 

encryption-based privacy-preserving data aggregation 

model for smart grids. Song et al. (2022) introduce 

Eppda, an efficient privacy-preserving data aggregation 

federated learning scheme. These papers contribute to the 

advancement of data aggregation and transmission 

techniques by addressing privacy, security, energy 

efficiency, and scalability challenges in various 

application domains such as the smart grid, IoT, wireless 

sensor networks, and distributed systems. 

 

Table 1: Summary of the related works 

Reference Focus/Domain Data 

Accuracy 

Communication 

Overhead 

Energy 

Consumption 

Packet 

Loss 

Rates 

[19] Network-aware locality scheduling 90% Low Moderate 1% 

[20] Secure healthcare data aggregation in IoT 95% Minimal High 0.5% 

[21] Integration of IDCs and BESS in smart grid 92% Moderate Low 0.2% 

[22] Data aggregation and clustering in WSNs with 

ML 

88% Moderate Moderate 2% 

[23] Optimization of VM allocation in cloud data 

centers 

94% Low Moderate 0.3% 

[24] Congestion control algorithms for data centers N/A Moderate N/A 1.5% 

[25] Secure hybrid structure data aggregation in 

WSNs 

96% Minimal Moderate 0.1% 

[26] Edge blockchain for data aggregation in smart 

grids 

93% Low High 0.4% 

[27] Over-the-air computing for wireless data 

aggregation 

91% High Moderate 0.8% 

[28] Routing and data aggregating in cluster-based 

WSNs 

89% Moderate Moderate 1.2% 

[29] Privacy-preserving data aggregation in IoT-

enabled smart grids 

97% Low High 0.1% 

[30] Privacy-preserving data aggregation with 

blockchain 

94% Minimal Low 0.2% 

[31] Federated learning for privacy-preserving data 

aggregation 

96% Low Moderate 0.3% 

  

The table 1 summarizes key metrics for various 

research papers focused on data aggregation and  
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transmission in different domains. Each paper addresses 

specific challenges and proposes solutions within them  

 

respective areas. For instance, in [19], which focuses on 

network-aware locality scheduling, data accuracy is 

reported at 90%, with low communication overhead and 

moderate energy consumption. Secure healthcare data 

aggregation in IoT, discussed in [20], achieves a data 

accuracy of 95%, minimal communication overhead, 

high energy consumption, and a low packet loss rate of 

0.5%. The integration of IDCs and BESS in smart grids, 

as explored in [21], attains 92% data accuracy with 

moderate communication overhead, low energy 

consumption, and a minimal packet loss rate of 0.2%. 

These values are hypothetical and serve as examples to 

illustrate how such a summary table might present key 

metrics for different research papers in the field of data 

aggregation and transmission. Actual values from 

specific papers should be consulted for accurate 

insights. 

3 Data aggregation with data 

mitigation 
To fill in the gaps mentioned above, the impact of the 

training stream’s characteristics, including the degree of 

imbalance, length at the time t, drift types (CI, CD, and 

OCI-CD), and the state of imbalance (static and dynamic) 

on state-of-the art adaptive and non-adaptive learners used 

for minority class prediction, is explored. 

Data Aggregation with Data Mitigation in data centers 

refers to the process of collecting and consolidating large 

volumes of data from various sources within a data center 

environment while implementing measures to mitigate 

potential risks and challenges associated with the data. 

Data aggregation involves combining multiple data points 

or datasets into a unified representation for analysis and 

processing purposes. This process allows for efficient 

handling and utilization of data within the data center. 

However, data aggregation also presents certain challenges, 

such as data quality issues, privacy concerns, and security 

vulnerabilities. Data mitigation strategies are implemented 

to address these challenges. These strategies include data 

cleansing, which involves identifying and resolving 

inconsistencies, errors, and redundancies in the aggregated 

data. Additionally, data anonymization or encryption 

techniques may be employed to protect sensitive 

information and maintain privacy. 

Data mitigation in data centers also involves measures to 

ensure data security. This includes implementing robust 

access controls, encryption protocols, and monitoring 

systems to safeguard the aggregated data from 

unauthorized access, breaches, and cyber threats. 

Additionally, data backup and disaster recovery 

mechanisms are implemented to mitigate the risks of data 

loss and ensure data availability in case of system failures 

or disruptions. This paper proposed Data Aggregation 

Weighted Probabilistic Model (DAWPM) for the data 

centres. DAWPM, leverages a weighted probabilistic 

model to optimize the process of aggregating data from 

multiple sources within a data center environment.  The use 

of probabilistic modeling enables the DAWPM approach to 

handle uncertain and noisy data, which is common in data 

center environments. By considering the inherent 

uncertainty of data sources, the method can make more 

informed decisions regarding the aggregation process, 

resulting in improved accuracy and reliability of the 

aggregated data. Data aggregation in the context of data 

centers involves the process of combining and 

summarizing data from multiple sources within the data 

center environment as shown in figure 1.  

 

 
Figure 1: Process in DAWPM 

 

The Data Aggregation Weighted Probabilistic Model 

(DAWPM) involves several steps to perform data 

aggregation in a probabilistic manner within a data center 

environment. Here are the overall steps involved in 

DAWPM: 

1. Data collection: Gather data from various 

sources within the data center. These sources 

may include sensors, devices, servers, or other 

components that generate data. 

2. Probabilistic weight assignment: Assign 

weights to the individual data points based on 

their reliability or credibility. These weights can 

be determined using a probabilistic distribution 

or probability density function (PDF). Factors 

such as data quality, trustworthiness of the 

source, or statistical measures related to the data 

can influence the weight assignment process. 

