VSEBINA – CONTENTS Materiali in tehnologije – 40 let Materials and technology – 40 years F. Vodopivec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Prvi urednik revije – Jo`a Arh F. Vodopivec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Laudation in honour of professor dr. Franc Vodopivec on the occasion of his 75th birthday M. Jenko . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 75 let Franca Vodopivca L. Kosec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Marin Gabrov{ek – 80 let F. Vodopivec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PREGLEDNI ZNANSTVENI ^LANKI – REVIEW ARTICLES Zgodovina serijske publikacije Materiali in tehnologije / Materials and technology Historical overview of the scientific journal Materiali in tehnologije / Materials and technology N. Jamar, J. Jamar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Theoretical calculation of the lubrication-layer thickness during metal drawing Teoreti~ni izra~un debeline plasti maziva pri vle~enju kovin D. ]ur~ija, I. Mamuzi} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 IZVIRNI ZNANSTVENI ^LANKI – ORIGINAL SCIENTIFIC ARTICLES The notch effect on the fatigue strength of 51CrV4Mo spring steel VPliv zareze na trajno nihajno trdnost vzmetnega jekla 51CrV4Mo B. [u{tar{i~, B. Sen~i~, B. Arzen{ek, P. Jodin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 An integrity analysis of washing-machine holders Analiza celovitosti nosilca kadi v pralnem stroju N. Gubeljak, M. Mejac, J. Predan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 The effect of a material’s heterogeneity on the stress and strain distribution in the vicinity of a crack front Vpliv heterogenosti materiala na porazdelitev napetosti in deformacije v bli`ini konice razpoke D. Kozak, N. Gubeljak, J. Vojvodi~ Tuma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 The numerical solution of strain wave propagation in elastical helical spring Numeri~na re{itev propagacije deformacijskega vala v elasti~ni spiralni vzmeti S. Ayadi, E. Hadj-Taïeb, G. Pluvinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 [tudij notranje oksidacije v naoglji~enih hitrostrjenih trakovih Cu The study of the internal oxidation in internally carbonised Cu ribbons R. Rudolf, L. Kosec, I. An`el, L. Gusel, M. Poharc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES . . . . . . . . . . . 59 ISSN 1580-2949 UDK 669+666+678+53 MTAEC9, 41(1)1–64(2007) MATER. TEHNOL. LETNIK VOLUME 41 [TEV. NO. 1 STR. P. 1–64 LJUBLJANA SLOVENIJA JAN.-FEB. 2007 MATERIALI IN TEHNOLOGIJE – 40 LET MATERIALS AND TECHNOLOGY – 40 YEARS ^e ocenjujemo po zgledu znanstvenih in strokovnih revij, ki se tiskajo v dr`avah, ki so tehnolo{ko in indu- strijsko bolj razvite od Slovenije, {tiridesetletnica izha- janja ni posebno visok jubilej. Je pa pomemben, ker se je v tem obdobju v Sloveniji metalurgija, `e stoletja uveljavljena industrijska proizvodnja, utrdila tudi kot in`enirska stroka in postala in`enirska veda. Obdobje konec 90. let prej{nega stoletja je bilo kriti~no za meta- lur{ko industrijo, saj je precej{en del politike, ki je sku{al premalo premi{ljeno uveljaviti nove gospodarske in ekolo{ke poglede, zavra~al obnovo metalur{kih proiz- vodnih naprav. Na sre~o te ideje niso dobile ve~inske podpore, metalurgiji jekla in aluminija pa sta se z inve- sticijami v nove proizvodne naprave pribli`ali standar- dom ekolo{ke sprejemljivosti tehnologije, ki jih zago- varja zbornik ''The State on the World'', ki ga vsako leto tiska The Worldwatch Institute iz Washingtona, ZDA. Od vseh industrijskih panog je v Sloveniji meta- lurgija najbolje prenesla tranzicijsko obdobje. To dokazuje dvoje: bila je bolje kot druge industrijske veje tehnolo{ko usposobljena za prehod v nove tr`ne razmere in, nasprotno od prerokovanja mnogih, poraba in proizvodnja kovin in zlitin se v novem tiso~letju nista zmanj{ali, temve~ sta celo zelo zrastli. Manj{i tehnolo{ki zaostanek metalurgije za najbolj razvitimi okolji je bil brez dvoma tudi rezultat ustvarjalnega sodelovanja tehnologov in raziskovalcev v industrijskih podjetjih z raziskovalci v akademskih ustanovah. Prav okrepitev in raz{iritev ter seznanjanje javnosti z dose`ki raziskovalno-razvojnega sodelovanja so bili najmo~nej{a opora ideji o za~etku tiskanja nove revije, namenjene objavam znanstvenih in strokovnih del, namenjenim obravnavi prakti~nih in z njimi povezanih teoretskih dose`kov pri raziskavah zgradbe, vedenju kovin in zlitin pri predelavi v uporabno obliko in lastnosti pri uporabi. Te`i{~e je bilo na jeklu, kjer je bilo tedaj najve~ dobro organiziranega raziskovanja. Zato je nova revija dobila naziv @elezarski zbornik. Izhajala je ~etrtletno in v njej so bila tiskana mnoga kakovostna znanstvena in strokovna dela, dokaz ustvarjalnosti in trdega dela {tevilnih posameznikov, ki so pogosto pri{li do pomemebnih izvirnih dose`kov z inventivnim metodolo{kim na~inom na podlagi izsledkov preizkusov in analiz na rutinski laboratorijski in analitski opremi. Kakovost raziskovalno-razvojnega dela, posebno s stali{~a bolj{ega poznanja dogajanja med procesi v talini in v trdnem, je zrastla zaradi dognanj, ki jih je omogo~ala nova raziskovalna oprema v podjetjih in na akademskih institucijah. Materiali in tehnologije / Materials and technology 41 (2007) 1, 3–5 3 Compared to some journals in countries that are more developed in terms of technology and industry than Slovenia, 40 years of publication is not a particularly significant anniversary. It is, however, very important, as during this period of time metallurgy, an industrial activity with centuries of tradition in Slovenia, matured as an independent engineering profession and became an engineering science. The period up until the end of the 1990s was a critical one for the metallurgical industry, as there was strong political opposition to the refurbishment of metallurgical production facilities based on ill-consi- dered economic and ecological measures. However, the attempt did not receive sufficient support and so the steel and aluminium industries were able to invest sufficient funds in new production facilities and approach the acceptable ecological standards recommended in the survey ''The State of the World'', published by The Worldwatch Institute, Washington, USA. Of all the branches of industry in Slovenia, metallurgy was the must successful in getting through the transition period. This suggests that it was better technologically qualified to access new markets than other branches of industry, and contrary to expectations, production levels began to increase in the 21st century. The reason why metallurgy did not lag behind as much as other branches of industry in Slovenia was at least partly due to the fruitful cooperation in research and development between researchers from academic institutions and those from industry. It was the cooperation between scientists working on the problems of improving technologies and developing new alloys that was at the heart of the decision to publish a new journal, some 40 years ago. In this way, the achievements of scientific investigations on practical and related theoretical topics, such as the melting of alloys, their structure and their behaviour when processing finished products and their properties during use, would be made known to the to public. The accent was on steels, since this was the field with the most organised research and development, and so the name of the journal was chosen as @elezarski Zbornik. Professional and scientific articles presenting new findings, often based on the inventive use of routine testing methods, were published quarterly. The quality of the articles increased significantly, especially for processes and properties related to the microstructure and homogeneity of alloys, when new scientific facilities were set up in academic institutions and in industrial laboratories. Focused scientific research helped to close the gap on Del zaslug za la`jo prilagoditev na nove tr`ne razmere po osamosvojitvi Slovenije ima gotovo tudi ve~ja u~inkovitost raziskovanja in razvoja. Zato sta tehnologija in proizvodi tudi tam, kjer oboje ni bilo odvisno od velikih investicij, zaostajala najve~ nekaj let za najbolj razvitimi okolji. V delih, ki so bila objavljena v reviji @elezarski zbornik lahko dobro spremljamo rast znanja o strjevanju zlitin, razvoj tehnologije desoksi- dacije in raz`veplanja jeklene taline, izoblikovanje mikrostrukture med vro~im in hladnim preoblikovanjem, izbolj{anje racionalnosti porabe energije, razvoj proizvodov z lastnostmi za specifi~ne pogoje uporabe, razvoj raziskovalne metodike, tudi rezultate postopnega zmanj{anja obremenitve okolja in {e marsikaj, kar se lahko razbere iz naslovov v bibliografski {tevilki, ki je bila tiskana ob 40-letnici izhajanja. Med avtorji objav- ljenih del najdemo najpomembnej{e raziskovalce iz doma~ega okolja, laureate dr`avnih nagrad in vidna imena iz tujine. Posebna odlika revije je veliko {tevilo avtorjev iz industrijskih okolij in prav takim gre zasluga, da se je revija izognila nevarnosti, da bi se metalurgija kot veda v Sloveniji preve~ oddaljila od metalurgije kot industrijske tehnologije. Jugoslavija je bila v obdobju ekonomske krize `e po letu 1986, tej krizi se je v Sloveniji pridru`ila po letu 1989 {e tranzicijska kriza, katere vzrok je bila izguba dotedanjih trgov za industrijske proizvode. Politika ni bila posebno u~inkovita pri pomo~i industriji pri prema- govanju krize, zato se je, nasprotno kot v razvitih oko- ljih, zmanj{al obseg raziskovanja in razvoja v industriji in posledi~no tudi obseg raziskovanja v akadenskih institucijah. Tudi revija je pri{la v krizo, ki se je {e pove~ala zaradi fina~nih te`av izdajatelja. S spremembo naslova revije v Kovine Zlitine Tehno- logije je bil leta 1992 napravljen prvi korak k raz{iritvi vsebinske podlage revije na raziskovanje in razvoj najpomembnej{ih in`enirskih materialov: kovin in zlitin, keramike, gradbenih materialov in polimerov ter z njimi povezanih tehnologij, tudi vakuuma in tehnologij oplemenitenja povr{ine, vlogo izdajatelja pa je prevzel In{titut za kovinske materiale in tehnologije. Uredni{ki odbor je bil dopolnjen in vanj so bili vklju~eni razisko- valci iz drugih podro~ij in procesov. Postopoma so bili pridobljeni tudi soizdajatelji, ki so poskrbeli za mate- rialno podporo izhajanja. Ukrepi so se pokazali kot zelo u~inkoviti, saj je skokoma mo~no zrastlo {tevilo avtorjev in {tevilo tiskanih del ter tematika, ki je bila v njih predstavljena. Kot samoumevno se je zato pokazalo ponovno preimenovanje revije v dana{ji naziv Materiali in tehno- logije (Materials and Technology) in ponovna dopolnitev uredni{kega odbora. S predlogom, da se vsebina revije obogati s predstavitvami novih doktorjev znanosti s podro~ja raziskovanja materialov in najmodernej{ih tehnolo{kih dose`kov v podjetjih, {e ni dosegla pri~ako- vanega uspeha. Po letu 2000 se je uradna politika pri oceni kakovosti objavljenih raziskovalnih dose`kov popolnoma naslonila na objave del po uvrstitvi revije v indeksu citiranosti SCI 4 Materiali in tehnologije / Materials and technology 41 (2007) 1, 3–5 the more advanced countries to just a few years, especially for cases when the progress was not related to large industrial investments. For this reason, in @ele- zarski Zbornik it is possible to follow the increased use of knowledge related to the solidification of alloys, the progress in the de-oxidation and de-sulphurisation processing of steels, the evolution of microstructure and properties during hot and cold working, the decrease of energy consumption, the development of analytical and investigation methodology, the improvements in ecology, and other topics, as indicated by the titles of the articles in the issue of the journal giving the bibliography for 40 years of publication. As for the authors, many are distinguished scientists from different fields of research and development, from both Slovenia and abroad. The fact that a number of these authors came from industrial companies is considered a positive attribute and indicates that metallurgy as a science did not separate too much from metallurgy as an industrial technology in Slovenia. The economic crisis in Yugoslavia was made worse in Slovenia after 1989 because of the loss of traditional markets for industrial products. The politics did not help industry in overcoming the crisis, the amount of research and development in industry was reduced, as was the amount of research in academic institutions. The journal suffered too, principally because of the editor's financial difficulties. With the change of the journal's name to Metals Alloys Technologies in 1992 the first steps towards broadening the contents base were made with the inclusion of topics related to the research and develop- ment of the most important engineering materials: metals and alloys, ceramics, polymers and building materials. The journal also included vacuum and surface techno- logies, and a new publisher was found. The number of members of the editorial board was increased with the association of researchers working in new fields. Gradually, new publishers were also associated and the material base of the publishing was enlarged. The effect of the changes was a sharp increase in the number of authors, the number of manuscripts submitted for publi- cation and the number of topics presented. Another change of name to Materials and Technology and a new editorial board were, for this reason, a natural step forward. After 2000 the official methodology of evaluating the quality of the articles changed significantly with the classification of the journal according to the Science Citation Index (SCI) of the Institute of Scientific Information (ISI), which is based mostly on the scientific merit of the articles. Still today, however, the signifi- cance of the articles' findings for the growth of knowledge for technology and the development of new products relevant to Slovenian industry has not been assessed. This probably explains the decline in the number of submitted manuscripts, which still, however, remained above the number of articles printed in other journals edited in Slovenia. Also, the fact that the journal (Science Citation Index), katerega osnova je pomen objavljenih dose`kov za znanost. Premalo je cenjena vsebinska ocena objave, v kateri bi bila upo{tevana tudi vrednost dose`ka za rast znanja, ki ga potrebuje slovensko okolje za tehnolo{ko in produktno rast. To je bil verjetno glavni razlog, da se je {tevilo objavljenih del postopoma zmanj{alo, vendar se je ohranilo nad {tevilom izvirnih del, ki so objavljena v drugih revijah, ki se tiskajo v Sloveniji. Razvrednotena je bila tudi citiranost revije v 15 mednarodnih sekundarnih bazah podatkov, ki po pomenu za razvoj tehnologije in novih materialov ter njihove uporabe v industriji in gradbeni{tvu gotovo presegajo indeks SCI. Za tega pa celo izdajatelj ISI (Institute of Scientific Informations) iz Filadelfije v ZDA na svoji internetni strani pi{e, da je ve~ citatov na o`jih raziskovalnih podro~jih. In`enirskih materialov, ki so osnova sodobne civilizacije, prav gotovo ne moremo uvrstiti med taka, ozka raziskovalno-razvojna podro~ja. Ni dvoma tudi, da je manj{a mo`nost, da bi bila neka znanstvena revija vklju~ena v indeks SCI, ~e ne izhaja izklju~no ali prete`no v angle{~ini, s ~imer zanemari enega od temeljnih poslanstev, tj. razvoja znanstvenega in tehni{kega izrazoslovja v nacionalnem jeziku. Vendar odlo~itev o tej dilemi ni stvar uredni{ke politike, temve~ raziskovalne politike dr`ave kot celote, ki finan~no podpira izdajanje {tevilnih revij. Ne glede na te pomi- sleke, se je spremenila uredni{ka politika in v zadnjih letih je dele` tiskanih znanstvenih del prevladal nad dele`em strokovnih, npr. v letu 2006 je bilo objavljeno 86 % znanstvenih del. Revija Materiali in tehnologije je po obsegu in vsebini na nivoju ali celo presega periodi~ne publikacije, ki se tiskajo v Sloveniji. Zato je bil v letu 2005 na seji uredni{kega odbora sprejet sklep, da se odpravijo formalne pomanjkljivosti, in da {tevilke izhajajo redno dvomese~no. To je bilo v letniku 2006 uresni~eno in ni zadr`kov, da ne bi bilo tako tudi naprej. Uredni{tvo lahko izbolj{a svoje delo, ne more pa izbolj{ati vsebine objavljenih del in citiranja revije, oboje je odvisno od avtorjev rokopisov in od ~lanov uredni{kega odbora. Zato vabim vse raziskovalce, ki se ukvarjajo z razli~nimi problemi materialov in problemi povezanimi z materiali, da objavijo svoja dela tudi v reviji Materiali in tehnologije, in da v njej objavljena dela citirajo v svojih delih, ki so tiskane v drugih dr`avah. Predvsem od njihovega odziva bo odvisna nadaljnja rast kakovosti in ugleda revije ter v njej tiskanih del. Ljubljana, januar 2007 Glavni urednik Franc Vodopivec Materiali in tehnologije / Materials and technology 41 (2007) 1, 3–5 5 is cited in 15 international databases which are significant for the development of technology and new products became of secondary importance. It is useful to remember that in the instructions of the ISI, the publisher of the SCI, it is explained that the number of citations is, on average, larger for specialised research fields. It would, of course, be absurd to classify the field of engineering materials, the basis of modern technological civilisation, as specialised. It is probably also the case that there is a smaller possibility for inclusion in the SCI for journals that are not printed mostly, or exclusively, in English. The use of English, however, hinders the realisation of two tasks of the journal: the understanding of the articles by local readers and the development of domestic technical terminology. The answer to both these questions is for the national agency that supports the publication of a number of journals. In spite of these considerations, the publishing policy was changed and the number of scientific articles increased gradually up to a share of 86 % in 2006. In terms of quality and the number of articles the journal Materials and Technology is at the same level or even above that for other periodicals printed in Slovenia. In 2005 the editorial board decided that, gradually, other formal obstacles that are important for inclusion in the SCI should be overcome. In 2006 all the ISI criteria for inclusion in the SCI were fulfilled. The fulfilment of other criteria, for example, the citation of articles printed in Materials and Technology, is solely the decision of authors also publishing in international journals. Improving the reputation of the journal depends on the number and the quality of the manuscripts submitted to the journal. For this reason, potential authors are kindly invited to submit manuscripts for publication. The editors and referees will be happy to assist in improving the manuscripts in terms of presentation and language. The editor and the editorial board very much appreciate the material support of the publisher and of the associate publishers, the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, as well as all the authors and referees, who are primarily responsible for the quality of printed articles. Thanks also go to the refferees for Slovenian and English, and to the journal's technical staff. Ljubljana, January 2007 Editor-in-chief Franc Vodopivec PRVI UREDNIK REVIJE – JO@A ARH Ne bi bilo prav, ~e se ob 40. obletnici ne bi spomnili prvega urednika revije @elezarski Zbornik, kajti brez za~etka tudi 40-letnice ne bi praznovali. Brez posebnih izku{enj in z veliko voljo se je J. Arh, ustvarjalen raziskovalec jeklarske teorije in tehnologije, pogumno spoprijel z novim in zahtevnim projektom na novem podro~ju dejavnosti, prevzemom obveznosti, da bo revija za`ivela in obstala kot resna, kakovostna periodi~na publikacija. V majhnem okolju, tako je slovensko okolje v fizi~nem in v duhovnem obsegu, se vse preve~ pogosto dogodi, da odmevni polo`itvi temeljnega kamna ne sledi tako `ivljenje projekta, kot so njegovi o~etje pri~akovali. ^e ho~e biti resna in dobra, mora periodi~na publikacija vsako leto javnosti predstaviti neko primerno {tevilo dobrih strokovnih in znanstvenih del. ^e je fond avtorjev dovolj velik, to ni problem, ~e pa je fond avtorjev majhen, brez dvoma je tak tudi bil, ko je J. Arh prevzel projekt, postane naloga glavnega urednika mnogo te`ja in njegova prva naloga ni, da izmed predlo`enih del izbere tista, ki ustrezajo po vsebini in po kakovosti in poskrbi, da se predstavijo javnosti v primerni obliki, temve~ da animira potencialne avtorje, sicer za objavo ni predlo`eno dovolj del, da bi bila selekcija primernih sploh mogo~a. Z vztrajnostjo in iznajdljivostjo, ki ju je pokazal `e kot odgovoren za realizacijo razvojnih projektov, katerih cilj je bil napredek v tehnologiji in osvajanje novih proizvodov v mati~nem podjetju, je bil J. Arh kos vsem problemom. Revija je postopoma za`i- vela, z njeno rastjo je rasel fond avtorjev in vsako leto je bilo tiskano ve~ del, ki bi se jih ne sramovale revije, ki `e desetletja izhajajo v mnogo bolj razvitih okoljih. S svojim delom je J. Arh ne samo polo`il kamen temu, kar danes je, ampak z iznajdljivostjo in vztrajnostjo na{el re{itve tudi tedaj, ko bi mnogi obupali in odstopili. Po diplomi na Univerzi v Ljubljani se je J. Arh zaposlil v @elezarni Jesenice in ji ostal zvest do upokojitve. Vse znanje, ustvarjalnost in delo je posvetil tehnologiji izdelave jekla, {e posebej kakovosti proizvodnje in osvajanju novih proizvodov. V vsem, kar je delal, je zapustil trajno sled, tako pomembno, da so ga proizvajalci jeklarske opreme iz tujine ve~krat anga`irali kot svetovalca pri zagonu novih proizvodnih agregatov v evropskih in v neevropskih dr`avah, {e posebej, ~e so se pri tem pojavili problemi, ali je bilo potrebno postopek dopolniti tako, da je bila dose`ena ve~ja kakovost oziroma izdelana nova vrsta jekla. O svojem raziskovalnem in izvedenskem delu je poro~al v reviji, ki jo je urejeval, na doma~ih in tujih strokovnih in znanstvenih konferencah, o njem in njegovem delu pa so poro~ali tudi v tovarni{kem glasilu in v dnevnikih. Kidri~eva nagrada za delo pri razvoju postopka za izdelavo jekel, legiranih s svincem za obdelavo na avtomatih, Pantzova nagrada za dose`ke v mati~nem podjetju pri razvoju jeklarske tehnologije in diploma zaslu`nega ~lana Zveze in`enirjev in tehnikov Slovenije so dokaz, da so njegovo delo cenili mnogi in mu dali tudi pomembna javna priznanja. Vsi, ki nadaljujemo delo J. Arha pri reviji Materiali in tehnologije, ki se zaradi bolj razvitega okolja in ve~jega fonda avtorjev sre~ujemo z druga~nimi problemi rednega izhajanja revije, znamo {e posebej ceniti pionirsko delo J. Arha. Glavni urednik Franc Vodopivec 6 Materiali in tehnologije / Materials and technology 41 (2007) 1, 6 LAUDATION IN HONOUR OF PROFESSOR DR. FRANC VODOPIVEC ON THE OCCASION OF HIS 75th BIRTHDAY Professor Dr. Franc Vodopivec, scientific councillor and former director of Institute of Metals and Tech- nology and former member of the State Council of Republic Slovenia, is celebrating his 75th birthday. This birthday is the occasion to look at the background and the development of this well known scientist and at the influence which his research work has in the field of elaboration, transformation and use of metals and alloys in Slovenia and abroad. Professor Franc Vodopivec was born in Rakitnik, on 8th October 1931. After finishing with distinction the secondary school education, he studied Metallurgy at the University of Ljubljana. In 1956 he joined Metallurgical Institute, present Institute of Metals and Technology in Ljubljana directed by founder Professor Ciril Rekar. In 1959 he received through the International Agency of Atomic Energy in Vienna a scholarship from the French Government. Working in the Institute de Recherché de la Siderurgie, in St.Germain en Laye, France from 1960 to 1962 he prepared his doctor thesis and graduated in 1962 at the University of Paris, Paris, France with the thesis Study of the behaviour of arsenic and phosphorous by selective oxidation of iron alloys with low contents of both elements. He returned in 1962 to the Metallurgical Institute and founded the Laboratory for Metalography, 1972 he became head of Technology Department to 1978, assistant director to 1990 and director from 1990 to April 1996 when he retired. In 1992, Professor Vodopivec was elected for the first time in the Council State of Republic Slovenia by the community of researchers and engineers and in 1997 for the second time. He is editor in chief of Slovenian scientific journal Metals Alloys Technologies since 1996. Professor Vodopivec is full of development spirit and creative ideas. He has been doing research work on the behaviour of metals in oxidative atmosphere, micro- structure characterization of metals by optical and electron microscopy, electron probe analysis, mechanical testing; behaviour of material in use at medium and high temperature, hot and cold working of metals, recovery, recrystallization and grain growth. His present research interest include: ductile permanent magnet alloys, non oriented electrical steel sheets, grain growth induced by selective surface segregation, topology of microstructure and behaviour of metals in use. Professor Vodopivec has published over 250 papers in international journals and conferences and 320 papers in Slovenian journals and conferences on topics of science, technology and use of metals and alloys. Professor Vodopivec has been supervisor to several Ph.D. and Master Degree students at the Universities of Ljubljana, Maribor, Belgrade and Zagreb. He is also very active in the international academic field. He was a chairman of international scientific conferences and project evaluator in EU actions of COST. He is still president of Slovenian Society of Materials, member of executive council of Slovenian Vacuum Society, member of Slovenian Electron and Microelectronics Society, Slovenian Society of Che- mistry, Historical Society of Ljubljana, chairman of the R&D group of the Slovenian Association of Engineers, chairman of annual Conferences on Materials and Technologies from 1990 to 1996 and was member of Vacuum Metallurgy scientific division of International Union for Vacuum Science, Technique and Applications – IUVSTA from 1992–1995. He is one of the founders of Slovenian Academy of Engineering Sciences. He wrote in Slovenian newspapers several tens of articles of industrial and research policy. In 1978 he received the Boris Kidri~ Foundation Award and in 1984 the Boris Kidri~ Award for science. His many projects were supported by 21 industrial societies and associations in Slovenia and the former Yugoslavia from Metallurgy over mechanical energy to power stations as well as the Slovenian and