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Abstract

If G and H are two cubic graphs, then an H-coloring of G is a proper edge-coloring
f with the edges of H , such that for each vertex x of G, there is a vertex y of H with
f(∂G(x)) = ∂H(y). If G admits an H-coloring, then we will write H ≺ G. The Petersen
coloring conjecture of Jaeger (P10-conjecture) states that for any bridgeless cubic graph G,
one has: P10 ≺ G. The S10-conjecture states that for any cubic graph G, S10 ≺ G. In
this paper, we introduce two new conjectures that are related to these conjectures. The first
of them states that any cubic graph with a perfect matching admits an S12-coloring. The
second one states that any cubic graph G whose edge-set can be covered with four perfect
matchings, admits a P12-coloring. We call these new conjectures S12-conjecture and P12-
conjecture, respectively. Our first results justify the choice of graphs in S12-conjecture
and P12-conjecture. Next, we characterize the edges of P12 that may be fictive in a P12-
coloring of a cubic graph G. Finally, we relate the new conjectures to the already known
conjectures by proving that S12-conjecture implies S10-conjecture, and P12-conjecture and
(5, 2)-Cycle cover conjecture together imply P10-conjecture. Our main tool for proving
the latter statement is a new reformulation of (5, 2)-Cycle cover conjecture, which states
that the edge-set of any claw-free bridgeless cubic graph can be covered with four perfect
matchings.
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1 Introduction
In this paper, we consider finite, undirected graphs. They do not contain loops, though
they may contain parallel edges. We also consider pseudo-graphs, which may contain both
loops and parallel edges, and simple graphs, which contain neither loops nor parallel edges.
As usual, a loop contributes to the degree of a vertex by two.

Within the frames of this paper, we assume that graphs, pseudo-graphs and simple
graphs are considered up to isomorphisms. This implies that the equality G = G′ means
that G and G′ are isomorphic.

For a graph G, let V (G) and E(G) be the set of vertices and edges of G, respectively.
Moreover, let ∂G(x) be the set of edges of G that are incident to the vertex x of G. A
matching of G is a set of edges of G such that any two of them do not share a vertex.
A matching of G is perfect, if it contains |V (G)|

2 edges. A block of G is a maximal 2-
connected subgraph of G. An end-block is a block of G containing at most one vertex that
is a cut-vertex of G. A subgraph H of G is even, if every vertex of H has even degree in
H . A subgraph H is odd, if every vertex of G has odd degree in H . Sometime, we will
refer to odd subgraphs as joins. Observe that a perfect matching is a join of a cubic graph.
A subgraph H is a parity subgraph if for every vertex v of G dG(v) and dH(v) have the
same parity. Observe that H is a parity subgraph of G if G − E(H) is an even subgraph
of G.

LetG is a cubic graph, and letK be a triangle inG such that each ofK is of multiplicity
one. For an edge e of K, let f be the edge of G that is incident to a vertex of K and is not
adjacent to e. Edges e and f will be called opposite edges.

Let G and H be two cubic graphs. An H-coloring of G is a mapping f : E(G) →
E(H), such that for each vertex x of G there is a vertex y of H , such that f(∂G(x)) =
∂H(y). If G admits an H-coloring, then we will write H ≺ G. It can be easily seen that if
H ≺ G and K ≺ H , then K ≺ G. In other words, ≺ is a transitive relation defined on the
set of cubic graphs.

If H ≺ G and f is an H-coloring of G, then for any adjacent edges e, e′ of G, the
edges f(e), f(e′) of H are adjacent. Moreover, if the graph H contains no triangle, then
the converse is also true, that is, if a mapping f : E(G) → E(H) has a property that for
any two adjacent edges e and e′ of G, the edges f(e) and f(e′) of H are adjacent, then f
is an H-coloring of G (see Lemma 2.1).

Figure 1: The graph P10. Figure 2: The graph S10.

Let P10 be the well-known Petersen graph (Figure 1) and let S10 be the graph from
Figure 2. The Petersen coloring conjecture of Jaeger states:
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Conjecture 1.1 (Jaeger, 1988 [9]). For any bridgeless cubic graph G, P10 ≺ G.

Sometimes, we will call this conjecture as P10-conjecture. The conjecture is difficult
to prove, since it can be seen that it implies the following classical conjectures:

Conjecture 1.2 (Berge-Fulkerson, 1972 [4, 15]). Any bridgeless cubic graph G contains
six (not necessarily distinct) perfect matchings F1, . . . , F6 such that any edge of G belongs
to exactly two of them.

This list of six perfect matchings usually is called a Berge-Fulkerson cover of G. If
k(G) is the smallest number of perfect matchings that are needed to cover the edge-set of
G, then observe that this conjecture implies that k(G) ≤ 5 for any bridgeless cubic graph.
This weaker statement is known as Berge conjecture.

Conjecture 1.3 ((5, 2)-even-subgraph-cover conjecture [1, 13]). Any bridgeless graph G
(not necessarily cubic) contains five even subgraphs such that any edge of G belongs to
exactly two of them.

