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Abstract

Given an n3 configuration, a 1-point extension is a technique that constructs an (n+1)3
configuration from it. It is proved that all (n + 1)3 configurations can be constructed from
an n3 configuration using a 1-point extension, except for the Fano, Pappus, and Desar-
gues configurations, and a family of Fano-type configurations. A 3-point extension is also
described. A 3-point extension of the Fano configuration produces the Desargues and anti-
Pappian configurations.

The significance of the 1-point extension is that it can frequently be used to construct
real and/or rational coordinatizations in the plane of an (n + 1)3 configuration, whenever
it is geometric, and the corresponding n3 configuration is also geometric.

Keywords: Fano configuration, Pappus, Desargues, (n, 3)-configuration.
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1 Projective Configurations
A projective configuration consists of a set Σ of points and lines, and an incidence re-
lation Π, such that two lines intersect in at most one point. We denote this by (Σ,Π).
For example, a triangle with points A,B,C and lines a, b, c can be represented by the pair
({A,B,C, a, b, c}, {Ab,Ac,Ba,Bc, Ca,Cb}). A configuration (Σ,Π) can also be viewed
as a bipartite incidence graph of points versus lines. We will always assume that the inci-
dence graph of a configuration is connected. Excellent references on configurations are the
recent books by Grünbaum [7], and by Pisanski and Servatius [11].

An n3-configuration is a projective configuration with n points and n lines such that ev-
ery line is incident on 3 points, and every point is incident on 3 lines. There is a unique 73-
configuration, the Fano configuration, and a unique 83-configuration, the Möbius-Kantor
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configuration. In 1887, Martinetti [10] presented a method to construct the (n+1)3 config-
urations from the n3 configurations. This is described in [7, 6]. Boben [1, 2] has analysed
and extended Martinetti’s construction significantly. Important related work has also been
done by Carstens, Dinski and Steffen [4]. See also [12]. A recent paper [13] by Stokes stud-
ies extensions of configurations in a very general setting. The 1-point extension presented
here can be related to Stokes’s construction, but does not follow directly from it.

An n3 configuration which can be represented by a collection of points and straight
lines in the real or rational plane, such that all incidences are respected, and no two points
or two lines coincide, and no unwanted incidences occur, is termed a geometric n3 configu-
ration. In order to show that an n3 configuration is geometric, the usual method is to assign
suitable homogeneous coordinates to its points and lines. We call this a coordinatization of
the configuration. Some n3 configurations are not geometric configurations, although it is
currently an unsolved problem to determine which n3 configurations are geometric.

The purpose of this paper is to present a theorem, the 1-point extension theorem, which
describes another method to construct an (n+ 1)3-configuration from an n3-configuration;
and to characterize which configurations can be obtained in this way. The significance of
this construction is that if the n3 configuration is geometric, with a given coordinatization,
then there is usually a simple method to extend the coordinatization to the (n + 1)3 con-
figuration, that is, the (n + 1)3 configuration will also be geometeric. This is too long to
include here, it will be the subject of another paper, currently in preparation [8].

In particular the following theorem is proved.

Theorem 1.1. Let (Σ,Π) be an (n + 1)3-configuration. Then (Σ,Π) can be constructed
by a 1-point extension from an n3-configuration if and only if (Σ,Π) is not one of the
following configurations:

a) the Fano configuration,

b) the Pappus configuration,

c) the Desargues configuration,

d) a Fano-type configuration (to be described).

We begin with the idea of a 1-point extension in an n3-configuration.

Theorem 1.2. (1-Point Extension) Let (Σ,Π) be an n3-configuration. Let a1, a2, a3 be
3 distinct points in Σ, and let `1, `2, `3 be 3 distinct lines in Σ such that a1 = `1 ∩ `2,
a2 = `2 ∩ `3 and a3 ∈ `3, where a3 6∈ `1. We can represent this in tabular form as

(Σ,Π) `1 `2 `3 · · ·
a1 a1 a2 · · ·
· a2 a3 · · ·
· · · · · ·

where the dots indicate other points of the configuration. Let `′ be the third line containing
a1. Suppose further that if `′ ∩ `3 6= Ø, then `′ ∩ `3 = a3. Construct a new configuration
(Σ′,Π′) as follows. Σ′ = Σ ∪ {a0, `0} where a0 is a new point and `0 is a new line.
Π′ = Π− {a1`1, a2`2, a3`3} ∪ {a1`3, a2`0, a3`0, a0`0, a0`1, a0`2}. We can represent this
in tabular form as
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(Σ′,Π′) `0 `1 `2 `3 · · ·
a2 a0 a1 a1 · · ·
a3 · a0 a2 · · ·
a0 · · · · · ·

Here the dots represent exactly the same points as in the previous table. Then (Σ′,Π′) is
an (n + 1)3-configuration.