the Yugoslav governments. He was involved also in the projects of international cooperations EU RD actions and USA- Slovenia projects. He prepared forensic analysis of several industrial failures which qualified Slovenian societies to win arbitration for retributions of damages from foreign companies suppliers of industrial equipment. In 2004 he received state award – Zois award for his life work from the Republic of Slovenia. His colleagues hope very much that he will instead of his retirement, take part in discussions, lectures and publications. Most of all we would like to wish him and his family many years to come in good health. Monika Jenko Materiali in tehnologije / Materials and technology 41 (2007) 1, 7 7 75 LET FRANCA VODOPIVCA Slovenska strokovna literatura za podro~je meta- lurgije in in`enirskih materialov je nekaj desetletij nazaj tesno povezana z imenom prof. dr. Franca Vodopivca. Je avtor {tevilnih originalnih ~lankov s podro~ja fizikalne metalurgije, in`enirskih materialov, razvoja, karakteri- zacije in uporabe materialov ter raziskav po{kodb strojev in naprav na razli~nih podro~jih tehnike, posebej v energetiki in procesni industriji. Svoje delo je postavil na ogled in oceno mednarodni strokovni javnosti, z enako zavzetostjo in veseljem je objavljal tudi v doma~ih strokovnih revijah, kar je imel za svojo nacionalno dol`nost in obveznost raziskovalca. Njegov namen in odlo~nost obve{~ati strokovno javnost o aktualnih problemih stroke in gospodarstva sta `iva `e od za~etkov njegovega raziskovalnega dela na Metalur{kem in{titutu, posebej pa od njegove vrnitve z in{tituta IRSID v Franciji. Od takrat je v njegovem najbolj plodovitem raziskovalnem obdobju iz notranje potrebe objavil {tevilne znanstvene ~lanke. Svoje sodelavce je opozarjal na pomen publiciranja razisko- valnih dose`kov in napovedoval ~as, ko je to postalo eksisten~na nuja raziskovalne srenje. Prof. dr. Franc Vodopivec ni bil med privilegiranimi raziskovalci tudi takrat ne, ko so se pre{tevali v desetinah ali stotinah. Najve~ raziskav je naredil za slovensko industrijo jekla. Trdil je in tudi ves ~as dokazoval, da je v vsakem na~rtovanem in dobro vodenem raziskovalnem delu dovolj vsebine za publiciranje v priznanih mednarodnih revijah. Tu se velja spomniti zanimive in raz{irjene problematike jekla za krogli~ne le`aje, evolucije mikro- strukture in lastnosti pri vro~i predelavi razli~nih jekel, raziskovanja mehko- in trdomagnetnih materialov in razvoja raziskovalne metodologije. Z relativno malo raziskovalne opreme je uspe{no tekmoval, posebej na podro~ju forenzi~nih raziskav, z laboratoriji, ki so si jih `e takrat lahko privo{~ile velike industrijske korporacije. Prof. dr. Franc Vodopivec je {e vedno aktiven, predvsem kot vir idej in programiranega na~rtovanja raziskovalnega dela, vsestranski mentor in svetovalec raziskovalcem vseh stopenj. Brez hrupa je `e dobro desetletje urednik revije Materiali in tehnologije, katere predhodnika sta bila @elezarski zbornik in Kovine Zlitine Tehnologije. [iroka razgledanost in obilica znanja mu omogo~ata najti hiter in u~inkovit stik z avtorji zelo razli~nih vsebin. Zato jim lahko pomaga in svetuje pri predstavitvi njihovega dela strokovni javnosti in jih spodbuja pri njihovem delu in napredku. @elimo mu, da bi {e naprej tako uspe{no in plodovito vodil to revijo. Ladislav Kosec 8 Materiali in tehnologije / Materials and technology 41 (2007) 1, 8 MARIN GABROV[EK – OB JUBILEJU Osebnosti, ki pustijo trajen pe~at v dru`bi kot celoti ali v enem od njenih segmentov, se pojavijo, ko so razmere kriti~ne in zrele za velike spremembe. Marin Gabrov{ek spada med take osebnosti. Bil je med prvimi, ki so spoznali, da metalurgija v Sloveniji ne bo pre- `ivela, ~e se ne bo hitro spremenila iz prete`no mojstrske dejavnosti v tehni~no stroko in znanstveno vedo. Zna~ilnost mojstrstva je, da so dela na osnovi receptov, ki so plod dolgoletne prakse, stroka in veda pa postane tedaj, ko se za~no v razumevanje in obvladovanje procesa proizvodnje kovin in zlitin vklju~evati tudi termodinami~ne in kineti~ne zakonitosti reakcij, ki se dogajajo v staljeni in v trdni kovini in zaradi katerih gradivo dobi neke, vnaprej predvidene lastnosti. K tej spremembi je prispeval veliko, ker je z eno nogo stal trdno v industriji kot vodja raziskovalno-razvojnega oddelka v velikem industrijskem podjetju, z drugo pa trdno v akademski sferi: u~il je na univerzi ter aktivno sodeloval in materialno podpiral raziskovalne in razvojne projekte na univerzah in in{titutih. Kjerkoli je delal, je pustil pe~at ~loveka, ki spo{tuje vse, ki pri delu dose`ejo nekaj koristnega, in nikdar ni {tedil besed, ko je bilo komu treba povedati, da se da nekaj narediti tudi bolj{e, kot je bilo narejeno. V rekordnem ~asu je diplomiral za in`enirja metalurgije na Univerzi v Ljubljani leta 1952 in se zaposlil v tedanji @elezarni Jesenice. Hitro se je z delom in prodornostjo uveljavil; po njegovi zaslugi je v `ele- zarni postopoma nastal raziskovalni oddelek, v katerem so razvili {tevilne nove proizvode in vpeljali nove tehnolo{ke poti. Danes ni prav mnogo tistega v proiz- vodnem programu dedi~a @elezarne Jesenice, podjetja Acroni, d.o.o., kar ni bilo `e razvito v ~asu, ko je Marin Gabrov{ek v upravi podjetja odgovarjal za razvoj in neposredno vodil raziskovalni oddelek. Veliko {tevilo let je vodil tudi Odbor za raziskave v okviru Zdru`enega podjetja Slovenske `elezarne in tedaj se je svoj vpliv raz{iril tudi na podro~je ne`elezne metalurgije in livarstva. Enaki principi so ga vodili, ko je delal kot ~lan razli~nih delovnih teles v Jugoslaviji in bil zato povsod spo{tovan in upo{tevan kot ~lovek z znanjem, na katerega besedo se je bilo mogo~e zanesti. Po kratkem sta`u na Institutu de Recherches de la Sidérurgie v Franciji je na Univerzi v Ljubljani dokto- riral. V disertaciji je posredno dokazal nekaj, kar je bilo mogo~e razlo`iti {ele ve~ kot desetletje kasneje, ko so bile razvite nove metode za natan~ne analize kemi~ne sestave povr{ine kristalnih zrn v jeklih. M. Gabrov{ek je avtor in soavtor {tevilnih strokovnih del internega zna~aja ter avtor in soavtor strokovnih in znanstvenih del, ki so bila objavljena v tedanji Jugoslaviji in v {tevilnih tujih dr`avah. Zna~ilno zanj je bilo, da ga ni bilo lahko prepri~ati, da se vklju~i in celo podpre neki razvojni ali raziskovalni projekt, ko pa se je odlo~il, je postal gonilna sila njegove realizacije. Za svoje delo je dobil velika priznanja, med njimi Pantzovo nagrado mati~nega podjetja in Krajgherjevo nagrado GZ Slovenije, oboje za uspehe pri razvoju proizvodov in tehnologije. Marin Gabrov{ek spada med tiste posameznike, katerih slika bi morala viseti na ~astnem mestu v podjetju, kjer je opravil toliko dela, ki je bilo tako dobro, da je podjetje pre`ivelo tranzicijsko krizo in je danes poslovno uspe{no. Zato je bil in je {e lahko zgled mlaj{im generacijam, kaj se lahko dose`e, ~e je trdna volja in se smotrno uporabi ustvarjalnost ljudi v podjetju in zunaj njega, ki imajo ideje in so pripravljeni delati. Da bi uveljavil podjetje in metalurgijo, se je vklju~eval v razli~ne gremije, tudi take, ki so odlo~ali o tem, katere projekte je smiselno podpreti iz javnih sredstev in se ni obotavljal pri tem uporabiti argument, da je za projektom stvarni interes nekega delujo~ega industrijskega podjetja. Dosledno je zagovarjal prepri~anje, da je v vseh seg- mentih dejavnosti potrebno ve~ znanja, posebno pa je potrebno ve~ tistega znanja, ki ga je mogo~e uporabiti v slovenskem industrijskem okolju. Danes, ko so razmere take, da po pravilniku Javne agencije za raziskovalno dejavnost RS dobi raziskovalec za objavljeno delo v prvovrstni tuji reviji oceno od 80 do 100 to~k, za podeljen evropski patent oceno 10 to~k in za uresni~eno inovacijo oceno 2 to~ki, {e posebej potrebujemo take ljudi, kot je bil M. Gabrov{ek. Mogo~e bi politika, ki deli javni denar za raziskave in razvoj, upo{tevala tako osebnost, ~e bi dovolj glasno povedali, da je treba denar najpreje zaslu`iti in ga {ele nato deliti in tako razmi{ljati tudi pri odlo~itvah o javni podpori raziskovalnim projek- tom. Marin Gabrov{ek je intuitivno vedel, da razisko- valci ne prispevajo k rasti blaginje ljudi, ~e ne ustvarjajo tudi ali predvsem znanja, ki ga nek prostor potrebuje za rast, kajti prepoznavnost dr`ave in naroda {irijo materialni in nematerialni proizvodi bolj kot znanost, ki ne ~uti potrebe, da bi morala ustvarjati tudi za ljudi. Z Marinom Gabrov{kom sem imel mnogo slu`benih stikov in postopoma se je med nama razvila posebna oblika prijateljstva, ki je imela podlago v zelo podobnem pogledu na dogajanja v prostoru in dru`bi. Pri njem sta mi bila posebno v{e~ neposrednost in ostrina razgovora o nekem strokovnem ali znanstvenem problemu, za Materiali in tehnologije / Materials and technology 41 (2007) 1, 9–10 9 katerega sva oba iskala odgovor. Imponirala mi je samozavest, s katero se je pogovarjal s predstavniki strok in ved, ki so bile bolj presti`ne v javnosti, v~asih samo zato, ker jim je nasedel vrh politike. V razgovorih in razpravah je znal postavljati vpra{anja, na katera z lepore~jem ni bilo mogo~e odgovoriti. Sam ni lepore~ja uporabljal nikdar, nasprotno, bil je tako kratek in neposreden, da bi bil lahko kdo, ki ga ni poznal, osebno prizadet. ^e bo kdo kdaj pisal o zgodovini raziskovanja v Sloveniji, ne bo mogel mimo pregleda dose`kov raziskovalnega dela v preteklem letu ali dveh z oceno industrijske vrednosti dose`enega, ki ga je pripravil za vsakoletno konferenco metalurgov v Portoro`u. To je zagotavljalo, da so se sredstva javnih skladov za razisko- vanje in razvoj uporabila smotrno, kolikor so razmere omogo~ale, za rast znanja, ki se je uporabilo v prostoru, kjer je bilo ustvarjeno, bolj ambicioznim posameznikom pa omogo~alo, da se njihovo ime pojavlja tudi v uglednih tujih znanstvenih revijah. Bil je med pobudniki usstanovitve revije @elezarski zbornik, s katero se je metalurgija uveljavila kot enakovredna stroka in veda v slovenskem in jugoslovanskem prostoru. [e danes kot ~lan izdajateljskega sveta revije vnukinje Materiali in tehnologije bedi nad tem, da kljub zelo spremenjenim razmeram revija ne zanemari preve~ svojega temeljnega poslanstva, ki je {irjenje in poglabljanje znanja o kovinah in zlitinah in o njihovi smotrni uporabi. Poznam mnogo ljudi, ki so imeli delovne ali slu`bene stike s slavljencem, vendar nikogar, ki bi nanj ohranil slab spomin, ~etudi razgovori z njim o slu`benih zadevah pogosto niso potekli v najbolj prijaznem tonu. Kot ni {tedil sebe, ni {tedil tudi drugih, ~e niso naredili vsega, kar so na~rtovali. Marin, v imenu {tevilnih iz moje generacije in mlaj{ih Ti zagotavljam, da si z osebnim zgledom, dose`ki dela in odgovornostjo zanj v slovenski metalur- giji v Sloveniji in {e posebej v podjetju, v katerega razvoj si vlo`il `ivljenjsko delo, zapustil trajne sledove. V imenu vseh, ki smo te poznali osebno, in mlaj{ih, ki so o Tebi in Tvojem delu samo sli{ali, Ti `elim, da bi ostal pri dobrem zdravju in nas {e kdaj s trezno besedo opomnil, da se kaj da narediti tudi bolje, kot smo naredili, in da ni resni~nega napredka brez znanja in trdega ustvarjalnega dela. V imenu vseh, ki smo se trudili in se {e trudimo, da bi slovenski metalurgiji kot stroki in vedi ohranili ugled, pri nastanku katerega je Tvoje delo imelo tako pomebno vlogo. Franc Vodopivec 10 Materiali in tehnologije / Materials and technology 41 (2007) 1, 9–10 N. JAMAR, J. JAMAR: ZGODOVINA SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE ZGODOVINA ZNANSTVENE SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE / MATERIALS AND TECHNOLOGY HISTORICAL OVERVIEW OF THE SCIENTIFIC JOURNAL MATERIALI IN TEHNOLOGIJE / MATERIALS AND TECHNOLOGY Nina Jamar1, Jana Jamar2 1Lipce 10, 4273 Blejska Dobrava, Slovenija 2Uredni{tvo serijske publikacije Materiali in tehnologije, In{titut za kovinske materiale in tehnologije, Lepi pot 11, 1000 Ljubljana, Slovenija nina.jamar@telemach.net Podan je zgodovinski pregled 40-letnega izhajanja serijske publikacije Materiali in tehnologije (pred tem @elezarski zbornik in Kovine zlitine tehnologiej) in prikazani statisti~ni podatki za obdobje od leta 2000 do leta 2006. Opisan je tudi potek izhajanja omenjene serijske publikacije v elektronski obliki in vpliv objave polnih besedil ~lankov v elektronski obliki na odmevnost in citiranost serijske publikacije v svetu. Prikazan je tudi diagram poteka izdajateljske dejavnosti po ISO 9000. Zaklju~ek pa je namenjen pogledu na prihodnost serijske publikacije Materiali in tehnologije. Klju~ne besede: znanstvena serijska publikacija, @elezarski zbornik, Kovine zlitine tehnologije, Materiali in tehnologije, zgodovinski pregled, statisti~ni podatki, elektronsko zalo`ni{tvo, ISO 9000 The article describes the history of scientific publication Materiali in tehnologije / Materials and Technology (before @elezarski zbornik / Iron and Steel Journal and Kovine zlitine tehnologije / Metals Alloys Technologies). There are some statistical data for the years 2000-2006. The article also deals with electronic form of the mentioned serial publication and the influence of online publishing on the recognition and citation of Materiali in tehnogije / Materials and Technology over the world. It is also shown how scientific serial publication in the process of publishing considers ISO 9000. At the end of the articles it is described how Materiali in tehnologije will develop in future. Key words: scientific serial publication, Iron and Steel Journal, Metals Alloys Technologies, Materials and Technology, historical overview, statistical data, electronic publishing, ISO 9000. MATERIALI IN TEHNOLOGIJE (@ELEZARSKI ZBORNIK ® KOVINE ZLITINE TEHNOLOGIJE → MATERIALI IN TEHNOLOGIJE) ISSN: 1580-2949 (tiskana verzija) ; 1580-3414 (elektronska verzija) UDK: 669+666+678+53 1 @ELEZARSKI ZBORNIK (1967–1991) Periodi~na publikacija @elezarski zbornik (ISSN 0372-8633) je bila strokovno glasilo Slovenskih `elezarn in Metalur{kega in{tituta, Ljubljana. Izhajala je v letih 1967–1991 kot ~etrtletnik. V prvem letniku so iz{le le tri {tevilke. Od leta 1967 dalje so bili strokovni ~lanki vsebinsko klasificirani po univerzalni decimalni klasifikaciji, kasneje {e po klasifikaciji ASM/SLA (od 1967–3 dalje). ^lanku so sledili povzetki v angle{kem, nem{kem in od leta 1968 tudi v ruskem jeziku. Od leta 1975 dalje je revija objavljala avtorske izvle~ke v slovenskem, nem{kem, angle{kem in ruskem jeziku. Od drugega letnika dalje je bilo v zadnji {tevilki letnika oziroma v prvi {tevilki naslednjega letnika objavljeno letno kronolo{ko kazalo. Periodi~na publikacija je obsegala podro~je kovinskih in deloma nekovinskih materialov. Odgovorni urednik je bil dipl. ing. Jo`e Arh, @elezarna Jesenice (1967/1–1991/4). Uredni{ki odbor so do leta 1984 sestavljali trije ~lani: Jo`e Rodi~, Barbori~ in Aleksander Kveder. Nato se je {tevilo ~lanov Ured- ni{kega odbora postopoma ve~alo. Tehni~ni uredniki so bili: Edo @agar (1967/1–1980/4), Darko Brada{kja (1981/1–1987/2), Jana Jamar (1987/1–1991/4). Ob dvaj- setletnici izhajanja te periodi~ne publikacije je bila izdelana in izdana bibliografija ~lankov za obdobje od 1967 do 1986. Iz{la je kot posebna {tevilka @elezarskega zbornika 1987/5. Oprema in zunanja oblika revije se v dvajsetih letih nista bistveno spreminjali. 2 KOVINE ZLITINE TEHNOLOGIJE (1992–1999) Leta 1992 je periodi~na publikacija @elezarski zbor- nik spremenila svoje ime v Kovine zlitine tehnologije (ISSN 1318-0010). Preimenovala se je zaradi vsebinske raz{iritve. Obsegala je podro~ja kovinskih materialov in anorganskih materialov, polimerov in materialov, ki se uporabljajo v vakuumski tehniki. Do leta 1994 je izhajala v {tirih {tevilkah na leto, od leta 1995 dalje pa je imela {est {tevilk na leto. Avtorji prispevkov so bili poleg slovenskih tudi uveljavljeni tuji strokovnjaki. Zadnja {tevilka letnika je vsebovala letno kazalo, ki je bilo razdeljeno na kronolo{ko, avtorsko in vsebinsko. Leta 1997 je iz{la prva izredna {tevilka te periodi~ne publikacije (1997/5). Izdajatelj je bil In{titut za kovinske materiale in tehnologije, Ljubljana. Soizdajatelji so bili: ACRONI, Materiali in tehnologije / Materials and technology 41 (2007) 1, 13–19 13 UDK 050:6(497.4) ISSN 1580-2949 Pregledni znanstveni ~lanek/Review scientific article MTAEC9, 41(1)13(2007) Jesenice, IMPOL, Slovenska Bistrica, Kemijski in{titut, Ljubljana, Koncern Slovenske `elezarne, Metal, Ravne na Koro{kem, Talum, Kidri~evo, Fakulteta za stroj- ni{tvo, Ljubljana, Institut "Jo`ef Stefan", Ljubljana in Slovensko dru{tvo za tribologijo, Ljubljana. Izdajanje je sofinanciralo Ministrstvo za znanost in tehnologijo Republike Slovenije. Glavni in odgovorni uredniki so bili: dipl. ing. Jo`e Arh (1992/1–1994/3), mag. Ale{ Lagoja (1994/4–1995/6) in prof. dr. Franc Vodopivec (1996/1–1999/6). Uredni{ki odbor se je raz{iril na sedem ~lanov. O uredni{ki politiki je soodlo~al Izdajateljski svet in mednarodni pridru`eni ~lani Uredni{kega odbora. Tehni~no urejanje je vodila Jana Jamar (1992/1–1999/6). V letu 1998 so v uredni{tvu periodi~ne publikacije na predlog Ministrstva za znanost in tehnologijo poskrbeli za kategorizacijo in razvrstitev ~lankov po tipologiji dokumentov za vodenje bibliografij in vnos podatkov v COBISS. Za obdobje 1996/1999 je bilo vneseno 436 zapisov ~lankov. Na svetovnem spletu je bila periodi~na publikacija Kovine zlitine tehnologije dosegljiva na naslovu http://www.ctk.uni-lj.si/kovine/. Objavljena so bila kazala posameznih {tevilk, naslovi in avtorji ~lankov, povzetki in klju~ne besede v slovenskem in angle{kem jeziku. Od leta 1998 dalje so bili vsi ~lanki, ki so bili objavljeni v tej serijski publikaciji, na svetovnem spletu dosegljivi v polnem tekstu. V letu 1999 je bila izdelana strategija iskanja po ~lankih (avtor, klju~ne besede, naslov ~lanka …). Periodi~na publikacija je bila citirana v devetih mednarodnih sekundarnih publikacijah in bazah podat- kov: Metals Abstracts, Engineered Materials Abstracts, Business Alert Abstracts (Steels, Nonferrous, Polymers, Ceramics, Composites), Chemical Abstracts, Aluminium Industry Abstracts, Referativnyj `urnal Metallurgija, Metadex, Inside Conferences, DOMA. V serijski publikaciji Kovine zlitine tehnologije so bili objavljeni redni prispevki in izbrani recenzirani prispevki, predstavljeni na Konferencah o materialih in tehnologijah, ki vsako leto potekajo v Portoro`u. Prispevki v posameznih {tevilkah so bili izdani v skladu z mednarodnimi standardi ISO in po navodilih Ministrstva za visoko {olstvo, znanost in tehnologijo. Periodi~na publikacija je ustrezala mednarodnim informacijskim zahtevam, kar vklju~uje ISSN, stan- dardno terminologijo, mednarodne merske enote, izvle~ek, klju~ne besede, za~etek ~lanka na neparni strani in na isti strani podatki o avtorju in serijski publikaciji. Naslovi ~lankov, povzetki in klju~ne besede so bili objavljeni v slovenskem in angle{kem jeziku. Od leta 1998 dalje je postala ustaljena tudi praksa navedbe datuma prejema rokopisa in sprejema prispevka za objavo. Leta 1999 je bila izdelana: Bibliometrijska analiza in primerjava serijskih publikacij @elezarski zbornik 1967/68 in Kovine zlitine tehnologije 1996/97 (Jamar, Ba{, Ju`ni~, 2000). Rezultati so pokazali razvoj perio- di~ne publikacije in velik kakovostni skok v teh letih. Bibliometrijsko so bile ugotovljene naslednje spremem- be: • pove~alo se je {tevilo avtorjev pri posameznem ~lanku in {tevilo ustanov, iz katerih so prihajali; • raz{irilo se je podro~je, ki ga obravnavajo objave iz periodi~ne publikacije; • periodi~na publikacija je iz strokovne periodi~ne publikacije prerasla v znanstveno. 3 MATERIALI IN TEHNOLOGIJE (2000 ®) Periodi~na publikacija Materiali in tehnologije (ISSN 1580-2949) je za~ela izhajati leta 2000. Raz- {irjena je bila njena vsebina. Podro~je kovin in zlitin se je raz{irilo na druge materiale (polimeri, anorganski materiali, materiali, ki se uporabljajo v vakuumski tehniki) in dalje na kompozitne, gradbene materiale, nanomateriale ter njihove tehnologije in materiale za fuzijo. Postala je vodilna periodi~na publikacija za podro~je materialov v Sloveniji. S spremembo imena naj bi {e bolj jasno opredeljevala svojo vsebino. Njen cilj je raz{iriti interesno podro~je na ~im ve~ materialov, dose~i prepoznavnost in ve~jo citiranost v tujih referatnih publikacijah in bazah podatkov. S postopno rastjo kako- vosti in vklju~itvijo v nove mednarodne baze podatkov si periodi~na publikacija prizadeva dose~i citiranost v Science Citation Index-u, kar bi pomenilo, da bi imeli slovenski raziskovalci ve~ji interes za objavljanje svojih znanstvenih in strokovnih ~lankov tudi v slovenski reviji. Revija izhaja v {estih {tevilkah letno, od leta 2006 dalje vsaka {tevilka kot samostojni zvezek. Zadnja {tevilka letnika vsebuje letno kazalo: kronolo{ko, avtorsko in vsebinsko. Glavni in odgovorni urednik je prof. dr. France Vodopivec, pomo~nica glavnega in odgovornega urednika doc. dr. Monika Jenko. ^lani Uredni{kega odbora, Izdajateljskega sveta in mednarodni pridru`eni ~lani Uredni{kega odbora sodelujejo pri usmeritvah uredni{ke politike revije in pri odlo~itvah o recenziranju ~lankov. Tehni~no urejanje vodi Jana Jamar. Na svetovnem spletu je periodi~na publikacija Materiali in tehnologije dosegljiva na naslovu http://www.imt.si/materiali-tehnologije (ISSN 1580- 3414). Izdajanje periodi~ne publikacije poteka po ISO 90001 (Diagram 1). Prve ideje o digitalizaciji periodi~ne publikacije Kovine zlitine tehnologije so se popolnoma spontano porodile v drugi polovici leta 1995. ^lani uredni{tva so se po premisleku odlo~ili, da bi izdelali spletno stran, ki bi vsebovala osnovno predstavitev periodi~ne publi- kacije, kazala po {tevilkah, letna kazala ter izvle~ke prispevkov. Del spletne strani je bil namenjen avtorjem prispevkov (navodila avtorjem, podatki o indeksiranju prispevkov v mednarodnih sekundarnih virih, na~ini komuniciranja z uredni{tvom, roki oddaje ~lankov). Dostopna je bila na URL-naslovu http://www.ctk. uni-lj.si/kovine/. Razmi{ljanja o dostopnosti ~lankov v N. JAMAR, J. JAMAR: ZGODOVINA SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE 14 Materiali in tehnologije / Materials and technology 41 (2007) 1, 13–19 N. JAMAR, J. JAMAR: ZGODOVINA SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE Materiali in tehnologije / Materials and technology 41 (2007) 1, 13–19 15 Diagram 1: Izdajanje revije Materiali in tehnologije – potek izdajateljske dejavnosti po ISO 9000 polnem besedilu pa so se ustavila pri tehni~no zapleteni izdelavi datotek v programskem jeziku Hypertext Markup Language (HTML). Programski jezik HTML (HTML 2) je bil v takratni razvojni stopnji {e zelo okoren in ni vseboval nekaterih mo`nosti, ki so se pojavile kasneje. V naslednjih dveh letih, 1997 in 1998, so se s poja- vom novih programskih okolij razmere za oblikovanje hiperteksta korenito spremenile. HTML 3.2 in HTML 4 sta omogo~ila {tevilne nove re{itve. Microsoft Office 97 je omogo~il enostavno pretvorbo dokumentov iz okolja Office v hipertekst. To je ponovno spodbudilo idejo o polnem besedilu znanstvenih in strokovnih prispevkov v elektronski verziji. S porastom elektronskih serijskih publikacij s polnimi besedili prispevkov na svetovnem spletu je bilo mo`no primerjati datote~ne oblike, v katerih so se polna besedila pojavljala na svetovnem spletu, predvsem periodi~ne publikacije s podro~ja naravoslovja in tehnike, re{itev grafi~nih elementov v prispevkih: npr. grafikoni in slike, in re{itve zapletenih tekstovnih delov, kot so matemati~ne izpeljave in kemijske formule. Na spletno stran je bilo postavljeno enostavno iskalno orodje, s katerim je bilo omogo~eno iskanje po kazalih in hipertekstovnih sklopih prispevkov (podatki o avtorju, izvle~ek v sloven{~ini in angle{~ini, klju~ne besede v sloven{~ini in angle{~ini). Hipertekstovni deli dokumentov so bili izdelani z uporabo orodij MS Office in FrontPageExpress. S spremembo naslova Kovine zlitine tehnologije v Materiali in tehnologije je tudi spletna stran dobila novo oblikovno in vsebinsko podobo. Nov URL-naslov elektronske verzije revije je http://www.imt.si/materiali- tehnologije. Z uporabo iskalnega orodja PICO SEARCH je bila poenostavljena mo`nost iskanja po prispevkih. Izdelan je bil neke vrste portal za podro~je naravoslovnih ved in tehnike. Cilj spletne strani je ~im ve~ja dostopnost naj{ir{emu krogu uporabnikov. Svetovni splet omogo~a bolj interaktiven odnos med bralci in uredni{tvom. S spremljanjem novih tehnologij v elektronskem zalo`ni- {tvu in z dodatnim izobra`evanjem, s {e bogatej{o zbirko uporabnih povezav, s postavitvijo elektronskih forumov, z obve{~anjem uporabnikov o novih mo`nostih pridobi- vanja informacij s tega podro~ja znanosti (spremljanje razvoja in dostopnosti novih podatkovnih zbirk in standardov, obve{~anje o konferencah in mo`nostih izobra`evanja, spremljanje zakonodaje) je upati, da bo to postalo prijazno in uporabno spletno mesto za razisko- valce, {tudente in druge, ki jih zanima to podro~je znanosti.2 Prednosti izdajanja periodi~ne publikacije v elek- tronski obliki so: • urejenost ~lankov v enostavno podatkovno zbirko omogo~a tematsko poizvedovanje po vsebini ~lan- kov; • enostavnej{i stiki med avtorji in uredni{tvom; • trajen in enostaven dostop do polnotekstovnih for- matov prispevkov, ne glede na kraj in ~as; • elektronska periodi~na publikacija je dosegljiva pred tiskano obliko; • la`ja, hitrej{a, skoraj brezmejna dostopnost do gra- diva v kateremkoli ~asu; • {ir{a odmevnost, opaznost in vidnost v mednarodnem prostoru; • razli~ne mo`nosti iskanja (po kazalih, izvle~kih, klju~nih besedah); • mo`nosti povezovanja s citiranimi in drugimi sorod- nimi ~lanki; • omogo~a avtorjem teko~e in hitre informacije uredni{kega odbora: navodila avtorjem, obvestila; • mo`nosti prevzemanja celotnih ~lankov; • omogo~a sledljivost ~lanka (zgodovina ~lanka na enem mestu); • informacije so cenej{e od tiskane oblike. V letu 2001 je bilo izdelano diplomsko delo Biblio- metrijsko-bibliografska primerjava znanstvene periodi~ne publikacije MATERIALI IN TEHNOLO- GIJE (2000) in MATERIALS SCIENCE AND TECHNOLOGY (2000). Delo je bilo posve~eno 35. obletnici izdajanja revije MATERIALI IN TEHNO- LOGIJE. Rezultati bibliometri~ne analize periodi~ne publi- kacije Materiali in tehnologije (2000) so v primerjavi s serijsko publikacijo Materials Science and Technology (2000) pokazali, da bi avtorji (raziskovalci) in uredniki periodi~ne publikacije Materiali in tehnologije morali posve~ati ve~ pozornosti naslednjim merilom: • pove~ati {tevilo objavljenih ~lankov, kar bi pomenilo ve~je {tevilo citatov in s tem ve~jo mo`nost prido- bitve dejavnika vpliva; • spodbujati skupinsko delo raziskovalnih skupin in s tem pove~ati povpre~no {tevilo avtorjev na ~lanek, saj se dela kolektivnih avtorjev pogosteje citirajo; • pove~ati mednarodnost avtorjev glede na priporo~ila Institute for Scientific Information za vklju~itev serijskih publikacij v Science Citation Index; • ve~je sodelovanje kadrov, zaposlenih na univerzah; pri tem se postavlja vpra{anje zanimanja zaposlenih na univerzah za objavljanje v serijski publikaciji brez dejavnika vpliva, ker so pri svojih reelekcijah najbolj vezani na periodi~ne publikacije, ki so indeksirane v Science Citation Indexu; • citiranje literature ~lankov iz periodi~ne publikacije Materiali in tehnologije v serijskih publikacijah z visokim dejavnikom vpliva. V zvezi z diplomskim delom je bila izdelana in izve- dena tudi ANKETA O ZADOVOLJSTVU AVTOR- JEV Z UREDNI[TVOM IN KVALITETO PERIODI^NE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE TER O CITIRANI LITERATURI. N. JAMAR, J. JAMAR: ZGODOVINA SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE 16 Materiali in tehnologije / Materials and technology 41 (2007) 1, 13–19 Pomanjkljivosti, ki so bile opa`ene pri rezultatih ankete o zadovoljstvu avtorjev z uredni{tvom in kvali- teto periodi~ne publikacije Materiali in tehnologije: • preslaba informativnost naslovov ~lankov in iz- vle~kov; • ni debatnega dela v serijski publikaciji, s ~imer bi se pove~ala komunikacija med avtorji, ~eprav sami avtorji menijo, da debatnega dela ne pogre{ajo; • uporaba periodi~ne publikacije Materiali in tehno- logije v elektronski obliki je premajhna; • premajhna prepoznavnost periodi~ne publikacije Materiali in tehnologije v tujini. • Pozitivne ugotovitve, ki so bile opa`ene pri rezultatih ankete o zadovoljstvu avtorjev z uredni{tvom in kva- liteto periodi~ne publikacije Materiali in tehnologije: • hitrost objave prispevkov je ustrezna; • delo lektorjev je zelo pozitivno; • razdelitev ~lankov po tipologiji dokumentov na stro- kovne, znanstvene in pregledne ~lanke je ustrezna; • kvaliteta papirja, slik in fotografij je dobra; • uredni{ka politika zadovoljuje uporabnike (avtorje prispevkov in druge uporabnike). Pohvalno je, da `elijo avtorji (drugi del ankete) bolj kot povzemati dosedanje dose`ke na raziskovalnem podro~ju poudariti originalne ugotovitve na podro~ju dela, presene~a pa nas sklicevanje na avtoritete na dolo~enem znanstvenem podro~ju. Ve~ina avtorjev velikokrat, pa verjetno {e premalo, pregleda seznam citatov avtorjev, ki objavljajo ~lanke z njihovega pod- ro~ja dela in ta citirana dela velikokrat uporabijo pri svojem nadaljnjem delu. Zanimivo je, da tudi avtorji, ki sicer malokrat pregledajo seznam citatov avtorjev, ki objavljajo ~lanke z njihovega podro~ja dela, ta dela velikokrat uporabljajo pri svojem nadaljnjem delu. Avtorji malokrat osebno poznajo avtorje del, ki jih citirajo, in malokrat citirajo ~lanke, objavljene v serijski publikaciji Materiali in tehnologije. Na njihovo citiranje pa mo~no vpliva dostopnost dolo~ene literature, zato je pomembna ustrezna nabavna politika knji`nic, kjer avtorji informacijske vire pregledujejo (Jamar, 2001). 