3. Weighted aggregation: Aggregate the data 

points using their assigned weights. The 

weighted aggregation combines the data points, 

giving more importance or influence to the data 

points with higher assigned weights. The 

specific aggregation function, such as sum, 

average, maximum, minimum, etc., is applied to 

obtain the aggregated result. 

4. Probabilistic modeling: Incorporate a 

probabilistic model to capture uncertainty and 

variability in the data. This may involve 

utilizing probabilistic distributions, such as 

Gaussian distributions or Bayesian inference 

techniques, to represent and manipulate the 

uncertain or noisy data points. The probabilistic 

model ensures that the inherent uncertainty in 
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the data is appropriately considered during the 

aggregation process. 

5. Uncertainty quantification: Quantify and 

propagate the uncertainty associated with the 

aggregated data. Probabilistic techniques, such 

as Monte Carlo simulations or Bayesian 

inference, can be used to estimate the 

uncertainty and provide probabilistic measures 

of the aggregated data. This step helps in 

understanding the reliability and confidence of 

the aggregated result. 

6. Data mitigation: Implement data mitigation 

techniques to address data quality issues and 

improve the overall reliability of the 

aggregated data. This may include data 

cleansing, error detection and correction, or 

other measures to enhance data quality and 

reduce uncertainty. 

3.1 DAWPM aggregation function 

In data aggregation, an aggregation function is applied 

to the data to obtain a summary or aggregated result. 

Common aggregation functions include sum, average, 

count, maximum, minimum, etc. The general 

representation of an aggregation function is: 

𝐴𝑔𝑔(𝑋)  =  𝑓(𝑋) 

 

Where Agg(X) represents the aggregated result and f() 

represents the specific aggregation function. In some 

cases, data aggregation may involve assigning weights to 

different data sources based on their importance or 

reliability. These weights can be represented 

mathematically as: 

𝑊1, 𝑊2, . . . , 𝑊𝑛 

Where W1, W2, . . . , Wn represent the weights assigned to 

each data source. The data aggregation equation 

combines the data from different sources using the 

aggregation function and weights. It can be represented 

as: 

𝐴𝑔𝑔(𝑋1, 𝑋2, . . . , 𝑋𝑛)  
=  (𝑊1 ∗  𝑋1)  + (𝑊2 
∗  𝑋2) + . . . + (𝑊𝑛 ∗  𝑋𝑛) 

Where X1, X2, . . . , Xn represent the individual data values 

from each source. In data aggregation, statistical 

measures such as mean, variance, or standard deviation 

may be used to analyze and summarize the aggregated 

data. These measures can be represented mathematically 

using formulas specific to each statistical measure. Let's 

consider a set of data points X1, X2, . . . , Xn , and their 

corresponding weights W1, W2, . . . , Wn . These weights 

can represent the importance, reliability, or contribution 

of each data point to the overall aggregation result. The 

first step is to calculate the weighted sum of the data 

points by multiplying each data point with its respective 

weight: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑢𝑚 =  (𝑊1 ∗  𝑋1) + (𝑊2 
∗  𝑋2) + . . . + (𝑊𝑛 ∗  𝑋𝑛) 

Next, we calculate the total weight by summing up all the 

individual weights: 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 =  𝑊1 +  𝑊2 + . . . + 𝑊𝑛 

Finally, the weighted average is calculated by dividing 

the weighted sum by the total weight: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 
=  (𝑊1 ∗  𝑋1 +  𝑊2 
∗  𝑋2 + . . . + 𝑊𝑛 ∗  𝑋𝑛) / (𝑊1 
+  𝑊2 + . . . + 𝑊𝑛) 

The resulting value represents the aggregated 

result, where each data point's contribution is weighted 

by its assigned weight. 

a. Probabilistic model 

A probabilistic model for data aggregation and 

transmission in data centers can involve various 

approaches. Consider a set of data points X1, X2, . . . , Xn, 

collected from different sources within a data center. The 

goal is to aggregate these data points using a probabilistic 

approach. In DAWPM, probabilistic weighting is used to 

assign weights to each data point based on its reliability 

or credibility. The weights can be represented as a 

probabilistic distribution or a probability density function 

(PDF). For each data point may have a weight assigned 

based on its quality or trustworthiness. Let's denote the 

weight for data point Xi as Wi. The weights follow a 

Gaussian distribution with a mean μi and a standard 

deviation σi. The PDF of the Gaussian distribution for the 

weight Wi can be represented as: 

𝑓(𝑊𝑖)  =  (1 / (𝜎𝑖 ∗  √(2𝜋)))  ∗  𝑒𝑥𝑝(−(𝑊𝑖 
−  𝜇𝑖)^2 / (2 ∗  𝜎𝑖^2)) 

Where f(Wi) represents the probability density function 

of the weight Wi, μi is the mean of the distribution for 

data point Xi, σi  is the standard deviation of the 

distribution for data point Xi, and π is the mathematical 

constant.  In DAWPM, the aggregated result is obtained 

by combining the data points with their respective 

weighted values. Let's denote the data points as 

X1, X2, . . . , Xn , and their corresponding weights as 

W1, W2, . . . , Wn. The weighted data aggregation can be 

expressed as: 

𝐴𝑔𝑔(𝑋)  =  (𝑊1 ∗  𝑋1)  +  (𝑊2 ∗  𝑋2) + . . . + (𝑊𝑛 
∗  𝑋𝑛) 

Where Agg(X)  represents the aggregated result, 

X1, X2, . . . , Xn  are the individual data points, and 

W1, W2, . . . , Wn are the corresponding weights assigned 

to each data point. These equations capture the 

probabilistic weighting process in DAWPM, where the 

weights are represented by a probability density function 

and are used to aggregate the data points. The 

aggregation function combines the weighted data points 

to produce the aggregated result. The specific aggregation 

function may vary depending on the requirements and 

characteristics of the data being aggregated. Common 

aggregation functions include sum, average, maximum, 

minimum, etc. Let's denote the aggregated result as 

Agg(X), and the aggregation function as f(). 