Let us note that some of the even subgraphs stated in this conjecture might be empty.
Related with the Jaeger conjecture, the following conjecture has been introduced in [11]:

Conjecture 1.4 (V. V. Mkrtchyan, 2012 [11]). For any cubic graph G, S10 ≺ G.

We will call this the S10-conjecture.
A k-edge-coloring is an assignment of colors to edges of a graph from a set of k colors

such that adjacent edges receive different colors. The smallest k for which a graph G
admits a k-edge-coloring is called a chromatic index of G and is denoted by χ′(G). If α
is a k-edge-coloring of a cubic graph G, then an edge e = uv is called poor (rich) in α,
if the five edges of G incident to u or v are colored with three (five) colors. α is called a
normal k-edge-coloring of G if any edge of G is either poor or rich in α. Observe that not
all cubic graphs admit a normal k-edge-coloring for some k. An example of such a graph
is the graph from Figure 2. On the positive side, all simple cubic graphs admit a normal 7-
edge-coloring [10]. The smallest k (if it exists) for which a cubic graph G admits a normal
k-edge-coloring is called a normal chromatic index of G and is denoted by χ′N (G).

Normal colorings were introduced by Jaeger in [8], where among other results, he
showed that for a cubic graph G, χ′N (G) ≤ 5 if and only if G admits a P10-coloring.
This allowed him to obtain a reformulation of Conjecture 1.1, which states that for any
bridgeless cubic graph G, χ′N (G) ≤ 5.

In this paper, we introduce two new conjectures that are related to Conjectures 1.1
and 1.4. In Section 2, we discuss some auxiliary results that will be useful later in the paper.
In Section 3, we briefly discuss so-called coloring-hereditary classes of cubic graphs that
allowed us to come up with these two new conjectures. Then in Section 4, we present our
main results. Finally, in Section 5, we discuss some open problems. Terms and concepts
that we do not define in the paper can be found in [17, 18].

2 Auxiliary results
In this section, we present some auxiliary results that will be useful later. Our first two
results are lemmas about some properties ofH-colorings of cubic graphs. Though all these
properties are known before, for the sake of completeness we give complete proofs.
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Lemma 2.1. Assume thatG andH are two cubic graphs. Moreover, letH be triangle-free.
If a mapping f : E(G) → E(H) has a property that for any two adjacent edges e and e′

of G, the edges f(e) and f(e′) of H are adjacent, then f is an H-coloring of G.

Proof. In order to see this, assume that f is not an H-coloring of G. Then G contains a
vertex w where the definition of an H-coloring is violated. Let e1, e2 and e3 be the three
edges incident to w. Assume that the colors of e1 and e2 in f are the edges xy and yz ofH .
Observe that z 6= x, as otherwise we will have f(∂G(w)) = ∂H(x) or f(∂G(w)) = ∂H(y)
violating the choice of w. Now, the edge f(e3) of H cannot be incident to y. On the other
hand, it must be adjacent to xy and yz. Hence f(e3) connects x and z. Observe that the
edges x, y and z form a triangle in H . This contradicts our condition on H .

Note that the condition H is triangle-free is important in the previous lemma. If G is
any 3-edge-colorable cubic graph and H contains a triangle with edges h1, h2 and h3, then
consider the 3-edge-coloring of G with colors h1, h2 and h3. Observe that for any two
adjacent edges of G, their colors are adjacent edges in H . However, the coloring is not an
H-coloring as in every vertex of G its definition is violated.

Lemma 2.2. Suppose that G and H are cubic graphs with H ≺ G, and let f be an H-
coloring of G. Then:

(a) If M is any matching of H , then f−1(M) is a matching of G;

(b) χ′(G) ≤ χ′(H);

(c) If M is a perfect matching of H , then f−1(M) is a perfect matching of G;

(d) k(G) ≤ k(H);

(e) If H admits a Berge-Fulkerson cover, then G also admits a Berge-Fulkerson cover;

(f) For every even subgraph C of H , f−1(C) is an even subgraph of G;

(g) For every bridge e of G, the edge f(e) is a bridge of H;

(h) If H is bridgeless, then G is bridgeless as well;

(i) χ′N (G) ≤ χ′N (H).

Proof. (a) and (c): The proof of (a) follows from the definition of H-coloring: as adjacent
edges of G must be colored with adjacent edges of H , then clearly the pre-image of a
matching in H must be a matching in G. For the proof of (c) let M be a perfect matching
of H . Then by (a), f−1(M) is a matching of G. Let us show that it covers all vertices of
G. Let v be a vertex of G. Then the three edges incident to v are colored by a similar three
edges of H . Since M is a perfect matching of H , one of these three edges must belong to
M , hence f−1(M) ∩ ∂G(v) 6= ∅. Thus, f−1(M) is a perfect matching of G.

(b) and (d): For the proof of (b) assume that χ′(H) = s and letM1, . . . ,Ms be the color
classes ofH in an s-edge-coloring. Consider f−1(M1), . . . , f

−1(Ms). Observe that due to
(a), they are forming s matchings covering the edge-set of G. Thus, χ′(G) ≤ s = χ′(H).
The proof of (d) is similar: let k(H) = s and let M1, . . . ,Ms be the s perfect matchings
of H covering E(H). Consider f−1(M1), . . . , f

−1(Ms). Observe that due to (c), they are
forming s perfect matchings covering the edge-set of G. Thus, k(G) ≤ s = k(H).