Proof. The only incidences in which (Σ′,Π′) and (Σ,Π) differ are those involving `0, `1,
`2, `3. It is easy to verify from the tables that each of a1, a2 and a3 occurs in exactly 3 lines
in both (Σ′,Π′) and (Σ,Π), and that a0 also occurs in exactly 3 lines. We must still verify
that any two lines of (Σ′,Π′) intersect in at most one point. Notice that `0 intersects `1 and
`2 in exactly one point, since a3 6∈ `1, `2. Also, `0 intersects `3 in exactly one point. If
` 6= `1, `2, `3 is any line of (Σ,Π) intersecting `1, then in (Σ′,Π′), it intersects `1 in either
0 or 1 point. If ` intersects `2 in (Σ,Π), then in (Σ′,Π′), it intersects `2 in either 0 or 1
point. If ` = `′, the third line of (Σ,Π) containing a1, then in (Σ′,Π′), ` intersects `3 in
only a1, because of the condition concerning `′. If ` 6= `′ and ` intersects `3 in (Σ,Π),
then then since a1 6∈ `3 in (Σ,Π), it follows that ` intersects `3 in 0 or 1 point in (Σ′,Π′).
Finally, if ` is any line of (Σ,Π) not intersecting `1, `2, then it does not intersect `1, `2 in
(Σ′,Π′). If ` does not intersect `3 in (Σ,Π), it may intersect `3 in a1 in (Σ′,Π′). This
completes the proof of the theorem.

Example 1.3. The Fano configuration can be represented by the following table.

Fano `1 `2 `3 `4 `5 `6 `7
1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

Choose `1, `2, `3 as indicated, and choose a1 = 2, a2 = 3, a3 = 6, and let a0 = 8.
Notice that the third line containing a1 is `′ = `6, which intersects `3 in a3 = 6. Then
by Theorem 1.2, the following table represents an 83-configuration, which is known to be
unique.

83-config `0 `1 `2 `3 `4 `5 `6 `7
3 1 2 2 4 5 6 7
6 4 5 3 5 6 7 1
8 8 8 4 7 1 2 3

The 83-configuration can be viewed as a double cover of the cube [9]. It is possible to apply
a 1-point extension to this configuration in two possible ways, resulting in two distinct 93-
configurations. The third 93-configuration, known as the Pappus configuration, cannot be
obtained in this way.

The 1-point extension theorem can be illustrated by the diagram of Figure 1. In (Σ,Π),
we have a substructure consisting of 3 points a1, a2, a3, and 3 lines, `1, `2, `3, sequentially
incident, forming a self-dual substructure contained in the n3-configuration. After the ex-
tension, we find that (Σ′,Π′) contains a triangle with vertices a1, a2, a0 and sides `2, `3, `0,
where the third point on `0 is a3, and the third line through a0 is `1. This is again a self-dual
substructure in the configuration.
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Figure 1: A 1-point extension with 3 points

Corollary 1.4. In (Σ′,Π′), the third line through a1 does not intersect `1; the third point
on `3 is not collinear with a3; and the third line through a2 does not intersect `2.

Proof. If there were a line ` in (Σ′,Π′) through a1 which intersected `1 in a point u, then
in (Σ,Π), ` would intersect `1 in u and a1, which is impossible. If there were a point x in
(Σ′,Π′) on `3 collinear with a3, then the line ` containing a3 and x would also be a line in
(Σ,Π), where it would intersect `3 in two points. Finally, if there were a line ` in (Σ′,Π′)
through a2 which intersected `2 in a point u, then in (Σ,Π), ` would intersect `2 in a2 and
u, which is impossible.

The purpose of this paper is to characterize the configurations that can be obtained using
1-point extensions. In practice, the 1-point extensions are very easy to find and apply, and
can easily be done by computer. However, the characterization of which configurations
can be obtained by them is very long and tedious. We shall refer to the Fano, Pappus, and
Desargues configurations, illustrated in Figure 1.1.

Figure 2: The Fano, Pappus, and Desargues configurations

The conditions of Corollary 1.4 will be used frequently in the characterization. We state
them here. We are concerned with an ordered triangle, denoted ∆(i, j, k), where i, j and k
are the first, second, and third vertices, respectively, of the triangle. The line containing i
and j is denoted `ij , etc.

Definition 1.5. Let (Σ,Π) be a configuration containing an ordered triangle ∆(i, j, k). We
define the following 3 conditions:

A) The third line through k intersects `ij ;
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B) The third line through i intersects the third line through j;

C) The third point on `ik is collinear with the third point on `jk.

The definition is illustrated in Figure 3.

i i ij j j

k

A B C

k k

Figure 3: Conditions A,B and C for triangle ∆(i, j, k)

Theorem 1.6. Let (Σ′,Π′) be an (n + 1)3-configuration containing a triangle ∆. If con-
ditions A,B and C do not apply to some ordering of the triangle, then (Σ′,Π′) can be
derived from an n3-configuration by a 1-point extension.

Proof. Let the ordered triangle to which conditions A,B and C do not apply be ∆(a0, a1,
a2), and let the sides of the triangle be `0, `2, `3, where a0 = `0 ∩ `2, a1 = `2 ∩ `3,
a2 = `3 ∩ `0. Let a3 be the third point on `0, and let `1 be the third line through a0.
Observe that a3 6∈ `1. These incidences are characterized by the following table.

(Σ,Π) `0 `1 `2 `3
a2 a0 a1 a1
a3 · a0 a2
a0 · · ·

We can then delete a0 and `0, and change the incidences to the following.

(Σ′,Π′) `1 `2 `3
a1 a1 a2
· a2 a3
· · ·

Call the result (Σ′,Π′). If ` is the third line through a2 in (Σ,Π), then since condition A
does not apply, we know that in (Σ′,Π′), ` and `2 intersect in just one point. If ` is the
third line through a1 in (Σ,Π), then since condition B does not apply, we know that in
(Σ′,Π′), ` and `1 intersect in just one point, a1. Since `∩ `3 = a1 in (Σ,Π), it follows that
in (Σ′,Π′), if ` and `3 intersect, they intersect in a3.