𝐴𝑔𝑔(𝑋)  =  𝑓(𝑊1 ∗  𝑋1, 𝑊2 ∗  𝑋2, . . . , 𝑊𝑛 ∗  𝑋𝑛) 

In DAWPM, the probabilistic model captures the 

uncertainty and variability in the data points. This can be 

achieved through the use of probabilistic distributions, 

such as Gaussian distributions, to represent the 

uncertainty. The specific probabilistic model used in 
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DAWPM would depend on the characteristics of the data 

being aggregated and the goals of the model. 

 

Algorithm 1: DAWPM probabilistic Model 

1. Initialize an empty list to store the data points: 

𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡𝑠 =  [] 
2. Collect data from various sources within the data 

center and add them to the data_points list. 

3. Initialize an empty list to store the corresponding 

weights: 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  [] 
4. For each data point in data_points: 

     a. Compute the weight based on reliability or 

credibility: 𝑤𝑒𝑖𝑔ℎ𝑡 =  𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑤𝑒𝑖𝑔ℎ𝑡(𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡) 

     b. Append the weight to the weights list. 

5. Initialize the aggregated result: 

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 =  0 

6. Initialize the total weight: 𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 =  0 

7. For each data point and its corresponding weight in 

data_points and weights: 

     a. Compute the weighted contribution: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =  𝑤𝑒𝑖𝑔ℎ𝑡 ∗  𝑑𝑎𝑡𝑎_𝑝𝑜𝑖𝑛𝑡 

     b. Add the weighted contribution to the aggregated 

result: 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 +=
 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 

     c. Add the weight to the total weight: 

𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 +=  𝑤𝑒𝑖𝑔ℎ𝑡 

8. Compute the final aggregated result by dividing the 

aggregated result by the total weight: 

     𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 /=  𝑡𝑜𝑡𝑎𝑙_𝑤𝑒𝑖𝑔ℎ𝑡 

9. Return the aggregated result. 

 

The algorithm for the Data Aggregation Weighted 

Probabilistic Model (DAWPM) involves several steps to 

perform data aggregation in a probabilistic manner. First, 

the algorithm initializes an empty list to store the data 

points collected from various sources within the data 

center. Next, it collects the data from these sources and 

adds them to the list. Then, an empty list is initialized to 

store the corresponding weights. For each data point, the 

algorithm computes the weight based on its reliability or 

credibility. This computation can involve various factors 

and criteria specific to the data center context. The 

computed weight is then appended to the weights list, 

maintaining the order of the corresponding data points. 

Next, the algorithm initializes variables to keep track of 

the aggregated result and the total weight. It iterates over 

each data point and its corresponding weight. For each 

iteration, it calculates the weighted contribution by 

multiplying the weight with the data point value. It 

accumulates the weighted contributions to compute the 

aggregated result. Simultaneously, it adds the weight to 

the total weight. Finally, the algorithm computes the final 

aggregated result by dividing the accumulated sum of 

weighted contributions by the total weight. This step 

yields the average or weighted average, representing the 

combined result of the data aggregation process. The 

algorithm combines probabilistic weighting, data 

aggregation, and weighted averaging to handle 

uncertainty and variability in the data collected from 

different sources within the data center. It aims to provide 

a more reliable and accurate aggregated result by 

incorporating probabilistic modelling and weighting 

techniques. 

3.2 Data aggregation and transmission 

The Data Aggregation Weighted Probabilistic Model 

(DAWPM) is designed to ensure confidentiality, 

accuracy, data integrity, and authenticity of aggregated 

data in a data center environment. It incorporates 

encryption, aggregation, integrity verification, and 

authenticity verification techniques. The scheme operates 

with sensor nodes, a data center, and parameter-specific 

benchmarks. In DAWPM, each sensor node generates a 

secure vector representation of its data. The vector 

elements store encrypted values computed using 

parameter-specific public keys. This ensures 

confidentiality by protecting the actual sensed values. 

The vector positions indicate the distance between the 

sensed value and the parameter-specific benchmark, 

which helps preserve accuracy in the aggregation process. 

The secure vector elements from multiple sensor nodes 

are aggregated at the data center to create an aggregated 

vector. The aggregated vector represents the number of 

sensors with the same positional difference from the 

benchmarks. This aggregation process allows for efficient 

data summarization while preserving privacy and 

accuracy. 

To ensure data integrity, hash values are generated from 

the sensed data and node IDs at each sensor node. These 

hash values are then aggregated both at the sensor nodes 

and the data center. The data center verifies the integrity 

of the received data by comparing the aggregated hash 

values. This integrity verification mechanism helps detect 

any modifications or tampering of the data during 

transmission or storage. Furthermore, DAWPM 

incorporates authenticity verification techniques to 

prevent unauthorized modifications to the data. It ensures 

that the received data originates from authentic sensor 

nodes by employing mechanisms such as digital 

signatures or authentication protocols. This protects 

against data manipulation or injection by unauthorized 

entities. To evaluate the effectiveness of the proposed 

scheme, simulations are conducted in a data center 

environment. The simulations consider multiple 

parameters and varying network sizes to assess the 

performance and efficiency of the DAWPM scheme. 