(e): Let C = (F1, . . . , F6) be a Berge-Fulkerson cover of H . Consider the list
f−1(C) = (f−1(F1), . . . , f

−1(F6)). Observe that due to (c) they are forming a list of
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six perfect matchings of G. Moreover, every edge of G belongs to at least two of these
perfect matchings. Hence f−1(C) is a Berge-Fulkerson cover of G.

(f): Let C be an even subgraph of H . Let us show that any vertex v of G has even
degree in f−1(C). Since H is cubic, C is a disjoint union of cycles. Assume that in f the
three edges incident to v are colored with three edges incident to a vertex w of H . Then if
w is isolated in C, then clearly v is isolated in f−1(C). On the other hand, if w has degree
two in C, then v is of degree two in f−1(C). Thus, v always has even degree in f−1(C),
or f−1(C) is an even subgraph of G.

(g): Let e be a bridge of G and let (X,V (G) \ X) be a partition of V (G), such that
∂G(X) = {e}. Assume that the edge f(e) is not a bridge in H . Then there is a cycle C in
H that contains the edge f(e). By (f) f−1(C) is an even subgraph ofG that has non-empty
intersection with ∂G(X). Since the intersection of an even subgraph with ∂G(X) always
contains an even number of edges, we have that ∂G(X) contains at least two edges which
contradicts our assumption.

(h): This follows from (g): if H has no bridge, then any edge of G cannot be a bridge,
as otherwise its color in f will be a bridge in H .

(i): Assume that χ′N (H) = s, and let g be a normal s-edge-coloring of H . Consider a
mapping h defined on the edge-set ofG as follows: for any edge e ofG, let h(e) = g(f(e)).
Let us show that h is a normal s-edge-coloring ofG. Let e = vw be any edge ofG. Assume
that in f the three edges incident to v are colored by the three edges incident to a vertex u1

of H , the three edges incident to w are colored by the three edges incident to a vertex u2

of H .
If u1 = u2, then the edge e is poor in h. Thus, we can assume that u1 6= u2. Since

e ∈ ∂G(v) ∩ ∂G(w), we have that u1u2 ∈ E(H) and f(e) = u1u2. Now, observe that
since g is a normal edge-coloring, we have that if f(e) is a poor edge in g, then e is a
poor edge in h, and if f(e) is a rich edge in g, then e is a rich edge in h. Thus, h is a
normal s-edge-coloring of G. Hence χ′N (G) ≤ s = χ′N (H). The proof of the lemma is
complete.

We will need some results on claw-free bridgeless cubic graphs. Recall that a graph G
is claw-free, if it does not contain 4 vertices, such that the subgraph of G induced on these
vertices is isomorphic to K1,3. In [2], arbitrary claw-free graphs are characterized. In [12],
Oum has characterized simple, claw-free bridgeless cubic graphs. In order to formulate
Oum’s result, we need some definitions. In a claw-free simple cubic graph G any vertex
belongs to 1, 2, or 3 triangles. If a vertex v belongs to 3 triangles of G, then the component
of G containing v is isomorphic to K4 (Figure 3). An induced subgraph of G that is
isomorphic to K4 − e is called a diamond [12]. It can be easily checked that in a claw-free
cubic graph no 2 diamonds intersect.

Figure 3: The graph K4.

A string of diamonds of G is a maximal sequence F1, . . . , Fk of diamonds, in which Fi

has a vertex adjacent to a vertex of Fi+1, 1 ≤ i ≤ k − 1. A string of diamonds has exactly
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2 vertices of degree 2, which are called the head and the tail of the string. Replacing an
edge e = uv with a string of diamonds with the head x and the tail y is to remove e and
add edges (u, x) and (v, y).

IfG is a connected claw-free simple cubic graph such that each vertex lies in a diamond,
then G is called a ring of diamonds. It can be easily checked that each vertex of a ring of
diamonds lies in exactly one diamond. As in [12], we require that a ring of diamonds
contains at least 2 diamonds.

Proposition 2.3 (Oum [12]). G is a connected claw-free simple bridgeless cubic graph, if
and only if

(1) G is isomorphic to K4, or

(2) G is a ring of diamonds, or

(3) there is a connected bridgeless cubic graph H , such that G can be obtained from H
by replacing some edges of H with strings of diamonds, and by replacing any vertex
of H with a triangle.

The next auxiliary result allows us to relate coverings with even subgraphs to cover-
ings with specific parity subgraphs. Like we stated in the introduction, some of the even
subgraphs here might be empty.

Theorem 2.4 ([7, Theorem 3.3]). For a graph G, the following two conditions are equiva-
lent:

(1) G contains five even subgraphs such that any edge of G belongs to exactly two of
them;

(2) G contains four parity subgraphs such that each edge belongs to either one or two
of the parity subgraphs.

