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ABSTRACT

A particle is projected from a point P in a subset E of a convex region H to a point Q in a uniformly random
direction. The probability that Q lies in the interior of H at time t is obtained for two types of motion of the
particle, rectilinear (i.e. straight-line) and Brownian. In the case of rectilinear motion, the first passage time
through the boundary of H is considered. Results are obtained in terms of the generalized overlap function
for embedded bodies.
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INTRODUCTION

Consider a particle moving from point P  at time
t = 0 to point Q at t > 0. P  is taken to lie in a subset
E  of a compact convex body nH R⊂ . The set E
may be nonconvex. It may be disconnected and may
have lower dimensionality than H ; indeed, E  may
consist of a single point (see Fig. 1). In the next
section we relate the probability that Q lies in the
interior of H  to the generalized overlap function for
embedded bodies introduced by Enns and Ehlers
(1988). Thereafter we obtain this probability first for
the case of motion along a straight path and then for
the case of Brownian motion. Depending on its
equations of motion, the particle may leave and re-enter
the region H any number of times. We are concerned
only with its presence or absence inside H at time t .

Fig. 1. A particle moves from P to Q in time t.

There is a considerable literature on escape
processes and first exit times, especially as related to
the example of Brownian motion; see, for example,
Getoor (1979) or Wendel (1980). For more general
books, see Gihman and Skorohod (1975) or Knight
(1981).

GENERAL FORMULATION
Let ( )Q t  denote the location of the particle at

time 0t ≥ . Let (0)P Q=  be a uniformly random
starting point in E . Denote the distance between

(0)Q  and ( )Q t  by ( )X t . Assuming that motion is
isotropic, it is possible to relate the probability of
finding ( )Q t  inside H  to the overlap function which
is defined by

( )
( ),

( ,
( )E H

E vol E x H
x

vol E
θ θ ∩  Ω ≡

where ( , )E x θ  is the translate of E  in direction θ
by a distance x , ( )vol !  denotes volume and ( )θ !E
indicates direction average with θ  uniformly random
over all directions.

Let

( ) ( ( ) )h t Q t H= ∈P

and
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( , ) ( ( ) )XF r t X t r= ≤P .

The following theorem relates ( )h t  to the overlap
function.

Theorem

,( ) ( ) ( , )E H Xh t r dF r t= Ω∫ .

Proof. Let ( , )B r P  denote the n-ball of radius r
with centre at P  and let ( , )B r P∂  denote its surface.
Then

1

[ ( , )]( ( ) | ( ) ; (0) )
[ ( , )]

[ ( , )]

( , )

n
n

n

vol H B r PQ t H X t r Q P
vol B r P

vol H B r P
nC r

r P
nC

φ

−

∩∂∈ = = =
∂
∩∂=

=

P

where / 2
2/ ( 1)n n

nC π= Γ +  is the volume of the unit
n-ball and ( , )r Pφ  is the solid angle subtended at P
by ( , )H B r P∩∂ . Averaging with respect to net
distance X  and initial point P , one obtains the
unconditional probability that ( )Q t H∈ :

0

( ) ( ( ) )
( ( ) | ( ); )

( , ) ( ).

P X

P Xr
n

h t Q t H
Q t H X t P

r P dF r
nC

φ∞

=

= ∈
= ∈

 
=  

 
∫

P
E E P

E

But ,( ( , ) / ) ( )P n E Hr P nC rφ = ΩE  (Enns and
Ehlers, 1988). Therefore

, ,( ) ( ) ( , ) ( ( )) ,E H X X E Hh t r dF r t X t = Ω = Ω ∫ E (1)

relating ( )h t  and the overlap function.

It was shown by Enns and Ehlers (1988) that
,1 ( )E H r−Ω  is the distribution function of the length

R  of a random ray generated by selecting a point in
E  and a direction, independently uniformly
distributed and with terminal point in the boundary

H∂  of H . We call this a ν -random ray. Writing

, ( ) ( ) ( )E H Rr R r F rΩ = > =P  results in

( ) ( ) ( , )

( , ) ( )

( ( , )).