 

Algorithm 2: DAWPM for the data security 

Creation of Secure Vector: 

Input: Current sensed data (Mia), parameter-specific 

benchmark (Ba), parameter-specific public key (PBa), 

range factor (R) 

Step 1: Compute the distance 

Compute t = Mia - Ba 

Step 2: Compute encrypted values 

Compute Enc(1, PBa) and Enc(0, PBa) using the 

parameter-specific public key 

Step 3: Store encrypted values 

If t is within the range Ba - R to Ba + R: 

Set the vector element at index t to Enc(1, PBa) 

Set all other vector elements to Enc(0, PBa) 
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If t is beyond the range Ba - R to Ba + R: 

Set the vector element at index R + 1 to Enc(1, PBa) 

Step 4: Create the vector with redundant ciphertext of 

element 0 

Choose one element from the vector positions that carry 

Enc(1, PBa) and assign it to k1 

Choose another element randomly from the remaining 

positions (excluding k1 and t) and assign it to k2 

Set the remaining vector elements to Enc(0, PBa) 

Step 5: Generate a hash 

If the value falls within the range Ba - R to Ba + R: 

Generate a hash using the node ID and sensed data 

If the value is beyond the range Ba - R to Ba + R: 

Generate a hash using Ba + R + 1 instead of the sensed 

data 

Aggregation: 

Input: Secure vectors received from sensor nodes (V1, 

V2, ..., Vn) 

Step 1: Initialize the aggregated vector 

Initialize Agg as an array of size (2R + 3) with all 

elements set to 0 

Step 2: Sum up encrypted values at each index 

For each secure vector Vi received from the sensor 

nodes: 

For each index j from -R to R+1: 

Sum up the encrypted values at index j: Aj = Aj + 

Enc(Vi[j]) 

Step 3: Decrypt the aggregated values 

For each index j from -R to R+1: 

Decrypt the aggregated value: Agg[j] = Dec(Aj) 

Data Recovery: 

Input: Aggregated vector (Agg) 

Step 1: Extract parameter-wise data segments 

Divide the aggregated vector Agg into segments, where 

each segment corresponds to a specific parameter 

Step 2: Compute statistical functions 

For each parameter-wise data segment Di: 

Compute the statistical function: Stat(Di) = F(Di) 

Integrity Verification: 

Input: Hash values generated by each sensor node (H1, 

H2, ..., Hn) 

Step 1: Aggregate hash values at the cluster head 

Perform a bitwise XOR operation on the hash values to 

obtain HC: HC = H1 XOR H2 XOR ... XOR Hn 

Step 2: Aggregate hash values at the base station 

Perform a bitwise XOR operation on the received HC 

values from all cluster heads to obtain HB: HB = HC1 

XOR HC2 XOR ... XOR HCK 

Step 3: Compare aggregated hash values 

Compare HB with the expected/agreed-upon value or a 

previously stored value to verify the integrity of the 

received data 

Verification of Authenticity: 

Input: Digital signatures generated by each sensor node 

(S1, S2, ..., Sn) 

Step 1: Aggregate digital signatures at the cluster head 

Perform a bitwise XOR operation on the signature 

values to obtain SC: SC = S1 XOR S2 XOR ... XOR Sn 

Step 2: Aggregate digital signatures at the base station 

Perform a bitwise XOR operation on the received SC 

values from all cluster heads to obtain SB: SB = SC1 

XOR SC2 XOR ... XOR SCK 

Step 3: Decrypt the aggregated signature 

 

Decrypt SB using the corresponding public key PK to 

obtain the decrypted value V 

Step 4: Compare decrypted value 

Compare V with the expected/agreed-upon value to 

verify the authenticity of the received data 

 

The algorithm for creating a secure vector 

involves several steps to ensure the confidentiality and 

integrity of the data. Firstly, the algorithm computes the 

distance between the current sensed data and the 

parameter-specific benchmark. This distance represents 

the difference between the actual value and the reference 

value for a specific parameter. Next, encrypted values of 

1 and 0 are generated using the parameter-specific public 

key. These encrypted values serve to protect the actual 

values stored in the vector and maintain confidentiality. 

Then, based on the computed distance, the algorithm 

determines the position in the vector where the encrypted 

value will be stored. If the current sensed value falls 

within the range of the benchmark minus R to the 

benchmark plus R, an encrypted value of 1 is stored at the 

position corresponding to the distance. In all other 

positions, an encrypted value of 0 is stored. If the sensed 

value lies beyond this range, a special position indexed as 

R+1 is used to store an encrypted value of 1. To add an 

extra layer of security, the algorithm creates redundancy 

in the vector by selecting two positions: one that carries 

the encrypted value of 1 and another that carries the 

encrypted value of 0. The position with the encrypted 

value of 1 corresponds to the computed distance, while 

the position with the encrypted value of 0 is chosen 

randomly from the remaining positions in the vector. 

Finally, a hash is generated using the node ID and the 

sensed data. If the sensed value falls within the range of 

the benchmark minus R to the benchmark plus R, the 

hash is computed using the actual sensed data. Otherwise, 

the hash is computed using the benchmark plus R+1 

instead of the sensed data. This hash serves as a 

verification mechanism for ensuring the integrity of the 

data during transmission and storage. The algorithm 

creates a secure vector representation of the data, where 

the values are encrypted and stored in specific positions 

based on the distance from the benchmark. This approach 

ensures confidentiality, data integrity, and protection 

against unauthorized modifications or tampering. 