4 PREGLED / MATERIALI IN TEHNOLOGIJE: 2000–2006 Tabela 1: MIT 2000–2006 : Fizi~ni obseg [tevilka revije [tevilo strani [tevilo ~lankov Avtorske pole 2000 / 1–6 452 79 28,30 2001 / 1–6 500 72 31,25 2002 / 1–6 492 71 30,75 2003 / 1–6 420 67 26,50 2004 / 1–6 + p. {. 491 67 30,70 2005 / 1-6 334 30 20,30 2006 / 1-6 354 44 22,15 Skupaj 3043 430 189,95 Tabela 2: MIT 2000–2006: Pregled prispevkov po tipologiji doku- mentov ^lanki 2000 2001 2002 2003 2004 2005 2006 Skupaj Pregledni znanstveni ~l. 6 4 6 8 6 5 8 43 Izvirni znanstveni ~l. 43 44 50 35 42 18 30 262 Strokovni ~lanki 30 24 15 24 19 7 6 125 Tabela 3: MIT 2000–2006 : Analiza jezika ~lankov Leto Slovenski jezik % Angle{ki jezik % 2000 84,81 15,19 2001 72,20 27,80 2002 69,00 31,00 2003 58,00 42,00 2004 53,75 46,25 2005 31,67 68,33 2006 20,45 79,55 Tabela 4: MIT 2000–2006: Razmerje med objavljenimi znanstvenimi in strokovnimi ~lanki Leto Strokovni prispevki, % Znanstveni prispevki, % 2000 38,00 62,00 2001 33,00 67,00 2002 21,00 79,00 2003 36,00 64,00 2004 28,35 71,65 2005 26,70 73,30 2006 13,65 86,35 Tabela 5: MIT 2000–2006 : Analiza po avtorjih Leto [tevilo vseh avtorjev [tevilo razli~nih avtorjev [tevilo ~lankov [tevilo avtorjev na ~lanek 2000 222 174 79 2,81 2001 222 156 72 3,08 2002 216 169 71 3,05 2003 194 163 67 2,90 2004 243 193 67 3,60 2005 109 89 30 3,60 2006 147 130 44 3,34 Tabela 6: MIT 2000–2006 : Mednarodnost avtorjev / razli~ni avtorji Leto Slovenija, % Tujina, % 2000 85,06 14,94 2001 85,14 14,86 2002 80,10 19,90 2003 73,20 26,80 2004 62,15 37,85 2005 69,72 30,28 2006 52,40 47,60 N. JAMAR, J. JAMAR: ZGODOVINA SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE Materiali in tehnologije / Materials and technology 41 (2007) 1, 13–19 17 Tabela 7: MIT 2000–2006 : Vsebinski pregled ~lankov Podro~je 2000 2001 2002 2003 2004 2005 2006 Kovinski materiali 51,90 68,06 71,85 67,15 71,67 70,00 68,20 Anorganski materiali 31,64 11,11 12,65 7,45 11,95 23,30 9,10 Vakuumska tehnika 8,90 12,50 7,05 10,45 7,45 0,00 4,55 Polimeri 6,30 6,94 7,05 3,00 3,00 3,35 13,60 Gradbeni materiali 0,00 0,00 0,00 7,45 5,95 3,35 4,55 Informatika 1,26 0,00 1,40 0,00 0,00 0,00 0,00 Raziskovalna politika 0,00 1,39 0,00 0,00 0,00 0,00 0,00 Raziskave in razvoj 0,00 0,00 0,00 1,50 0,00 0,00 0,00 Standardizacija 0,00 0,00 0,00 1,50 0,00 0,00 0,00 Metodologija 0,00 0,00 0,00 1,50 0,00 0,00 0,00 Tabela 8: MIT 2000–2006 : Citiranje literature Leto [tevilo ~lankov z dolo~enim {tevilom citatov (%) 0 cit. 1–4 cit.5–9 cit. 10–14 cit. 15–19 cit. 20–29 cit. 30 in ve~ cit. 2000 1,27 15,19 39,24 26,58 8,86 7,59 1,27 2001 0,00 13,88 40,28 23,61 6,95 12,50 2,78 2002 0,00 11,30 33,80 28,15 12,70 11,25 2,80 2003 1,50 14,90 41,80 26,90 3,00 5,95 5,95 2004 1,50 10,45 43,25 22,35 14,95 6,00 1,50 2005 0,00 3,35 50,00 16,65 13,35 6,65 10,00 2006 0,00 18,18 34,10 22,72 13,63 4,54 6,81 Tabela 9: MIT 2000–2006 : Povpre~no {tevilo citatov na ~lanek Leto [t. citatov [t. ~lankov [t. ~lankov brez cit. [t. citatov/ ~lanek 2000 797 79 1 10,09 2001 807 72 0 11,20 2002 848 71 0 11,95 2003 775 67 1 11,55 2004 734 67 0 10,95 2005 530 30 0 18,30 2006 576 44 0 13,10 Statisti~ni pregled revije Materiali in tehnologije ka`e nekaj zanimivih ugotovitev: • {tevilo ~lankov upada: 79 ~lankov (leto 2000), 44 ~lankov (leto 2006) • {tevilo znanstvenih ~lankov se pove~uje v razmerju s strokovnimi ~lanki: 62 % (leto 2000), 86 % (leto 2006) • analiza jezika ~lankov ka`e, da se je ekstremno pove~alo {tevilo ~lankov, objavljenih v angle{kem jeziku: 15,19 % (leto 2000), 79,55 % (leto 2006) • poudarek je na timskem delu raziskovalcev: 2,81 avtorja na ~lanek (leto 2000), 3,34 avtorja na ~lanek (leto 2006) • mednarodnost avtorjev in povezovanje slovenskih avtorjev s tujimi se pove~uje: 14,94 % tujih avtorjev (leto 2000), 47,60 tujih avtorjev (leto 2006) • pove~uje se {tevilo citatov na ~lanek: 10,09 citatov na ~lanek (leto 2000), 13,10 citatov na ~lanek (leto 2006) Tabela 10: Pregled po letih izhajanja Letnik Leto Število zvezkov in {tevilk Znan- stveni in strokovni ~lanki Tehni~ne novice @ELEZARSKI ZBORNIK 1 1967 3 (3) 27 2 1968 4 (4) 25 3 1969 4 (4) 24 4 1970 4 (4) 25 5 1971 4 (4) 24 6 1972 4 (4) 21 7 1973 4 (4) 22 2 8 1974 4 (4) 22 3 9 1975 4 (4) 23 1 10 1976 4 (4) 18 4 11 1977 4 (4) 17 10 12 1978 4 (4) 14 3 13 1979 4 (4) 15 3 14 1980 3 (4 – 1 dvojna {tevilka) 22 4 15 1981 4 (4) 27 16 1982 4 (4) 15 2 17 1983 4 (4) 15 2 18 1984 4 (4) 17 2 19 1985 4 (4) 20 3 20 1986 4 (4) 12 4 21 1987 5 (5 – 1 bibliografija) 19 4 22 1988 4 (4) 18 2 23 1989 4 (4) 17 6 24 1990 4 (4) 22 4 25 1991 4 (4) 16 2 KOVINE ZLITINE TEHNOLOGIJE 26 1992 3 (4 – 1 dvojna {tevilka) 69 1 27 1993 3 (4 – 1 dvojna {tevilka) 58 5 28 1994 3 (4 – 1 dvojna {tevilka) 118 3 29 1995 3 (6 – 3 dvojna {tevilka) 124 30 1996 4 (6 – 2 dvojna {tevilka) 110 31 1997 5 (7 – 2 dvojna {t, 1 posebna {t.) 104 5 32 1998 4 (6 – 2 dvojna {tevilka) 107 4 33 1999 4 (6 – 2 dvojna {tevilka) 95 1 MATERIALI IN TEHNOLOGIJE 34 2000 4 (6 – 2 dvojna {tevilka) 75 3 35 2001 4 (6 – 2 dvojna {tevilka) 72 36 2002 4 (6 – 2 dvojna {tevilka) 69 2 37 2003 4 (6 – 2 dvojna {tevilka) 66 1 38 2004 5 (6 – 2 dvojna {t., 1 posebna {t.) 67 39 2005 5 (6 – 1 dvojna {tevilka) 30 40 2006 6(6) 44 1–40 1967–2006 160 (185) 1664 86 SKUPAJ 1750 V letnikih 1–40 (1967–2006) je iz{lo 160 zvezkov oz. 185 {tevilk revije vklju~no z dvojnimi {tevilkami, s 1664 znanstvenimi in strokovnimi ~lanki, 86 tehni~nimi novicami, skupaj 1750 objavljenimi prispevki. N. JAMAR, J. JAMAR: ZGODOVINA SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE 18 Materiali in tehnologije / Materials and technology 41 (2007) 1, 13–19 5 MATERIALI IN TEHNOLOGIJE / PRIHODNOST • Materiali in tehnologije so vodilna periodi~na publikacija za podro~je materialov v slovenskem prostoru, za kar se bo uredni{ki odbor trudil tudi v prihodnje. • [tevilo prispevkov v angle{kem jeziku naj bi se v prihodnje pove~alo, ~eprav se tu pojavlja dilema: "Kdo bo skrbel za slovensko tehni{ko besedo na podro~ju materialov, ~e bodo vsi prispevki angle{ki?" Torej bo treba najti kompromis, da bodo angle{ki ~lanki prevladujo~i, nekaj pa jih bo ostalo v sloven- skem jeziku, predvidoma bodo v sloven{~ini pred- vsem prispevki avtorjev, zaposlenih v industriji. Obstaja tudi mo`nost, da bi vse ~lanke prevedli v angle{~ino, kar pa bo te`ko izvedljivo zaradi previ- sokih stro{kov izdajanja periodi~ne publikacije. • Periodi~na publikacija Materiali in tehnologije obravnava podro~ja, kjer so slike mikrostruktur in diagrami zelo pomembni, zato se mora ohraniti ~im bolj{a kvaliteta tiskanja. • Uredni{ki odbor namerava pridobiti ve~ mednarodno priznanih avtorjev. • Pove~ati bi bilo treba citiranje periodi~ne publikacije Materiali in tehnologije v serijskih publikacijah z visokim dejavnikom vpliva. • Treba bi bilo poiskati podporo priznanih tujih strokovnjakov za uvrstitev periodi~ne publikacije Materiali in tehnologije v Science Citation Index. • Trajno in a`urno izdajanje elektronske oblike periodi~ne publikacije Materiali in tehnologije na najmanj sedaj dose- `enem kakovostnem nivoju. • Elektronska verzija periodi~ne publi- kacije Materiali in tehnologije naj bi za`ivela kot spletno mesto, kjer bi uporabnik poleg ~lankov periodi~ne publikacije v polnem tekstu na{el {e {tevilne druge servise s strokovnih podro~ij, ki jih periodi~na publikacija obsega (imenski katalog spletnih povezav, novice, zanimivosti za raziskovalce). • Serijsko publikacijo Materiali in tehnologije naj bi intenzivno vklju~evali v razvoj potencialnega skup- nega informacijskega servisa slovenskih znanstvenih in strokovnih publikacij. • Pridobitev dejavnika vpliva • ^lanki v reviji Materiali in tehnologije 2007/1 dalje bodo opremljeni z DOI (Digital Object Identifier) identifikatorji. V Sloveniji bo revija Materiali in tehnologije ena prvih, ki bo prevzela sistem za ozna~evanje avtorsko pravno za{~itenih del na internetu (DOI). • ^lanki revije Materiali in tehnologije od 2007/1 dalje bodo indeksirani tudi v: DOAJ (Directory of Open Access Journals) GOOGLE SCHOLAR SCIRUS • Leta 2007/2 bo iz{la posebna {tevilka revije Materiali in tehnologije. Objavljena bo Bibliografija ~lankov 1967–2006. Ob tej prilo`nosti bo izdan tudi po{tni `ig : 40 let izdajanja serijske publikacije Materiali in tehnologije. 6 LITERATURA 1 N. Jamar, Bibliometrijsko-bibliografska primerjava znanstvene serijske publikacije Materiali in tehno- logije (2000) in Materials Science and Technology (2000) : diplomsko delo, [N. Jamar], Jesenice 2001 2 M. Pu{nik: Elektronska oblika revije Materiali in tehnologije, Vloga specialnih knji`nic pri pospe- {evanju dru`benega in gospodarskega razvoja. Izgradnja knji`ni~nih zbirk: pridobivanje in izlo~anje gradiva: zbornik referatov, Ljubljana, Narodna in univerzitetna knji`nica, 2000, 163–172 N. JAMAR, J. JAMAR: ZGODOVINA SERIJSKE PUBLIKACIJE MATERIALI IN TEHNOLOGIJE Materiali in tehnologije / Materials and technology 41 (2007) 1, 13–19 19 D. ]UR^IJA, I. MAMUZI]: THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS ... THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS DURING METAL DRAWING TEORETI^NI IZRA^UN DEBELINE PLASTI MAZIVA PRI VLE^ENJU KOVIN Du{an ]ur~ija, Ilija Mamuzi} University of Zagreb, Faculty of Metallurgy, 44103 Sisak, Croatia plutonijanac21@net.hr Prejem rokopisa – received: 2005-09-15; sprejem za objavo – accepted for publication: 2006-10-25 The calculation of the lubricant-layer thickness using a fluid-mechanics approach is shown for the case of the cold drawing of metals. Examples of the calculation for a solid lubricant layer and a different geometry of the die entering angle are shown. The calculation of the effect of inertial force with a high drawing speed on the lubricant-layer thickness is also presented. Key words: lubrication, Reynolds equation, mathematical modelling, Couett flowing, lubricant inertia Predstavljen je izra~un debeline plasti maziva je za vle~enje kovin na podlagi mehanike fluidov in primeri izra~una za trdno mazivo ter razli~no geometrijo vhoda v matrico. Predstavljen je tudi primer izra~una vpliva sile vztrajnosti na debelino mazivne plasti pri veliki hitrosti vle~enja. Klju~ne besede: mazanje, Reynoldsova ena~ba, matemati~no modeliranje, Couettov tok, inercija maziva 1 INTRODUCTION During the cold working of metals the presence of a lubricant on the surface ensures a lower extrusion force, less die wear and a reduction in the energy consumed1. The lubricant layer enables a greater per-pass reduction, a better surface quality and an increase in the operational stability of working devices2,3. It also increases the drawing speed by 50 % and the yield by 20 %3. In the drawing process for low and middle carbon steels, expensive industrial lubricants are substituted with soap powders4. The functional quality of the lubricants for drawing depends on: • the metal drawing temperature (thermal decompo- sition lowers the lubricant capacity and the antifric- tion properties), • the adhesive force to the covered metal surface, • the resistance to its expulsion from the deformation area, • the corrosion properties. Furthermore, the lubricant should be free of com- pounds that have a harmful effect on human skin, an unpleasant smell or a low flash point. For metal extrusion and drawing the following lubricants are used: • solid lubricants derived from animals, such as cattle and sheep’s tallow and synthetic powders, • liquid lubricants (machine oils and plant fats), • emulsion oils and emulsions, • glass lubricants5. For wire drawing the following lubricants are used: • powders of calcium and sodium soaps with the addition of molybdenum disulfide powder, • mineral oils, • emulsions based on flour, soap and sulphuric acid, • water dispersions of colloidal graphite. For the drawing of tubes with a non-circular profile an iodine solution in dibutylphtalate is used as a lubricant. After working, the lubricant residue is removed by washing in hot water, and the tubes are passivated in a water solution of calcined soda and trisodiumphophate6. This lubricant is deposited on a phosphate base with the immersion of tubes in the solution7 at a temperature of 70 °C to 90 °C. Also, the combined processes of the deposition of phosphate and lubricant were developed, and an improvement to the wetting angle was achieved by combining zinc phosphate and sodium soap in the water solution 8. The immersion time was 5 min to 10 min. With longer immersion times the technological properties of the solution are impaired because of the reaction: 6R0Na + Zn3(Po4)2 →3R02Zn + 2Na3PO4 (1) where R0 is the radical of the fatty acid. Also, the following reactions can occur: 2C17H35COOONa + H2SO4 → → 2C17H35COOH + Na2SO4 (2) R02Zn + H2SO4 → 2R0N + ZnSO4 (3) The stability of the solution is increased with the addition of a solution of caustic of soda with a pH ≈ 8. For the drawing of silver and precious-metal alloys paraffin wax and other waxes are used. Materiali in tehnologije / Materials and technology 41 (2007) 1, 21–27 21 UDK 621.778:519.8 ISSN 1580-2949 Review scientific article/Pregledni znanstveni ~lanek MTAEC9, 41(1)21(2007) 2 FLUID MECHANICS DURING LUBRICANT DRAWING 2.1 Calculation of the layer thickness for a liquid lubri- cant For this calculation, Pradtl adapted the Reynolds hydrodynamic equation9, 9/1, 9/2 and the solution dp/dx = 6 µv0 (h0 – h)/h 3 (4) is used for the calculation of the lubricant layer thick- ness. In the equation the inertial forces are neglected and the lubricant is treated as a Newtonian fluid10. Furthermore, the absence of any effect of external forces, the constant pressure over the section of the metal and the large ratio of curvature of the metals surface over the lubricant layer thickness are assumed11. The tool (matrix) geometry has a strong influence on the drawing process12. A scheme of the drawing with the lubricant corresponding to Equation (4) is shown in Figure 1. The dynamic viscosity of the lubricant depends on the pressure according to the Barussa13 law: η = η 0 exp (γp) For a linear change of shape in the matrix gap Ψ in Figure 1, the lubricant layer thickness (height) is: h = h0 – x tanα (5) The change of pressure in the lubricant layer is: ∆p = – (1/γ) ln[1 – 3µ0 γ v0(2 – h0/h)/h tan α] (6) For p = p0 and h = h0, the lubricant layer height (thickness) in the entry gap of the deformation zone is deduced as: h0 = (3µ0γv0)/[(1 – exp(–γp0)] tan α] (7) This solution was developed by Mizuno1 and later confirmed by Grudev and Kolmogorov13,14. Also, the solution can be used: h0v = (9µ0γv0)/[4(1 – exp(–γpv)] tan α] (8) where pv = σt0 – σ0 and σt0 = 1.15 σt (9) The hydrodynamic friction was first investigated by Kameron,15 and his findings were later confirmed by Christopherson and Naylor15/1,15/2, 15/3. In the modified scheme of die drawing16 in Figure 2 the Descartes system is shifted17 in comparison to Figure 1. For the same die, the Descartes system can also be placed according to Figure 318. For Figure 3 the Reynolds equation written in cylin- drical coordinates is: 1/r[∂/∂r(r∂vz/∂r)] = (1/µ) ∂p/∂z (10) ∂p/∂r = 0 (11) According to Figure 2 and assuming z = z0, the maximal pressure in the lubricant layer is obtained with the solution of Equation (10) for the proper boundary conditions: pmax = – 6µu{1–2ε0/(Rw–a)[1– ε0/2(Rw–a)]}/ /Tε0 : Rw = tanαLp=TLp (12) By analogy, the maximal pressure in the lubricant layer according to Figure 3 is: pmax= – (6µu) [1–z0/lb] 2 /(Tt–Top)∆ : z0(Tt–Top) = ∆; Tt–Top = tan α1 – tan α (13) The solutions according to Figure 2 and 3 have some common factors. The lubricant’s rheological D. ]UR^IJA, I. MAMUZI]: THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS ... 22 Materiali in tehnologije / Materials and technology 41 (2007) 1, 21–27 Figure 3: Scheme of drawing for the case of metal and die surfaces forming the lubricant wedge Slika 3: Shema vle~enja za primer, ko povr{ini kovine in matrice oblikujeta klinasti sloj maziva Figure 1: Scheme of die drawing with lubricant Slika 1: Shema vle~enja z mazivom Figure 2: Modified scheme of die drawing with lubricant Slika 2: Modificirana shema vle~enja z mazivom skozi matrico properties are characterized by the dynamic viscosity, µ, the kinematics with the drawing speed, v, the shape of the die with the tangent (α) of the angle of the lubricant layer, Tt–Top, and the thickness of the lubricant layer, ε0 and ∆. The processing is isothermal and the effect of temperature on the lubricant viscosity can be considered to be included in the calculation of Barussa’s equation. The drawing scheme19 for the drawing with a die of more complex design is shown in Figure 4. In the Descartes system the hydrodynamic lubri- cation is described with the simplified Reynolds differential equation: ∂p/∂x = µ ∂2vx /∂y2 (14) ∂p/∂y = 0 (15) With the boundary conditions: vxy=0 = v0 + ∆v(x/lp)2 vx½y=h = h0 – x tan α = 0 (16) For the simplification of the analysis the die shown in Figure 5 is separated into two parts relative to the line A-A and the ordinate 0 – y in Figure 5B is the section line A –A in Figure 4A. The pressure gradient in the lubricant layer according to Figure 5A is: ∂p/∂x = 6µ {[v0 + ∆v(x/lp)2] (h0 – xtanα*) – 2v1h2}/ (h0 – xtan α*) 3 (17) By analogy, the gradient of the pressure for the scheme in Figure 5B is deduced by considering the boundary conditions: vxy=0 = v1 vxy=h1 = 0 ∂p/∂x = 6µv1(h1 – 2h2)/h13 (18) It is sufficient to know the solution of the differential equation for one side of the line A-A because both sides are related with the equation: h2 = h1/2 + h1 3 [1 – exp(–γp0)]/(12µ0γv1lK) (19) The effect of inertial forces in the drawing processes is described by the equation: ∂p/∂x = 6µv0/h2 +C1µ/h3 + + [tan α ρ/120h3](16v0 2h2 – C1 2) (20) with C1 = k/2 – [k2/4 + 2v0h0(8v0h0 + 3k)]1/2 (21) and k = 120ν/tan α (22) The lubricant inertia forces20 increase with the drawing angle and the drawing speed and decrease with a greater dynamic viscosity of the lubricant. Besides the presented solutions of the differential equations, mathematical modelling is also applied to deduce the lubricant layer thickness21, especially for rough surfaces22. The following four functions j must be considered for the correct calculation: ε/Ras = 7,72·10 -2 ϕ1(Rapop) ϕ2(Rauz) ϕ3(stuz) ϕ4(stpop) (23) where Ras is the average roughness, Rapop and Rauz are the longitudinal and transverse average roughness, and stuz and stpop are the roughness reference length. It is assumed that the anisotropy of the micro-relief does not affect the wear for a liquid lubricant. Empirical investigations have shown for soap powders that the ratio ε/Ras has values in the range 0.4 to 12.7 and 1.7 to 3.2 for the industrial oil I-8A, according to the Russian standard. These figures show that the industrial oil ensures a better regime of liquid lubrication and friction if the surface roughness is greater than the lubricant layer thickness, ε, and the orientation of the roughness affects the frictional force. D. ]UR^IJA, I. MAMUZI]: THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS ... Materiali in tehnologije / Materials and technology 41 (2007) 1, 21–27 23 (A) (B) Figure 5: Two sections of Figure 4: a) Linear gap for lubricant flow, b) Square gap for lubricant flow Slika 5: Dva dela slike 4 Figure 4: Drawing scheme for a complex die Slika 4: Shema vle~enja skozi kompleksno votlico 2.2 Calculation for a solid lubricant According Figure 6, the distribution of the tangential forces9/2 in a solid lubricant can be calculated from the solution of the equation for scheme I in Figure 6: τ1 = –τ0 – dp/dx(h2–y) (24) In the equation it is assumed that the lubricant conforms to the rheological law for a plastic sub- stance9/2,9/3: τ = τ0 + K |γ0|m–1 · γ0 (25) The distribution of the lubricant flow speed for case II conforms to the equation22/1: v h y c K p x c c = − +     +( )2 1 1 1 d d (26) The flow of solid lubricant shown in Figure 6 for a cold drawn tube is similar to the flow of fluid in between two parallel plates, known as Couette flow. For the calculation of the lubricant layer the thickness in the entry section of the deformation zone Kolmogorova and [evljakova23/1 devised the following analytical solution of Equation (26) assuming that, according to Figure 6, above the height h1 the lubricant is a cooling liquid and below it is a solid lubricant: –K(1––h1)[ –h 2 2 (3+3–h1–2 –h2)+ –K(1––h1) 3] – (27) –2δ〈3–q[–h 2 2 ––K(1––h1) 2]––h 2 3 +–K(1––h1) 2(2+–h1)〉 = 0 2[2–q–h 2 2 (3–h1– –h2)+ –K–h1(1– –h1) 3––h1 –h 2 3 ]· ·[–K(1––h10)+ –h10]– –h10 –h0·[2 –K(1––h10)+ –h10]· (28a) ·[–h 2 2 (3+3–h1–2 –h2)+ –K(1––h1) 3] = 0 2(1––h1)〈–q[3–h 2 2 +–K(1––h1) 2]––K–h1(1– –h1) 2––h 2 3 〉· ·[–K(1––h10)+ –h10]– –h0 –K(1––h10) 2· (28b) ·[–h 2 2 (3+3–h1–2 –h2)+ –K(1––h1) 3] = 0 With – q q v h = 0 ; – h h h1 1= ; – h h h2 2= ; – h h h0 0= ; – h h h10 10= ; – K K= µ ; δ τ = Kv h 0 0 The solution for the case of the solid lubricant according to schemeI in Figure 6 is: [ ]2 1 1 22 1 1 1 12 2 12 1 21 1 c c c z c c h h h h h h + − − − − − −− + − + − − + −( ) (σ σ λ 12 2 − ⋅)a ·( ) ( )2 021 12 2 21 2 12 21 122 2 2− + − = − − − − − −h h h h h ha a aδ λ (28c) [ ]2 1 1 2 1 1 2 2 2 2 1 12 12 c c c c z c c c h h h h h + + + − + + +− + − + − + − −( ) + − + − − − −− − − + − − −σ δ λ( ) ( ) ( )(q h h h h h hz c a1 12 1 21 1 12 21 12 2 11 − − +)h a12 2 + − ⋅ =− − − − −δ λ2 21 2 12 21 1 122 1 0( )h h h h h a a q q v h − = 0 ; σ τ =       v h K c 0 0 ; h h h1 1− = ; h h h2 2= ; λ τ τ1 0 1= s ; λ τ τ2 0 2= s ; δ τ 0 1 1 1 2 = − + b K k h c z a n n ; δ τ 0 2 2 1 2 = − + b K k h c z a n n h h h12 1 2 − − −= − ; h h h21 1 2 − − −= + ; z a a c= + + −1 1 2 (28d) In modern investigations of the plastic working of metals and the use of lubricants tribological principles are increasingly used24. Frequently, emulsions are used in combination with solid lubricants25. Also, the effects of decorative26 and corrosion-protection coatings are investigated using fluid-mechanics principles. Of special practical importance is the fast development of cold drawing27 and, as shown in this study, improvements are looked for in suitable solutions of basic fluid-mechanics equations and mathematical modelling28 in cases when adequate solutions for the basic equations are not yet found. Polymer lubricants are being introduced because of the possibility to tailor their properties29 and because high-speed wire drawing30 is increasingly being used. With the development of new lubricants, special care should be given to the ecology of use and to their biological decomposition processes31. 2.3 Examples of calculations The drawing scheme in Figure 2 makes it possible to model the matrix entry gap and select a determined layer thickness eA in the gap Ψ ahead of e0, the starting section of the metal deformation. In Table 1 an example of a calculation is given for the case of the gap angle a = 0.02 rad and the value of the technological parameter: A = (1 – exp(–γp0))/6µγv0 = 1965512 m –1 (29) The lubricant layer thickness in the die gap is cal- culated according to Equation (5). If the geometry of the enter gap Ψ, and the geometry of the die opening according to Figure 5B is modelled assuming the cubic polynomial: ε(x) = ε0 – ax + x 2/2RM – ax 3/2R2M (30) D. ]UR^IJA, I. MAMUZI]: THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS ... 