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ABSTRACT

The osmotic coefficient and the excess free energy have been calculated for a
polyelectrolyte solution with mixtures of mono and divalent counterions. The results
have been obtained by applying the cylindrical cell model in the Poisson-Boltzmann
approximation. The short-range interaction between polyion and counterions, described
by a square-well potential, has also been taken into account. The results of osmotic
coefficient are presented as functions of the equivalent fraction of monovalent
counterions for different values of ionic radii, depth of the potential well, and
concentration.

INTRODUCTION

The cylindrical cell model which considers the electrostatic interactions among
ions has usually been applied for the interpretation of thermodynamic properties of

polyelectrolyte solutions with a fair success. Several times it appears, however, that the
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discrepancy between experimental results and theoretical calculations is rather large
[1,2,3] and consequently, it has stimulated some attempts [4,5,6] in order to improve
the calculations by introducing the non-Coulombic, short-range interaction into the
model.

In the present study we are interested in a polyelectrolyte solution containing a
mixture of mono and divalent counterions. The first theoretical approach to this
problem has been published long ago [7] followed by an experimental verification
[8,9,10]. The same system has also been treated by applying the line charge model [11].
In both cases the electrostatic interaction has only been taken into account. In this
contribution the influence of short-range interactions between polyion and counterions,
represented by a square-well potential, on the osmotic coefficient and excess free

energy will be presented.

THE MODEL AND THE POTENTIAL

The polyelectrolyte solution is represented as an ensemble of cylirciltsl
with radius R and length h (h >> R). In the axis of each cell is fixed a
cylindrical polyion of radius a and length h =vb, where b is the lenght
of the monomer unit. The charge of the polyion is -v ey, supposed to be
spread uniformly over its surface. In the free volume of the cell is a mixture of mono
and z-valent counterions with the total charge equal in number but opposite in sign to
the charge of the polyion. By denoting the radius of monovalent counterions; with
and z-valent withr,, it follows for the distances of closest approagha+r; and
a, =a+r,. The short-range interactions of the non-Coulombic type are represented by

a square-well potentia¥,,. for monovalent counterion:

<

nc — %, 0<sr<a
Vic =~Ef, apsrsby 1)
VIIC:OJ b1<rSR
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and for z-valent counterions:

Vie =, 0<r<ajp
Vic =-Ey, ay<sr<by
VIIC:07 b2<rSR

(2)

where r is the cylindrical coordinate arféf and E, are positive quantities. By

supposing the additivity of Coulombic and non-Coulombic potential and by denoting

E,/kT E,/KT

np=e and N, =¢

the Poisson-Boltzmann equation for this system reads

dy _eo zeoW[] O
rdr dr oSD exp%— k H|1+zn exp%— kT HDD

with the boundary conditions

%% ) 2T|:§§ah’ éﬂf@k 0

®3)

(4)

(5)

The values of the parameterg and n, are given in equations (1) and (2). In

equations above is the electrostatic potential, k the Boltzmann constant, T the

absolute temperature,, the elementary charge, the vacuum and €, the solvent

permittivity, nf and n2 the number density of mono and z-valent counterions at

W=0.

To simplify the notation the dimensionless quantities are introduced

U

y:—ﬂ, t:1n£, y:1n5 U
kT a a O
t1:1na—1, t11:1nﬂ, tzzlna—2, tzzzlnb—z %
a a a a N

ve? 0

4TIE o€kTh E

(6)
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The parametel is proportional to the linear charge density of the polyion which is the

basic property of each polyelectrolyte. Furthermore, we introduce the equivalent

fractionsN{ andN? in the place wherg) = 0 and their average valueé, and N,

- = U
[0} [0}
n n — n — n
N?:ﬁj g:%’ NIZ%, NZ:_Z—Z_ B
ny +zn, ny +zn; n; +zny n, +zny =
0 @
_ _ U
. n, +zn ]
and the ratio ¢ = i Wbt 0
n? + zn(z) H
The Poisson-Boltzmann equation and the boundary conditions now read
2
4N
d 2y =— ezt[ﬂlN?ey +nyNje™
dt (e”Y —1)¢ ®)
dy O dy
= -2\, =0
b Hact,
The average valueN| and N, may be obtained from
. 2 (0] Y . 2 (0] Y
Nl = %In]ey-kztdt , NZ — %Inzezw-ztdt (9)
e -1y &Y -1y