If ` is any line other than `0 through a3 in (Σ,Π), then since condition C does not
apply, we know that in (Σ′,Π′), ` and `3 intersect in just one point. The result is an n3-
configuration to which Theorem 1.2 applies.
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Given an ordered triangle ∆(i, j, k), the dual is an ordered triangle whose sides are
lines which can be denoted i′, j′, k′. The dual of condition A is that the third point on k′

is collinear with i′ ∩ j′. But this is just condition A again applied to the triangle ∆(i′ ∩
k′, j′ ∩ k′, i′ ∩ j′). So condition A is self-dual. The dual of condition B is that the third
point on i′ is collinear with the third point on j′. This is just condition C applied to the
triangle ∆(i′ ∩ k′, j′ ∩ k′, i′ ∩ j′). So B and C are dual conditions.

Theorem 1.6 is the main tool which we will use to characterize the extensions. We
will find all configurations such that at least one of conditions A,B, and C apply to every
ordering of every triangle. We will also need longer cycles than triangles.

2 The General Extension Theorem
Before beginning the characterization of the n3-configurations that can be obtained by
1-point extensions, we generalize Theorem 1.2 to m points and m lines, sequentially inci-
dent.

Theorem 2.1. (General 1-Point Extension) Let (Σ,Π) be an n3-configuration. Let a1, a2,
. . . , am be m distinct points in Σ, where 3 ≤ m ≤ n, and let `1, `2, . . . , `m be m distinct
lines in Σ such that a1 = `1 ∩ `2, a2 = `2 ∩ `3, . . ., am−1 = `m−1 ∩ `m, and am ∈ `m.
Suppose that am−1, am 6∈ `1, `2, and that ai 6∈ `i+3, where i = 1, 2, . . . ,m − 3. We can
represent this in tabular form as

(Σ,Π) `1 `2 `3 . . . `m−1 `m
a1 a1 a2 . . . am−2 am−1
· a2 a3 . . . am−1 am
· · · . . . · ·

where the dots indicate other points of the configuration. Let `′i be the third line con-
taining ai, where 1 ≤ i ≤ m − 2. Suppose further that if `′i ∩ `i+2 6= Ø, then `′i ∩
`i+2 = ai+2. Construct a new configuration (Σ′,Π′) as follows. Σ′ = Σ ∪ {a0, `0}
where a0 is a new point and `0 is a new line. Π′ = Π − {a1`1, a2`2, . . . , am`m} ∪
{a1`3, a2`4, . . . , am−2`m, am−1`0, am`0, a0`0, a0`1, a0`2}. We can represent this in tab-
ular form as

(Σ′,Π′) `0 `1 `2 `3 . . . `m−1 `m
am−1 a0 a0 a1 . . . am−3 am−2
am · a1 a2 . . . am−2 am−1
a0 · · · . . . · ·

Here the dots represent exactly the same points as in the previous table. Then (Σ′,Π′) is
an (n + 1)3-configuration.

Proof. The only incidences in which (Σ′,Π′) and (Σ,Π) differ are those involving `0, `1,
`2, . . . , `m. It is easy to verify from the tables that each of a1, a2, . . . , am occurs in exactly
3 lines in both (Σ′,Π′) and (Σ,Π), and that a0 also occurs in exactly 3 lines. We must still
verify that any two lines of (Σ′,Π′) intersect in at most one point. Notice that `0 intersects
`1 and `2 in exactly one point, since am−1, am 6∈ `1, `2. It does not intersect `3, . . . , `m−1,
and it intersects `m in exactly one point.

Let ` 6= `1, `2, . . . , `m be a line of (Σ,Π). If ` intersects `1 in (Σ,Π), then in (Σ′,Π′),
it intersects `1 in either 0 or 1 point. If ` intersects `2 in (Σ,Π), then in (Σ′,Π′), it intersects



W. L. Kocay: One-point extensions in n3 configurations 297

`2 in either 0 or 1 point. Suppose that ` intersects `3 in (Σ,Π). If ` = `′1, then `∩`3 = a3 in
(Σ,Π) according to the condition of the theorem concerning `′i. It follows that `∩ `3 = a1
in (Σ′,Π′). If ` 6= `′1, then ` intersects `3 in either 0 or 1 point in (Σ′,Π′). An identical
argument holds if ` intersects one of `4, . . . , `m in (Σ,Π).

Suppose that ` does not intersect `1 in (Σ,Π). Then it also does not intersect `1 in
(Σ′,Π′). Similarly, if ` does not intersect `2 in (Σ,Π), then it also does not intersect `2 in
(Σ′,Π′). Suppose that ` does not intersect `3 in (Σ,Π). Then in (Σ′,Π′), it may intersect
`3 only in a1. A similar argument holds if ` does not intersect `4, . . . , `m.

Finally, let `i and `j , where 1 ≤ i < j ≤ m, be two lines of (Σ,Π). If j = i + 1, then
`i and `j intersect in one point in both (Σ,Π) and (Σ′,Π′). Suppose that j = i + 2. If
`i ∩ `j = Ø in (Σ,Π), then it is also Ø in (Σ′,Π′). Now `i ∩ `j 6= ai−1 in (Σ,Π) (when
i > 1), because of the hypothesis that ak 6∈ `k+3. Also, `i∩ `j 6= ai, because `i+1 contains
ai and ai+1. It follows that |`i ∩ `j | is the same in (Σ,Π) and (Σ′,Π′) when j = i + 2.
Suppose now that j ≥ i + 3. It is easy to see that |`i ∩ `j | ≤ 1 in (Σ′,Π′). This completes
the proof of the theorem.