R X

X R

R X

h t F r dF r t

F r t dF r

F R t

=

=

=

∫
∫
E

Summarizing, we have

,( ) ( ( )) ( ( , )),X E H R Xh t X t F R t = Ω = E E (2)

where the R -expectation is with respect to ν -
measure.

We now turn to specific types of particle motion.

RECTILINEAR MOTION
For a particle undergoing straight-line motion

with position function ( )u t  along the directed half-
line originating at P  (direction equal to the direction
of motion so that ( )u t  is increasing), ( )X t  has
degenerate distribution

( , ) ( ( )),XF r t I r u t= −

where ( )I !  is the indicator function

1 if 0
( )

0 if 0.
x

I x
x
>

=  ≤
Substitution in Eq. 2 yields

,( ) ( ( )).E Hh t u t= Ω

With H∂  denoting the boundary of H , we
define the random variable

min{ : ( ) }T t Q t H= ∈∂ .

Thus T  is the first exit time for a particle. It
follows that ( ) ( ) ( )Th t T t F t= > ≡P . Moments of T
may then be obtained by evaluating

1 1
,0 0

( ) ( ( ))k k k
T E Ht t

T k t F t dt k t u t dt
∞ ∞− −

= =
= = Ω∫ ∫E .(3)

For the case of motion at constant velocity, where
( )u t vt= , Eq. 3 yields

1
,0

( )k k k
E Hx

T v k x x dx
∞− −

=
= Ω∫E .

Obviously, this case corresponds to /T R v= ,
where R is the ν -random ray length from a
uniformly random point in E to the boundary of H. A
shape-independent moment for n-dimensional H is

( )n
n

n

vol HT
C v

=E .

Example. Enns and Ehlers (1988, 1993) give the
overlap functions for the case of concentric balls. Let

( )nH B b= , ( )dE B a= , a b≤ , and 3d n≤ = .
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This situation models the physically important cases of particles generated in a linear or circular region
inside the 3-ball. We have , ( ) 1E H xΩ =  for x b a≤ −  and , ( ) 0E H xΩ =  for x b a≥ + . In the interval
b a x b a− < < + , the overlap functions for 1,2,3d =  are:

( ) ( )2 2 2 2 2
,

1:

1( ) 4 2 3 2 log
8E H

d
x bx b a ax bx x x b

ax a

=

 − Ω = − + + − + −  

( ) ( ) ( )2 2 2 2 2 2 3 3 3
, 2

2 :
1( ) 3 3 2

6E H

d

x a b a x x a x b a x b
a x

=

 Ω = − − + + − + − − 

( ) ( ) ( )22 2 3 3 2 2 2 4
, 3

3 :
1( ) 3 8 6

16E H

d

x b a a b x a b x x
a x

=

 Ω = − − + + − + +  

The integrations for the moments are elementary.
In each case, the moments may be written in the form

( ( , ) ( , ))
k

k
d d

bT m k m k
v

λ λ = + −  
E

where /a bλ = . The functions ( , )dm k λ  are listed
in the appendix. The first and second moments for all
three cases are:

2 1

2 20

2 2
2

2
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1 1 1 1 loglog
4 8 1 2 1

1
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b xT dx
v x

bT
v

λ λ
λ λ λ

λ

=

 − + = + +  − −  
 

= − 
 

∫E

E

( )2 2

2

2 2
2

2

2 :

log 11 3 1log
3 3 6 1

1
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v
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λ λ λ
λ λ λ

λ
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 − − +  = + +  −   
 
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λ
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 + − +  = −   −  
 

= − 
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E

E

Clearly, more complicated position functions
( )u t  may be substituted in Eq. 3, leading to relatively

straight-forward tedious integrations. Note that,
depending on the form of ( )u t , a particle may leave
and re-enter H  in (0, )t .