Within the integration interval) <t <y, each of the parameterg and n, assumes

three different values as indicated in equations (1) and (2). Let us repeat this condition

in the new notation

M, 0st<t; M, 0<t<t,
| |

N =0, f1st<ty Ny =1, tr) St<ty) (10)
Ba t)p <tsy B ty) <tsy
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Because equation (8) cannot be solved analytically we applied the Runge-Kutta

method of the third order for numerical computation. The valuedPfand N9 were
chosen arbitrarily and the parametér was found by an appropriate iteration

procedure.

THE FREE ENERGY AND THE OSMOTIC COEFFICIENT

The excess free energy,, of a polyelectrolyte has three contributions

Aex = Unc + Uc - TScf (11)

where U . is the non-Coulombic contributiorl), the Coulombic contribution and

Scr Is the configurational entropy [12]J,,. was calculated from

b, b,
UIIC = _El In?eynldV _E2 J' ngezynde (12)
a a

The final expression is

t 5]
Upe =2VkTV, My In I’]ln? I eV 2t + N, In I’lzng I ezy+2tdt§ (13)
tl t2 E

where V,, = ma?b is the volume of the monomer unit. The Columbic contribution
U, was calculated in two different ways, according to equations (14) and (15), giving

different but equivalent expressions

U, :%\I]plpdv+%JS'0lp(a)dS (14)
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= szi-[(grad ljJ)de (15)
Vv

where pis the local volume charge density aadis the charge density on the surface

of the polyion. The configurational entrof§s due to nonuniform distribution of

counterions within the cell was calculated from

Ser— = —k if%ﬁ Inn; =n; Inn; §dV (16)
i=1

where n; is the local concentration of mono and z-valent counterions gndts

average value.

From equation (14) it follows

Y
U, = %v kTy(0)-v kTVmgﬂln?ey”ty dt +Iﬂzngezy+2ty dtg (17)
0

and from equation (15)

vay g
U, = VkT % (18)

In both integrals of equation (17) the condition (10) has to be taken into account. The
expression foS ¢ is too long and for that reason it is not reproduced here.
The calculation ofA ., is a very long procedure and it will not be presented

here. Therefore, we give only the final expression of the excess free energy per

monomer unit by introducing equation (14) into equation (11)

OAey O Ny N, N

B\)—H —y(O)+N11nﬁ TIHE?Z-F

v v (29)
anln?_[ey”ty dt + anzn(z)_[ezy”tz ydt
0
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and equation (15) into equation (11)

y < 0
| D
A = Ig’—gdt+N11n—+N—l N +
T Z ENZ

2V, Nin Iey+2tydt+2er]2n Ie Y2, dt

(20)

In equations (19) and (20) the fractitﬁelzy —e2l )/ (e2y —e2t2) was approximated
by 1 which simplifies the writing and does not make an appreciable error. By
multiplying equation (19) by 2 and substracting equation (20) from it, we obtain the

simple expression

Y 0
Jex = y(0)- I%gdﬁNlln NP LNz Ny (21)
VkT Z ENZ

very suitable for numerical evaluation.

The osmotic coefficient can be obtained from the partial derivative Qfwith

respect to volume [13]. The most convenient expression [12], adapted for this case is

0 + [0}
®=21 70 (22)
n; +tny
0 + [0}
which reads in our notation ¢ = % (23)
£(2N1+N,)

RESULTS AND DISCUSSION

All equations in the previous section were developed for the general case of
mono and z-valent counterions. The numerical calculations have been made, however,
for mixtures of mono and divalent counterions which are more frequently encountered

in biological and industrial systems. For all calculations the following values of the
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parameters characterizing the polyion were applied: a = 0.8 nm, b = 0.252 nk,=and