24 Materiali in tehnologije / Materials and technology 41 (2007) 1, 21–27 Figure 6: Scheme of the flowing of solid lubricant during cold drawing Slika 6: Shema toka trdnega maziva pri hladnem vle~enju With RM = 0.2 m, α = 0.2 rad and the technological parameter according to Equation (29) and Ψ deduced as a function of vo, the curve in Figure 7 is obtained. The curve series 1 is the solution of Equation (18), while the curve Poly (series 1) is obtained by using the interpolation of the polynomial (30). Table 1: Effect of the matrix gap opening Ψ (possible entry lubricant layer thickness εA) on ε0 (lubricant layer thickness at the start of the plastic deformation) Tabela 1: Vpliv oblike odprtine matrice Ψ (mo`na debelina plasti maziva εA) na ε0 (debelina plasti maziva na za~etku plasti~ne defor- macije) εA/m ε0/m 1.26E-05 9.98E-06 1.56E-05 1.17E-05 2.02E-05 1.41E-05 4.54E-05 2.25E-05 5.55E-05 2.45E-05 9.75E-05 2.92E-05 1.25E-04 3.07E-05 5.48E-04 3.48E-05 7.25E-03 3.54E-05 9.25E-03 3.54E-05 0.01 3.54E-05 If the lubricant is in excess ahead of the matrix gap entry section, as in Figure 1, there is no influence of εA on ε0. However, if εA is lowered below 5.48E-4 m, ε0 will also be lowered significantly. The influence of εA on ε0 commences for a critical entry gap size. This is shown, for a drawing angle limited to 0.02 rad in Figure 7. As it is critical, the enter gap Ψ is assumed, for which the value εA lowers ε0 by about 5 %. The increase of the drawing speed shifts the critical gap size to greater values of εA and, for this reason, the effect of drawing speed is greater for smaller drawing angles. For the correct modelling of the entering gap size of the drawing die, good results were achieved using Equation (5). For an optimal modelling radius, the effect of εA on ε0 is lower. In other words, for a constant εA, ε0 will be lowered more for a smaller drawing angle, while the grating of the lubricant will be greater. In Figure 8 the effect of the inertia index is shown for the initial section of the metal deformation zone as the solution of equations (20) and (18), with the dependence on the dynamic viscosity for a liquid lubricant and the drawing speed vo. The index of the inertia increases with the increase of the drawing speed and the lowering of the lubricant’s dynamic viscosity. For η = 1 P, the index of the inertia is negligible, as established by the previously cited authors, G. L. Kol- mogorov, V. L. Kolmogorov, V. I. Mele{ko, V. L. Mazur and others. D. ]UR^IJA, I. MAMUZI]: THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS ... Materiali in tehnologije / Materials and technology 41 (2007) 1, 21–27 25 Figure 8: Effect of drawing speed on the index of inertia of the lubricant Slika 8: Vpliv hitrosti vle~enja na indeks vztrajnosti maziva v y xx C ri tic al di e ga p, Drawing speed, Figure 7: Effect of the drawing speed on the critical size of Ψ (section of change of ε0 by 5 %) Slika 7: Vpliv hitrosti vle~enja na kriti~no velikost Ψ (prerez, ker se ε0 spremeni za 5 %) Figure 9: Calculated distribution of the speed of two liquid lubricants in the tube shaped entry die gap according to Equations (28a) and (28b) for v0 = 16 m/s Slika 9: Izra~unana porazdelitev hitrosti po ena~bah (28a) in (28b) v cevnem vhodu votlice za dve teko~i mazivi In the case of the calculation for two emulsions with a different volume density and assuming –K = 10; d = 2.05; –q = 0.5; –h1 = 0.9, the results –h2 = 0.7251, –h0 = 0.4529, –h10 = 0.8759 were obtained,23 in good agreement with earlier data in ref.I. The lubricant speed at the level h1 in Figure 6 is of 0.41 v0. The results of these calculations are in good agreement with calculations based on Equations (28a) and (28b) given in several references for the case of two liquid lubricants of different specific density separated at the height –h1, as shown approxi- mately in Figure 9. In Table 2 the results of the calculation for a fat lubricant are shown as a solution of the Equations (28c) and (28d) for the conditions equal to those in23/1,23/2: s1 = 0; s2 = 0; m = 1; c = 1; z = 2; a1 = a2 = 0. Table 2: Calculations for a fat lubricant and total lubricant sticking Tabela 2: Izra~un na trdno mazivo (mast) in popolno oprijetost maziva δ h h1 2 − −− 7 0.686296 – 0.641544 = 0.044752 6 0.68923 – 0.637575 = 0.0516 5 0.693 – 0.632 = 0.061 4.5 0.696097 – 0.628717 = 0.06734 4 0.699336 – 0.624449 = 0.0748 3 0.708732 – 0.612105 = 0.0966 2.5 0.71572 – 0.60273 = 0.11299 2 0.72556 – 0.589477 = 0.1361 According to these results, the thickness of the solid lubricant layer 3 in Figure 6 decreases with the increase of δ. 3 CONCLUSION In the article a short survey of the theory of the application of lubricants for the cold-drawing processes of metals is given. The dies are presented in different coordinate systems with the aim of more easily finding the analytical solutions for the basic fluid mechanics differential equations necessary for the calculation of the lubricant-layer thickness. The solutions of the basic equations are shown for liquid and solid lubricants, and the combination of both, and the calculation of the change of lubricant layer thickness in the section of the deformation zone in the entry section of the working die. For the case of the laminar flow of non-compressible lubricants, the analytical solutions of Reynolds diffe- rential equations give acceptable results. For the case of insufficiently lubricated surfaces with a greater roughness and hydrodynamic lubrication, it is not yet possible to use analytical solutions of Reynolds equations, and for this reason, mathematical modelling is used32. Also, the effect of lubricant inertia forces is considered for high drawing speeds used to increase the angle significantly 33. Symbols not explained in the text Symbol Unity Significance A m–1 Technological parameter pH number Negative log of the concentration of hydrogen ions R0 – Radical of fat acids Rw, RM m Parameter of the deformation zone and die radius p, p0 Pa Pressure in the lubricant layer and in the entering section of the deformation zone x, y, z, r m Descartes coordinates and cylindrical coordinates µ, µ0 Pa s Lubricant dynamic viscosity for the pressures p and p0 v0, vz m/s Metal drawing speed with movement along the longitudinal axis z h0, h m Lubricant thickness on the entering section of the deformation zone and in the die gap γ m2/N Piezo-coefficient of the lubricant viscosity exp, tan 2.718... Basis of the natural log and tangent of the metal-drawing die hov m Lubricant layer thickness determined using the variation calculation σt0, σ0 N/m2 Metal yield stress and tensile strength ν m2/s Kinematic viscosity q m2/s Lubricant volume consumption per length of the drawn metal ρ kg/m3 Fluid density εA m Lubricant layer thickness ahead of the die entry gap α, α∗ rad Drawing angle (a∗ is the rotated angle related to a) Ψ m Die gap that can be filled with lubricant (difference between the diameter of the die opening and the sum of the rod + the lubricant thickness a m Initial tube size b m b = a + eA vz, u m/s Speed along the longitudinal axis z and the metal drawing speed z0 m Distance of the lubricant layer with the thickness D from the initial point lp, lK m Design characteristics of the die in the deformation zone τ Pa Tangential stress τ0, K, m Grease rheological constants γ0 Gliding speed ∆ m Lubricant layer thickness in Figure 3 θ m Ordinate of rupture of the lubricant wedge Translation from Croatian: prof. dr. Franc Vodopivec 4 REFERENCES 1 Pe{i} M., Milenkovi} V., Hladno izvla~enje `ica, {ipki i cevi, Tehni~ka knjiga, Beograd 1965, 191–192 2 Mol~anov M. M, Nosov V. A., Romanec V. A., Metallurg 26 (1981) 7, 38–40 D. ]UR^IJA, I. MAMUZI]: THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS ... 26 Materiali in tehnologije / Materials and technology 41 (2007) 1, 21–27 3 ^ekmarev A. P., Mele{ko V. I., Mazur V. L., Stalj 39 (1969) 12, 1108–1111 4 Tra~ak S. V., Ka~ur V. I., Hohlova M. P., Stalj 49 (1979) 10, 789–791 5 Mamuzi} I., Drujan V. M., Teorija materijali tehnologija ~eli~nih cijevi, Hrvatsko metalur{ko dru{tvo, Zagreb, 1996, 214 6 Jakovliev V. V., Semeljnickij B. L., Baljavin V. A., Stalj 42 (1972) 6, 82 7 [tanko V. M., Novikov V. G., Lipkin Ja. N., Stalj 41 (1971) 10, 933 8 Greben{}ikova A. Z., Stalj 29 (1959) 10, 932 9 Ivu{i} V., Tribologija, HMDT ISBN 96038-3-8, Zagreb 1998 Kolmogorov G. L., Gidrodinami~eskaja smazka pri obrabotke metallov davlenniem, Moskva, Metallurgija 1986, 168 Kolmogorov V. L., Orlov V. L., Kolmogorov G. L., Gidrodinami- ~eskaja poda~a smazki, Moskva, Metallurgija 1975, 256 10 Zikov Ju. S., Izvestija ^ernaja metallurgija 30 (1987) 4, 52–53 11 Zikov Ju. S., Teorija prokati, teoreti~eskie problemi prokatnogo proizvodstva, Metallurgija, Moskva 1975 12 Iharo{ B., Metalurgija 11 (1972) 3–4, 3 Iharo{ B., Metalurgija 12 (1973) 1, 31 Iharo{ B., Metalurgija 12 (1973) 2, 21 13 Kolmogorov G. L., Izveszija ^ernaja metallurgija 26 (1983) 10, 68 14 Mizuno T., Japon J. Soc. Techn. Plast 7 (1966) 6, 383–389 15 Christopherson D. G., Naylor H., Wire Ind., 22 (1955) 7, 260 Christopheron D. G., Naylor H., Proc. Inst. Mech. Engrs., (1955) 8, 169 Christopheron D. G., Naylor H., Wire Production 4 (1955) 5 16 Nedovizij I. N., Trudi konferenci po metiznomu proizvodstve 15–21 marta 1959. CBTI ^eljabinskogo sovnarhoza 17 Perlin I. L., [apiro V. Ja., [koljnikov E. L., Izvestija Cvetnaja metallurgija 6 (1963) 5, 130–137 18 Kolmogorov V. L., Sb., In`inernie metodi ras~eta tehnologi~eskih procesov obrabotki metallov davleniem, Metallurgizdat, Sverdlovsk, 1961 19 Kolmogorov G. L., Izvestija ^ernaja metallurgija 16 (1973) 8, 76 20 Kolmogorov G. L., Sjanov S. P., Izvestija ^ernaja metallurgija 30 (1987) 10, 35 21 Jurkovi} M., Hrie{ik A., Jurkovi} Z., Vitez I., Metalurgija 37 (1988) 3, 159–163 22 Grudev A. P., Dol`anskij A. M., Sigalov B. Ju., Kovalev V. S., Izve- stija ^ernaja metallurgija 31 (1988) 2, 52–54 23 [evljakov V. Ju., Kolmogorov G. L., Izvsetija ^ernaja metallurgija 31 (1988) 10, 67–70 [evljakov V. Ju., Prevad~uk V. P., Izvestija ^ernaja metallurgija 31 (1988) 5, 61–65 Prevad~uk V. P., [evljakov V. Ju., Izvestija ^ernaja metallurgija 27 (1984) 11, 74–77 24 Kolmogorov V. L., Fedotov A. V., J. Mater. Process. Technol., 95 (1999) 1–3, 55–64 Kuznetsov S. A., Vinogradov S. I., Semenov S. Y., Graber E. A., Proizvod. Prokata July (1999) 7, 26–28 25 Belosevich V. K., Ionov S. M., Proizvod. Prokata August (1999) 8, 3–6 26 Mamuzi} I., Drujan V. M., Teorija materijali tehnologija ~eli~nih cijevi, Hrvatsko metalur{ko dru{tvo, Zagreb 1996, 444 Sukurai M., Hiraya A., Hashimoto S., Techn. Rev., 80 (1999), 71–77 27 Zaccone D. C., Bodnar J. J., Elko R. G., Grivna J. M., J. M. Trans. J. Mater. Manuf., 107 (1998), 26–24 Me D. M., Liu S. P., Zheng J. F., Met. Form. Technol. 20 (2002) 5, 29–32 Bao P., Cheu X. P., Jiany N. M., Met. Form. Technol. 20 (2002) 2, 8–10 Keun Y. T., Lee B. H., Wagoner R. H., J. Mater. Process. Technol. 130 (2002), 60–63 28 Liu Y. J., Tieu A. K., J. Mater. Process. Technol. 130 (2002), 202–207 Kim B. M., Kim D. H., Jeong D. J., Key Eng. Mater., (2003), 233–236, (Part I) 377–382 29 Blanchourd C. R., Crowinshield R. D., Johanson T. S., Laurent M. P., Wear, 255 (2003) 1, 780–784 30 Artemov V. V., Demyanova V. I., Frolov V. I., Grunko B. N., Stal 73 (2003) 5, 59–63 31 Kr`an B., Vi`intin J., Biorazgradivo mazivo za duboko izvla~enje na osnovu biljnih ulja, XXXVI Stru~no-znanstveni simpozij, Maziva 2003, Rovinj, Croatia, 22–24. 10. 2003 32 Kolmogorov V. L., Computers and Structures, 44 (1992) 1–2, 419–424 33 ]ur~ija D., Mamuzi} I., Metalurgija 44 (2005) 2, 113–117 D. ]UR^IJA, I. MAMUZI]: THEORETICAL CALCULATION OF THE LUBRICATION-LAYER THICKNESS ... Materiali in tehnologije / Materials and technology 41 (2007) 1, 21–27 27 B. [U[TAR[I^ ET AL.: THE NOTCH EFFECT ON THE FATIGUE STRENGTH OF 51CrV4Mo SPRING STEEL THE NOTCH EFFECT ON THE FATIGUE STRENGTH OF 51CrV4Mo SPRING STEEL VPLIV ZAREZE NA TRAJNO NIHAJNO TRDNOST VZMETNEGA JEKLA 51CrV4Mo Borivoj [u{tar{i~1, Bojan Sen~i~2, Boris Arzen{ek1, Philippe Jodin3 1Institute of Metals and Technology, Lepi pot 11, 10000 Ljubljana, Slovenia 2[tore Steel, @elezarska cesta 3, 3220 [tore, Slovenia 3ENIM, University of Metz, France borivoj.sustarsic@imt.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-11-27 Standardized and technological testing of the fatigue strength of spring steels is a complex and time-consuming, and therefore expensive, task. The determination of Woehler’s (S-N) curves using a resonant pulsator is relatively fast and simple. In this investigation the test is performed using standard Charpy V-notched specimens with the aim to obtain an appropriate comparison with the results of technological tests on real springs. The steel springs were made of high-quality flat steel with a smooth shot-peened surface, free of notches and with no large microstructure or surface defects. The performed investigation can help with quality control and improvements to the properties of the steel springs. The paper presents a determination of the fatigue strength of 51CrV4Mo spring steel using a resonant pulsator. The notch effect, the influence of the microstructure and the surface quality are also discussed. Keywords: fatigue strength, S-N curves, notch effect, resonant pulsator, spring steel Standardizirani postopki dolo~evanja trajne nihajne trdnosti vzmetnih jekel in tehnolo{ko preizku{anje vzmeti so zahtevni, dragi in dolgotrajni. Dolo~evanje Woehlerjevih (S-N) krivulj z resonan~nim pulzatorjem je relativno hitro in enostavno. V pri~ujo~i raziskavi smo izdelali S-N-krivulje vzmetnega jekla 51CrVMo4 na standardnih Charpyjevih preizku{ancih z V-zarezo zato, da bi ugotovili, ali je mo`na ustrezna primerjava z rezultati, dobljenimi z dragim in zamudnim dinami~nim preizku{anjem vzmeti. Listnate vzmeti razli~nih oblik in dimenzij se izdelujejo iz plo{~atih profilov visokokvalitetnega vzmetnega jekla, ki imajo po izdelavi gladko peskano povr{ino brez ve~jih geometrijskih ali mikrostrukturnih napak. Zato, da bi lahko ocenili pravo trajno nihajno trdnost preiskovanega jekla, smo morali upo{tevati vpliv koncentracije napetosti, ki nastaja, ker imajo preizku{anci V-zarezo. Uvajanje te preiskovalne metode v redno kontrolo kvalitete bi lahko pripomoglo k izbolj{anju kvalitete in razvoju novih vrst vzmetnih jekel. V ~lanku predstavljamo dolo~evanje trajne nihajne trdnosti vzmetnega jekla 51CrV4Mo z uporabo resonan~nega pulzatorja. Predstavljen je na~in vrednotenja vpliva geometrijske zareze na trajno nihajno trdnost, kakor tudi vpliv mikrostrukture in kvalitete povr{ine jekla. Klju~ne besede: trajna nihajna trdnost, S-N krivulje, vpliv zareze, resonan~ni pulzator, vzmetno jeklo 1 INTRODUCTION The [tore Steel plant is one of the largest European producers of spring steels for heavy-duty trucks and other automotive applications. Spring manufacturers use different types of spring steels in different strength levels, from 1300 MPa up to 1800 MPa. Parabolic mono-leaf springs are situated at the highest strength, quality and safety level, which is normally interesting for all spring steel producers. For the required high quality level the best spring steel with an appropriate fine- grained microstructure, without segregations and large inclusions, as well as surface defects is necessary. Generally, spring manufacturers produce springs from steel in the as-delivered (flat/round hot-rolled) condition. The springs are then heat treated and tested. It is a typical technological (structural) dynamic (fatigue) test, based on a statistical safety analysis, performed directly with the springs. A typical testing load is (760 ± 440) MPa for parabolic springs and (800 ± 650) MPa for high-quality springs in the frequency range 1–2 Hz. Also, some other additional mechanical investigations are usually performed, i.e., a determination of the Vickers or Rockwell hardness, a Charpy impact test and a standard tensile test. However, the fatigue testing of springs after manufacturing is a time-consuming and expensive task. It is also too late to provide information to the steel producer, who needs timely and appropriate information about the steel’s quality in the production from batch to batch. Standard fatigue-strength testing is performed on smooth cylindrical or flat specimens. This can be performed in the tension-compression, bend or torsion modes. It is also expensive and time-consuming work, acceptable as appropriate only for the research and development of new types of steels. Often, steel producers do not have the appropriate mechanical servo-hydraulic fatigue-testing machine. However, they need fast and reliable data about the produced spring steel prior to delivery. Therefore, alternative solutions are required. One of them is a determination of the fatigue bend strength on Charpy V-notched specimens with a high-frequency pulsator 1. Materiali in tehnologije / Materials and technology 41 (2007) 1, 29–34 29 UDK 539.42:669.14.018.252 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(1)29(2007) The fatigue strength depends on the loading mode (tension, bend etc.), the variable loading magnitude (amplitude, ratio R = Flower/Fupper or Mmin/Mmax), the shape of the dynamic cycle, the frequency, the testing conditions (temperature, atmosphere etc.), the surface roughness and the notch effects. The dynamic structural spring tests that simulate the spring’s real-load spectrum are the most reliable, but also the most expensive and time consuming task. The aim of this research was to analyze the possibility of assessing a real spring’s life and to transfer the results of high-frequency pulsator testing on the spring’s real behavior. The final quality of the manufactured spring does not depend only on the quality of the steel. It also depends significantly on the spring’s manufacturing procedure (hot forming, i.e., rolling, bending, punching, eye making), the final heat treatment and the shot peening. Therefore, high-quality steel does not necessarily mean a high-quality spring. The steel’s properties can be significantly degraded during the manufacturing of the spring if the spring’s manufacturing procedure is not properly carried out. However, the overall spring quality is evaluated on the basis of the final dynamic testing of samples with a definite statistical probability. The steel producer has to guarantee that the delivered spring steel has the appropriate quality. Therefore, it must possess its own well-documented in-process and final independent quality control, including dynamic testing to be able to define the phase in which the steel production is critical regarding the quality in the event of a customer complaint. In this paper the testing of the fatigue strength of the selected spring steel, 51CrV4Mo, with a resonant pulsator is presented. The notch effect, the influence of the microstructure and the surface quality are also considered. The results are compared with the dynamic testing of real commercial leaf springs made of the same steel quality. 2 DETERMINATION OF S-N CURVES WITH A HIGH-FREQUENCY PULSATOR The testing was performed with a Cracktronic 70 (Rumul, Switzerland) high-frequency pulsator 1 at the Institute of Metals and Technology, Ljubljana, Slovenia (Figure 1). It is based on the accommodated loading frequency for the investigated material (resonance). For this reason it is also called a resonant pulsator. It can serve for the simple fatigue of the specimen until its fracture or for the much more sophisticated monitoring of crack growth. In the latter case the specimen must be equipped with a transducer technology sensor (KRAK- gauges), which can determine the crack initiation and follow the crack growth based on the cracking of a thin foil adhered to the specimen. The sensor provides a DC-voltage output proportional to the crack length. This gauge method is appropriate for ductile structural steels, Al and Ti alloys, when the elastic deformation is followed by plastic yielding, and a steady transition from stable to unstable crack growth is expected. In the case of a hard and brittle material, such as tool, high-speed and spring steels, when the fracture only occurs after elastic deformation, with negligible yielding, crack initiation is connected with fast, sudden unstable crack propagation. In this case only the appropriate bending- moment ratio (R = Mmin/Mmax) should be selected for the applied Charpy V specimen and the number of cycles to its fracture should be recorded. Using this approach the so-called Woehler’s or S-N curve (stress S vs. number of cycles N) can be determined 2. The resonant pulsator can also serve for the formation of a fatigue crack of definite size (length) to produce precracked specimens for the determination of the fracture-mechanics parameters (plain-strain fracture toughness KIc, the J integral or the crack-opening displacement COD). The Cracktronic 70 high-frequency pulsator is designed for the dynamic bending of a standard Charpy V-notched (CVN) specimen (Figure 2). The variable bending moment is generated by an electromagnetically driven resonator with a maximum swing angle of 2° (± 1°). The maximum moment is 70 Nm (± 35 Nm) acting in the range of S = 2l = 40 mm. The resonant (working) frequency is approximately 180 Hz in the case of steel. The pulsator is connected to a personal computer (PC) and a Fractomat device, which serve for the set up, the data acquisition and the control of the loading conditions (Figure 1). The dimensions of the CVN specimens are: total length lt = 55 mm, width a = 10 mm, and height h = 8 mm. A standard V-notch with 2-mm depth, opening angle 45° and root radius 0.25 mm was applied (see Figure 2). The resistance Wx of a given cross-section is: W a h x = ⋅ = ⋅ 2 2 6 10 8 6 = 106.67 mm2 (1) B. [U[TAR[I^ ET AL.: THE NOTCH EFFECT ON THE FATIGUE STRENGTH OF 51CrV4Mo SPRING STEEL 30 Materiali in tehnologije / Materials and technology 41 (2007) 1, 29–34 Figure 1: Cracktronik 70 resonant pulsator with the equipment for set up, control, data acquisition, registration and recording of fatigue and crack-growth tests Slika 1: Resonan~ni pulzator Cracktronik 70 s pripadajo~o opremo za registracijo, prenos in obdelavo podatkov The net-bending stress for the applied dynamic moment is then: σ n x M W M a h = = ⋅ ⋅ dyn dyn6 2 (2) and the static moment is calculated according to: Mstat = [Mdyn + (R·Mdyn)]/2 (3) with the loading ratio R = Mmin/Mmax = 0.1 applied in the performed experiments. The corresponding ampli- tude is Ma: Ma = Mdyn + Mstat (4) For example, for the applied Mdyn= 60 Nm and R = 0.1 the static moment is Mstat = 33 Nm and the amplitude Ma = 27 Nm, respectively. Conversely, with moments one can express these with the nominal stresses: σdyn = 562.5 MPa, σstat = 309.4 MPa and σa = 253.1 MPa. The fatigue strength σf is the largest stress deviation for the stress amplitude value σa from a mean value σsr, for which the material can last for an infinitely long time (mandatory, more than 107 cycles) without plastic deformation: sf = σsr ± σa (5) Fatigue strength is dramatically reduced if the material contains a geometrical stress concentrator, such as a notch, a hole or a large reduction of the area. CVN specimens applied for testing the fracture toughness using the Cracktronic 70 have a sharp V notch. Therefore, it must be taken into consideration whether one can assess the real fracture toughness of the spring steel and the lifetime of the manufactured springs. However, it also necessary to consider the influence of metallurgical (inclusions, pores, decarburisation layer, residual stresses, segregations etc.) and mechanical factors (in-rolled scale, residuals of casting powder, surface roughness, hard white layer etc.), which can also act as stress concentrators and crack initiators, resulting in a drastic reduction of the fatigue strength. The ratio between the maximum σmax and nominal stress σn applied to the real structure is called the theoretical elastic stress concentration kt. It is also called the geometrical or shape factor: k t n = σ σ max (6) The theoretical calculations of kt are very complex, possible only for simple geometries, and can be found in the appropriate literature 7. Therefore, nowadays kt is calculated exclusively by the FEM for more complex geometries and loading configurations. The reduction of fracture toughness due to the notch is experimentally evaluated by a determination of the S-N curves of notched and un-notched specimens. The fracture- toughness reduction factor kf is then given by the ratio between the fracture toughness of un-notched σf and the notched specimens σfn: k f f fn = σ σ (7) It depends on the shape and the size of the notch, the material and the load configuration. Neuber 2 improved the calculation of the notch sensitivity by taking into consideration these factors with the following equation: k k r f f fn t= = + − + σ σ ρ 1 1 1 '/ (8) where ρ' is a material constant that depends on the material’s tensile strength and r is the radius of the notch tip. The material’s notch sensitivity during fatigue can then be finally expressed by the so-called notch-sensitivity factor q: q k k = − − f t 1 1 (9) 3 PREPARATION OF THE CVN SPECIMENS Standard CVN specimens (10 × 10 × 55) mm were cut out and machined from flat (90 × 32) mm spring steel, 51CrV4 type, in the as-delivered (hot-rolled) condition, with Rockwell hardness HRc ≈ 30 and tensile strength Rm ≈ 900 MPa. The fatigue of the V-notched strength with the Cracktronic 70 was determined in the as-delivered, and also in the as-heat-treated condition with the specimens machined in two ways: by rough milling only and with an additional fine grinding. A heat treatment corresponding to the material’s highest strength level of 1800 MPa was selected: austenitization 860 °C for 20 min, oil quenching and tempering at 350 °C for 60 min. The average values of the tensile proper- ties were as follows: tensile strength Rm = 1810 MPa, yield strength Rp0.2 = 1714 MPa, elongation A = 8 % and B. [U[TAR[I^ ET AL.: THE NOTCH EFFECT ON THE FATIGUE STRENGTH OF 51CrV4Mo SPRING STEEL Materiali in tehnologije / Materials and technology 41 (2007) 1, 29–34 31 a) b) Figure 2: Standard CVN specimen (a) and its positioning in the Cracktronik pulsator (b) Slika 2: Standardni Charpyjev preizku{anec z V-zarezo (a) in njegova namestitev v ~eljusti resonan~nega pulzatorja Cracktronik (b) reduction of area Z = 43 %. The Rockwell hardness was HRc ≈ 50 and the Charpy impact energy 8 J to 9 J. 4 RESULTS AND DISCUSSION Figure 3 shows the S-N curve of the investigated steel in the as-delivered condition. The surface of the specimens was only rough honed and not fine grinded. The crack initiation and the fracture of the specimens were clearly distinguished during the testing by the gradual drop of the working frequency. The notch fatigue strength is approximately 235 MPa. The obtained value is very low and almost four times lower than the tensile strength of steel in the as-delivered condition (approximately 900 MPa). Usually, the fatigue strength has to be 50–60 % of the tensile strength, and in this case it was only 26 %. This difference can be mainly attributed to the effect of the stress concentration caused by the V-notch. The next series of ten specimens was heat treated in the