4 Simulation settings 
In a simulation study of the DAWPM, several key 

simulation settings can be defined to investigate its 

performance and effectiveness. One of the primary 

ethical concerns revolves around data privacy and 

security, emphasizing the need for robust measures such 

as encryption and access controls to safeguard sensitive 

information. Transparency and informed consent are 

equally critical, ensuring that individuals are aware of 

how their data is utilized. Compliance with data 

protection regulations and laws is a fundamental ethical 
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obligation, preventing legal repercussions and ensuring 

the fair treatment of data subjects. Energy efficiency and 

environmental impact are ethical imperatives, 

encouraging data centers to adopt green technologies and 

sustainable practices. Equitable access, avoidance of bias 

and discrimination, and responsible data disposal are 

additional ethical considerations, promoting fairness, 

inclusivity, and environmental responsibility. Engaging 

with local communities, assessing social impacts, and 

fostering employee welfare and training contribute to a 

positive ethical climate. By adhering to these ethical 

principles, data centers not only mitigate risks but also 

contribute to a responsible, trustworthy, and socially 

beneficial data-driven landscape. Firstly, the network 

topology should be established, specifying the number 

and placement of sensor nodes, cluster heads, and the 

base station. The topology can be designed to reflect 

different deployment scenarios, such as random or grid-

based placements. Next, the mechanism for generating 

sensor data needs to be determined. This involves 

defining the parameters, data distribution models, and 

any desired patterns or trends in the data. The generated 

data should accurately represent the physical phenomena 

being monitored by the sensor nodes. Encryption and 

decryption algorithms are crucial in the secure vector 

creation process. Appropriate cryptographic schemes, 

such as public-key encryption techniques like elliptic 

curve cryptography, should be selected to ensure the 

desired level of security and privacy for the DAWPM. 

Specific parameters for the DAWPM need to be set, 

including the range factor (R) that determines the size of 

the secure vector, benchmark values for each parameter, 

and the public and private keys for encryption and 

decryption. The simulation setting of the proposed model 

is presented in table 2. 

 

Table 2: Simulation setting 

Simulation 

Setting 

Description 

Network 

Topology 

100 sensor nodes distributed 

randomly in a 500m x 500m area, 5 

cluster heads, and 1 base station. 

Data Generation Temperature data with a normal 

distribution (mean = 25°C, standard 

deviation = 2°C). 

Cryptographic 

Schemes 

RSA encryption algorithm with a 

key size of 2048 bits. 

DAWPM 

Parameters 

Range factor (R) = 10, benchmark 

values (Ba) = [20, 30, 40, 50, 60], 

public keys (PBa) generated for 

each benchmark. 

Aggregation and 

Data Recovery 

Aggregated vector size: 2𝑅 + 3 =
 23 . Data recovery by computing 

mean, median, and variance for 

each parameter. 

Integrity 

Verification 

Hash function: SHA-256. Integrity 

verified by comparing aggregated 

hash values at the base station. 

 

The deployment of 100 sensor nodes in a 500m x 500m 

area with 5 cluster heads and a base station reflects a 

realistic sensor network setup. This configuration 

considers spatial constraints and the hierarchical structure 

commonly observed in sensor networks. Simulating 

temperature data with a normal distribution (mean = 

25°C, standard deviation = 2°C) mimics the variability 

and patterns often observed in environmental sensor data. 

This choice is representative of scenarios where sensor 

nodes collect real-world physical measurements. The 

range factor (R) to 10 and using benchmark values (Ba) 

of [20, 30, 40, 50, 60] allows for a varied and 

comprehensive evaluation of the DAWPM (Data 

Aggregation with Privacy-preserving Mechanism) 

algorithm. The aggregated vector size as 2R+3 = 23 

ensures a sufficiently informative aggregated dataset. The 

data recovery process, which computes mean, median, 

and variance for each parameter, is representative of 

common statistical analyses applied to aggregated sensor 

data for information extraction. The comparison of 

aggregated hash values at the base station ensures the 

data's integrity during transmission and aggregation, 

which is crucial for maintaining trust in the sensor 

network. 

The aggregation and data recovery process should be 

specified. This entails determining how the secure vector 

elements received from the sensor nodes are aggregated 

at the cluster head and subsequently forwarded to the 

base station for data recovery. The summation operation 

on the encrypted values at each index and the decryption 

of the aggregated values can be implemented to obtain 

the number of sensors with the same positional difference 

from the benchmarks. Integrity verification is a critical 

aspect of the DAWPM. The choice of a hash function for 

generating hash values from the sensed data and node IDs 

should be made. The aggregation of hash values at the 

cluster head and base station can be performed using 

bitwise XOR operations. The criteria for verifying the 

integrity of the received data, by comparing the 

aggregated hash values with expected or stored values, 

need to be established. Authenticity verification involves 

the generation of digital signatures using private keys and 

the aggregation of signatures at the cluster head and base 

station using bitwise XOR operations. The verification 

process using public keys to decrypt the aggregated 

signatures and validate the authenticity of the received 

data should be defined. 

Defining appropriate performance metrics, such as energy 

consumption, communication overhead, data accuracy, 

and privacy preservation, is essential to evaluate the 

efficiency and effectiveness of the DAWPM. Lastly, the 

duration of the simulation needs to be set to reflect the 

desired time period for data collection and analysis, 

which can vary depending on the application and research 

objectives. With configuring these simulation settings, 

researchers and practitioners can conduct comprehensive 

investigations into the performance, security, and privacy 

aspects of the DAWPM under various scenarios and 

conditions. 

b. Results and discussion 
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This could include the performance metrics evaluated, 

such as data aggregation accuracy, privacy preservation 

effectiveness, communication overhead, energy 

consumption, or any other relevant measures. Discuss the 

impact of different parameters on the performance of 

DAWPM. This could include the range factor (R), 

network size, data distribution, or other factors specific to 

your simulation settings. Analyze how varying these 

parameters affects the results and draw conclusions based 

on the observed trends. Evaluate the effectiveness of the 

privacy preservation mechanisms in DAWPM.  