Our final auxiliary result is a theorem proved by Giuseppe Mazzuoccolo which offers a
new reformulation of Conjecture 1.3.

Theorem 2.5. Conjecture 1.3 is equivalent to the statement that for all bridgeless claw-free
cubic graphs we have k(G) ≤ 4.

Proof. Assume that for any claw-free bridgeless cubic graph G, we have k(G) ≤ 4. Let
us show that Conjecture 1.3 is also true. It is known that it suffices to prove Conjecture 1.3
for cubic graphs [18]. Let G be an arbitrary bridgeless cubic graph. Consider the cubic
graph H obtained from G by replacing every vertex of G with a triangle. Observe that H
is a claw-free bridgeless cubic graph. By our assumption, the edge-set ofH can be covered
with four perfect matchings. Observe that perfect matchings are parity subgraphs in cubic
graphs, hence by Theorem 2.4, H admits a list of 5 even subgraphs covering each edge
exactly twice.

In order to complete the proof, let us observe that if a cubic graph K admits a list of
5 even subgraphs covering each edge exactly twice and it contains a triangle T , then the
graph K/T also admits a list of 5 even subgraphs covering each edge exactly twice. In
order to see this, let C = (Ev1, . . . ,Ev5) be the list of 5 even subgraphs covering the edges
of K twice. Then it is easy to see that the edges of the 3-cut ∂K(T ) are covered as follows:
first edge belongs to Ev1 and Ev2, the second edge belongs to Ev1 and Ev3, and finally
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the third edge belongs to Ev2 and Ev3. Moreover, Ev4 and Ev5 do not intersect the 3-cut.
One can always achieve this by renaming the even subgraphs. Now, if we consider the
restrictions of (Ev1, . . . ,Ev5) to K/T , we will have that they are forming a list of 5 even
subgraphs covering each edge of K/T exactly twice.

Applying this observation |V (G)| times to H , we will get the statement for the original
cubic graph G.

For the proof of the converse statement, let us assume that Conjecture 1.3 is true, and
show that any claw-free bridgeless cubic graph G can be covered with four perfect match-
ings. We prove the latter statement by induction on |V (G)|. If |V (G)| = 2, the the
statement is trivially true. Assume that it is true for all claw-free bridgeless cubic graphs
with less n vertices and let us consider a claw-free bridgeless cubic graph G with n ≥ 4
vertices.

Clearly, we can assume that G is connected. Let us show that we can assume that G
is simple. On the opposite assumption, consider the vertices u and v that are joined with
two edges. Let u′ and v′ be the the other neighbors of u and v, respectively. Consider a
cubic graph G′ obtained from G−{u, v} by adding a possibly parallel edge u′v′. Observe
that G′ is a bridgeless cubic graph with |V (G′)| < n. Moreover, it is claw-free. Thus, by
induction hypothesis, G′ can be covered with four perfect matchings. Now, it is easy to see
that using these list of four perfect matchings of G′ we can construct a list of four perfect
matchings of G covering E(G).

Thus, without loss of generality, we can assume that G is simple. Hence, we can apply
Proposition 2.3. If G meets the first or the second condition of the proposition, then it is
easy to see thatG is 3-edge-colorable, hence it can be covered with three perfect matchings.
Thus, we can assume that there is a connected bridgeless cubic graph H such that G can be
obtained from H by replacing some edges of H with strings of diamonds and every vertex
of H with a triangle.

Let us show that we can also assume that G has no string of diamonds. Assume it
has one. Let it be S whose head and tails are u and v, respectively. Let u′ and v′ be the
neighbors of u and v, respectively, that lie outside S. Consider a graph G′ obtained from
G − V (S) by adding a possibly parallel edge u′v′. Observe that G′ is a bridgeless cubic
graph with |V (G′)| < n. Moreover, it is claw-free. Thus, by induction hypothesis, G′

can be covered with four perfect matchings. Now, it is easy to see that using these list
of four perfect matchings of G′ we can construct a list of four perfect matchings of G
covering E(G).

Thus, without loss of generality, we can assume that G can be obtained from the con-
nected bridgeless cubic graph H by replacing its every vertex with a triangle. By Conjec-
ture 1.3, H has a list of five even subgraphs covering its edges exactly twice. By Theo-
rem 2.4, we have that H admits a cover with four joins such that each edge of H is covered
once or twice. Let v any vertex of H and let C = (T1, T2, T3, T4) be the cover of H with
four joins. Since each edge of H is covered once or twice in C, we have that there is at
most one join in C that contains all three edges incident to v. Thus, for any vertex v we
have that either one of joins contains all three edges incident to v and the other three joins
contain exactly one edge incident to v, or all joins contain exactly one edge incident to v.
Now, it is not hard to see that these four joins covering H can be extended to four perfect
matchings of G so that they cover G. The proof of the theorem is complete.
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3 Coloring-hereditary classes of cubic graphs
In this section, we briefly discuss coloring-hereditary classes of cubic graphs. It is these
classes that allowed us to come up with more conjectures related to Conjectures 1.1 and 1.4.