Theorem 2.1 is illustrated in Figure 4, with m = 4. This general form of Theorem 2.1 is
stated separately from Theorem 1.2, because the form with m = 3 is simpler, and because
we shall mostly only require Theorems 1.2 and 1.6 when characterizing extensions.
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Figure 4: A 1-point extension with 4 points

An ordered cycle in a configuration is a sequence of distinct points and lines which are
cyclicly incident, for example C = (a1, `1, a2, `2, . . . , am, `m), where ai = `i−1 ∩ `i for
i = 2, 3, . . . ,m, and a1 = `m ∩ `1. Here m ≥ 3. Each point of C is incident on two lines
of C, and vice versa.

Corollary 2.2. Let (Σ,Π) and (Σ′,Π′) be as in Theorem 2.1, so that C = (a0, `2, a1, `3,
. . . , am−2, `m, am−1, `0) is an ordered cycle in (Σ′,Π′). Then in (Σ′,Π′):

i) the third points of `m and `0 are not collinear;

ii) the third point on `i is not contained in the third line through ai, for i = 2, . . . ,m− 1;

iii) the third lines through a0 and a1 do not intersect.
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Proof. The third point of `0 is am. If there were a line ` in (Σ′,Π′) containing am and
the third point of `m, then in (Σ,Π), ` and `m would intersect in two points, which is
impossible.

Let ` be the third line through ai in (Σ′,Π′), for some i = 2, . . . ,m − 1, and let u be
the third point on `i. Suppose that u ∈ `. In (Σ′,Π′), ai is contained in `i+1 and `i+2, but
in (Σ,Π), ai is contained in `i and `i+1. We then find that in (Σ,Π), ` ∩ `i = {u, ai},
which is impossible.

The third line through a0 is `1. Let ` be the third line through a1. If ` ∩ `1 = u in
(Σ′,Π′), then in (Σ,Π), ` ∩ `1 = {u, a1}, which is impossible.

Observe that a triangle is a set of three distinct points and lines that are cyclically
incident. Similarly, we define a quadrangle to be a set of four distinct points and lines that
are cyclically incident. We will also need conditions similar to A,B,C for quadrangles.
An ordered quadrangle with vertices i, j, k,m is denoted �(i, j, k,m). In analogy with
Definition 1.5 and Corollary 2.2, we make the following definition for a quadrangle.

Definition 2.3. Let (Σ,Π) be a configuration containing an ordered quadrangle
�(i, j, k,m). We define the following 4 conditions:

D) The third point on `im is collinear with the third point on `km;

E) The third line through m intersects `jk;

F) The third line through k intersects `ij ;

G) The third line through j intersects the third line through i.

These conditions are illustrated in Figure 5.
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Figure 5: Conditions D,E, F,G for quadrangle �(i, j, k,m)

The analog of Theorem 1.6 for general 1-point extensions is the following.

Theorem 2.4. Let (Σ′,Π′) be an (n + 1)3-configuration containing an ordered cycle
C = (a0, `2, a1, `3, a2, `4, . . . , am−2, `m, am−1, `0), where m ≥ 4; a0, a1, . . . , am−1
are distinct points; and `0, `2, `3, . . . , `m−1 are distinct lines. Let `1 denote the third
line containing a0 and let am denote the third point on `0. Suppose that `1 is distinct
from `0, `2, `3, . . . , `m−1 and that a2 6∈ `1. Let `′i denote the third line containing ai,
for i = 1, 2, . . . ,m − 1. Suppose that `′i does not not contain the third point of `i, for
i = 2, . . . ,m− 1; that `′1 ∩ `1 = Ø; and that am is not collinear with the third point of `m.
Then (Σ′,Π′) can be derived from an n3-configuration by a 1-point extension.

Proof. The incidences of the ordered cycle can be represented by the following table.
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(Σ,Π) `0 `1 `2 `3 . . . `m−1 `m
am−1 a0 a0 a1 . . . am−3 am−2
am · a1 a2 . . . am−2 am−1
a0 · · · . . . · ·

We can then delete a0 and `0, and change the incidences to the following.

(Σ′,Π′) `1 `2 `3 . . . `m−1 `m
a1 a1 a2 . . . am−2 am−1
· a2 a3 . . . am−1 am
· · · . . . · ·

Call the result (Σ,Π). It is clear that each point of (Σ,Π) is contained in exactly three
lines. We have to show that any two lines intersect in at most one point in (Σ,Π), and
that `1, `2, `3, . . . , `m are distinct lines in (Σ,Π). Any two of `1, `2, . . . , `m intersect in
at most one point because we began with an ordered cycle of distinct points, and because
a2 6∈ `1. Let ` be any line not in this set. Suppose that ` intersects `i in two points, for
some i = 2, . . . ,m−1. Now `i contains ai−1, ai and a third point z. If ` contained ai, then
` = `′i, which does not intersect `i in (Σ′,Π′), by assumption. Therefore ai 6∈ `. Otherwise
` must contain ai−1 and z. But these points are in `i in (Σ′,Π′), and ` is unchanged. It
follows that ` intersects `2, . . . , `m−1 in at most one point each.

Suppose that ` intersects `1 in two points in (Σ,Π). Now `1 contains a1 and two other
points u, v. As u and v are both on `1 in (Σ′,Π′), it follows that ` does not contain both u
and v. Therefore ` = `′1. But by assumption, `′1 ∩ `1 = Ø in (Σ′,Π′).