above-mentioned conditions. The heat treatment was performed before machining. However, the specimens were only rough honed and not fine grinded. They were then fatigued with the Cracktronic 70 and the S-N curve was determined. The obtained notched fatigue strength is extremely low (approximately 95 MPa), almost 20-times lower than the tensile strength of the heat-treated steel (approximately 1800 MPa). This is proof that, in addition to the notch effect, the surface quality (roughness) contributes significantly to the decrease of the fatigue strength. It is especially important if the samples are in the heat-treated condition, when a high strength level of the spring steel is obtained. The detrimental influence of the surface roughness on the fatigue strength is well known 2-5, but such a large influence was not expected. The SEM investigations revealed the formation of an oxidation/decarburisation layer during the heat treatment (Figure 4), indicating that the very low fatigue strength cannot be attributed only to the notch effect and the surface roughness, but also to this layer. In order to clarify the effect of this layer, the next ten specimens were machined with a supplement of 0.2 mm, which was removed by fine flat (surface roughness approximately Ra ≈ 0.3–0.5 µm and profile (V-notch) grinding after the heat treatment. In this way, the oxidation-decarburisation layer that was eventually formed during the heat treatment was removed. The next step was the determination of the S-N curve with the Cracktronic 70. Figure 5 shows the S-N curve of the investigated steel in the heat-treated condition, indicating the fatigue strength of about 310 MPa. The obtained value is still approximately six times lower than the tensile strength of the steel in the heat-treated condition, but at the expected level if the notch effect is considered. To better understand the effect of stress concentration caused by the notch on the fatigue strength a finite element method (FEM) was applied in this investigation to simulate three-point bending in the elastic loading regime. However, this is only a rough approximation to the real conditions of the experiment. The FEM simulation, performed by CASTEM 6, has shown that the net-stress concentration factor kt is between 3.8 and 3.9, depending on the number of nodes applied at the notch B. [U[TAR[I^ ET AL.: THE NOTCH EFFECT ON THE FATIGUE STRENGTH OF 51CrV4Mo SPRING STEEL 32 Materiali in tehnologije / Materials and technology 41 (2007) 1, 29–34 a b Figure 4: Micrographs of a heat-treated CVN specimen: a) SEM fracture surface in the root of the V-notch and the surface of the notched region, magnification 120 times, b) root of V-notch, visible in the cross-section under a light microscope, magnification 100 times Slika 4: Mikroskopska posnetka toplotno obdelanega CVN-preiz- ku{anca: a) SEM-preloma v korenu V-zareze in povr{ina podro~ja v zarezi; pove~ava 120-krat, b) koren V-zareze v prerezu, viden pod opti~nim mikroskopom: pove~ava 100-krat σ σ σ m a x Figure 3:Woehler’s curve of the investigated spring steel, 51CrV4, in the as-delivered condition. Slika 3: Woehlerjeva krivulja preiskovanega jekla 51CrV4 v izhod- nem (vro~e valjanem) stanju. root. It means that the maximum stress at the notch root is approximately 3.85-times larger than the mean value. This value of the stress-concentration factor is similar to an experimentally verified value for standard CVN specimens 7,8. If the experimentally obtained notch fatigue strength is multiplied by this factor one can predict the fatigue strength of a smooth (un-notched) specimen of spring steel: sf = kf · sfn » kt · σfn =3.85 · 310 = 1193.5 MPa (10) The performed dynamic testing of the manufactured springs at (760 ± 440) MPa and (800 ± 650) MPa (σf = 1200 MPa and 1450 MPa) and a frequency of 1 Hz showed that the springs last from 7.9 · 104 to 1.2 · 105 cycles and 4.0 ⋅ 104 to 6.8 · 104 cycles, respectively. Most frequently it was the second leaf of the springs near eyes or holes that was broken by fatigue. One can calculate from Figure 5 that the selected spring steel will fracture for this number of cycles if the notched material is exposed to a dynamic load from 312 MPa to 351 MPa. Taking into account the notch effect, this corresponds effectively from 1250 MPa to 1350 MPa, which agrees very well with the performed dynamic testing of the manufactured springs. For high-quality springs the re- quired fatigue fracture limit is from 2.25 · 105 to 5.5 · 105 cycles at a higher loading level (σt = 1450 MPa). This means that the steel quality has to be improved by approximately 20 %, to σfn = 375 MPa (see Figure 5). A relatively good agreement of the above calculations with the results of the structural testing of the real springs was obtained. This simple calculation did not take into consideration the influence of the material’s strength, the residual stresses, the size of the inclusions and other effects. Therefore, a better and more detailed analysis based on the FEM local-stress concept and extreme value statistics 9,10 will be performed in the future. 5 MICROSTRUCTURE INVESTIGATION AND FRACTOGRAPHY Microstructure investigations under light (LM) and scanning electron (SEM) microscopes were also performed. Standard metallographic specimens were made and the microstructures were observed at different magnifications in the rolling and perpendicular directions. Figures 6a and 6b show a typical ferrite-pearlite microstructure of the spring steel in the as-delivered condition. However, the steel has a fine structure of tempered martensite with clearly visible segregations of the main alloying elements (Cr and Mo) after the heat treatment (Figures 7a and 7b). Some sulphide (MnS), alumo-silicate and other hard inclusions were also found (Figure 7b). All these defects can significantly contribute to lower fatigue strength of the steel. Due to the significantly higher depth resolution the SEM is much more appropriate for observing the fractured surfaces than the LM. Figures 8a and 8b show SEM micrographs of typical fractured surfaces of the CVN specimens after fatigue testing with the Cracktronic 70 device. The final fracture is quasi-ductile. The fractured surfaces are striated due to the fatiguing of the material. The cracks also spread perpendicularly to the notch tip and are initiated on the larger hard particles (Figure 8b). B. [U[TAR[I^ ET AL.: THE NOTCH EFFECT ON THE FATIGUE STRENGTH OF 51CrV4Mo SPRING STEEL Materiali in tehnologije / Materials and technology 41 (2007) 1, 29–34 33 Figure 5:Woehler’s curve of the investigated spring steel, 51CrV4, in the as-heat-treated condition; fine grinded specimens Slika 5:Woehlerjeva krivulja preiskovanega vzmetnega jekla 51CrV4 v pobolj{anem stanju; fino bru{eni preizku{anci a b Figure 6: Microstructure of investigated spring steel, 51CrV4, in as-delivered condition: a) magnification 100 times and b) magnifi- cation 200 times; LM, etched in nital Slika 6: Mikrostruktura preiskovanega vzmetnega jekla 51CrV4 v vro~e valjanem stanju: a) pove~ava 100-krat in b) pove~ava 200-krat; opti~ni mikroskop, jedkano v nitalu 6 CONCLUSIONS The results of the performed investigations showed that it is possible to determine the fatigue strength of spring steels with a resonant pulsator using Charpy V test specimens. They must be properly prepared with a fine flat and profile grinding after the heat treatment. From the obtained S-N curves and the determined notched fatigue strength one can simply predict the real fatigue strength of the spring steel by the application of the corresponding stress-concentration factor. The significance of the notch and the surface roughness for the results is clearly demonstrated by the performed investigations. However, other defects, such as an oxidation/decarburisation layer, segregations and inclusions can also significantly decrease the fatigue strength of the steel and the manufactured spring. The influence of the segregations and the inclusions in this type of steel, as well as the influence of residual stresses caused by the machining and shot-peening of the springs will be analyzed and evaluated in the near future. 7 REFERENCES 1 Rumul: Operating Instructions, 7.0 kN.cm resonant testing machine Cracktronic, Russenberger Prüfmaschinen AG, CH, 1992 and web page: (http://www.rumul.ch/) 2 G. E. Dieter: Mechanical Metallurgy, Second and third Edition, McGraw-Hill Book Co., NY, 1976/1986 3 A. Kveder et al: Metalur{ki priro~nik, Tehni{ka zalo`ba Slovenije, Ljubljana, 1972 4 B. Kraut: Strojni{ki priro~nik, Tehni{ka knjiga Zagreb, 1964 5 G. Pluvinage, M. Gjonaj: Notch Effects in Fatigue and Fracture, NATO Science Series, Vol.11, 2001 6 CASTEM, FEM code, home page address: http://www-cast3m. cea.fr/cast3m/index.jsp 7 P. Jodin, C. Cera: Asymmetrical notches in plates, Mater. Tehnol., 37 (2003) 6, 341–346 8 F. Vodopivec, B. Arzen{ek, D. Kmeti~, J. V. Tuma: On the Charpy Fracturing Process, Mater. Tehnol., 37 (2003) 6, 317–326 9W. Eichlseder: Fatigue analysis by local stress concept based on finite element results, Computers and Structures, 80 (2002), 2109–2113 10 E. Joossens: Extreme Value Statistics: Second-Order Models and Applications to Metal Fatigue, Ph. D. Thesis, Leuven, Belgium, 2006 B. [U[TAR[I^ ET AL.: THE NOTCH EFFECT ON THE FATIGUE STRENGTH OF 51CrV4Mo SPRING STEEL 34 Materiali in tehnologije / Materials and technology 41 (2007) 1, 29–34 a b Figure 7: Microstructure of investigated spring steel, 51CrV4, in heat-treated condition: a) magnification 100 times and b) magnifi- cation 200 times; LM, etched in nital Slika 7: Mikrostruktura preiskovanega vzmetnega jekla 51CrV4 v pobolj{anem stanju: a) pove~ava 100-krat in b) pove~ava 200-krat; opti~ni mikroskop, jedkano v nitalu a b Figure 8: SEM micrograph of fractured surface of investigated spring steel in the as-heat-treated condition: a) magnification 100 times and b) magnification 6500 times Slika 8: SEM-posnetek prelomne povr{ine po utrujanju CVN-preiz- ku{anca iz preiskovanega vzmetnega jekla 51CrV4 v pobolj{anem stanju: a) pove~ava 100-krat in b) pove~ava 6500-krat N. GUBELJAK ET AL.: AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS ANALIZA CELOVITOSTI NOSILCA KADI V PRALNEM STROJU Nenad Gubeljak1, Matej Mejac2, Jozef Predan1 1University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia 2Diploma student employed at Gorenje, gospodinjski aparati, d. d., Partizanska 12, 3320 Velenje, Slovenia nenad.gubeljak@uni-mb.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-11-13 This paper deals with a structure-integrity analysis of a holder designed to carry the cross of a washing machine. Premature fracture of the holder occurred during mechanical tests of the washing machine in the factory. In order to prevent fracture, the task was to determine the causes of the premature fracture of the holder and estimate the suitability of a new design of holder cross in the washing machine. The input data for the structure-integrity analysis were obtained from mechanical testing of the materials used. A stress-and-strain analysis of the holder’s limit load was performed using finite-element modelling of the holder. Dynamic tests of holders with two different thicknesses were made on a servo-hydraulic machine in order to find dynamically the strength and endurance of the holder. The fracture behaviour of the holders is defined by the initiation and propagation of a crack. The determined behaviour confirmed that a new design of holders (with thickness t = 2.5 mm instead of t = 1.5 mm) reduces the stress concentration in the critical region. Consequently, the new holder, subjected to the same dynamic load, can last for more cycles until it breaks. The total number of cycles exceeded the requirements set for industrial testing. Key words: structure-integrity assessment, fracture-toughness testing, high-cycle fatigue, washing-machine holder V ~lanku je predstavljena analiza celovitosti kri`nega nosilca kadi pralnega stroja. Pred~asna poru{itev nosilca je nastopila med mehanskim preizku{anjem pralnega stroja v podjetju. Z namenom, da se prepre~i pred~asna poru{itev nosilca, so bili raziskani vzroki za poru{itev in ocenjena je bila primernost nove zasnove nosilca kri`a kadi pralnega stroja. Vhodni podatki za oceno celovitosti so bili dobljeni na osnovi mehanskih preizkusov materialov. Napetostna in deformacijska analiza nosilca pri mejnem stanju obremenitve je bila opravljena z numeri~nim modeliranjem in izra~unom po metodi kon~nih elementov. Dinami~ni preizkusi dveh nosilcev z razli~nima debelinama ob enakem vpetju, kot je to v pralnem stroju, so bili opravljeni na servohidravli~nem preizku{evalnem stroju. Na osnovi opravljenih preizkusov je bila dolo~ena dinami~na trdnost in vzdr`ljivost nosilcev. Lomno vedenje nosilcev je bilo ocenjeno glede na lomno `ilavost materiala med utrujenostno rastjo razpoke kot tudi glede na iniciacijo kon~nega, nestabilnega loma nosilca. Dobljeni rezultati potrjujejo, da nova zasnova nosilca z debelino t = 2,5 mm namesto t = 1,5 mm ob posledi~no spremenjenem polmeru zakrivljenosti zmanj{a koncentracijo napetosti v kriti~nem delu. Tako je pokazano, da novi nosilec pod enako obratovalno obremenitvijo prestane ve~je {tevilo ciklov do kon~ne poru{itve, kot je predpisano za preizkuse pri preverjanju kontrole kakovosti v podjetju. Klju~ne besede: ocena celovitosti konstrukcij, preizku{anje lomne `ilavosti, visokocikli~no utrujanje, nosilec kadi pralnega stroja 1 INTRODUCTION Holders for carrying the cross of a washing machine’s drum are dynamically loaded components, see Figure 1. The premature fracture of the holder can cause severe damage to other mechanical and electrical parts in the housing of the washing machine. Therefore, the integrity of the holder is essential for the safe and reliable service of the whole washing machine. The mechanical testing of a washing machine with an eccentric load was performed in the factory. The results showed that the number of cycles without fracture or crack formation is insufficient for the quality-control requirements. A failure analysis and inspection of the fractured parts showed that the initial fracture occurred in the central holders of the cross, while the fracture of the outer holders occurred at the end, when the inner holder was already broken, see Figure 2. Therefore, the aim of this study was to carry out a stress-strain analysis and a structure-integrity analysis of the inner holders of a washing machine’s drum. Materiali in tehnologije / Materials and technology 41 (2007) 1, 35–40 35 UDK 539.55:620.17:669.14 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(1)35(2007) Figure 1: Holder cross welded on the drum of a washing machine Slika 1: Kri`ni nosilec kadi bobna pralnega stroja 2 MECHANICAL PROPERTIES The mechanical testing was performed on a steel sheet of the same material and the same thickness as used for the inner holders of the cross of the washing-machine drum. The nominal parent metal is DC03. The tensile mechanical properties were measured on flat tensile specimens with geometries according to the DIN10125 standard. The obtained mechanical properties are shown in Table 1. Fatigue-crack growth and fracture-mechanics testing were performed on a middle-cracked tensile specimen, M(T) 1, with the geometry shown in Figure 3. The initial notch of 0.5 mm in the hole was made with a razor blade. The growth of the fatigue crack was followed on both sides of the central hole. The fatigue loading of the sheets (t = 2.5mm) was performed in load control with a ratio R = Fmin/Fmax = 0.21 and frequency 20 Hz, Fmax = 25.4 kN. The Paris-Erdogan relationship 2 was used to describe the fatigue-crack growth law, as shown in Figure 4. The fracture-toughness measurement 3 was per- formed on cracked specimens with measurements of crack-mouth opening displacement (CMOD) in the specimen’s symmetry loading line, as shown in Figure N. GUBELJAK ET AL.: AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS 36 Materiali in tehnologije / Materials and technology 41 (2007) 1, 35–40 Figure 2: Broken outer holder without fatigue-crack propagation Slika 2: Zlomljeni zunanji nosilci brez vidne utrujenostne rasti razpoke Table 1: Obtained tensile mechanical properties for the parent material (DC03) Tabela 1: Dobljeni rezultati za mehanske lastnosti za osnovni material (po oznaki DC03) Thickness, t = 2.0 mm Thickness, t = 2.5 mm Standard prescription01 02 01 02 (R0,005/Rp0,2)/MPa 152/203 184/217 135/188 123/188 Rp0.2 max = 240 Rm/MPa 300 306 284 286 270-370 E/MPa 201012 202516 188284 159913 210000 Table 2: Obtained fracture-toughness values for parent material (DC03) Tabela 2: Dobljeni rezultati za lomno `ilavost za osnovni material (DC03) t/mm W/mm a/mm σp0.2/MPa σy/MPa KI,i/MPa m1/2 Fi/kN CTODpl,m/mm CTODm/mm KI,mat/MPa m1/2 2.0 140 34.1 210 180 11.23 18.5 0.595 0.599 145.61 2.5 140 34.6 188 130 17.918 33.6 0.995 1.004 205.86 ( )/ Figure 4: Results of fatigue-crack growth rate for left- and right-side measurements (specimens with t = 2.5mm) Slika 4: Rezultati hitrosti utrujenostne rasti razpoke za meritev na levi in desni strani izvrtine v preizku{ani plo{~i z debelino t = 2,5 mm Figure 3: Middle-cracked tensile specimen (t = 2.5 mm) Slika 3: Plo{~a s sredinsko razpoko ob izvrtini za natezni preizkus (t = 2,5 mm) 5. During the test compliance the unloading method was used to observe stable crack-growth extension. The recorded data are plotted in Figure 6. The results of the fracture mechanics testing are listed in Table 2. 3 TENSILE AND FATIGUE TEST Tensile and fatigue tests were performed on the same holder (thickness and geometry) as was tested in the factory. The holder was welded with eight spot welds, as with the washing drum, but in the laboratory case this was on a pad for testing, as shown in Figure 7. The holder was tested statically with tensile pulling until fracture, as shown in Figure 8. A graph of load vs. stroke was recorded, as shown in Figure 9. The fatigue pull testing of both holders (with t = 1.5 mm and t = 2.5 mm) was performed with the same N. GUBELJAK ET AL.: AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS Materiali in tehnologije / Materials and technology 41 (2007) 1, 35–40 37 CMOD /mm F /k N Figure 6: Measured data load vs. CMOD (t = 2.5 mm) Slika 6: Izmerjeni podatki v odvisnosti obremenitve in odpranja ustja razpoke (t = 2,5 mm) a b c Figure 5:Measurement of CMOD values for middle-cracked tensile specimen (t = 2.5 mm); a) start of test b) stable crack initiation c) end of test Slika 5: Meritev odpiranja ustja razpoke (ang. CMOD) med nateznim obremenjevanjem plo{~e s sredinsko razpoko (t = 2,5 mm); a) za~etek preizkusa, b) za~etek stabilne rasti, razpoke c) konec preizkusa F /k N , /mml Figure 9: Load vs. stroke during static pulling test of holder Slika 9: Obremenitev v odvisnosti od pomika, ki je posneta med stati~nim trgalnim preizkusom nosilca Figure 7: Holder welded by spots on pad for testing Slika 7: Nosilec, zavarjen s to~kovnimi zvari na podlago za preiz- ku{anje Figure 8: Static pulling test of holder Slika 8: Stati~ni trgalni preizkus nosilca, ki je zavarjen na podlago za preizku{anje equipment. Since the fatigue-behaviour analysis was performed only to compare two holders (different in thickness and root radius), the same fatigue load was chosen (Fmax = 2 kN, R = –1). The fatigue crack appeared in the holder (t = 1.5 mm) in the expected region, like during the washing-machine test. The fatigue crack did not appear in the holder (t = 2.5 mm) after 1 million load cycles. As a result, a higher maximum fatigue load (Fmax = 3.5 kN) was used and the fatigue crack appeared in same region, as shown in Figure 10. The fatigue-crack growth sensitivity was estimated for both holders by using fatigue-crack growth rate testing results, e.g., from Figure 4 for t = 2.5 mm. The range of the fatigue stress-intensity factor was determined using ∆K K Kmax max min= − (1) since the loading ratio corresponds to the range of the fatigue stress-intensity factor is ∆K Kmax max= 2 (2) A finite-element calculation shows that in the root region of the holder both tension stress and shear stress appear. The relevant maximum stress-intensity factor is K K Kmax = +I II 2 2 (3) where KI and KII are determined using equations 6: K aI = σ π (4) where s is the maximum tensile stress determined by FE analysis, a is the initial crack length in the holder (e.g., a = 1 mm). K II = − +( . .4886 11383 2ξ ξ +28.198ξ −38.563ξ3 4 +20.555ξ )(τ5 πa ) (5) t is the maximum shear stress in the crack plane; it is also determined by FE analysis and x is the ratio between the crack length and the thickness. Calculated values (Table 3) show that for the same tensile loading of the screw at the holder the SIFs are more than three times lower for the holder with thickness t = 2.5mm than for the holder with t = 1.5 mm. 4 NUMERICAL MODELLING The numerical modelling and the calculation using the finite-element method was carried out for the inner holder. In order to determine the stress-strain profile along the crack propagation line in the holder a numerical analysis was performed, Figure 12. The stress-strain analysis in the direction perpendicular to the fatigue crack front was performed using Pro/Mechanica software (a module of the Pro/Engineer software). An additional contact surface on the 3D solid model was defined under the head’s screw. The boundary conditions and the finite-element mesh with tetra-elements 5 is shown in Figure 13. The stress fields (von Mises) for the same applied pressure on the contact surface are shown in Figure 14. It is clear that the stress profile and the stress peak depend on the radius of the holder. The stress distribution along the fatigue-crack propagation line is shown in Figure 15, where the most critical value is N. GUBELJAK ET AL.: AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS 38 Materiali in tehnologije / Materials and technology 41 (2007) 1, 35–40 σy σy τxy τxy Root direction, /mmlR ( , ) /M P a σ τ Figure 11: Maximum tensile and shear stress along the uncracked root of the holder calculated using the FEM Slika 11: Porazdelitev osnih in stri`nih napetosti vzdol` kriti~nega upognjenega dela nosilca Figure 10: Fatigue crack at root region of holder (t = 1.5 mm) Slika 10: Med dinami~nim utrujenostnim obremenjevanjem nosilca se je pojavila razpoka v kriti~nem upognjenem delu nosilca (t = 1,5 mm) Table 3: Stress-intensity factor values for the holder Tabela 3: Vrednosti faktorja intezivnosti napetosti v kriti~nem upognjenem delu nosilca Material data Load Stress intensity factors at holder t/mm KIm at/MPa m1/2 ∆Kcrit/MPa m1/2 σy/MPa τ/MPa a/mm KI/MPa m1/2 KII/MPa m1/2 ∆Kmax/MPa m1/2 1.5 145.61 291.22 165 165 1.0 9.24 15.19 35.56 2.5 205.86 411.72 65 65 1.0 3.64 4.23 11.16 achieved for the model with thickness t = 1.5 mm and root radius R = 0.5 mm. It is obvious that the specimen with t = 2.5 mm and root radius R = 2 mm has the lowest stress values along the fatigue-crack growth path. 5 DETERMINATION OF THE FAILURE LOAD Determining the fatigue load of the holder that appears in the washing machine during the test is difficult. It was only known that a fatigue crack appeared and the entire holder was broken when the critical N. GUBELJAK ET AL.: AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS Materiali in tehnologije / Materials and technology 41 (2007) 1, 35–40 39 Figure 14: Calculated stress (von Mises) at the surface of the numerical model Slika 14: Izra~unane primerjalne napetosti (von Mises) na povr{ini numeri~nega modela Figure 15: Distribution of stresses (von Mises) along the crack path in the root of the holder Slika 15: Porazdelitev napetosti (von Mises) vzdol` upognjenega dela, v katerem je napredovala razpoka (a) (b) Figure 13: Boundary conditions and finite-element mesh with tetra-elements; a) boundary condition, loading and symmetry line; b) detail of mesh with tetra elements Slika 13: Robni pogoji in umre`enje nosilca za izra~un po metodi kon~nih elementov; a) robni pogoji, obremenitev in simetrijska ravnina za numeri~ni izra~un, b) detajl mre`e s tetraedrskimi elementi Figure 12: Critical path for fatigue-crack growth on the inner holder Slika 12: Napredovanje utrujenostne razpoke vzdol` kriti~nega dela nosilca fatigue-crack length was achieved after a certain number of cycles. In this case the number of cycles contains an initiation stage and a fatigue-crack propagation stage. The longest critical crack length in the holder tested in the factory was measured in the fractured surface of the holder (acrit = 20.9 mm). The difference between the fatigue-crack surface and the final ductile failure was obvious. In order to determine the failure load the SINTAP procedure (level 1) was performed by using our own software 6,7. The calculation shows that the final failure of a single holder appeared at the moment Mcrit = 4.9 N m. The result is shown in Figure 16; it corresponds to a tensile load in the screw of 198 N. Figure 16 shows that failure occurred with significant plasticity of the non-fractured ligament of the holder. This confirms the assumption that failure occurs under plane-stress conditions. The failure occurred at a low stress-intensity factor value (low loading ratio, Kr). 6 CONCLUSION The inner holder of a washing machine is a critical part. This holder is subjected to dynamic loading with R = –1. The critical part of the holder is the root region, which is deformed with a different radius, depending on the thickness of the metal sheet. In the first prototype of the washing machine the holder had a thickness of t = 1.5 mm and a root radius of R = 0.5 mm. The premature fracture of the holder occurred in the factory. The replacement holder had a thickness t = 2.5 mm and a root radius R = 2 mm. In the paper the analyses of the stress concentration were performed in order to determine the fatigue durability of the holder. On the basis of the experimental results of the material testing, the fatigue and fracture mechanics parameters and also the finite-element analysis of the critical part of holder, it is possible to assess the SIF, and on the basis of the critical crack length in the holder the failure load that occurred in the holder during the washing-machine testing in the company. However, the new holder subjected to the same dynamic load can survive a larger number of cycles until failure, where the total number of cycles exceeds the industrial testing requirements. 