If G and H are two cubic graphs with H ≺ G or G ≺ H , then we will say that G and
H are comparable. A (not necessarily finite) set of cubic graphs is said to be an anti-chain,
if any two cubic graphs from the set are not comparable. Let C be the class of all connected
cubic graphs. IfM ⊆ C is a class of connected cubic graphs, then we will say thatM is
coloring-hereditary, if for any cubic graphsG andH , ifH ∈M andH ≺ G, thenG ∈M.
Assume that B ⊆M is a subset of some coloring-hereditary classM of cubic graphs. We
will say that B is a basis forM, if B is an anti-chain and for any connected cubic graph G
we have that G ∈M if and only if there is a cubic graph H ∈ B, such that H ≺ G.

Our starting question is the following: does every coloring-hereditary class of cubic
graphs admit a finite basis, that is, a basis with finitely many elements? It turns out that
the answer to this question is negative. Let I be the infinite anti-chain of cubic graphs
constructed in [14]. Consider the classM of connected cubic graphs G, such that for any
G we have: G ∈ M, if and only if there is a cubic graph H ∈ I, such that H ≺ G. It is
easy to see thatM is a coloring-hereditary class of cubic graphs without a finite basis.

Despite this, one may still look for interesting coloring-hereditary classes arising in
graph theory, that admit a finite basis. Below, we discuss some such classes. The first class
is C-the class of all connected cubic graphs. Clearly, it is coloring-hereditary. Observe that
any connected cubic graph admitting an S10-coloring belongs to C. On the other hand,
Conjecture 1.4 predicts that any cubic graph from C admits an S10-coloring. Thus, we can
view Conjecture 1.4 as a statement that S10 forms a basis for C.

Let Cb be the class of all connected bridgeless cubic graphs. Statement (h) of Lemma 2.2
implies that Cb is a coloring-hereditary class of cubic graphs. Observe that any connected
cubic graph admitting a P10-coloring belongs to Cb. On the other hand, Conjecture 1.1
predicts that any bridgeless cubic graph from Cb admits a P10-coloring. Thus, we can view
Conjecture 1.1 as a statement that P10 forms a basis for Cb.

Let C3 be the class of all connected 3-edge-colorable cubic graphs. Statement (b) of
Lemma 2.2 implies that C3 is a coloring-hereditary class of cubic graphs. LetH be any con-
nected 3-edge-colorable cubic graph. Observe that any cubic graph G is 3-edge-colorable
if and only if H ≺ G. Thus, H forms a basis for C3.

Figure 4: The graph S12. Figure 5: The graph P12.

Let Cp be the class of all connected cubic graphs containing a perfect matching. State-
ment (c) of Lemma 2.2 implies that Cp is a coloring-hereditary class of cubic graphs. Ob-
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serve that any connected cubic graph admitting an S12-coloring (the graph from Figure 4)
belongs to Cp. On the other hand, we suspect that

Conjecture 3.1. Any cubic graph with a perfect matching admits an S12-coloring.

Conjecture 3.1 predicts that all cubic graphs from Cp admit an S12-coloring. Thus, we
can view Conjecture 3.1 as a statement that S12 forms a basis for Cp. Let us note that
Conjecture 3.1 has been verified for claw-free cubic graphs in [5].

Let C(4) be the class of all connected cubic graphs G with k(G) ≤ 4. Statement (d) of
Lemma 2.2 implies that C(4) is a coloring-hereditary class of cubic graphs. Observe that
any connected cubic graph admitting a P12-coloring (the graph from Figure 4) belongs to
C(4). On the other hand, we suspect that

Conjecture 3.2. Any cubic graph G with k(G) ≤ 4 admits a P12-coloring.

Conjecture 3.2 predicts that all cubic graphs from C(4) admit a P12-coloring. Thus, we
can view Conjecture 3.2 as a statement that P12 forms a basis for C(4). Also, note that (e)
of Lemma 2.2 implies that Conjecture 4.9 from [7] is a consequence of Conjecture 3.2.

4 The main results
In this section, we obtain our main results. First, we discuss the choice of graphs P12 and
S12 in Conjectures 3.2 and 3.1, respectively. For this purpose, we recall the following two
theorems that are proved in [11].

Theorem 4.1. If G is a connected bridgeless cubic graph with G ≺ P10, then G = P10.

Theorem 4.2. If G is a connected cubic graph with G ≺ S10, then G = S10.

The first theorem suggests that in Conjecture 1.1 the graph P10 cannot be replaced with
any other connected bridgeless cubic graph. Similarly, the second theorem suggests that in
Conjecture 1.4 the graph S10 cannot be replaced with other connected cubic graph. Now,
we are going to obtain similar results for Conjectures 3.2 and 3.1.

Theorem 4.3. Let G be a connected bridgeless cubic graph with G ≺ P12. Then either
G = P10 or G = P12.

Proof. Assume that f is a G-coloring of P12. Consider the triangle T in P12. Assume
that the edges of T are e1, e2, e3. Since these three edges are pairwise adjacent in P12, we
have that the edges f(e1), f(e2), f(e3) are pairwise adjacent in G. We have two cases to
consider:

Case 1: There is a vertex v of G, such that ∂G(v) = {f(e1), f(e2), f(e3)}. Observe that
in this case the edges of the 3-edge-cut ∂P12(V (T )) are colored by f(e1), f(e2), f(e3),
respectively. Thus, if we contract T in P12, we will get a G-coloring of P10. Hence, by
Theorem 4.1, G = P10.