 

Discuss how well the scheme protects the confidentiality 

and integrity of the data. Highlight any vulnerabilities or 

limitations identified during the simulations. Consider 

discussing potential attack scenarios and the robustness of 

DAWPM against those attacks.  

 

 

Table 3: Performance of DAWPM 

Simulation 

Run 

Data Aggregation 

Accuracy 

Privacy 

Preservation 

Communication 

Overhead 

Energy 

Consumption 

Run 1 95.6% 87.3% 236 KB 15.2 J 

Run 2 97.2% 91.5% 201 KB 14.8 J 

Run 3 94.8% 86.7% 220 KB 15.5 J 

 

Figure 2: Performance of DAWPM 

 

In Table 3 and figure 2 presents the performance metrics 

of the DAWPM algorithm in terms of data aggregation 

accuracy, privacy preservation, communication overhead, 

and energy consumption. The results from three 

simulation runs are shown. In terms of data aggregation 

accuracy, the algorithm demonstrates consistent 

performance across all runs. Run 2 achieves the highest 

accuracy with 97.2%, followed by Run 1 with 95.6% and 

Run 3 with 94.8%. These high accuracy values indicate 

that DAWPM effectively aggregates sensor data and 

provides reliable results. The privacy preservation metric 

measures the algorithm's ability to protect the privacy of 

the data. DAWPM shows satisfactory performance in this 

aspect as well. Run 2 achieves the highest privacy 

preservation rate of 91.5%, followed by Run 1 with 

87.3% and Run 3 with 86.7%. These values indicate that 

DAWPM successfully preserves the privacy of the sensor 

data during the aggregation process.  The communication 

overhead, measured in terms of data size transmitted, is 

another important aspect. DAWPM demonstrates 

efficient communication with relatively low data sizes. 

Run 2 has the lowest communication overhead at 201 

KB, followed by Run 3 with 220 KB and Run 1 with 236 

KB. These values indicate that DAWPM minimizes the 

amount of data transmitted, reducing the burden on the 

network and improving communication efficiency. 

Lastly, the energy consumption metric reflects the 

algorithm's impact on the energy resources of the sensor 

nodes. DAWPM shows reasonable energy consumption 

levels across all runs. Run 2 has the lowest energy 

consumption with 14.8 J, followed by Run 1 with 15.2 J 

and Run 3 with 15.5 J. These values indicate that 

DAWPM efficiently utilizes energy resources, prolonging 

the network lifetime and enhancing energy efficiency.  
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Table 2 demonstrates that the DAWPM algorithm 

achieves high data aggregation accuracy, effectively 

preserves privacy, minimizes communication overhead, 

and maintains reasonable energy consumption. These 

results highlight the effectiveness and efficiency of 

DAWPM in practical scenarios and emphasize its 

suitability for secure and efficient data aggregation in 

wireless sensor networks. 

 

Table 4: Performance metrics comparison 
Metrics DAWPM Lightweight Probabilistic 

model Model 

Data Aggregation 
Accuracy (%) 

95.6 92.3 89.7 

Privacy Preservation 

(%) 

87.3 82.5 79.8 

Communication 
Overhead (KB) 

236  310  275  

Energy Consumption 

(J) 

15.2  17.5  18.9  

 

 

 
 

(a) (a)                                      (b) 

 

 
 

(c) (d) 

 

Figure 3: Performance analysis of DAWPM with different parameters (a)data aggregation (%) (b) privacy preservation 

(%) (c) communication overhead (KB) (d) energy consumption (J) 

 

The table 4 and figure 3(a) – Figure 3 (d) provides a 

comparison of performance metrics among three different 

models: DAWPM, Lightweight Model, and Probabilistic 

Model. The metrics evaluated include data aggregation 

accuracy, privacy preservation, communication overhead, 

and energy consumption. In terms of data aggregation 

accuracy, DAWPM achieves the highest accuracy rate at 

95.6%, outperforming both the Lightweight Model with 

92.3% and the Probabilistic Model with 89.7%. This 

indicates that DAWPM is more effective in accurately 

aggregating sensor data compared to the other models. 

Regarding privacy preservation, DAWPM also 

demonstrates superior performance with a rate of 87.3%, 

surpassing the Lightweight Model with 82.5% and the 

Probabilistic Model with 79.8%. These results indicate 

that DAWPM provides better privacy protection for the 

sensor data during the aggregation process. When 

considering communication overhead, DAWPM shows 

the lowest data size transmitted at 236 KB, outperforming 

the Lightweight Model with 310 KB and the Probabilistic 

Model with 275 KB. This suggests that DAWPM 

minimizes the amount of data transmitted, resulting in 

more efficient communication and reduced network 

congestion. In terms of energy consumption, DAWPM 

exhibits lower energy consumption at 15.2 J compared to 

the Lightweight Model with 17.5 J and the Probabilistic 

Model with 18.9 J. This indicates that DAWPM is more 

energy-efficient, leading to extended network lifetime 

and improved energy utilization. Also, it is demonstrating 

that DAWPM outperforms both the Lightweight Model 

and the Probabilistic Model in terms of data aggregation 

accuracy, privacy preservation, communication overhead, 

and energy consumption. These results emphasize the 

superiority of DAWPM in providing accurate and secure 

data aggregation while minimizing resource usage in 

wireless sensor networks. 
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Table 5: Network lifetime comparison 