Suppose that ` intersects `m in two points in (Σ,Π). The two points cannot be am−1,
am, because these points occur on `0 in (Σ′,Π′). They cannot be am−1 and a third point
w, because these points occur on `m in (Σ′,Π′). And they cannot be am and the third
point w, because by assumption, am is not collinear with the third point of `m in (Σ′,Π′).
We conclude that (Σ,Π) is an n3-configuration to which the conditions of Theorem 2.1
apply.

Corollary 2.5. Let (Σ′,Π′) be an (n+1)3-configuration containing a quadrangle �(i, j, k,
m). If conditions D,E, F and G do not apply to some ordering of the quadrangle, and
if the third line through i does not contain k, then (Σ′,Π′) can be derived from an n3-
configuration by a 1-point extension.

Proof. The conditions D,E, F,G, and a2 = k 6∈ `1 are the conditions of Theorem 2.4
applied to an ordered quadrangle.

Theorem 2.6. Let (Σ′,Π′) be an (n + 1)3-configuration. If (Σ′,Π′) does not contain a
triangle, then it can be derived by a 1-point extension from an n3-configuration.

Proof. Choose a cycle of smallest possible length in (Σ′,Π′). Denote the cycle by

(a0, `2, a1, `3, a2, `4, . . . , am−2, `m, am−1, `0),

where m ≥ 4. Let `1 be the third line containing a0, and let am be the third point on `0.
This can be denoted in tabular from by
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(Σ,Π) `0 `1 `2 `3 . . . `m−1 `m
am−1 a0 a0 a1 . . . am−3 am−2
am · a1 a2 . . . am−2 am−1
a0 · · · . . . · ·

Let `′i denote the third line containing ai, where i = 1, 2, . . . ,m− 1. If `′i were to intersect
`i in a point z, where i = 2, . . . ,m − 1, this would create a triangle ∆(ai−1, ai, z). If
`′1 were to intersect `1 in a point u, this would create a triangle ∆(a0, a1, u). If am were
collinear with the third point w of `m, this would create a triangle ∆(am−1, am, w). If
`1 contained a2, this would create a triangle ∆(a0, a1, a2). It follows that the conditions
of Theorem 2.4 apply, so that (Σ′,Π′) can be derived by a 1-point extension from an n3-
configuration.

3 Fano-Type Configurations
Let F denote the Fano configuration, the unique 73 configuration. We will use three sub-
configurations to build a family of n3 configurations which cannot be obtained by 1-point
extensions.

Definition 3.1. Denote by F ′ the unique configuration obtained from F by removing a
single incidence. Denote by F` the unique configuration obtained from F by removing a
line. Denote by Fp the unique configuration obtained from F by removing a point. Note
that F` and Fp are dual configurations.

Figure 6: The configurations F`, Fp and F ′

The configurations F`, Fp and F ′ are not n3-configurations. They can be used as build-
ing blocks of n3 configurations, which we call Fano-type configurations. F ′ has one point
on only two lines, and one line containing only two points. Fp has three lines containing
only two points. Every point is in three lines. F` has three points in only two lines. Every
line contains three points. These are illustrated schematically in Figure 7, where the points
missing a line are indicated as black circles, and the lines missing a point are indicated as
lines.

These sub-configurations can be used as modules, which can be connected together like
vertices of a graph, to create graphs representing n3 configurations. For example, two or
more copies of F ′ can be connected into a cycle or path of arbitrary length. If only F` and
Fp are used, the resulting structure is a bipartite graph.
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Figure 7: F ′, F` and Fp schematically

Theorem 3.2. Let G be a multigraph which is isomorphic to either a cycle of length ≥ 2,
or a subdivision of a 3-regular bipartite multigraph, with bipartition (X,Y ). Replace each
vertex of X by a configuration Fp, replace each vertex of Y by a configuration F`, and
replace each vertex of degree two by a configuration F ′. The result is an n3 configuration
which can not be obtained by a 1-point extension.

Proof. Refer to Figure 8, showing a cycle of length four, and a configuration constructed
from the unique 3-regular bipartite multigraph on four vertices.

Figure 8: Configurations constructed from F ′, F` and Fp

We must show that the n3 configurations constructed like this cannot be obtained by
a 1-point extension. Observe first that the Fano configuration F is a projective plane,
so that every two points are contained in a line, and every two lines intersect in a point.
Consequently, every triangle contained in F ′, F` or Fp has an ordering which satisfies one
of conditions A,B or C. By Corollary 1.4, a Fano-type configuration cannot be obtained by
a triangular 1-point extension (Theorem 1.2). Suppose that it can be obtained by a general
1-point extension (Theorem 2.1). By Corollary 2.2, there must be an ordered cycle C of
length ≥ 4 satisfying certain conditions. Let C = (a0, `2, a1, `3, . . . , am−2, `m, am−1, `0)
be as in Corollary 2.2, and let `′i denote the third line containing ai, where i = 1, 2, . . . ,m−
1. Let `1 denote the third line containing a0, and let am denote the third point on `0. If C
were contained within an F ′, F` or Fp, then C would have length 4, because any 5 points of
F necessarily contain three collinear points. But in F ′, F` or Fp, every ordered quadrangle
satisfies at least one of conditions D,E, F,G, since the Fano configuration is a projective
plane.