2.84. For counterions the following values of ionic radii were takgm 0.33 nm (e.
g. Cs*) which givesa; = 1.13 nm, andr, = 0.46 nm (e. gBe>") [14] which gives
a,=1.26 nm. In Figure 3 we have for comparisgn= 0.8 nm; 1.0 nm; 1.13 nm and

a, = 0.8 nm; 1.1 nm; 1.26 nm. The relation between the concentration parameter

and concentratior,, in moles of monomer units per liter is

y:1n5:—lln(103NAVm)—llncm, (24)
a 2 2

where N , is the Avogadro number. Thus, we haye= 1.5 (c,, = 0.163 mol/l),
Y =2 (¢ = 0.06 molll), y = 3 (c,, = 0.00812 mol/l), andy = 4 (c,,= 0.0011
mol/l). For almost all calculations the valug = 2 was applied. The range of the short-

range interaction,b; = 1.4 nm andb,= 1.6 nm, was the same in all cases.
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FIGURE 1. The influence of the short-range interaction on the osmotic coefficient.
Counterions are point charges.
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FIGURE 2. The influence of the short-range interaction on the osmotic coefficient. Radii of
counterions are 0.33 nm and,r= 0.46 nm.

The greater part of the figures presented in this article is devoted to the osmotic
coefficient because, it can be obtained directly from the experiment, and gives an
approximate information about the distribution of counterions inside the cell. The
concentration of counterions at the border of the cell is decisive for the value of the
osmotic coefficient, as shown in equation (22). A low value ®f signifies that
counterions are gathering around the polyion and, as a result, a decrease of
concentration is produced at the border of the cell. A comparison of Figures 1 and 2
reveals that a lower depth of the potential well ( higher valuegoind n,) gives

rise to a stronger attraction of counterions to the polyion, irrespective of the ionic size

and the value oN;. Furthermore, larger counterions are less attracted by the polyion
causing a higher value ofp, as seen in Figure 3. The dependence of the osmotic

coefficient on concentration is presented in Figure 4 and 5 for two different cases. For

lower concentrations (higher values of the paramgtethe well expressed maxima

appear what has been confirmed by the experiments [8].
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FIGURE 3. The influence of radii of counterions on the osmotic coefficient
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FIGURE 4. Dependence of the osmotic coefficient on concentration in the absence of the short-range
interaction.
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FIGURE 5. Dependence of the osmotic coefficient on concentration in the presence of the short-range
interaction.

In Figures 6 and 7 the excess free energy is plotted againsfor different
values ofy and of the parameterg; and n, . In this case, a simple interpretation which

would be analogous to that applied with osmotic coefficient is not possible.



122

8.0

7.5_- z=2 O y=15
1a=0.8nm ® y=2

7.0 a; =1.13nm, a, = 1.26 nm m y=3

6.59 b, =1.4nm, b,=1.6 nm o vy=4 )

ﬂ1:3, n,=4

A KT

0.0 0.2 0.4 0.6 0.8 1.0
Nl

FIGURE 6. Dependence of 4 /ikT on concentration.

4.4 y=2 (@) nlznzzl

] Z:2 ® n :21'] :3
4.2 ! 2

| a=0.8nm O n,=3n,=4
40 a, =1.13nm, a,=1.26 nm
. b,=1.4nm, b,=1.6nm

D

3.8 1

A VKT

30 T T T T T T T T T
0.0 0.2 04 0.6 0.8 1.0

FIGURE 7. The influence of short-range interaction og AikT.
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POVZETEK

Za raztopino polielektrolita z meSanico eno- irowhlentnih protioiinov smo na osnovi
celicnega modela s cilindricno simetrijo in z uporabo Poisson-Boltzmannove enacbe
izraCunali osmozni koeficient in presezno prosto energijo. Pri raunu smo upoStevali
tudi kratkosezne interakcije med poliionom in protiioni, opisane s pravokotnim
potencialom. Vrednosti osmoznega koeficienta smo podali kot funkcijo ekvivalentnega
ulomka enovalentnih protiionov za razlicne vrednosti ionskih radijev, globine
potencialne jame in koncentracije.