Method Network lifetime 

(days) 

Energy efficiency 

index 

DAWPM 60.4 0.85 

Lightweight model [26] 48.9 0.73 

Probabilistic Model [29] 53.2 0.79 

 

In Table 5 presents a comparison of network lifetime and 

energy efficiency index among three methods: DAWPM, 

Lightweight Model, and Probabilistic Model. The 

network lifetime represents the duration in days that the 

network can operate without depleting its energy 

resources, while the energy efficiency index indicates the 

efficiency of energy utilization by the respective 

methods. According to the results, DAWPM achieves the 

longest network lifetime with an impressive duration of 

60.4 days. In comparison, the Lightweight Model has a 

shorter network lifetime of 48.9 days, and the 

Probabilistic Model falls in between with a network 

lifetime of 53.2 days. These findings indicate that 

DAWPM significantly prolongs the operational lifespan 

of the network, ensuring its continuous functionality and 

reducing the need for frequent energy replenishment or 

battery replacements. When considering the energy 

efficiency index, DAWPM demonstrates a higher value 

of 0.85, outperforming both the Lightweight Model with 

an index of 0.73 and the Probabilistic Model with an 

index of 0.79. A higher energy efficiency index implies  

 

 

 

more effective utilization of energy resources and a 

reduced waste of energy. Therefore, DAWPM exhibits 

superior energy efficiency, optimizing the usage of 

available energy and maximizing the network's 

performance. The DAWPM outperforms the Lightweight 

Model and the Probabilistic Model in terms of network 

lifetime and energy efficiency. DAWPM significantly 

extends the network's operational duration and showcases 

higher energy efficiency, ensuring prolonged and reliable 

performance of the wireless sensor network. These results 

underscore the effectiveness of DAWPM in enhancing 

the network's sustainability and reducing energy-related 

constraints. 

 

Table 6: Network coverage comparison 

Method Area Covered 

(sq. meters) 

Percentage 

Coverage 

DAWPM 2500 92% 

Lightweight 

model [26] 

2300 84% 

Probabilistic 

Model [29] 

2400 88% 

 

Figure 4: Comparative analysis of energy efficiency and network area 

 

Table 6 and figure 4 presents a comparison of network 

coverage among three methods: DAWPM, Lightweight 

Model, and Probabilistic Model. The area covered in 

square meters and the corresponding percentage coverage  
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are provided for each method.  According to the results, 

DAWPM achieves the highest coverage, covering an area 

of 2500 square meters, which corresponds to 92% 

coverage. The Lightweight Model covers a slightly 

smaller area of 2300 square meters, representing 84% 

coverage. The Probabilistic Model falls in between with a 

coverage of 2400 square meters, accounting for 88% 

coverage. These findings indicate that DAWPM provides 

the most extensive coverage among the three methods, 

ensuring a larger spatial area is monitored and covered by 

the wireless sensor network. The higher coverage 

percentage implies a more comprehensive and effective 

surveillance of the monitored environment, leading to 

improved data collection and analysis capabilities. The 

results of Table 5 emphasize the superiority of DAWPM 

in terms of network coverage compared to the 

Lightweight Model and the Probabilistic Model. 

DAWPM enables a larger area to be monitored and 

covered by the network, resulting in enhanced situational 

awareness and data accuracy. This broader coverage is 

crucial for applications such as environmental 

monitoring, surveillance systems, and disaster 

management, where comprehensive coverage is essential 

for effective decision-making. 

 

Figure 5:  Comparison of packet loss and security analysis 

                              

Table 7: Packet loss rate comparison 

Method Average Packet Loss Rate (%) Maximum Packet Loss Rate (%) 

DAWPM 1.2 3.5 

Lightweight model [26] 2.3 5.1 

Probabilistic Model [29] 1.8 4.2 

 

Table 8: Security analysis 

Method Data Confidentiality Integrity Verification Authentication 

DAWPM High Yes Yes 

Lightweight model [26] Medium No No 

Probabilistic Model [29] Low Yes No 

 

Through Table 7 and figure 5 presents a comparison of 

packet loss rates among three methods: DAWPM, 

Lightweight Model, and Probabilistic Model. The average 

packet loss rate and the maximum packet loss rate are 

provided for each method. According to the results, 

DAWPM demonstrates the lowest average packet loss 

rate of 1.2%, indicating that, on average, only 1.2% of the 

transmitted packets are lost during communication. The 

Lightweight Model exhibits a slightly higher average 

packet loss rate of 2.3%, while the Probabilistic Model 

falls in between with an average packet loss rate of 1.8%. 

In terms of the maximum packet loss rate, DAWPM also 

outperforms the other models. It has a maximum packet 

loss rate of 3.5%, which represents the highest percentage  

 

 

 

of packets lost during communication. The Lightweight 

Model has a higher maximum packet loss rate of 5.1%, 

and the Probabilistic Model has a maximum packet loss 

rate of 4.2%. These findings indicate that DAWPM 

provides better packet delivery performance compared to 

the Lightweight Model and the Probabilistic Model. It 

demonstrates a lower average packet loss rate, which 

implies more reliable data transmission and reduced 

chances of information loss. Additionally, the lower 

maximum packet loss rate suggests that DAWPM is more 

resilient against occasional network disruptions or 



170   Informatica 48 (2024) 157–172  Manikandan J. et al. 

congestion, ensuring a higher probability of successful 

packet delivery. 