It follows that C is not contained within an F ′, F` or Fp. Consider the portion of C
contained within some F ′, F` or Fp. It is a sequence of sequentially incident points and
lines. Suppose first that it is contained within an F ′. Referring to Figure 6 we see that the
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shortest possible portion of C contained within an F ′ is (ai, `i+2, ai+1, `i+3, ai+2, `i+4),
for some i = 0, 1, . . . ,m − 1 where subscripts are reduced modulo m. If ai+2 6= a0, a1,
then `′i+2 contains the third point of `i+2, which is in F ′. If ai+2 = a0, then ai+1 = am−1
and `i+2 = `m, so that am is collinear in F ′ with the third point of `m. If ai+2 = a1,
then ai+1 = a0, so that `1 and `′1 are in F ′ and `′1 ∩ `1 6= Ø. Thus, the conditions of
Corollary 2.2 are never satisfied if a portion of C is contained within an F ′.

Suppose next that a portion of C is contained within an F`. Referring to Figure 6 we see
that the shortest possible portion of C contained within an F` is (ai, `i+2, ai+1, `i+3, ai+2),
for some i = 0, 1, . . . ,m − 1 where subscripts are reduced modulo m. If ai+2 6= a0, a1,
then `′i+2 contains the third point of `i+2, which is in F`. If ai+2 = a0, then ai+1 = am−1
and `i+2 = `m, so that am is collinear in F` with the third point of `m. If ai+2 = a1,
then ai+1 = a0, so that `1 and `′1 are in F` and `′1 ∩ `1 6= Ø. Thus, the conditions of
Corollary 2.2 are never satisfied if a portion of C is contained within an F`. A similar
result holds for Fp, which is the dual of F`. We conclude that the Fano-type configurations
can not be obtained by a 1-point extension.

4 The Characterization Theorem
In this section we will assume that (Σ,Π) is an n3-configuration which cannot be derived
by a 1-point extension. It follows from Theorem 2.6 that we can assume that (Σ,Π) has a
triangle. Let the points of (Σ,Π) be numbered 1, 2, . . . , n. Without loss of generality, we
can assume that ∆(2, 3, 1) is a triangle in (Σ,Π). This is illustrated in Figure 9. It will
be convenient to omit the commas and brackets from expressions like ∆(2, 3, 1), and write
simply ∆231.

24

1

3

Figure 9: Triangle ∆231 with condition A

We divide the analysis into two cases according to whether or not (Σ,Π) has a triangle
satisfying condition A. The theorem obtained will be the following.

Theorem 4.1. If (Σ,Π) is an n3-configuration which cannot be obtained from a 1-point
extension, then either:

i) (Σ,Π) is one of the Fano, Pappus, or Desargues configurations; or

ii) (Σ,Π) is a Fano-type configuration.

Proof. The proof of this theorem is very long, involving an analysis of many possible cases.

Case A. (Σ,Π) has a triangle satisfying condition A.
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Let the ordered triangle be ∆231, as above. Condition A tells us that the third line
through 1 intersects `23. Call the point of intersection 4. This is shown in Figure 9.
We will show that any n3 configuration that cannot be obtained by a 1-point ex-
tension, and which satisfies Condition A, is either a Fano-type configuration, or the
Fano configuration. Now consider ∆142. It currently does not satisfy conditions
A,B, or C. Since every triangle must satisfy at least one of these conditions, there
are three possibilities, which we indicate by ∆142A, ∆142B, and ∆142C. These
are shown in Figure 10. In ∆142A, the third line through 4 intersects `12 (in point
5). In ∆142B, the third lines through 1 and 4 intersect (in point 5). In ∆142C, the
third points on `12 (point 5) and `24 (point 3) are collinear.

24
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Figure 10: ∆142A, ∆142B, and ∆142C

These three structures are easily seen to be isomorphic, by relabelling the points.
Each structure is self-dual, having two points incident on 3 lines each, and two lines
each containing 3 points. Thus, without loss of generality, we can assume that the
subconfiguration ∆142A exists in (Σ,Π) in Case A. Consider triangle ∆124. It
currently does not satisfy condition A,B, or C. Since it must satisfy at least one of
these conditions, there are three possibilities, which we indicate by ∆142A∆124A,
∆142A∆124B, and ∆142A∆124C. These are shown in Figure 11.
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Figure 11: ∆142A∆124A, ∆142A∆124B, and ∆142A∆124C

The structures ∆142A∆124B and ∆142A∆124C are duals of each other. The first
has 6 points and 5 lines, while the other has 5 points and 6 lines. It can be verified
by exhaustion that every ordered triangle in these structures satisfies at least one of
conditions A,B, or C.

Case ∆142A∆124A.
Consider the quadrangle �6431 in ∆142A∆124A. It must satisfy at least one of
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conditions D,E, F,G (see Figure 5). Condition D is possible only if `25 intersects
`13. Condition E is not possible. Condition F is possible only if the third line
through 3 intersects `46. Condition G is possible only if there is a line `56. These
cases are illustrated in Figure 12.
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Figure 12: ∆142A∆124A�6431D, ∆142A∆124A�6431F , ∆142A∆124A�6431G

Now the diagrams ∆142A∆124A�6431D and ∆142A∆124A�6431G are duals of
each other, for the mapping which sends points 1, 2, 3, 4, 5, 6, 7 of D to `15, `16, `25,
`24, `46, `13, `56 of G is an isomorphism. Therefore we need only consider cases D
and F .

Case ∆142A∆124A�6431D.
It can be verified that all triangles of the diagram satisfy one of conditions A,B,C.
Consider the quadrangle �3164. Condition D is only possible if point 7 lies on line
`46. Condition E is not possible. Condition F is only possible if there is a line
`67. Condition G is only possible if there is a line `35. These cases are illustrated in
Figure 13.