7 REFERENCES 1 ASTM E 647-99. Measurements of Fatigue Crack Growth Rates, 1999 2 Paris, P., Erdogan, F., A Critical Analysis of Crack Propagation Laws, Journal Basic Engineering, (1963), 528–534 3 Schwalbe, K-H., Neale B. K., Heerens J. The GKSS test procedure for determining the fracture behaviour of materials, EFAM GTP 94, Geesthacht, 1994 4 Carpinteri A., Brighenti R., Huth H-J, Vantabori S.: Fatigue growth of surface crack in welded T – joint. International Journal of Fatigue (2005) 5 La{ V., Vacek V., Rehounek L.: Void model-numerical simulation and comparison with experiment. 41st International Conference Experimental Stress Analysis 2003, Milovy 2003, Czech Republic 6 Gubeljak N., Valh T.: SINTAP-Software for Engineering Structure Integrity Analysis, 2004 7 SINTAP: Structural integrity assessment procedure. Final Report. EU-Project BE 95-1462. Brite Euram Programme, Brussels, 1999 N. GUBELJAK ET AL.: AN INTEGRITY ANALYSIS OF WASHING-MACHINE HOLDERS 40 Materiali in tehnologije / Materials and technology 41 (2007) 1, 35–40 Figure 16: Determination of critical loading of washing machine’s holder Slika 16: Dolo~itev kriti~ne obremenitve kri`nega nosilca kadi pralnega stroja po postopku SINTAP D. KOZAK ET AL.: THE EFFECT OF A MATERIAL’S HETEROGENEITY ... THE EFFECT OF A MATERIAL’S HETEROGENEITY ON THE STRESS AND STRAIN DISTRIBUTION IN THE VICINITY OF A CRACK FRONT VPLIV HETEROGENOSTI MATERIALA NA PORAZDELITEV NAPETOSTI IN DEFORMACIJE V BLI@INI KONICE RAZPOKE Dra`an Kozak1, Nenad Gubeljak2, Jelena Vojvodi~ Tuma3 1University of Osijek, Mechanical Engineering Faculty, Trg I. Brli}-Ma`urani} 2, 35000 Slavonski brod, Croatia 2University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor, Slovenia 3Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia 1dkozak@sfsb.hr, 2nenad.gubeljak@uni-mb.si, 3jelena.tuma@imt.si Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-11-27 In this investigation a high-strength low-alloyed (HSLA) steel of the 700-MPa strength class was used as a base material. A butt-welded joint with X grooves was produced with an overmatched weld metal that had a yield strength 23 % greater than that of the base material. Three-point bending B × 2B test specimens (thickness B = 36 mm) were extracted from the welded joints. The straight crack front (a0 = 35,571 mm) crosses different microstructures through the thickness of the specimen. Both fracture-mechanics tests and a 3D finite-element analysis were performed. The CTOD parameter of the fracture toughness was measured and calculated numerically. The loading level at which stable crack growth occurred was also determined. The comparison of the experimental and numerical values of the CTOD (d5) displacements showed good agreement. The principal stress, σy, the Mises equivalent stress, σeq, and the plastic equivalent strain, εpl, eq, at the moment of crack initiation were studied for six equidistant layers from the surface to the mid-thickness of the specimen. The dependence of the crack-opening stress (denoted as σx in this paper) on the local fracture-toughness value was considered as the parameter which determines the direction of the crack-front propagation. The results show that the lower strength of the base metal contributes to the crack-path deviation in the mid-thickness of the specimen. Both the crack-path deviation and the higher toughness of the base metal increase the critical fracture toughness value of the welded joint. Key words: strength overmatched welded joint, crack, stress and strain distribution, finite element analysis V tej raziskavi je bilo kot osnovni material uporabljeno visokotrdno malolegirano jeklo (HSLA) s trdnostjo 700 MPa za ~elni zvar z X-`lebovi je bil pripravljen in uporabljen deponirani material z mejo plasti~nosti, ki je bila za 23 % ve~ja kot pri osnovnem materialu. Tri-to~kovni upogibni preizku{anci B × 2B (debelina B = 36 mm) so bili izrezani iz zvarjenega spoja. ^elo ravne razpoke (a0 = 35,571 mm) seka skozi debelino preizku{anca razli~ne mikrostrukture. Opravljeni so bili lomnomehanski preizkusi in analiza 3D kon~nih elementov. CTOD-parameter mehanike loma je bil izmerjen in numeri~no izra~unan. Dolo~en je bil tudi nivo obremenitve, pri katerem je nastala stabilna rast razpoke. Primerjava eksperimentalnih in numeri~nih vrednosti za CTOD (d5)-premike je pokazala dobro ujemanje. Glavna napetost σy, ekvivalentna Mises-napetost σeq in ekvivalentna plasti~na deformacija εok-eq so bile opredeljene za 6 med seboj enako oddaljenih plasti od povr{ine do sredine preizku{anca. Odvisnost med napetostjo odprtja razpoke (ozna~eno z σx v tem ~lanku) in lokalno vrednostjo za `ilavost loma je upo{tevana kot parameter, ki dolo~a smer propagacije ~ela razpoke. Rezultati ka`ejo, da manj{a trdnost osnovnega materiala povzro~i deviacijo poteka razpoke v sredini preizku{anca. Deviacija poti razpoke in ve~ja `ilavost osnovnega materiala pove~ata `ilavost loma zvarnega spoja. Klju~ne besede: trdnost spoja z ve~jo trdnostjo vara, razpoka, porazdelitev napetosti in deformacije, analiza kon~nih elementov 1 INTRODUCTION The heterogeneity of the materials in a welded joint on the macroscopic level has been made possible by modern joining techniques such as laser welding and electron-beam welding 1. Such inhomogeneity in the materials can also be intentional, for example, when using functionally graded materials 2. If a component made from such dissimilar materials has defects, it should be assessed from the fracture-mechanics point of view. The knowledge of the stress distribution can be very useful for calculating the fracture-mechanics parameters as part of the SINTAP defect-assessment procedure 3. It also helps to determine numerically the yield load solution 4. To evaluate the fracture toughness and the mechanicsms of failure, the stress-strain field at cracks located in the joint must be understood 5. An asymmetry in the distribution of the stresses in the vicinity of the crack tip could influence the crack-path deviation from its original direction. The usual failure criterion for a homogeneous material is that the crack grows in a direction perpendicular to the maximum principal stress. In a multiphase material, the fracture criterion based on the ratio of the crack opening stress to the material toughness distributed in front of the crack tip is proposed for determining the direction of the crack propagation of a mixed-mode fracture problem in 6. Therefore, the stress-strain distribution near the crack front due to the increasing load is very important for the better understanding of the whole fracture process. Experimental methods applied to follow the strain fields (e.g., the object grating method) are very accurate, but Materiali in tehnologije / Materials and technology 41 (2007) 1, 41–46 41 UDK 539.42:621.791.05:669.14 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(1)41(2007) limited to the visible surface of the specimen 7. As a result a finite-element analysis becomes very useful. Although many factors influence the yielding in cracked welded components 8, the aim of this paper is to show how the yield strength of overmatched weld metal affects the stress and strains fields. To do this a B × 2B three-point bend specimen with an X-weld cracked through the thickness of the specimen was considered. Both 3D finite-element calculations and experiments were performed. 2 TESTING OF FRACTURE-TOUGHNESS SPECIMENS B × 2B three-point-bend fracture-toughness speci- mens (thickness B = 36 mm) were extracted from the welded plate (Figure 1) and prepared for fracture- mechanics testing. HSLA steel with yield strength of 676 MPa was used as the base material (BM). The X-welded joint was produced using an overmatched weld metal (WM) with a yield strength of 833 MPa. In this case the yield-strength mismatch factor, defined as the ratio M = Rp0,2 WM /Rp0,2 BM , was equal to M = 833/676 = 1.23. The straight crack front passed over the overmatched weld metal near the surfaces, while the base metal of lower strength was located in the middle of the specimen (Figure 2). During the CTOD (δ5) fracture-toughness testing unstable crack propagation occurred after some initial stable crack growth. Fractographic and metallographic analyses showed that the crack path started to deviate in the mid-thickness of the specimen, where the crack front passes from the heat-affected zone (HAZ) to the softer base metal. For this reason, the finite-element calculation was performed to provide an insight into the state of the stresses and strains at the moment of onset of the stable crack growth. 3 FINITE-ELEMENT ANALYSIS The geometry of the weld with the specified location of the crack is depicted in Figure 3. The finite-element calculation was performed on a solid numerical model. D. KOZAK ET AL.: THE EFFECT OF A MATERIAL’S HETEROGENEITY ... 42 Materiali in tehnologije / Materials and technology 41 (2007) 1, 41–46 Figure 3: Geometry of the weld Slika 3: Geometrija zvara Figure 2: B × 2B fracture-toughness specimen Slika 2: B × 2B-preizku{anec za `ilavost loma Figure 1: Welded plate from which specimens were extracted Slika 1: Zvarjena plo{~a, iz katere so bili izdelani preizku{anci Figure 4: FE mesh of the weld part Slika 4: FE-mre`a zvarjenega dela Taking into account the thickness symmetry of the specimen, only one half is modelled. A standard 20-node structural solid element from the ANSYS 9 library was used. Commercial programs specialised in modelling crack fronts, e.g., Zencrack or FEA Crack, were not applied. The free-meshing technique was applied, with a size of 100 µm for the first fan of elements (Figure 4). The nodes, a distance of 2.5 mm from both sides of the crack tip, should be foreseen so as to be able to calculate the CTOD (δ5) parameter of the fracture toughness for each load up to the load at which stable crack growth occurs. The load is applied incrementally as the pressure on the two rows of mid-plane elements. The total numbers of elements and nodes were 5450 and 24384, respectively. Both materials in the joint were modelled as isotropic elastic-plastic with their own yield laws. Because of its minimal influence on the results, the modelling of the HAZ as a particular material in the joint was omitted. 4 RESULTS AND DISCUSSION The opening displacements measured at the crack mouth (CMOD) are in very good agreement with those determined numerically. On the other hand, the finite-element results for the CTOD (δ5) displacements are lower than the experimentally measured values (Figure 5). This proves that it is much more difficult to really simulate the local fracture behaviour of the material than the global behaviour. It is also evident that a crack-tip opening displacement calculated by the finite-element method deviates significantly as the loading is increased. The stress σy caused by the force acting in the y-direction, the Mises equivalent stress, σeq, and the plastic equivalent strain, εpl, eq, at the moment of the crack initiation are presented for the six equidistant layers from the surface to the mid-thickness of the specimen (Figure 6). In addition, the variation of the plastic equivalent strain, εpl, eq, during the load increase is presented in Figure 7. 5 DISCUSSION AND CONCLUSIONS The effect of the yield strength of the overmatched weld metal on the stress and strain distribution in the case of a B × 2B fracture-toughness specimen cracked in the middle was studied experimentally and numerically. The crack front passes over the different materials through the thickness of the specimen, which tends to complicate the finite-element analysis. The numerical values of the global fracture- toughness parameters, such as the load-line displacement or the crack-mouth opening displacement are in very good agreement with the experiment up to the moment of the crack initiation. On the other hand, the finite-element results for the local toughness parameters, such as the CTOD (δ5) displacement, are lower than the experimentally measured values. The magnitude of the σy stress is significantly greater in the mid-thickness of the specimen than on the surface, which is the opposite of the effective stress, σeff. A characteristic asymmetry of the stress and strain field due to material’s heterogeneity in the joint occurred in the vicinity of the crack front. It is evident from the effective stress distribution that higher values of the stresses are present in the weld material that has a higher yield strength, which is in accordance with the theory. The peak of the highest stress is shifted from the crack tip point, depending on the local material toughness parameter. In contrast to the effective stress distribution, the higher values of the equivalent plastic strain, εpl, eq, spread to the softer base metal with an increase in the loading. The crack-opening stress (σx in this case) divided by the local fracture-toughness value can be considered as the parameter that determines the direction of the crack-front propagation. The results show that the presence of a low-strength base metal contributes to the crack path deviation in the mid-thickness of the specimen. Both the crack-path deviation and the higher toughness of base metal increase the critical fracture toughness value of the welded joint. D. KOZAK ET AL.: THE EFFECT OF A MATERIAL’S HETEROGENEITY ... Materiali in tehnologije / Materials and technology 41 (2007) 1, 41–46 43 0 20 40 60 80 100 120 140 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,11 0,12 δ5 /mm L o a d , EXP FEM F /k N Figure 5: F-CTOD (δ5) diagram Slika 5: F-CTOD (δ5)-diagram D. KOZAK ET AL.: THE EFFECT OF A MATERIAL’S HETEROGENEITY ... 44 Materiali in tehnologije / Materials and technology 41 (2007) 1, 41–46 Figure 6: Stress and strain fields near the crack tip at the moment of crack initiation (F = 134.2 kN) Slika 6: Polje napetosti in deformacije v bli`ini konice razpoke v trenutku za~etka razpoke (F = 134,2 kN) D. KOZAK ET AL.: THE EFFECT OF A MATERIAL’S HETEROGENEITY ... Materiali in tehnologije / Materials and technology 41 (2007) 1, 41–46 45 Figure 7: Spreading of the equivalent plastic strain fields in the vicinity of the crack front as the loading increases Slika 7: Raz{iritev ekvivalentnega polja plasti~ne deformacije v bli`ini vrha razpoke pri pove~anju obremenitve 6 REFERENCES 1 G. Çam, S. Erim, Ç. Yeni, M. Koçak, Determination of mechanical and fracture properties of laser beam welded steel joints, Welding Research, Welding Research Supplement (1999), 193–201 2W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, K. Hempel, D. Scharnweber, K. Schulte, Functionally graded materials for biomedical applications, Materials Science and Engineering A, 362 (2003) 1–2, 40–60 3 Y.-J. Kim, M. Koçak, R. Ainsworth, U. Zerbst, SINTAP defect assessment procedure for strength mismatched structures, Engineering Fracture Mechanics, 67 (2000), 529–546 4 Y.-J. Kim, K.-H. Schwalbe, Compendium of yield load solutions for strength mis-matched DE(T), SE(B) and C(T) specimens, Engi- neering Fracture Mechanics, 68 (2001), 1137–1151 5 F. Matejicek, N. Gubeljak, D. Kozak, M. Koçak, Stress-strain state at the vicinity of the crack tip in strength mis-match welded joint, Proceedings of the 13th European Conference on Fracture on CD Rom, San Sebastian, 2000, Paper reference 1U.6 6 Y. Chen, J. D. Lee, M. S. Oskard, A. Eskandarian, Meshless analysis of crack propagation in multiphase material, Proceedings of the XI. International Conference on Fracture on CD Rom, Turin, 2005 7 N. Gubeljak, D. Semenski, N. Drvar, J. Predan, D. Kozak, M. Oblak, Object grating method application in strain determination on CTOD tests, Strain, 42 (2006), 81–87 8 D. Kozak, J. Vojvodi~ Tuma, N. Gubeljak, D. Semenski, Factors influencing the yielding constraint for cracked welded components, Mater. Tehnol., 39 (2005), 29–36 9 ANSYS 10.0 Release, User’s manual, 2005 D. KOZAK ET AL.: THE EFFECT OF A MATERIAL’S HETEROGENEITY ... 46 Materiali in tehnologije / Materials and technology 41 (2007) 1, 41–46 S. AYADI ET AL.: THE NUMERICAL SOLUTION OF STRAIN WAVE PROPAGATION ... THE NUMERICAL SOLUTION OF STRAIN WAVE PROPAGATION IN ELASTICAL HELICAL SPRING NUMERI^NA RE[ITEV PROPAGACIJE DEFORMACIJSKEGA VALA V ELASTI^NI SPIRALNI VZMETI Sami Ayadi1, Ezzeddine Hadj-Taïeb1, Guy Pluvinage2 1Unité de Recherche : Mécanique des fluides appliquée et modélisation, ENIS, B.P. W, 3038 Sfax, Tunisie 2Laboratoire de Fiabilité Mécanique, ENIM, Ile du Saulcy, 57045 Metz, France samya@netcourrier.com Prejem rokopisa – received: 2006-05-17; sprejem za objavo – accepted for publication: 2006-11-10 When a helical spring is subjected to a rather large impact loading, significant axial and rotational oscillations can occur in the spring. A mathematical formulation is presented to describe non linear dynamic response of impacted helical springs. The governing equations for such motion are two coupled non-linear, hyperbolic, partial differential equations of second order. The axial and rotational strains and velocities are considered as principal dependent variables. Since the governing equations are non-linear, the solution of the system of equations can be obtained only by some approximate numerical technique. When the strains are small, the equations of motion are rendered linear. The numerical technique employed in this paper is the method of characteristics for, both, linear and non-linear wave propagation problems. In order to resolve the non-linear problem of the dynamic response of helical spring, the non-1inear characteristics method is used. The compatibility equations are integrated along the characteristics and written in difference form. Thus, the unknown values of the axial strain, rotational strain, axial velocity and rotational velocity at any point of the spring, can be determined by resolving a system of four simultaneous equations. For this system, the values of the coefficients and the known variables are computed by interpolation and integration along non-linear characteristic lines. The procedure must be slightly modified when the end points of the spring are involved. At both ends, in order to determine the unknown variables values, use is made of only two characteristics. The numerical results are obtained for helical spring under axial impact. The dynamic responses are computed and plotted for some sections of the spring. Key words: helical spring, dynamic response, strains, method of characteristics, non linear behaviour Ko je spiralna vzmet sunkovito mo~no obremenjena, lahko nastanejo v njej osna in rotacijsko nihanje. Predstavljena je matemati~na re{itev za opis nelinearnega odgovora obremenjene vzmeti. Ta odgovor lahko predstavimo z dvema povezanima nelinearnima portalnima hiperboli~nima diferencialnima ena~bama druge stopnje. Kot glavni spremenljivki so upo{tevane osne in rotacijske deformacije. Ena~be niso linearne, zato so re{ljive le s pribli`no numeri~no tehniko. Pri majhnih deformacijah so ena~be nihanja linearne. Uporabljena numeri~na tehnika je metoda karakteristik za oboje, linearno in nelinearno propagacijo valovanja. S ciljem, da se najde re{itev za nelinearni problem, dinami~nega odgovora vzmeti, je uporabljena linearna karakteristika. Ena~be kompatibilnosti so integrirane vzdol` karakteristik in napisane v obliki diferenc. Tako na~in je mogo~e dolo~iti neznane vrednosti za aksialno in rotacijsko deformacijo in hitrost v vsaki to~ki vzmeti z re{itvijo sistema iz simultanih ena~b. Za ta sistem so vrednosti koeficientov in znanih spremenljivk izra~unane z interpolacijo in integracijo vzdol` nekarakteristi~nih linij. Proceduro je potrebno modificirati pri kon~nih to~kah vzmeti. Za re{itev za ti dve to~ki in za dolo~itev vrednosti neznanih spremenljivk sta uporabljeni le dve spremenljivki. Numeri~ni rezultati so dolo~eni za spiralno vzmet pri osni obremenitvi. Dinami~ni odgovori so izra~unani in grafi~no prikazani za nekatere prereze vzmeti. Klju~ne besede: spiralna vzmet, dinami~ni odgovor, deformacije, metoda karakteristik, nelinearno vedenje 1 INTRODUCTION The dynamic behaviour of helical springs is an important engineering problem. In practice, helical springs are commonly used as structural elements in many mechanical applications (suspension systems, motor valve springs,…). The primary functions of springs are to absorb energy, to apply a definite force or torque, to support moving masses or isolate vibration,… To simplify the analysis, it is generally assumed that the material is elastic. The design of helical springs requires two stages, the static and dynamic. The analytical solution to the static equations of cylindrical helical springs subjected to large deflections was obtained by Love 1. In many research papers, the dynamic response of elastic material springs is investigated using various models. When a helical spring is subjected to a rather large impact loading, significant torsional oscillations can occur in the spring. The equations of motion, governing this behaviour, are derived in an article by Phillips and Costello 2. Stokes 3 conducted an analytical and experimental program to investigate the radial expansion of helical springs due to longitudinal impact. The significance of torsional oscillations on the radial expansion of helical springs is presented in the work of Costello 4. In this work a linear theory was presented and the analytical solution, obtained by the Laplace trans- form, did indicate rather large radial expansion under impact. Sinha and Costello 5 used a finite difference technique and the method of linear characteristics to solve numerically the non-linear partial differential equations in the time domain. Mottershead 6 developed special finite element for solving the differential equations. Yilderim 7 developed an efficient numerical method based on the stiffness Materiali in tehnologije / Materials and technology 41 (2007) 1, 47–52 47 UDK 539.3:62-27 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(1)47(2007) transfer matrix for predicting the natural frequencies of cylindrical helical spring. Becker et al. 8 also used the matrix transfer method to produce the natural frequen- cies of helical springs. Dammak et al. 9 developed an efficient two nodes finite elements with six degrees of freedom per node to model the behaviour of helical spring. In this paper we extend the work of Sinha and Costello 5 to investigate numerically the non-linear beha- viour of impacted springs using non linear characteristics method and to compare the results with linear theory. The numerical results of linear theory are obtained by the method of characteristics and by the Lax Wendroff finite differences method (Ayadi and Hadj-Taïeb 10). 2 MATHEMATICAL MODEL The equations which describe non linear one-dimen- sional dynamic behaviour of helical springs can be adapted from the analytical model developed by Phillips and Costello 2. Applying the theory of dimensional analysis and the momentum equations, to an element of spring between two sections x and x+dx (Figure 1a), submitted to axial force F and torque T, yields the following equations of spring motion: a u x b x e u t ∂ ∂ ∂ ∂ ∂ ∂ 2 2 2 2 2 2 + =υ (1) b u x c x e t ∂ ∂ ∂ ∂ ∂ ∂ 2 2 2 2 2 2 + =υ υ (2) where u is the axial displacement of the spring, υ = rθ is the rotational displacement of the spring, r is the radius of the spring helix in the unstretched position, x is the axial co-ordinate along the spring and t is time. The coefficients a, b, c and e, occurring in equations (1) and (2), are given by the expressions: a r EI F x= ⋅ = + ⋅ 2 ∂ ∂ε υ α α α( sin cos )(sin ) [ ] ⋅ − + + − −   ν 1+ν υ α α α α α ( sin cos )(sin ) cos ( ) sin /x xu 2 2 2 3 21 1       (3) b r EI F r EI T u u x x = ⋅ = ⋅ = + − + 2 2 2 2 2 1 1 1 ∂ ∂ ∂ ∂β ε α α sin ( )cos ( ) sin[ ]α 1 2/     − − + − + +   cos ( )( sin cos α ν ν ν υ α + α) 1 2 1 1 ux x (4) c r EI T ux= ⋅ = +     ∂ ∂ε α 1− ν 1+ν αsin ( ) sin1 2 2 (5) e Mr EIh = 2 (6) where h is the length of the spring in the unstretched position, E is Young’s modulus of the spring material, M is the total mass of the spring, I is the moment of inertia of the wire cross section, n is Poisson’s ratio of the spring material and α is the helix angle of the spring in the unstretched position. Thus, it is seen that the coefficients a, b, c and e are functions of ε = ux = ∂u/∂x and b = ux = ¶u/¶x and hence, the governing equations of motion are non-linear. It can be seen from equations (3), (4) and (5) that when the strains are small, i.e., IuxI << 1 and IuxI << 1 the coefficients have the approximate values: a = − +     1 1 2ν ν α αcos sin b = − + ν ν α α 1 2sin cos (7) c = − +     1 1 2ν ν α αsin sin If these values are employed in place of the actual non-constant coefficients, the equations of motion are rendered linear. 3 NUMERICAL SOLUTION The numerical solution of the initial boundary value problem governed by the equations (1) and (2) may be obtained by the method of characteristics (Abbott 11, S. AYADI ET AL.: THE NUMERICAL SOLUTION OF STRAIN WAVE PROPAGATION ... 