One modification of practical interest for
constant-speed motion is the case of radioactive
particles with short lifetimes. Such particles may
decay before reaching the boundary of H . Let dT
denote the random lifetime of the particle (time to
decay, given birth at point P ) and let the random
time to reach the boundary in the absence of decay be

0T . If the decay process is independent of the
particle's motion, then the particle vanishes unless

( )0min , dt T T< . Then

0

0

,

( ) ( ) ( )
( ) ( )

( ) ( ).
d

d

d

T T

E H T

h t T t T t
F t F t

vt F t

= > >
=

= Ω

P P

If the particles have fixed lifetime τ , then dT  has
degenerate distribution and

, ( ) if   
( )

0 if   
E H vt t

h t
t

τ
τ

Ω <
=  ≥

BROWNIAN MOTION
For particles undergoing Brownian motion (with

diffusion constant D ) the net distance ( )X t  has
probability density function

( )
( )

1 2

/ 2

exp / 4
( , )

4

n
n

X n

nC r r Dt
f r t

Dtπ

− −
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One application is the situation where an
experimenter can make observations only in a limited
field of view (under a microscope, say). An
identifiable cell might be observed to be in a certain
part of the field of view at time zero and then might
be observed again later.

If we expand ( , )XF R t  as used in Eq. 2 in a
Taylor series in R , we find

( )

0

( 1)

0

( 1)

0

( ) (0, )
!

(0, )
!

(0, )
!

k
k

R X
k

k
k

R X
k

k
k R

X
k

Rh t F t
k

Rf t
k

Rf t
k

∞

=

∞
−

=

∞
−

=

 
=  

 
 
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 

=

∑

∑

∑

E

E

E

which gives ( )h t  in terms of moments of the length
of a ν -random ray.

Remark. It seems physically curious that, since
( 1) (0, ) 0k

Xf t− =  for k n< , ( )h t  depends only on

moments of R that are of dimensional order or greater.

If we consider again concentric balls where
( )dE B a=  and ( )nH B b= , with 3d n≤ ≤  and

a b≤ , then the results of Enns and Ehlers (1993)
may be used to evaluate ( )h t . The expressions are, in
general, complicated but not difficult to derive. For
the case of a b=  and d n=  we obtain for 2n = :

( )1
2

1

1
2

( 1)1( )
!( 1)!

k k

k

k bh t
k k Dtπ

+
∞

=

− Γ +  
=  +  

∑

and for 3n = :
1

1 2 2

1

3 ( 1)( )
(2 1)( 1)( 2)( 1)!

kk

k

bh t
k k k k Dtπ

++∞

=

 −=  + + + −  
∑ .

Fig. 2 shows how ( )h t  decreases with time.

For the case of a b<  and 3d n= =  we find

( ) ( ; , ) ( ; , )h t q t a b q t a b= + −

where

( ) ( ) ( )
2

3/ 22 2
3

3

3

exp ( ) / 4
( ; , ) 2 4 4

4
11 2
24

b a Dt
q t a b a b ab Dt Dt

a
b b a
a Dt

π

− +  = + − − 

   + + + Φ −        

Here ( )Φ !  is the cumulative standard normal distribution function. Fig. 3 shows ( )h t  for selected values of a
with 1b = .

Fig. 2. The probability h(t) for circular or spherical
regions: E = H.

Fig. 3. The probability h(t) for concentric spherical
regions E and H.
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APPENDIX
2

1 2 2
0

2(1 ) (1 ) 1( , )
2 24 ( 1) 4 (2 1)
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λ λ λλ
λ

∞
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 −    + −= + +    − +     
∑

( )( ) 13 1 2

2 2 2 2

2 3 11 1 1 (1 ) (1 )( , )
3 2 1 6 ( 1) 2 ( 1) 3 ( 2)

k k k

m k
k k k k k

λ λ λ λ λλ
λ λ λ λ

− + +− + + + + = + − + − + − − + + 
1 2

3 2 2 3

3(1 ) 1 1( , )
2( 3)( 1)

k km k
k k

λ λλ
λ λ

+  + + += − + −  
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