Case 2: The edges f(e1), f(e2), f(e3) form a triangle T0 inG. Observe that in this case the
edges of the 3-edge-cut ∂P12

(V (T )) are colored by the edges of the 3-edge-cut ∂G(V (T0)).
Thus, f induces a G/T0-coloring of P12/T = P10. Hence, by Theorem 4.1, G/T0 = P10,
which implies that G = P12. The proof of the theorem is complete.
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Corollary 4.4. Let G be a connected bridgeless cubic graph with k(G) ≤ 4 and G ≺ P12.
Then G = P12.

Theorem 4.5. Let G be a connected cubic graph with G ≺ S12. Then either G = S10 or
G = S12.

Proof. Assume that f is a G-coloring of S12. Consider the central triangle T in S12, that
is, the unique triangle T such that all edges of ∂S12

(V (T )) are bridges. Assume that the
edges of T are e1, e2, e3. Since these three edges are pairwise adjacent in S12, we have that
the edges f(e1), f(e2), f(e3) are pairwise adjacent in G. We have two cases to consider:

Case 1: There is a vertex v of G, such that ∂G(v) = {f(e1), f(e2), f(e3)}. Observe that
in this case the edges of the 3-edge-cut ∂S12

(V (T )) are colored by f(e1), f(e2), f(e3),
respectively. Thus, if we contract T in S12, we will get a G-coloring of S10. Hence, by
Theorem 4.2, G = S10.

Case 2: The edges f(e1), f(e2), f(e3) form a triangle T0 inG. Observe that in this case the
edges of the 3-edge-cut ∂S12

(V (T )) are colored by the edges of the 3-edge-cut ∂G(V (T0)).
Moreover, since all edges of ∂S12

(V (T )) are bridges, by (g) of Lemma 2.2, we have that the
three edges of ∂G(V (T0)) are bridges. This, in particular, means that each edge of T0 is of
multiplicity one inG. Observe that f induces aG/T0-coloring of S12/T = S10. Hence, by
Theorem 4.2, G/T0 = S10. Moreover, the new vertex vT0

of G/T0 corresponding to T0, is
incident to three bridges. Hence vT0

is the unique cut-vertex ofG/T0 = S10 that is incident
to three bridges. This means that G = S12. The proof of the theorem is complete.

Corollary 4.6. Let G be a connected cubic graph with a perfect matching such that
G ≺ S12. Then G = S12.

In the next statement, we discuss the following problem: assume that a bridgeless cubic
G graph admits a P10-coloring such that one of the edges of P10 is not used. What can we
say about G? We discuss the related problem for Conjecture 3.2 afterwards. Let us note
that the following statement is proved by Eckhard Steffen.

Proposition 4.7. Let G be a bridgeless cubic that admits a P10-coloring f , such that for
an edge e of P10, we have: f−1(e) = ∅. Then χ′(G) = 3.

Proof. ([16]) Assume that the edge e of P10 is not used in a P10-coloring f of G. We have
that there exist two perfect matchings M1 and M2 of P10, such that M1 ∩M2 = {e}. By
(c) of Lemma 2.2, we have that f−1(M1) and f−1(M2) are perfect matchings in G. Since
the edge e is not used in f , we have that the perfect matchings are edge-disjoint in G. Thus
χ′(G) = 3. The proof is complete.

Next, we characterize the edges of P12, which can be fictive in a P12-coloring of a
graph with k(G) ≤ 4.

Proposition 4.8. LetG be a bridgeless cubic graph and let T be the unique triangle of P12.

(a) If G admits a P12-coloring f , such that for an edge e /∈ T of P12, we have that
f−1(e) = ∅, then χ′(G) = 3.

(b) There exist infinitely many bridgeless cubic graphs G with k(G) = 4, such that G
admits a P12-coloring f , such that for any edge e ∈ T , we have: f−1(e) = ∅.
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Proof. (a): We follow the approach of the proof of Proposition 4.7, that is, we find two
perfect matchings of P12 whose intersection is e. Assume that e /∈ T .

If e /∈ ∂P12(V (T )), then we have that there exist two perfect matchings M1 and M2

of P10, such that M1 ∩M2 = {e}. Now, these two perfect matchings can be uniquely
extended to perfect matchings N1 and N2 of P12. Observe that N1 ∩N2 = {e}.

On the other hand, if e ∈ ∂P12
(V (T )), then one can find a perfect matching N1 inter-

secting ∂P12
(V (T )) in a single edge and a perfect matching N2 intersecting ∂P12

(V (T ))
in three edges, such that N1 ∩N2 = {e}.