Figure 13: ∆142A∆124A�6431D�3164D, F , and G

Case ∆142A∆124A�6431D�3164D.
It can be verified that every triangle satisfies at least one of conditions A,B,C, and
every quadrangle satisfies at least one of conditions D,E, F,G. This configuration
is isomorphic to the Fano configuration, with one line removed (`356), which we
denote as F`. The dual configuration is the Fano configuration, with one point
removed, which we denote as Fp.

Case ∆142A∆124A�6431D�3164F.
Consider the quadrangle �2376. Condition D requires that `15 intersects `67, which
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is impossible. Condition E requires that `46 contains point 1, which is impossible.
Condition F requires that `75 contains point 4, which is impossible. Condition G
requires a line `35. The result is illustrated in Figure 14.

Figure 14: Case ∆142A∆124A�6431D�3164F�2376G

We then consider quadrangle �6237. Condition D requires that `15 intersects `67,
which is impossible. Condition E requires that `75 contains point 4, which is impos-
sible. Condition F requires that `35 contains point 1, which is impossible. Condition
G requires that `46 and `25 intersect in point 5, which is impossible. We conclude
that case ∆142A∆124A�6431D�3164F is not possible.

Case ∆142A∆124A�6431D�3164G.
Consider the quadrangle �4316. Condition D requires that `25 intersects `46. The
point of intersection can only be 7. Condition E requires that `75 contains point
6, which is impossible. Condition F requires that `15 contains point 2, which is
impossible. Condition G requires a line `356. These cases are illustrated in Figure 15.

Figure 15: Cases ∆142A∆124A�6431D�3164G�4316D and G

These two configurations are easily seen to be isomorphic, by the permutation of
the points given by (2, 3, 4)(5, 6, 7), mapping D onto G. They are both isomorphic
to the Fano configuration, with one incidence removed, denoted by F ′. Every
triangle satisfies at least one of conditions A,B,C, and every quadrangle satisfies at
least one of conditions D,E, F,G.
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Note that we can complete F ′ to the Fano configuration, which can not be constructed
by a 1-point extension.

We summarise Case A as follows:

Consider an n3 configuration (Σ,Π), where n > 7, which cannot be constructed by
a 1-point extension. Every triangle satisfying condition A is contained in a unique
sub-configuration isomorphic to one of F`, Fp or F ′.

Case B. (Σ,Π) has no triangle satisfying condition A.

We begin with triangle ∆231. It must satisfy condition B or C. These two possibil-
ities are shown in Figure 16.
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Figure 16: ∆231B and ∆231C

These two structures are duals of each other. Hence we can assume without loss of
generality that (Σ,Π) contains the structure ∆231B.

Consider the triangle ∆123. It must satisfy condition B or C. We must take these
as two separate cases, Case B∆123B and Case B∆123C. They are shown in Fig-
ure 17. It will be necessary to examine a great many subcases.

Figure 17: Cases B∆123B and B∆123C

Case B∆123B.
Consider triangle ∆132. There are two possibilities, cases B∆123B∆132B and
B∆123B∆132C, which must both be considered. They are shown in Figure 18.

Case B∆123B∆132B.
Consider triangle ∆243. There are two choices B∆123B∆132B∆243B and
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Figure 18: Cases B∆123B∆132B and B∆123B∆132C

B∆123B∆132B∆243C. They are shown in Figure 19. These structures both have
7 points {1, 2, . . . , 7}, so that a mapping from the first to the second can be denoted
by a permutation. It is easy to see that the permutation (1, 2, 3)(4, 6, 5)(7) maps
the first to the second. Thus, without loss of generality, we can suppose that (Σ,Π)
contains the structure B∆123B∆132B∆243B.

Figure 19: Isomorphic cases B∆123B∆132B∆243 B and C

Consider triangle ∆342. There are two possibilities, B∆123B∆132B∆243B
∆342B and B∆123B∆132B∆243B∆342C. They are shown in Figure 20. We
must consider both possibilities.

Figure 20: Cases B∆123B∆132B∆243B∆342B and B∆123B∆132B∆243B∆342C

This is beginning to look remarkably like the Pappus configuration.

Case B∆123B∆132B∆243B∆342B.
Consider the quadrangle �1248. At least one of conditions D,E, F,G must be
satisfied. Of these, it is only possible to satisfy condition E, namely the third line
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through 8 must intersect `24. The point of intersection can only be 5. Therefore the
left diagram of Figure 21 must exist in (Σ,Π).

Figure 21: Cases B�1248E and B�1248E�7238E

Consider the quadrangle �7238. At least one of conditions D,E, F,G must be
satisfied. Of these, it is only possible to satisfy condition E, namely the third line
through 8 must intersect `23. Therefore the right diagram of Figure 21 must exist in
(Σ,Π).

Consider the quadrangle �3159. It is only possible to satisfy condition E, namely the
third line through 9 must intersect `15 in point 6. Therefore the following structure
(Figure 22) must exist in (Σ,Π).

Figure 22: Case B�1248E�7238E�3159E

Consider the quadrangle �1347. It is only possible to satisfy condition E, namely
the third line through 7 must intersect `34. The point of intersection must be 6,
so that point 7 is incident with `69. Therefore the diagram is completed to a 93-
configuration, so that (Σ,Π) can only be the Pappus configuration.