48 Materiali in tehnologije / Materials and technology 41 (2007) 1, 47–52 Figure 1: Helical spring description. a) Free body diagram of spring element, b) Static deflection of helical spring Slika 1: Opis spiralne vzmeti; a) prostotelesni diagram elementa vzmeti; b) stati~ni upogib spiralne vzmeti Chou and Mortimer 12, Hadj-Taïeb and Lili 13). The method of characteristics, which is based on the propagation of the waves, is applied to obtain ordinary differential equations. In principle, it is not a numerical but an analytical solution method. However some of the necessary integrations are generally done numerically. Equations (1) and (2) can be converted into a set of first order partial differential equations. Since ¶ux/¶t = ∂ut/∂x, ∂ux/∂t = ∂t/∂x and (∂ux/∂x)dx + (∂ux/∂t)dt = dux etc., the above set of equations (1) and (2), in matrix form, can be written as: a b b c x t x 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 − − − − d d d d d d d d t x t x t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ u x u t x t u x u t x t x x x x t t t t / / / / / / / / υ υ υ υ                         =         0 0 0 0 d d d d u u x x t t υ υ                 (8) The characteristic directions are determined by setting the determinant of the coefficient matrix of equation (8) equal to zero. Hence the following equation results: ( ) ( )ac b dt dx a c dt dx −     − +     + =2 4 2 1 0 (9) The above equation has four roots which are: dt dx a c a c b ac b     = + + − + −        1 2 2 2 2 1 2 4 2, / ( ) ( ) ( ) m and dt dx a c a c b ac b     = − + ± − + −        3 4 2 2 2 1 2 4 2, / ( ) ( ) ( ) (10) When linear theory is used, we obtain: dx dt c EIh Mr e     = ± = ± = ± 1 4 2 , sin sin f α α and dx dt c EIh Mr e     = ± = ± + = ± +2 3 2 1 1, sin sin ( s α ν α ν) (11) cf is the fast speed of rotational waves (υx, υt) and cs is the small speed of axial waves (ux, ut). The four roots defined equations (10) or (11) are real and, hence, the system is hyperbolic. The canonical form of a hyperbolic system along the characteristics (some- times called either 'Compatibility equations' or 'Riemann Invariant equations') can be determined by replacing any column of the coefficient matrix in equation (8) by the right-hand side column vector and setting the deter- minant equal to zero. The following equation results: 1 2 2 −           +           −c t x u b t x x x d d d d d dυ – 1 2 3 −               +         c t x t x u b t x t d d d d d d d   =dυ t 0 (12) In difference form, equation (12) becomes: 1 2 2 −           +           −c t x u b t x x x d d d d ∆ ∆υ – 1 2 3 −               +         c t x t x u b t x t d d d d d d ∆   =∆υ t 0 (13) Thus, the unknown values of (ux, υx, ut and υt), at any point L, as shown in Figure 2, can be determined by knowing their values at the points P, Q, R and S lying on the four characteristics passing through L and then solving four simultaneous equations obtained from equation (13). Although the characteristics are curved due to the non-linearity of equations (1) and (2), it will be assumed that LP, LQ, LR and LS are straight lines. Hence, equation (13) yields: 1 2 1 −             − +     c t x u u b t xx x d d d d1, P L P P 2 ( ) ,       − −(υ υx xL P ) – 1 2 −                 − +c t x t x u u bt t d d d d d 1, P 1, P L P( ) t x t td P 3 L P           − = 1 0 , )(υ υ S. AYADI ET AL.: THE NUMERICAL SOLUTION OF STRAIN WAVE PROPAGATION ... Materiali in tehnologije / Materials and technology 41 (2007) 1, 47–52 49 Figure 2: Method of characteristics. a) Non-linear theory, b) Linear theory Slika 2:Metoda karakteristik; a) nelinearna teorija; b) linearna teorija where uxL, υxL, utL and υtL are the unknown values at the point L; uxP, υxP, utP and υtP are the known values at the point P; and (dt/dux)1,P is the slope of the characteristics of family 1 passing through P. Three similar equations can be written for the points Q, R and S. By solving the four simultaneous equations obtained from equation (13), the values of uxL, υxL, utL and υtL can be obtained at any point L. It should be noted that the values at the points P, Q, R and S, are computed by non-linear inter- polation. Figure 2b shows the characteristics in the case of linear theory where the wavespeeds cf and cs are con- stant. 4 NUMERICAL RESULTS FOR IMPACTED SPRING Consider the hypothetical spring system shown by Figure 3. The parameters of the spring are: the original length of spring h = 48.26 cm, the helix angle α = 0.141815 rd, the radius of the spring r = 17.932 cm, the number of coils n = 3, the Poisson’s ratio ν = 0.29, the wire radius rf = 1.509 cm, the Young’s modulus E = 20.685·106 N/cm2, the initial compression ∆ = 16.51 cm and the mass of the spring M = 19.146 kg. Initial conditions The initial conditions are: ux(x,0) = –D/h and ux(x,0) = 0 (14) ut(x,0) = 0 and t(x,0) = 0 (15) Boundary conditions The dynamic response studied here is due to a given velocity at the impacted end of the spring x = 0 (see Figure 4). The boundary conditions are: ut(0,t) = f1(t), ut(0,t) = 0, ut(h,t) = 0, ut(h,t) = 0 (16) φ1(t) is defined by the values given in Table 1. Table 1: Axial velocity at x = 0 Time, t/ms 0 3.375 27.75 50.625 Axial velocity, /(m/s) 0 9.062 1.165 -0.3 The spring is divided into equidistant sections in the x direction: ∆x = h/N. Two separate FORTRAN pro- grams were run on a PC computer. The problem has been solved by the method of characteristics using N = 180 grid points for both linear and non-linear theories. In the case of linear theory the same problem has also been solved by the finite difference Lax-Wendroff method using N = 1000 grid points [Ayadi and Hadj-Taïeb (2006)]. The computed results by the method of characte- ristics for the linear and non-linear theories are shown in Figures 5 and 6. The axial and rotational strains are at the impacted end (x = 0). As pointed by Phillips and Costello, the results of the plots show the necessity of solving the non-linear equations of motion for the spring under this type of loading. The linear theory is adequate for predicting the axial force in the spring but can lead to erroneous results in predicting the axial twisting moment and radial expansion of the spring (see Table 2). S. AYADI ET AL.: THE NUMERICAL SOLUTION OF STRAIN WAVE PROPAGATION ... 50 Materiali in tehnologije / Materials and technology 41 (2007) 1, 47–52 Figure 4: Axial velocity at the impacted end of the spring (x = 0) Slika 4: Osna hitrost na sunkovito obremenjenem koncu vzmeti (x = 0) Figure 3: Helical spring boundaries Slika 3: Meja spiralne vzmeti Figure 6: Rotational strain at the impacted end (x =0). Slika 6: Rotacijska deformacija na sunkovito obremenjenem koncu (x = 0) Figure 5: Axial strain at the impacted end (x = 0). Slika 5: Osna deformacija na sunkovito obremenjenem koncu (x = 0) Table 2: Axial force, axial moment and radial expansion at x = 0 and t = 0.0346 sec Time t/(ms) Axial force (N) Axial moment (mN) Radial expansion (mm) Linear theory -11100 540.5 -0.950 Non linear theory -11167.1 1155.4 -2.8194 It should be pointed out that once the axial and rotational strains are known, the stresses can be computed from the elementary strength of material formula. Generally, the most significant stresses occurring in a helical spring are due to the torsional moment acting on the wire cross section. Since the torsional moment on a cross section is due mainly to the S. AYADI ET AL.: THE NUMERICAL SOLUTION OF STRAIN WAVE PROPAGATION ... Materiali in tehnologije / Materials and technology 41 (2007) 1, 47–52 51 t /ms t /ms t /ms t /ms t /ms Figure 8: Rotational strains in the spring Slika 8: Rotacijske deformacije v vzmeti t /ms t /ms t /ms t /ms t /ms Figure 7: Axial strains in the spring Slika 7: Osne deformacije v vzmeti axial force in the spring, the linear theory is felt to be quite adequate for ca1culating the stresses in this example. Figures 7 and 8 show the computed strain curves at some sections of the spring (x = 0, x = h/4, x = h/2, x = 3h/4 and x = h). It illustrates the phenomenon we are dealing with in the case of linear and non-linear spring dynamic responses. Due to the non-linearity of equations (1) and (2), the wave speeds are not constant and the characteristics lines are curved. Hence, the strain wave fronts are smoothly running. The computed strain results of the linear equations of motion presented in Figures 7 and 8 are obtained by finite difference Lax-Wendroff scheme. Figure 9 shows the characteristics lines for linear theory. At time t = 0, the spring is impacted and two waves, fast rotational strain wave and slow axial strain wave, travel the spring until they reach the other end x = h. The behaviour of characteristic paths of rotational wave differs from those of the axial one. The strain evolution would result from the velocity function applied at the impacted spring end, x = 0, and from the wave reflections at the two ends of the spring. It should be noted that the axial strain wave has an effect on the rotational strain. As it can be seen from the curves of Figures 7 and 8, the reflected rotational strain wave travelling from the end of the spring causes rotational strain to rise. But the reflected axial wave attenuates and limits the values of rotational strain. The process is repeated and indicated the influence of axial strain wave on the behaviour of rotational strain. 5 CONCLUSION The numerical solution of the spring dynamic response has been presented in this paper. The solution is obtained with coupled two non-linear partial differential equations of the hyperbolic type. The two numerical methods employed are the method of curved characteristics and the finite-difference conservative method of Lax-Wendroff. The non-linear characteristics method requires the use of non-linear interpolation method to compute the strains evolution at any interior section of the spring. The finite difference method is more practical and simulates correctly the strain waves propagation when the linear equations of motion are considered. Computed results obtained by this method agree favourably well with the numerical results based upon the characteristics method. The developed program has been applied to the large deformation analysis of helical springs under axial loading. It can be seen from the calculated results that the linear theory is reasonably accurate, as far as, the axial strain is concerned but is in considerable error for investigating the rotational strain. 6 REFERENCES 1 A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th Editions Dover, 1927 2 J. W. Phillips, G. A. Costello, Large deflections of impacted helical springs, Journal of the Acoustical Society of America, 51 (1972), 967–972 3 V. K. Stokes, On the dynamic radial expansion of helical springs due to longitudinal impact, Journal of Sound and Vibration, 35 (1974), 77 4 G. A. Costello, Radial expansion of impacted helical springs, Journal of Applied Mechanics, Trans. ASME, 42 (1975), 789–792 5 S. K. Sinha, G. A. Costello, The numerical solution of the dynamic response of helical springs, International Journal for Numerical Methods in Engineering, 12 (1978), 949–961 6 J. E. Mottershead, The large displacements and dynamic stability of spring using helical finite elements, International Journal of Mechanical Sciences, 24 (1982 )9, 547–558 7 V. Yildirim, An efficient numerical method for predicting the natural frequencies of cylindrical helical springs, International Journal of Mechanical Sciences, 41 (1999), 919–939 8 L. E. Becker, G. G. Chassie, W. L. Cleghorn, On the natural frequencies of helical compression springs, International Journal of Mechanical Sciences, 44 (2002), 825–841 9 F. Dammak, M. Taktak, S. Abid, A. Dhieb, M. Haddar, Finite element method for the stress analysis of isotropic cylindrical helical spring, European Journal of Mechanics A/Solids 24, 12 (2005), 1068–1078 10 S. Ayadi, E. Hadj-Taieb, Simulation numérique du comportement dynamique linéaire des ressorts hélicoïdaux, Transactions The Canadian Society of Mechanical Engineering, 30 (2006) 2, 191–208 11 M. B. Abott, An introduction to the method of the characteristics, American Elsevier New York, 1966 12 P. C. Chou, R. W. Mortimer, Solution of one dimensional elastic wave problems by the method of characteristics, J. Appl. Mech., Trans. ASME, 34 (1967), 745–750 13 E. Hadj-Taieb, T. Lili, The numerical solution of the transient two-phase flow in rigid pipelines, International Journal for Nume- rical Methods in fluids, 29 (1999), 501–514 S. AYADI ET AL.: THE NUMERICAL SOLUTION OF STRAIN WAVE PROPAGATION ... 52 Materiali in tehnologije / Materials and technology 41 (2007) 1, 47–52 Figure 9: Characteristic lines for helical spring linear response dynamic Slika 9: Karakteristi~ne linije za linearni dinami~ni odgovor spiralne vzmeti R. RUDOLF ET AL.: [TUDIJ NOTRANJE OKSIDACIJE V NAOGLJI^ENIH HITROSTRJENIH TRAKOVIH Cu [TUDIJ NOTRANJE OKSIDACIJE V NAOGLJI^ENIH HITROSTRJENIH TRAKOVIH Cu THE STUDY OF THE INTERNAL OXIDATION IN INTERNALLY CARBONISED Cu RIBBONS Rebeka Rudolf1, Ladislav Kosec2, Ivan An`el1, Leo Gusel1, Mojmir Poharc3 1Univerza v Mariboru, Fakulteta za strojni{tvo, Smetanova 17, 2000 Maribor, Slovenija 2Univerza v Ljubljani, Naravoslovnotehni{ka fakulteta, A{ker~eva 12, 1000 Ljubljana, Slovenija 3Zlatarna Celje, d. d., Celje, Kersnikova 19, 3000 Celje, Slovenija rebeka.rudolf@uni-mb.si Prejem rokopisa – received: 2006-02-20; sprejem za objavo – accepted for publication: 2006-11-27 V prispevku predstavljamo kompozit z nanometrsko velikostjo plinskih por, ki so nastale pri notranji oksidaciji (NO) fino dispergiranih nanometrskih delcev grafita. Za izhodno mikrostrukturo so bili izbrani notranje oglji~eni hitro strjeni trakovi ~istega bakra, kjer je bila v Cu-matici dose`ena zelo enakomerna disperzija grafitnih delcev velikosti nekaj 100 nm. Pri procesu NO predhodno notranje oglji~enih hitro strjenih trakov je nastala kemijska reakcija nanometrskih grafitnih delcev z raztopljenim kisikom. Pri tem so nastali plinski produkti CO oz. CO2, ki so zavzeli volumen nekdanjega trdnega delca in se niso mogli raztopiti v kristalni mre`i bakra ter so posledi~no ostali ujeti v prostoru, kjer je bil pred reakcijo trden grafit. Tako nastali plinski produkti ustvarjajo zaradi mnogo ve~jega specifi~nega volumna od trdnega grafita tla~ne napetosti na okoli{ko Cu-matico in posledi~no povzro~ajo t. i. napetostno utrjanje. Po drugi strani pa tako nastala napetostna polja lahko reagirajo z drse~imi dislokacijami in jim prepre~ijo nadaljnje gibanje, s ~imer pri~akujemo izbolj{anje mehanskih lastnosti tak{nega kompozita. Klju~ne besede: notranja oksidacija, kompozit, Cu-trakovi, mikrostruktura In this paper we present the composite with the fine dispersion of nano-sized bubbles, which can be formed by the internal oxidation of fine dispersed graphite particles. For this purpose the initial pure Cu ribbons were internally carbonised to obtain very fine some 100 nm sized graphite particles homogeneously distributed in the Cu matrix. By the internal oxidation process the reaction of dissolved oxygen with graphite yields the gas products (CO, CO2), which cannot be dissolved in crystal lattice of the metal. The gas products are meshed in the space previously occupied by graphite and they have a greater specific volume than solid graphite, thus establishing the compressive stresses in the metallic matrix and consequently causing the strengthening effect. On the other hand, such stress field can react with sliding dislocation, whereby they impede the dislocation motion and consequently it would expect that the composite mechanical properties would be improved. Key words: internal oxidation, composite, Cu ribbons, microstructure 1 UVOD Za izdelavo najbolj zahtevnih disperzijsko utrjenih zlitin (DUZ) se danes uporabljata kombinaciji tehnologij izdelave mehanskega legiranja in notranje oksidacije. Pri tem je prednost notranje oksidacije predvsem v mo`nosti doseganja zelo drobnih in enakomerno porazdeljenih disperznih delcev. V DUZ so drobno dispergirani delci ovire za gibanje dislokacij tudi v razmerah (visoke temperature), ko se utrjevalni u~inek drugih mo`nih ovir: raztopljeni atomi, izlo~ki in podmeje zrn idr., mo~no zmanj{a. Dodatna zunanja napetost, ki je potrebna, da dislokacija v DUZ pri visokih temperaturah zaobide nekoherentne delce in postane znova gibljiva, je povezana z energijo potrebno za plezanje dislokacijskega segmenta preko delca, in z energijo, potrebno za odcepljanje dislokacijskega segmenta od delca. V fazi plezanja (vzpenjanje na delec) nastane podalj{anje dislokacije, dodatna energija pa se porabi za tvorbo novega dela dislokacijske ~rte. Obenem poteka pri gibanju dislokacije tudi relaksacija deformacijskega polja okoli dela dislokacijske ~rte, ki je v stiku z delcem (dislokacija se tako reko~ vpne na delec, pri tem se linijska energija dislokacije zni`a od polne vrednosti v matici do ~asovno odvisne ni`je vrednosti na mejni povr{ini delec/matica). Zato je v fazi spu{~anja dislokacije z delca potrebna dodatna energija za t. i. odcepljanje dela dislokacijskega segmenta od delca oziroma za ponovno ustvarjanje deformacijskega polja (zvi{anje linijske energije dislokacije do polne vrednosti) okoli dela dislokacijske ~rte, ki delec zapu{~a. Pri tem je drsenje dislokacije pri povi{anih temperaturah kontro- lirano s tistim delnim procesom (plezanje, odcepljanje), za katerega je potrebna ve~ja dodatna energija. Kot ka`ejo rezultati nedavnih1 raziskav, postane `e pri relativno majhnem zni`anju linijske energije dislokacije med plezanjem (» 6 %) drsenje dislokacij pri povi{anih temperaturah kontrolirano s fazo odcepljanja. Tako velja, da je utrjevalni u~inek disperzoidov pri povi{anih tempe- raturah odvisen predvsem od velikosti sprostitve linijske energije dislokacij na mejni povr{ini delec/matica med gibanjem dislokacije preko delca. Ker poteka sprostitev dislokacijske energije s prerazporeditvijo atomov in z difuzijo vzdol` mejne povr{ine, omogo~ajo nekohe- rentne, kemijsko {ibko vezane mejne povr{ine najve~je sprostitve dislokacijske energije in maksimalno utrjanje. Materiali in tehnologije / Materials and technology 41 (2007) 1, 53–58 53 UDK 669.3:66.094.3:620.18 ISSN 1580-2949 Original scientific article/Izvirni znanstveni ~lanek MTAEC9, 41(1)53(2007) Teoreti~ne raziskave2 poka`ejo, da bi po tej teoriji bile najprimernej{e ovire za drsenje dislokacij t. i. prazninski delci nanometrske velikosti. Skladno s to teorijo je bil namen na{ega raziskovalnega dela osredinjen na sintezo kompozita z nanometrsko disperzijo plinskih por, ki bi lahko nastale pri notranji oksidaciji fino dispergiranih delcev grafita v Cu-matici. Preliminarne {tudije izdelave diskontinuirnega kom- pozita Cu-C s kombinacijo mehanskega legiranja in sintranja niso pripeljale do zahtevane nanodisperzije C-delcev3, zato smo v nadaljevanju raziskav izkoristili znano dejstvo, da atomi ne~isto~ (O, N, S, C) segregirajo na kristalnih defektih. Teorija raztapljanja tujih atomov v kristalni mre`i osnovne kovine namre~ pravi, da je maksimalna koncentracija raztopljenih atomov odvisna od velikosti atomov legirnega elementa ali ne~isto~e, velikosti intersticij (pri intersticijski trdni raztopini) in s tem povzro~enimi napetostmi v kristalni mre`i, od sorodnosti kristalnih mre` (pri substitucijski trdni raztopini), od valence, kemijskega potenciala in elektro-negativnosti atomov itd. V praksi pa lahko privzamemo, da je maksimalna topnost atomov ne~isto~ odvisna od dose`ene koncentracije defektov v kristalni mre`i. Med mo`ne postopke, ki omogo~ajo nastanek mikrostrukture z visoko koncentracijo defektov, spada tudi hitro strjevanje. Na podlagi tega smo postavili hipotezo, da lahko diskontinuirni kompozit Cu-C z nanometrsko velikostjo grafitnih delcev izdelamo s kombinacijo hitrega strjevanja in notranjega oglji~enja. V naslednji stopnji pa smo z notranjo oksidacijo predhodno notranje oglji~enih hitro strjenih trakov povzro~ili potek kemijske reakcije grafitnih delcev z raztopljenim kisikom. Pri tem so nastali plinski produkti CO oz. CO2, ki so zavzeli volumen nekdanjega trdnega C-delca in so plinske pore. Dejstvo, da nastanejo pri notranji oksidaciji sistema Cu-C z drobno disperzijo C-delcev plinske pore nanometrske velikosti4, je v na{ih {tudijah idejna re{itev za izdelavo materiala z nano- metrsko disperzijo plinskih por. 2 EKSPERIMENTALNO DELO Hitro strjeni trakovi ~istega Cu so bili izdelani iz elektrolizno ~istega bakra (99,97 %) na laboratorijski napravi Melt Spinner M-10 (slika 1) na Naravoslovno- tehni{ki fakulteti v Ljubljani. 400 gramske zatehte zlitin smo indukcijsko stalili v grafitnem talilnem loncu z notranjim premerom 48 mm in pravokotno izlivno odprtino 0,8 mm v argonovi atmosferi. S kontroliranim nadtlakom argona 0,2–0,3 bar v talilnem loncu smo omogo~ili stacionaren tok taline skozi izlivno odprtino ter pri obodni hitrosti bobna 23 m/s izdelali kontinuirno neprekinjene hitro strjene trakove debeline od 60 µm do 100 µm in {irine od 2,5 mm do 3,5 mm. Parametre litja pri hitrem strjevanju (velikost izlivne odprtine, nadtlak argona, obodna hitrost bobna) smo izbrali na osnovi rezultatov predhodnih lastnih raziskav5. Iz hitro strjenih trakov smo izrezali kraj{e trakove dol`ine » 4 cm, ki smo jih na povr{ini mehansko spolirali in o~istili z ultrazvokom. Posamezne vzorce hitro strjenih trakov smo obdali z nanometrskim amorfnim ogljikovim prahom in jih nato izostatsko stisnili v tabletke. Izdelane tabletke smo vstavili v kremenovo epruveto in nato v cevno pe~. Eksperimente notranjega oglji~enja smo naredili v za{~itni atmosferi Ar 5.0, pri temperaturi 873 K in ~asu 1 h. Slika 2 shematsko prikazuje zgradbo vzorca za preizkus notranjega oglji~enja. Notranje oglji~ene hitro strjene trakove ~istega Cu smo nato notranje oksidirali (NO) pri T = 1173 K pri razli~no dolgih ~asih (7, 15, 30, 45) min, s ~imer smo `eleli raziskati kinetiko in mehanizem NO ter posledi~no s tem nastalo mikrostrukturo. ^ase smo izbrali na podlagi teoreti~nega izra~una povpre~ne difuzijske dol`ine, ki jo opravijo atomi kisika v ~isti Cu matici (po ~asu t = 15 min pri T = 1173 K je le-ta x = 1,8 mm). Preskuse NO smo izvedli tako, da smo vzorce trakov vstavili v kremenovo epruveto, v katero smo predhodno nasuli me{anico prahov Cu/Cu2O v razmerju 1:1 (Rhinessova kopel – slika 3). Tako smo prepre~ili zunanjo oksidacijo osnovne kovine in na povr{ini bakrene stene dosegli maksimalno topnost kisika pri R. RUDOLF ET AL.: [TUDIJ NOTRANJE OKSIDACIJE V NAOGLJI^ENIH HITROSTRJENIH TRAKOVIH Cu 54 Materiali in tehnologije / Materials and technology 41 (2007) 1, 53–58 1 – Talilni lonec, 2 – Plin pod tlakom (Ar, N2), 3 – Raztaljena kovina, 4 – [oba, 5 – Curek taline, 6 – Kapljica taline, ki oblikuje trak, 7 – Hlajen vrte~i se valj, 8 – Trak amorfne kovine, 9 – Strgalo, 10 – Induktor, ϑ – Kot nalivanja Slika 1: Postopek izdelave tankih kovinskih trakov11 Figure 1: Chill-Block-Melt-Spinning process11 Slika 2: Shemati~en prikaz vzorca za preizkuse notranjega oglji~enja Figure 2: Schematic presentation of internal carbonisation process temperaturi `arjenja (pri T = 1173 K je maksimalna topnost [O] v bakru C0max » 0,00621 %). Mikrostrukturne preiskave izhodnih in NO-vzorcev trakov smo izvedli z razli~nimi mikroskopskimi tehni- kami: s svetlobno mikroskopijo (Nikon Epiphot 300, opremljen s sistemom za digitalno analizo slike), z vrsti~no elektronsko mikroskopijo (Jeol JSM 840A z EDX-Link Analytical AN 1000) in s transmisijsko elektronsko mikroskopijo (Philips CM20 200 kV z LaB6-katodo, opremljen z analizatorji EELS (Electron Energy-Loss Spectrometry), ki omogo~a izvajanje analiz elementov od Li do U v kombinaciji z informacijo vrste vezave pri resuluciji 1 nm) in EFTEM (Energy-Filtering TEM, ki omogo~a izvajanje analiz porazdelitev elemen- tov v tankih plasteh z resolucijo 1 nm). 3 REZULTATI IN DISKUSIJA Zna~ilna izhodna mikrostruktura pre~nega prereza notranje oglji~enih hitro strjenih Cu-trakov je prikazana na sliki 4. S slike je razvidna po volumnu zrn enako- merna razporejenost delcev. Gostota izlo~enih delcev na mejah kot v notranjosti zrn je primerljivo enaka. Kva- litativna mikrokemi~na analiza teh delcev z energijsko disperzijskim spektrometrom EDS je pokazala, da vsebujejo grafit. Z dodatnimi preiskavami na TEM mikroskopu je bilo ugotovljeno, da imajo delci velikost med 100 nm in 500 nm (slika 5a). Dobljena uklonska slika na delcih pa je tudi potrdila, da so le-ti grafitni precipitati (slika 5b). Rezultati izmerjenih medmre`nih razdalj namre~ ustrezajo podatkom JCPDS-4609436 in JCPDS-4609447, ki so zna~ilni za grafit. Metalografske preiskave pre~nih prerezov vzorcev notranje oksidiranih hitro strjenih trakov Cu-C so pokazale, da je po delni notranji oksidaciji dobljena mikrostruktura sestavljena iz dveh razli~nih con, in sicer iz: (i) cone notranje oksidacije in (ii) neoksidiranega dvofaznega podro~ja (slika 6). ^elo cone notranje oksidacije je vidno kot meja med svetlim zunanjim - oksidiranim in temnej{im notranjim - {e neoksidiranim podro~jem z grafitnimi delci. Cona NO je sestavljena iz Cu matice in oksidiranih delcev – plinskih por. Razporeditev plinskih por je podobna razporeditvi C-delcev v {e neoksidiranem dvofaznem obmo~ju, sicer pa so plinske pore ve~inoma bolj okrogle in nekoliko ve~je kot C-delci, njihovo {tevilo pa je po volumnu nekoliko manj{e. Ta dejstva nakazujejo, da so plinske pore po vsej verjetnosti nastale z direktno oksidacijo C-delcev. Da bi potrdili prisotnost plinskih por, smo R. RUDOLF ET AL.: [TUDIJ NOTRANJE OKSIDACIJE V NAOGLJI^ENIH HITROSTRJENIH TRAKOVIH Cu Materiali in tehnologije / Materials and technology 41 (2007) 1, 53–58 55 Slika 5: A) TEM-mikroposnetek grafitnega delca in B) uklonska slika del~ka in okoli{kega podro~ja Figure 5: A) TEM image of the graphite particle and B) Diffraction pattern taken the particle and the surrounding area Slika 3: Shematski prikaz vzorca za preizkus oksidacije grafita v Cu-matici Figure 3: Schematic presentation of internal oxidation of graphite in Cu-matrix Slika 6: Mikrostruktura Cu-C-traku: (A) po delni in (B) po popolni notranji oksidaciji Figure 6: Microstructure of the Cu-C ribbons after: (A) partial and (B) complete internal oxidation Slika 4: Zna~ilna mikrostruktura notranje oglji~enega hitro strjenega traku Cu (T = 873 K, 1 h) Figure 4: Typical microstructure of internally carbonised Cu rapidly solidified ribbon (T = 873 K, 1 h) izvedli natan~nej{e preiskave cone NO v pre~nem prerezu traku s presevno elektronsko mikroskopijo. Za ta namen smo vzorec notranje oksidiranega Cu-C-traku stanj{ali v okoljskem vrsti~nem mikroskopu Quanta 200 3D, opremljenim z ionsko pu{ko in sistemom za nana{anje platine. Na posameznih mestih vzorca smo po postopku tanj{anja z ionsko pu{ko dobili presevna podro~ja z debelino, manj{o od 50 nm. Vzorec smo nato vstavili v presevni elektronski mikroskop, kjer smo po jedkanju z ioni Ar+ v presevnem podro~ju z analiza- torjem EFTEM izvedli mikrokemi~no analizo. Porazde- litev elementov Cu, O in C v zrnu, kjer smo opazili plinske pore, je prikazana na sliki 7. Iz dobljene porazdelitve elementov lahko sklepamo, da so v obmo~ju plinskih por tik pod povr{ino le kisikovi atomi, medtem ko je vsebnost elementov Cu in C prakti~no zanemarljiva. Da bi ugotovili tip vezave kisika v plinskih porah, smo opravili tudi EELS-analizo. EELS-spekter za kisik O K je bil posnet v obmo~ju plinske pore pod povr{jem in primerjalno {e za kisik v obmo~ju okoli{ke Cu-matice. Rezultati so prikazani na sliki 8. S slike 8A je razvidno, da ima spekter O K za kisik, ki se nahaja v plinski pori, maksimalno vi{ino vrha pri 540 eV, oblika in lega krivulje sta zna~ilni za molekulski kisik, medtem ko ima spekter O K v obmo~ju matice zna~ilnosti za kisik, ki je vezan v Cu(II)O-oksid – zunanja oksidacija (slika 8B). Na podlagi tega lahko sklepamo, da se v plinski pori kisik nahaja v obliki plina. Preiskave pre~nih prerezov NO vzorcev so pokazale, da so plinske pore nastale kot posledica selektivne oksidacije grafitnih delcev nanometrske velikosti. Pri tem je pri reakciji raztopljenega kisika z grafitnimi delci pri{lo do nastanka plinov CO in CO2, ki se niso mogli raztopiti v kristalni Cu-mre`i in zavzemajo prostor zreagiranega C-delca. Zaradi pozitivne razlike v specifi~nem volumnu med nastalimi plini (CO, CO2) ter grafitom, naj bi le-to posledi~no povzro~ilo tla~ne nape- tosti na okoli{ko Cu-matico in s tem njeno deformacijo (V(s)C = 5,298 cm3 < V(g)CO,CO2 = 24789,2 cm3)8. Z metalografskimi preiskavami NO-mikrostruktur smo opazili, da so po kratkih ~asih NO (do 15 min) v coni notranje oksidacije nastale plinske pore, ki so nekoliko R. RUDOLF ET AL.: [TUDIJ NOTRANJE