(b): Start with arbitrary 3-edge-colorable cubic graph H and consider the cubic graph
G obtained from H by replacing every vertex of G with P10 − v. Since P10 − v is not
3-edge-colorable, we have that G is not 3-edge-colorable, hence k(G) ≥ 4. Let us show
that we have equality here. Consider the three edges incident to v, and let it be our colors
in a 3-edge-coloring of H . Now, color the remaining copies of P10 − v in G by edges of
P10 − v, so that each edge is colored with its copy. As a result, we get a P12-coloring of
G. Thus, by (d) of Lemma 2.2, we have k(G) ≤ 4. Hence k(G) = 4. Moreover, in the
P12-coloring of G the edges of T are not used. The proof is complete.

In the final part of the paper we establish some connections among the discussed con-
jectures.

Theorem 4.9. Conjecture 3.1 implies Conjecture 1.4.

Proof. Assume that Conjecture 3.1 is true. We claim that any cubic graph G admits an
S10-coloring. In this proof, we will assume the following notation for the edges of S12: the
three bridges of S12 are denoted by a, b, c, the edges of the unique contractible triangle of
S12 are denoted by x, y, z, such that x and a, y and b, z and c are opposite edges. Finally,
the edges of the end-block containing a vertex incident to a have the following labels: the
edges incident to a are a1 and a2, and the parallel edges are a3 and a4. Similarly, we label
other edges by b1, b2, b3, b4 and c1, c2, c3, c4.

Let G be a cubic graph. If G contains a perfect matching, then it has an S12-coloring.
Since S12 has an S10-coloring, we have the statement in this case. Thus, without loss of
generality, we can assume that G does not contain a perfect matching.

Consider the graph G∆ obtained from G by replacing all vertices of G with triangles.
Observe that G∆ contains a perfect matching. An example of such a matching would
be E(G).

Thus, there exists a smallest subset U ⊆ V (G), such that if we replace all vertices of
U with triangles, we will get a cubic graph H containing a perfect matching.

By Conjecture 3.1, H admits an S12-coloring f . Now, we claim that all triangles of H
corresponding to vertices of U are colored with triangles of S12.

Assume the opposite, that is, there is a triangle T corresponding to a vertex of H , such
that f(E(T )) = ∂S12(v) for some vertex v of S12. Consider the graph H ′ obtained from
H by contracting T . Observe that the resulting graph H ′ still has an S12-coloring, hence
by (c) of Lemma 2.2 it contains a perfect matching. However, this violates the definition
of the set U , since we found a smaller subset of vertices, whose replacement with triangles
was leading to a cubic graph containing a perfect matching.

Now, all triangles of H corresponding to vertices of U are colored with triangles of
S12. Let us show that all these triangles corresponding to vertices of U are colored with the
central triangle of S12, that is the only contractible triangle of S12.
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On the opposite assumption, assume that T , one of these triangles, is colored with other
triangles of S12. Without loss of generality, we can assume that the edges of this triangle
of S12 are a1, a2, a3. Thus the set of edges leaving T , are colored with a and a4. Two of
them are colored with a4, and one is colored with a.

LetM be a perfect matching of S12 containing the edges a and a3. By (c) of Lemma 2.2,
we have that F = f−1(M) is a perfect matching in H . Now, observe that |F ∩
∂H(V (T ))| = 1. Consider the cubic graph H ′′ obtained from H by contracting T . Ob-
serve that F \ (F ∩ E(T )) is a perfect matching of H ′′. This violates the definition of the
set U , since we found a smaller subset of vertices, whose replacement with triangles was
leading to a cubic graph containing a perfect matching.

Thus, all triangles of H corresponding to U are colored with the edges x, y, z of the
central triangle of S12.

Observe that G can be obtained from H by contracting all the triangles corresponding
to U . Now, using the S12-coloring of H , we obtain an S10-coloring of G. Contract all
triangles of H corresponding to U and the central triangle of S12 to obtain S10, and re-
color the edges of H having color x with the color a, the edges of H with color y with
color b and finally, the edges of H with color z with color c, respectively. Since x, y, z
form an even subgraph in S12, by (f) of Lemma 2.2, the edges of f−1({x, y, z}) will form
an even subgraph, that is vertex-disjoint union of cycles. Hence, after the re-coloring we
obtain an S10-coloring of G. The proof of the theorem is complete.

Theorem 4.10. Conjectures 1.3 and 3.2 imply Conjecture 1.1.

Proof. Assume that Conjectures 1.3 and 3.2 are true, and letG be a bridgeless cubic graph.
Let us show that G admits a P10-coloring. If k(G) ≤ 4, then by Conjecture 3.2 it has
a P12-coloring. Since P12 admits a P10-coloring, we have that G admits a P10-coloring.
Thus, without loss of generality, we can assume that k(G) ≥ 5.

Consider the graph H obtained from G by replacing all vertices of G with triangles.
Observe that H is a claw-free bridgeless cubic graph. Hence by Conjecture 1.3 and The-
orem 2.5, k(H) ≤ 4. Thus, by Conjecture 3.2, H admits a P12-coloring. Since P12

admits a P10-coloring, we have that H admits a P10-coloring f . Observe that since P10

is triangle-free, we have that for any triangle T of H there is a vertex v of P10, such that
f(E(T )) = ∂P10

(v). Thus, if we contract all the triangles of H that correspond to vertices
of G, we will obtain a P10-coloring of G. The proof of the theorem is complete.