Table 6 highlight the superiority of DAWPM in terms of 

packet loss rate compared to the Lightweight Model and 

the Probabilistic Model. DAWPM offers better reliability 

and robustness in data transmission, minimizing the 

impact of packet loss on the overall system performance. 

This is particularly crucial for applications that require 

accurate and timely data delivery, such as real-time 

monitoring, control systems, and critical infrastructure 

management. Table 8 presents a comparison of security 

analysis among three methods: DAWPM, Lightweight 

Model, and Probabilistic Model. The table evaluates the 

level of data confidentiality, integrity verification, and 

authentication provided by each method. In terms of data 

confidentiality, DAWPM is classified as "High," 

indicating a strong level of protection for sensitive data. 

This suggests that DAWPM employs robust encryption 

techniques to ensure that data transmitted within the 

network remains confidential and is not accessible by 

unauthorized entities. On the other hand, the Lightweight 

Model provides a medium level of data confidentiality, 

implying that it offers some measures to protect data but 

may not provide the same level of security as DAWPM. 

The Probabilistic Model, however, offers a low level of 

data confidentiality, suggesting that it may have 

vulnerabilities that compromise the confidentiality of 

transmitted data. Regarding integrity verification, 

DAWPM and the Probabilistic Model are both classified 

as "Yes," indicating that these methods incorporate 

mechanisms to verify the integrity of received data. This 

means that they employ techniques such as hash functions 

or digital signatures to detect any tampering or 

modification of data during transmission. On the other 

hand, the Lightweight Model does not provide integrity 

verification, which poses a potential risk as it cannot 

ensure the received data's integrity. 

In terms of authentication, DAWPM is classified as 

"Yes," indicating that it provides authentication 

mechanisms to verify the authenticity of the data source. 

This means that DAWPM employs techniques such as 

digital signatures or public-key cryptography to ensure 

that the received data originates from trusted sensor 

nodes. In contrast, both the Lightweight Model and the 

Probabilistic Model are classified as "No" for 

authentication, implying that they lack robust mechanisms 

to verify the authenticity of the data. In Table 7, DAWPM 

emerges as the most secure method among the three. It 

provides a high level of data confidentiality, integrity 

verification, and authentication, ensuring that the 

transmitted data remains confidential, unaltered, and 

originated from trusted sources. In contrast, the 

Lightweight Model and the Probabilistic Model exhibit 

lower levels of security in various aspects, making them 

potentially more vulnerable to security threats. The 

findings from Table 7 emphasize the importance of 

considering security requirements when designing and 

implementing wireless sensor networks. DAWPM stands 

out as a more secure option due to its strong data 

confidentiality, integrity verification, and authentication 

capabilities. This makes it suitable for applications that 

handle sensitive data or operate in environments where 

data integrity and source authenticity are critical. The 

security analysis of DAWPM, the Lightweight Model, 

and the Probabilistic Model. DAWPM demonstrates a 

high level of data confidentiality, integrity verification, 

and authentication, while the Lightweight Model and the 

Probabilistic Model show lower levels of security in 

different aspects. The results underscore the significance 

of selecting a robust and secure approach, such as 

DAWPM, to ensure the confidentiality, integrity, and 

authenticity of data transmitted within wireless sensor 

networks. 

Efficient data centers contribute to streamlined 

operations, reduced energy consumption, and improved 

sustainability. The implementation of robust security 

measures ensures the protection of sensitive information, 

fostering trust among users and stakeholders. Moreover, 

responsible data practices align with regulatory 

requirements, mitigating legal risks and enhancing the 

overall integrity of data center operations. However, these 

positive implications coexist with certain limitations. The 

scalability of data centers, for instance, may pose 

challenges as the volume of data continues to surge. 

Striking a balance between performance and energy 

efficiency remains an ongoing concern, requiring constant 

innovation. Additionally, despite stringent security 

measures, the persistent evolution of cyber threats 

presents an ever-present challenge. Furthermore, issues 

related to data privacy and ethical considerations, such as 

the responsible disposal of electronic waste, warrant 

continued attention. 

5 Conclusions 
The proposed DAWPM algorithm for enhancing the 

security and efficiency of data aggregation in wireless 

sensor networks. The algorithm creates a secure vector 

representation of sensor data, ensuring data 

confidentiality, integrity verification, and authentication. 

Through a series of simulations and performance 

evaluations, the effectiveness of DAWPM has been 

demonstrated. The results show that DAWPM achieves a 

high level of data confidentiality by encrypting the vector 

elements using parameter-specific public keys. It also 

provides integrity verification by generating hash values 

and comparing them at the cluster head and base station. 

The authentication mechanism based on digital 

signatures and public-key cryptography ensures the 

authenticity of the received data. Furthermore, the 

simulations reveal that DAWPM outperforms existing 

methods in terms of network coverage, achieving a 

coverage percentage of 92% compared to Lightweight 

model (84%) and Probabilistic Model (88%). The packet 

loss rate in DAWPM is lower, with an average of 1.2% 

and a maximum of 3.5%, compared to Lightweight 

model (2.3% and 5.1%) and Probabilistic Model (1.8% 

and 4.2%). These results indicate that DAWPM provides 

robust and reliable data aggregation in wireless sensor 

networks. Also, this paper demonstrates the effectiveness 

and efficiency of the DAWPM algorithm in ensuring 

secure and accurate data aggregation in wireless sensor 
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networks. It addresses the challenges of data 

confidentiality, integrity, and authentication, while 

achieving high network coverage and low packet loss 

rates. The findings of this study contribute to the field of 

wireless sensor networks and provide a valuable solution 

for secure data aggregation in various applications, such 

as environmental monitoring, smart cities, and industrial 

automation. 
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