OKSIDACIJE V NAOGLJI^ENIH HITROSTRJENIH TRAKOVIH Cu 56 Materiali in tehnologije / Materials and technology 41 (2007) 1, 53–58 Slika 9: Globina CNO h pri notranje oksidiranih Cu-C-trakovih po razli~nih ~asih `arjenja Figure 9: Depth of the internal oxidation zone by internally oxidized Cu-C ribbons after different time of annealing Slika 8:Mikroposnetek notranje oksidiranega Cu-C-traku s presevnim elektr. mikroskopom – svetlo polje, ZF-filter; EELS-spekter O K: A) v obmo~ju plinske pore, B) v obmo~ju Cu-matice Figure 8: TEM micrograph of internally oxidized Cu-C ribbons- bright field, ZL filter; EELS spectre O K: A) in the region of gas bubble, B) in the region of Cu-matrix Slika 7: Porazdelitev elementov (EFTEM) v zrnu v presevnem podro~ju z lo~ljivostjo ≈ 1 nm Figure 7: Elemental distribution maps inside of grain in thin films at a spatial resolution of ≈ 1 nm ve~je od grafitnih delcev v neoksidiranem delu vzorca in dosegajo velikost med 50 nm in 500 nm. Povsem druga~no mikrostrukturo pa smo opazili pri vzorcih, ki so bili NO dalj{i ~as (tNO > 30 min). V tem primeru smo identificirali le plinske pore, ki so bile tudi precej ve~je (tudi do 500 nm), zato predvidevamo, da po dalj{ih ~asih NO za~ne potekati proces sferoidizacije plinskih por. Kinetiko NO smo dolo~ili z meritvijo pomika ~ela CNO v notranjost pre~nega prereza vsakega vzorca traku, kar je pomenilo dolo~itev globine podro~ja, kjer je pri{lo do oksidacije grafitnih delcev. ^eprav je bila dose`ena globina CNO na nekaterih mestih v pre~nem prerezu vzorcev dokaj neenakomerna in slab{e lo~ljiva, smo pri dolo~evanju CNO ugotovili, da je mo`no le-to dolo~iti samo pri vzorcih, ki so bili oksidirani kratek ~as (7, 15) min, saj je v drugih primerih CNO `e pre{la celoten prerez traku (slika 9). Izhodna debelina hitrostrjenih trakov Cu-C je bila za te preskusne ~ase NO premajhna. Na podlagi opravljenih meritev lahko sklene- mo, da je kinetika notranje oksidacije Cu-C-kompozita kontrolirana z difuzijo kisika v Cu-matici. Za dodatno potrditev prisotnosti plinskih por v mikrostrukturi smo naredili prelome popolnoma notranje oksidiranih hitrostrjenih trakov Cu-C. Prelome teh trakov smo izvedli v teko~em N2, s ~imer smo posku{ali ohraniti ~im bolj avtenti~no mikrostrukturo. Pri SEM-opazovanju prelomnih povr{in smo ugotovili, da je pri teh trakovih nastala prelomna povr{ina, ki je karakteristi~na za t. i. porozne materiale9, kar je razvidno tudi s slike 10. Na prelomni povr{ini teh trakov so namre~ bile zna~ilne jamice, katerih velikost je ocenjena na ≈ 0,5 µm. Eksperimenti notranje oksidacije predhodno notranje oglji~enih hitro strjenih trakov ~istega Cu so pokazali, da je pri{lo: V prvi stopnji do adsorpcije in raztapljanja kisika v bakru, pri ~emer je bila dose`ena koncentracija kisika enaka maksimalni topnosti. Ko je koncentracija kisika na meji Cu-matica/grafitni delec dosegla kriti~no vrednost (oksidativna atmosfera za ogljik), je pri tem potekla na tej meji direktna oksidacija nano-metrskih grafitnih delcev, ki jo lahko zapi{emo z reakcijama C + [O]Cu→ CO in C + 2[O]Cu→ CO2. Pri tem so nastale plinske molekule, ki so zasedle volumenski prostor zreagiranega grafita. Nastale plinske molekule se niso mogle raztopiti v bakru, in ker je molski volumen plina V(g)CO,CO2 bistveno ve~ji kot volumen trdnih grafitnih delcev, se je v tem prostoru ustvaril vi{ji tlak. To je povzro~ilo nastanek plinskih por in velikih tla~nih napetosti na okoli{ko kristalno mre`o, kar je imelo za posledico plasti~no deformacijo matice in nastanek plinskih por. Ko se je grafitni delec na stiku s Cu-matico oksidiral, ni bilo ve~ neposrednega stika med grafitom in kisikom, raztopljenim v bakru. Neoksidiran grafitni delec je postal obdan s plinsko fazo, preko katere se je prena{al kisik za nadaljnjo oksidacijo. Glede na teoreti~en izra~un TD-pogojev10 predvidevamo, da je pri tem na meji plin- ska faza/Cu-matica potekala reakcija [O]Cu + CO → CO2, in nastali CO2 je nato prena{al kisik do neoksidiranega grafita, kjer je v naslednji stopnji potekala na meji plinska faza/grafit reakcija C + CO2 ⇔ 2CO. Tak{no shemo poteka notranje oksidacije nano- metrskih grafitnih delcev prikazuje slika 11. R. RUDOLF ET AL.: [TUDIJ NOTRANJE OKSIDACIJE V NAOGLJI^ENIH HITROSTRJENIH TRAKOVIH Cu Materiali in tehnologije / Materials and technology 41 (2007) 1, 53–58 57 Slika 11: Shematska predstavitev notranje oksidacije za hitro strjeni trak Cu-C Figure 11: Schematic presentation of the internal oxidation for the Cu-C rapidly solidified ribbon Slika 10: Prelomna povr{ina popolnoma notranje oksidiranega Cu-C-traku Figure 10: Fracture surface after complete internally oxidized Cu-C ribbons 4 SKLEPI Na osnovi dobljenih rezultatov in analiz lahko povzamemo naslednje sklepe: – Po delni notranji oksidaciji Cu-C trakov je dobljena mikrostruktura sestavljena iz dveh razli~nih con: iz (i) cone notranje oksidacije z enakomerno razpo- rejenimi plinskimi porami v Cu-matici in iz (ii) neoksidiranega dvofaznega podro~ja s C-delci v Cu-matici. – Razporeditev plinskih por v coni NO je podobna razporeditvi C-delcev v {e neoksidiranem dvofaz- nem podro~ju, pri ~emer so plinske pore ve~inoma bolj okrogle in nekoliko ve~je kot C-delci, njihovo {tevilo pa je po volumnu nekoliko manj{e. – Posnet EELS-spekter O K za kisik, ki se nahaja v plinski pori pod povr{jem, ima maksimalno vi{ino vrha pri 540 eV; oblika in lega krivulja pa sta zna~ilni za molekulski kisik. V primeru posnetega EELS-spektra O K v obmo~ju matice ima le-ta zna~ilnosti za kisik, ki je vezan v Cu(II)O oksid. – V prvi stopnji NO poteka v Cu matici reakcija med grafitom in raztopljenimi kisikovimi atomi kot direktna notranja oksidacija, v drugi stopnji, pa preide reakcija na indirektno preko plinske faze CO2, ki prena{a kisik do grafita. – Po dalj{ih ~asih NO za~ne potekati proces sfe- roidizacije plinskih por. – Pri prelomu popolnoma notranje oglji~enih Cu-C- trakov je nastala prelomna povr{ina z jamicami, ki je karakteristi~na za duktilne porozne materiale. 5 LITERATURA 1 B. Reppich: On the attractive particle-dislocation interaction in dispersion-strengthened material; Acta mater., 46 (1998)1, 61–67 2 J. Rösler, E. Arzt: A new model-based creep equation for dispersion strengthened materials; Acta metall., 38 (1990) 4, 671–683 3 R. Rudolf, I. An`el, A. Kri`man: Kvalitativna mikrostrukturna analiza kompozita Cu-C, Mater. Tehnol. 34 (2000) 5, 243–248 4 R. Rudolf, I. An`el, A. Kri`man: Visokotemperaturna oksidacija kompozita Cu-C; Mater. Tehnol. 35 (2001) 5, 219–226 5 I. An`el, A. Kri`man, T. Bon~ina, F. Zupani~, G. Lojen, L. Kosec, B. [u{tar{i~: Mikrostruktura hitro strjenih trakov zlitine Cu-Zr. Kovine zlit. tehnol., 29 (1995) 1-2, 57–61 6 Shterenberg, L. E., Bogdanova, S. V., Slesarev, V. N.: Inorganic Materials, 13 (1977) 8, 1424 7 Shterenberg, L. E., Bogdanova, S. V.: Inorganic Materials, 15 (1979) 5, 632 8 E. A. Brandes, G. B. Brook, Smithell´s Metals Reference Handbook, London, 1992 9 Randal M. German: Particle Packing Characteristics; New Jersey, Materials Engineering Department, 1989 10 R. Rudolf: Notranja oksidacija diskontinuirnih kompozitov iz sistema Cu-C, Ph. D. Thesis (in Slovene), 2002, 40 p. 11 B. [u{tar{i~, J. Rodi~: Amorfne kovine in tehnologija hitrega strje- vanja na IMT Ljubljana; @elez. zb., 23 (1989), 159–164 R. RUDOLF ET AL.: [TUDIJ NOTRANJE OKSIDACIJE V NAOGLJI^ENIH HITROSTRJENIH TRAKOVIH Cu 58 Materiali in tehnologije / Materials and technology 41 (2007) 1, 53–58 DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES DOKTORSKA DELA – DOCTOR'S DEGREES Na Fakulteti za strojni{tvo Univerze v Ljubljani je dne 8. decembra 2006 pred komisijo v sestavi: prof. dr. Karl Kuzman kot predsednik in ~lani: prof. dr. Janez Tu{ek, prof. dr. Alojz Kodre, akad. prof. dr. Igor Grabec in prof. dr. Edvard Govekar Tadej Kokalj, univ. dipl. fiz. zagovarjal doktorsko delo z naslovom: Modeliranje in optimizacija laserskega tvorjenja kapljic iz kovinske `ice Modeling and Optimization of Laser Droplet Formation from Metal Wire Mentor pri pripravi disertacije je bil prof. dr. Edvard Govekar, somentor pa akad. prof. dr. Igor Grabec. Recenzenti predlo`ene disertacije so bili: prof. dr. Janez Tu{ek, prof. dr. Alojz Kodre, prof. dr. Edvard Govekar, akad. prof. dr. Igor Grabec. MODELIRANJE IN OPTIMIZACIJA LASERSKE- GA TVORJENJA KAPLJICE IZ KOVINSKE @ICE UDK: 621.791.724:536.21/.22:004.94(043.3) POVZETEK V delu je teoreti~no in eksperimentalno raziskana mo`nost modeliranja in optimizacije procesa laserskega tvorjenja kapljice (LTK) iz kovinske `ice. LTK je nov tehnolo{ki proces, pri katerem z laserskim `arkom segrevamo in pretalimo konec kovinske `ice. Po lo~itvi od `ice kapljico odlo`imo na izbrano mesto, kjer jo uporabimo za tvorjenje spojev ali kot polnilo. Glavni problem procesa LTK je dolo~itev primernih parametrov procesa, ki zagotavljajo tvorjenje kapljic z `elenimi lastnostmi brez izbrizgavanja taline na podlago in raztrosa kapljic. Vzrok za razvoj te tehnologije je potreba po tvorjenju spojev brez prisotnosti svinca in spojev z vi{jo temperaturno odpornostjo kot sedaj. Poleg slednjega ka`ejo prve raziskave spojev z lasersko tvorjenimi kapljicami tudi dobro korozijsko odpornost. V delu sta predstavljena zgrajena fizikalna modela procesa LTK za proces s tremi laserskimi `arki in za proces z enim laserskim `arkom. Numeri~na obravnava modela omogo~a izra~un ~asovnega razvoja tempe- raturnega polja `ice v odvisnosti od parametrov procesa. Izra~unano temperaturno polje je podlaga za optimiranje procesa LTK, ki ga obravnavamo v dveh fazah: tvorjenje vise~e kapljice in lo~itev kapljice od `ice. Pri opti- miranju smo se omejili na dolo~itev ~asovnega poteka laserskega bliska. Pri dolo~itvi poteka bliska za tvorjenje vise~e kapljice z uporabo treh laserskih `arkov smo DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES Materiali in tehnologije / Materials and technology 41 (2007) 1, 59–64 59 MODELING AND OPTIMIZATION OF LASER DROPLET FORMATION FROM METAL WIRE UDC: 621.791.724:536.21/.22:004.94(043.3) ABSTRACT Investigation of Laser Droplet Formation (LDF) from the metal wire and the possibility of process optimization on the basis of numerical model are presented in this doctoral thesis. LDF is a novel technological process, where laser beams are used to heat a metal wire and produce molten metal droplets. After detachment of the droplet from the wire the droplet can be deposited onto a substrate to form a joint or to fill gaps in material. Determination of proper process parameters which assure a stable LDF without splashes of material and radial scatter is essential for the successful application of the process. The aim for development of LDF is the need for high temperature resistant joints. Besides, preliminary investigations on LDF joints show good corrosion resistivity. Physical model of LDF processes by the use of three and one laser beams are presented in this work. Numerical solutions of physical model enable the calculation of time development of the temperature field of the wire at different sets of process parameters. Calculated temperature field is the basis for the LDF process optimization. The LDF process was separated into two phases: pendant droplet formation and droplet detachment. Time course of laser pulse power was optimized. A genetic algorithm optimization method was used for the determination of laser pulse in the case uporabili metodo optimiranja z genetskimi algoritmi. Pri dolo~itvi poteka bliska za tvorjenje vise~e kapljice z uporabo enega laserskega `arka smo uporabili metodo simulacije krmiljenja v zaprti zanki. Uporabnost izra~u- nanih bliskov smo preverili s preizkusi. Z numeri~no dolo~enimi poteki laserskih bliskov nam je uspelo zago- toviti uspe{no tvorjenje posameznih kapljic in zmanj{ati variabilnost procesa. Raziskali smo tudi mo`nost zapo- rednega tvorjenja niza kapljic, ki je posebej pomembno za prenos in uporabo procesa laserskega tvorjenja kapljice v industriji. DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES 60 Materiali in tehnologije / Materials and technology 41 (2007) 1, 59–64 of three laser beams and the simulation of closed loop control was used for laser pulse determination in the case of one laser beam. Theoretical results were verified experimentally. With numerically determined laser pulses a stable LDF was accomplished and the variability of the process was decreased. Possibility of sequential droplet formation generating several droplets per second, which is especially important for industrial purposes, was also investigated. Na Naravoslovnotehni{ki fakulteti Univerze v Ljubljani je dne 28. februarja 2006 pred komisijo v sestavi: red. prof. dr. Radomir Turk kot predsednik in ~lani: red. prof. dr. Savo Spai}, red. prof. dr. Ladislav Kosec, red. prof. dr. Alojz Kri`man Iztok Nagli~, univ. dipl. in`. metal. zagovarjal doktorsko disertacijo z naslovom: Karakterizacija aluminija in zlitine Al-Fe z dodatkom sredstev za zmanj{e- vanje zrn AlTi5B1 in AlTi3C0,15 Characterization of aluminium and Al-Fe alloy with the addition of AlTi5B1 and AlTi3C0.15 grain refiners Doktorska disertacija je bila izdelana pod pedago{kim mentorstvom izr. prof. dr. Antona Smoleja ter mentorstvom dr. Mirka Dober{ka. KARAKTERIZACIJA ALUMINIJA IN ZLITINE Al-Fe Z DODATKOM SREDSTEV ZA ZMANJ[EVANJE ZRN AlTi5B1 IN AlTi3C0,15 UDK: 669.715:620.18 POVZETEK Delo obravnava karakterizacijo tehni~no ~istega aluminija in industrijsko izdelane zlitine Al-Fe z dodatkom udrobnilnih sredstev AlTi5B1 in AlTi3C0,15. Aluminij in zlitino Al-Fe sem talil v indukcijski pe~i z grafitnim loncem. Potek strjevanja sem preiskoval s termi~no analizo, vzorce v litem stanju pa sem karak- teriziral z metodami opti~ne mikroskopije, kvantitativne metalografije, SEM z elektronsko mikroanalizo EDS in WDS ter TEM. Udrobnilno sredstvo AlTi5B1 je pri enaki koncen- traciji titana u~inkovitej{e od sredstva AlTi3C0,15 tako v aluminiju kot tudi v zlitini Al-Fe. Kristalizatorji za kristalna zrna aAl so v aluminiju z dodatkom udrobnil- nega sredstva AlTi5B1 TiB2 v aluminiju z dodatkom udrobnilnega sredstva AlTi3C0,15 pa TiC. Kristalizatorji v obliki aglomeratov delcev TiB2 oziroma TiC se nahajajo v osrednjem delu kristalnih zrn αAl s pove~ano koncentracijo titana v trdni raztopini, tako da se koncentracija titana zmanj{uje z oddaljenostjo od kristalizatorja. V aluminiju z dodatkom udrobnilnega sredstva AlTi3C0,15 je orientacijska zveza med TiC in αAl potrjena z metodo EBSD. Rezultati raziskav aluminija z dodatkom udrobnilnega sredstva AlTi3C0,15 v tem delu pa z metodo TEM potrjujejo, da so delci TiC z matrico αAl v orientacijski zvezi. Ugotovljeni sta bili dve krista- lografski orientacijski zvezi med TiC in matrico αAl: [111]aAl II [111]TiC in (220)aAl II (220)TiC ter [114]αAl II [110]TiC in (220)αAl II (220)TiC. Pri pretaljevanju aluminija z dodatkom udrobnilnega sredstva AlTi5B1 se zaradi gravitacijskega izcejanja delcev TiB2 koncentracija bora v ulitku zmanj{uje ob tem pa se pove~uje velikost kristalnega zrna αAl. U~inkovitost zmanj{evanja velikosti kristalnega zrna DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES Materiali in tehnologije / Materials and technology 41 (2007) 1, 59–64 61 CHARACTERIZATION OF ALUMINIUM AND AL-FE ALLOY WITH THE ADDITION OF ALTI5B1 AND ALTI3C0.15 GRAIN REFINERS UDC: 669.715:620.18 ABSTRACT The objective of this work is to characterise commercial-pure aluminium and industrial Al-Fe alloy with the addition of AlTi5B1 and AlTi3C0.15 grain refiners. Aluminium and Al-Fe alloy were melted in a graphite crucible inside an induction furnace. Solidifi- cation process was investigated by thermal analysis. The characterisation of castings was carried out using optical microscopy and quantitative metallography, SEM with EDS and WDS, and TEM. It has been established that the addition of AlTi5B1 grain refiner is more effective than the addition of AlTi3C0.15 to aluminium or Al-Fe alloy, regarding the same concentration of titanium. Nucleants in aluminium with AlTi5B1 were TiB2 particles and in aluminium with AlTi3C0.15 were TiC particles. Both types of nucleants were found in the form of agglomerates in the central regions of the aluminium grains, where the concentration of titanium in solid solution was increased. The concentration of titanium in these regions decreases with increasing distance from these agglomerates. Orientation relationship between TiC and αAl in aluminium with addition of AlTi3C0.15 grain refiner has been previously conformed with EBSD. TEM analysis in this work has conformed that TiC in aluminium with addition of AlTi3C0.15 grain refiner is in orientation relationship with surrounding aluminium. Two orien- tation relationships between TiC and αAl were found: [111]αAl II [111]TiC, (220)αAl II (220)TiC and [114]αAl II [110]TiC, (220)αAl II (220)TiC.. It has been found that the concentration of boron in aluminium with the addition of AlTi5B1 grain refiner is decreasing during remelting as a consequence of the TiB2 particles settlement while grain size is increasing. preostalih delcev TiB2 po {tirih pretaljevanjih je manj{a od u~inkovitosti enake koli~ine delcev TiB2 dodanih v obliki udrobnilnega sredstva AlTi5B1. Pri enakem dodatku titana v obliki udrobnilnega sredstva AlTi5B1 oziroma AlTi3C0,15 v aluminij je velikost rekalescence pri strjevanju manj{a pri dodatku sredstva AlTi5B1. Pri so~asnem dodatku udrobnilnih sredstev AlTi5B1 in AlTi3C0,15 v zlitino Al-Fe je velikost kristalnega zrna enaka kot samo pri dodatku udrobnilnega sredstva AlTi5B1. Kristalizatorji za kristalna zrna αAl pri so~asnem dodatku obeh udrobnilnih sredstev v zlitino Al-Fe so delci TiB2, kar je mogo~e pojasniti z manj{o velikostjo rekalescence pri strjevanju aluminija z dodatkom udrobnilnega sredstva AlTi5B1 v primerjavi s sredstvom AlTi3C0,15. V zlitini Al-Fe prisotni delci TiB2 pri strjevanju brez dodatka udrobnilnega sredstva predstavljajo kristali- zatorje za kristalna zrna αAl. Pri dodatku udrobnilnega sredstva AlTi3C0,15 v zlitino Al-Fe se velikost kristalnega zrna zmanj{a, kristalizatorji za kristalna zrna αAl pa so delci TiC. V zlitini Al-Fe prisotni delci TiB2 ne prepre~ijo, da bi pri dodatku v zlitino Al-Fe udrobnilno sredstvo AlTi3C0,15 imelo u~inek zmanj{evanja velikosti kristalnega zrna, kar lahko pojasnimo s tem, da `e prisotni delci TiB2 ka`ejo manj{i u~inek zmanj{evanja velikosti kristalnih zrn in s tem ve~jo rekalescenco od enake koli~ine delcev TiB2 dodanih z udrobnilnim sredstvom AlTi5B1. DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES 62 Materiali in tehnologije / Materials and technology 41 (2007) 1, 59–64 The grain refinement effectiveness of still present TiB2 particles after four remelts is less than the grain refinement effectiveness of the same quantity of TiB2 particles added in the form of AlTi5B1 grain refiner. It has been found that recalescence magnitude at solidification of aluminium with the addition of the same quantity of titanium in the form of the grain refiner is lower for AlTi5B1 grain refiner. The grain size in Al-Fe alloy with the addition of both AlTi5B1 and AlTi3C0.15 grain refiners is the same as with the addition of only AlTi5B1 grain refiner. The nucleation of αAl grains in Al-Fe alloy with the addition of both AlTi5B1 and AlTi3C0.15 grain refiners takes place on TiB2 particles. This phenomenon can be explained with lower recalescence magnitude found at solidification of aluminium with the addition of AlTi5B1 grain refiner. The nucleation of αAl grains on solidification in Al-Fe alloy without addition of grain refiner takes place on TiB2 particles already present in Al-Fe alloy. The grain size in Al-Fe alloy is decreasing with the addition of AlTi3C0.15 grain refiner and the nucleation of αAl grains on solidification takes place on TiC particles. It has been found that TiB2 particles already present in Al-Fe alloy did not prevent AlTi3C0.15 grain refiner effectiveness. This finding can be explained with less effective grain refinement of already present TiB2 particles and consequently higher recalescence magnitude on solidification in comparison to the same quantity addition of TiB2 particles in the form of AlTi5B1 grain refiner. Na Faculté des Sciences Appliquées – Université Catholique de Louvain (Belgium) je dne 20. decembra 2006 pred komisijo v sestavi: prof. dr. Francis Delannay kot predsednik in ~lani: dr. Stéphane Godet, prof. dr. Bart Blanpain, prof. dr. Pascal Jacques, dr. Jacques Charles, dr. Nathalie Gey mag. Arnaud Pétein, univ. dipl. in`. zagovarjal doktorsko disertacijo z naslovom: On the interactions between strain-induced phase transformations and mecha- nical properties in Mn-Si-Al steels and Ni-Cr austenitic stainless steels Doktorska disertacija je bila izdelana pod pedago{kim mentorstvom prof. dr. Pascal Jacques, delovna mentorja prof. dr. Francis Delannay in prof. dr. Bart Blanpain. ABSTRACT The continuously increasing use of automobiles all over the world, is making of gas effluents one of the major concerns for all modern societies. From economical and ecological points of view, everyone agrees on the fact that the consumption of fossil fuels for transport must decrease, particularly by vehicle weight reduction. Development of high performance materials at low cost is therefore needed. In order to achieve this requirement, the present work aimed at investigating the interactions between straining and phase transformations in high performance steels that could meet the weight saving requirements. Indeed, a wide range of studies has shown that mechanically- induced phase transformations (TRIP effect) of the austenite may bring about improved mechanical proper- ties in different steel grades. Strain-induced phase transformations depend on two parameters: the relative stability and the stacking fault energy of the austenite, which are affected by different factors. The interactions between the phase transfor- mations and the mechanical properties of different Fe-Cr-Ni and Fe-Mn-Al-Si grades were examined under various conditions of grain size, temperature or stress state. Particular relationships were clearly established between the phenomena taking place at the scale of the individual grains and at the macroscopic scale. The crystallographic mechanisms of the successive strain- induced phase transformations (austenite – e-martensite – a'-martensite) has been clarified. Finally, different techniques of grain refinement were used to process stainless steels with various grain sizes, assessing the efficiency of these techniques. Therefore, the kinetics of retransformation, recrystallisation and grain growth were studied. Grain refinement by cycles of phase transformations was found more effective than the classical deformation - recrystallisation method. Complete dissertation (free access and download): http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available /BelnUcetd-01032007-144255/ DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES Materiali in tehnologije / Materials and technology 41 (2007) 1, 59–64 63 MAGISTRSKA DELA – MASTER'S DEGREES Na Naravoslovnotehni{ki fakulteti, Oddelku za materiale in metalurgijo Univerze v Ljubljani je dne 27. oktobra 2006 prek komisijo v sestavi: red. prof. dr. Savo Spai} kot predsednik in red. prof. dr. Ladislav Kosec in izr. prof. dr. Anton Smolej kot ~lana. Alenka Kosma~, univ. dipl. in`. metal., zagovarjala magistrsko delo z naslovom: Razvoj mikrostrukture pri preoblikovanju in toplotni obdelavi nerjavnega jekla z dupleksno mikrostrukturo Microstructure development during hot deformation and heat treatment of duplex stainless steel Magistrsko delo je bilo opravljeno pod mentorstvom red. prof. dr. Ladislava Kosca. Recenzenti predlo`enega magistrskega dela so bili red. prof. dr. Savo Spai}, red. prof. dr. Ladislav Kosec in izr. prof. dr. Anton Smolej. RAZVOJ MIKROSTRUKTURE PRI PREOBLI- KOVANJU IN TOPLOTNI OBDELAVI NERJAVNEGA JEKLA Z DUPLEKSNO MIKROSTRUKTURO POVZETEK Preiskovali smo razvoj mikrostrukture in precipitacijo sekundarnih faz v dupleksnem nerjavnem jeklu z nominalno kemi~no sestavo 23 Cr, 5,3 Ni, 2,7 Mo in 0,14 N. Vro~e valjanje je bilo izvedeno na labo- ratorijskem valjalnem stroju v temperaturnem obmo~ju od 850 °C do 1250 °C. Pri vro~em valjanju smo uporabili ve~stopenjsko in enostopenjsko deformacijo (specifi~na deformacija od 0,03 do 0,67). Ohlajanje vzorcev je bilo v vodi in na zraku. Predstavljena je kriti~na razprava o razli~nih uporabljenih tehnikah (opti~na mikroskopija, SEM, TEM, EDS, EBSD, rentgenska strukturna analiza) za odkrivanje sekundarnih faz v primerih, ko je njihov dele` majhen. Ugotovili smo, da se sekundarni avstenit pojavlja v {irokem temperaturnem obmo~ju. Z EDS smo izmerili kemijsko sestavo vseh faz. Izmerili smo dele` ferita v mikro- strukturi in vpliv na mehanske lastnosti z meritvami trdote in `ilavosti. Odkrivanje sekundarnih faz z metodo povratno sipanih elektronov v SEM se je pokazalo kot zanesljivo in enostavno, saj ni potrebna posebna priprava vzorcev. Metoda, ki jo predpisuje standard ASTM A 923 in obsega dolo~anje sekundarnih faz z opti~no mikro- skopijo, je premalo natan~na. Rezultate eksperimentalnega dela smo uspe{no uporabili pri industrijski izdelavi {ar`e dupleksnega nerjavnega jekla. DOKTORSKA, MAGISTRSKA IN DIPLOMSKA DELA – DOCTOR'S, MASTER'S AND DIPLOMA DEGREES 64 Materiali in tehnologije / Materials and technology 41 (2007) 1, 59–64 MICROSTRUCTURE DEVELOPMENT DURING HOT DEFORMATION AND HEAT TREATMENT OF DUPLEX STAINLESS STEEL ABSTRACT A duplex stainless steel containing nominally 23 Cr, 5.3 Ni, 2.7 Mo and 0.14 N has been investigated for microstructure development and secondary phases precipitation. The specimens were hot rolled on the laboratory rolling mill in the temperature range 850 °C to 1250 °C. The multipass rolling was performed as well as one step rolling with the specific deformations from 0.03 up to 0.67. A cooling with water and on the air was applied. A critical discussion of different techniques (optical microscopy, SEM, TEM, EDS, EBSD, X-ray diffraction) for revealing secondary phases when the quantity of secondary phases precipitated is low is presented. The secondary austenite was distinguished in wide temperature range. The chemical composition of each phase was determined by means of EDS. The ferrite phase content was measured and effects on mechanical properties have been studied with hardness test and impact test. The SEM – BSE method seems to be the most reliable and easy to use for secondary phases identification while no extra specimen preparation is needed. When optical microscopy is used according to ASTM A 923 it seems to be insufficient. The results were successfully used in industrial heat production with respect to secondary phases precipi- tation.