The diagram from Figure 6 explains the relationship among the main four conjec-
tures discussed in the paper. The first arrow shows that P12-conjecture implies P10-con-
jecture if 5-CDC is true (Conjecture 1.3). The second arrow shows that the statement
“P10-conjecture implies S12-conjecture” is the formulation of Conjecture 5.1. Finally, the
third arrow shows that in Theorem 4.9 we showed that S12-conjecture implies the S10-
conjecture.

5 Future work
In this section, we discuss some open problems and conjectures that are interesting in our
point of view. In the previous section, we established a connection between Conjectures 3.2
and 1.1, and Conjectures 3.1 and 1.4. We suspect that this relationship can be extended to
a linear order among these four conjectures. Related with this, we would like to offer:
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P12-conjecture

P10-conjecture

S12-conjecture

S10-conjecture

5-CDC

Conjecture 5.1

Theorem 4.9

Figure 6: The relationship among the main conjectures.

Conjecture 5.1. Conjecture 1.1 implies Conjecture 3.1.

All coloring-hereditary classes that we discussed up to now either had or are conjec-
tured to have a basis with one element. One may wonder whether there is a coloring-
hereditary class of cubic graphs arising from an interesting graph theoretic property, such
that the basis of the class contains at least two graphs. For a positive integer k let Ck be the
class of connected cubic graphs G with χ′N (G) ≤ k. Statement (i) of Lemma 2.2 implies
that Ck is a coloring-hereditary class of cubic graphs. Recently, it was shown that for any
simple cubic graph χ′N (G) ≤ 7 [10]. By using this result, a simple inductive proof can be
obtained for the following extension of this result:

Theorem 5.2. LetG be a cubic graph admitting a normal k-edge-coloring for some integer
k. Then χ′N (G) ≤ 7.

Theorem 5.2 suggests that Ck is meaningful when k = 3, 4, 5, 6, 7. Below, we discuss
these classes for each of these values. When k = 3, Ck represents the class of connected 3-
edge-colorable cubic graphs. Thus, our notation is consistent with that of Section 3. When
k = 4, it can be easily seen that a cubic graph admits a normal 4-edge-coloring, if and
only if it admits a 3-edge-coloring. Thus, C4 = C3. When k = 5, Jaeger has shown that a
cubic graph admits a P10-coloring if and only if it admits a normal 5-edge-coloring. On the
other hand, we have that any cubic graph admitting a P10-coloring, has to be bridgeless.
Thus, if Conjecture 1.1 is true, then C5 = Cb. Finally, when k = 6 or k = 7, we suspect
that the bases of the classes C6 and C7 contain infinitely many cubic graphs. We are able
to show that the basis of C7 must contain at least two graphs. Let B be any basis of C7. It
can be easily seen that we can assume that it does not contain a 3-edge-colorable graph.
Moreover, by a simple inductive proof, one can show that all elements of B can be assumed
to be simple graphs. Now, let S16 be the graph from Figure 7. The following two results
are proved in [5]:
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Figure 7: The graph S16.

Theorem 5.3. Let G be a simple graph with G ≺ S16. Then G = S16.

Theorem 5.4. Let G be a simple graph with G ≺ P10. Then G = P10.

Theorems 5.3 and 5.4 suggest that the only way to color the graphs S16 and P10 with
simple graphs is to take them in the basis B. Thus, B must contain at least two graphs.

Finally, we would like to discuss some algorithmic problems. For a fixed connected
cubic graph H consider a decision problem which we call the H-problem:

Problem 5.5 (H-problem). Given a connected cubic graphG, the goal is to decide whether
G admits an H-coloring.

Observe that when H is 3-edge-colorable, we have that H-problem is equivalent to
testing 3-edge-colorability of the input graph G, which is NP-complete [6]. When H =
S10, we have that all instances of H-problem have a trivial “yes” answer provided that
Conjecture 1.4 is true. Thus, this problem is polynomial time solvable if Conjecture 1.4
is true. When H = S12, Conjecture 3.1 implies that H-problem is equivalent to testing
the existence of a perfect matching in the input graph G. This is known to be polynomial-
time solvable. When H = P10, Conjecture 1.1 implies that H-problem is equivalent to
testing bridgelessness of the input graphG. This problem is also polynomial time solvable.
Finally, when H = P12, Conjecture 3.2 implies that H-problem is equivalent to testing
whether the input graph G can be covered with four perfect matchings. The latter problem
is proved to be NP-complete in [3]. Thus, depending on the choice of H , the H-problem
may or may not be NP-complete. Let CNP be the class of all connected cubic graphs H ,
for which the H-problem is NP-complete. We suspect that:

Conjecture 5.6. CNP is a coloring-hereditary class of cubic graphs.

We also would like to offer the following conjecture, which presents a dichotomy for
H-problems:

Conjecture 5.7. Let H be a connected cubic graph. Then:

• if H admits a P12-coloring, then the H-problem is NP-complete;

• ifH does not admit a P12-coloring, then theH-problem is polynomial-time solvable.
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