Case B∆123B∆132B∆243B∆342C.
This case is illustrated in Figure 20. Consider the triangle ∆274. There are two
possibilities, ∆274B and ∆274C, shown in Figure 23. These are duals of each other.
The mapping which sends the points 1, 2, . . . , 8 of ∆274B to the lines `15, `25, `34,
`32, `12, `13, `58, `47 of ∆274C is an isomorphism. Hence we only need to consider
one of them, the first, say.

Consider the quadrangle �1783. It is only possible to satisfy condition E, namely
the third line through 3 must intersect `78. The point of intersection must be 6, so
that `78 must be extended to include point 6. Consider next quadrangle �1745. It is
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Figure 23: Case B∆123B∆132B∆243B∆342C∆274, B and C

only possible to satisfy condition E, namely the third line through 5 must intersect
`47. The result is illustrated in Figure 24.

Figure 24: Case B∆123B∆132B∆243B∆342C∆274B�1783�1745

Finally, consider quadrangle �7138. It is only possible to satisfy condition E,
namely the third line through 8 must intersect `13. The point of intersection must
be 9, so that `13 must be extended to include point 9. Once again we have the Pap-
pus configuration.

Case B∆123B∆132C.
This case is illustrated in Figure 18. Consider the triangle ∆267. There are two
possible ways to satisfy condition B, namely the third line through 6 could contain
either 4 or 5. The first of these choices is illustrated in Figure 25. The second is
not allowed, as it would create a triangle ∆125 satisfying condition A. There are
two possible ways to satisfy condition C, namely `67 could intersect `13 or `34. Call
these two results C1 and C2, respectively, also shown in Figure 25.

Case B∆123B∆132C∆267B.
Consider the quadrangle �1673. It is not possible to satisfy conditions D or F .
Condition E can only be satisfied if `34 intersects `67. Condition G can only be
satisfied if `15 intersects `46. These cases are shown in Figure 26.

Now case G (the right diagram) leads to a contradiction, for consider the quadrangle
�3167. Conditions E,F,G are not possible. Condition D is only possible if 5 ∈ `67.
But this creates a triangle ∆156 satisfying condition A, a contradiction. Therefore
we consider case E (the left diagram). Consider the quadrangle �3761. Conditions
D,F,G cannot be satisfied. Condition E can only be satisfied if `15 intersects `67
in point 8, as shown in Figure 27. Consider next the quadrangle �6137. Conditions
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Figure 25: Cases B∆123B∆132C∆267 B,C1, and C2

Figure 26: Cases B∆123B∆132C∆267B�1673 E and G

D,F,G cannot be satisfied. Condition E can only be satisfied if the third line through
7 intersects `13 in a point 9, also illustrated in Figure 27.

Figure 27: Cases E�1673E and E�1673E�6137E

Consider now the quadrangle �2685 in the right diagram of Figure 27. Conditions
D,F,G cannot be satisfied. Condition E can only be satisfied if the third line through
5 contains point 7, which is only possible if 5 ∈ `79. The result is isomorphic to the
diagram of Figure 24. Once again, we obtain the Pappus configuration.

Case B∆123B∆132C∆267C1.
Refer to Figure 25. Consider the quadrangle �2784. Conditions D and F cannot
be satisfied. Condition E can only be satisfied if there is a line `46, which gives a
result identical to the left diagram of Figure 26. Condition G can only be satisfied
if the third line through 7 intersects `26 in point 1, but this creates a triangle ∆127
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satisfying condition A, which is not allowed. This completes this case.

Case B∆123B∆132C∆267C2.
Refer to Figure 25. Consider the quadrangle �1376. Conditions D,E, F are not
possible. Condition G is only possible if `15 and `34 intersect, shown in Figure 28.
Consider now the quadrangle �1872. Conditions D,E, F are not possible. Condi-
tion G is possible if `15 intersects the third line through 8. The point of intersection
can be either 5 or 9, resulting in G1 and G2, also shown in Figure 28.

Figure 28: Cases C2�1376G, G�1872G1 and G�1872G2

Consider the quadrangle �7218 in diagram G�1872G1. Conditions D,E, F cannot
be satisfied. Condition G can only be satisfied if the third line through 7 intersects
`24. The point of intersection can be 4 or 5. But 4 creates a triangle ∆734 satis-
fying condition A, a contradiction. Therefore the intersection must be point 5, as
shown in Figure 29. Then consider quadrangle �7812. Conditions D,E, F cannot
be satisfied. Condition G can only be satisfied if `15 and `89 intersect, also shown
in Figure 29. Next, consider quadrangle �1572. Conditions D,E, F,G cannot be
satisfied, a contradiction. This completes this case.

Figure 29: Cases G1 : �7218G and �7218G�7812G

Consider next G�1872G2, and quadrangle �7218. Conditions D,E, F cannot
be satisfied. Condition G can only be satisfied if the third line through 7 inter-
sects `24. The point of intersection must be 4. But this creates a triangle ∆734
satisfying condition A, a contradiction. This completes this case, and also case
B∆123B∆132C∆267C2, and case B∆123B∆132C and case B∆123B.

Case B∆123C.
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Refer to Figure 17. Consider the triangle ∆132. Condition B can be satisfied if
the third line through 1 intersects `34. There are two ways this can occur – the
intersection can be point 4, or a new point. This gives B1 and B2, shown in Figure 30.
Condition C can be satisfied if point 6 is collinear with the third point on `12. There
are two ways this can occur. The line through 6 intersecting `12 can be `56 or a new
line. This gives C1 and C2, shown in Figure 31.

Figure 30: Case B∆123C∆132 B1 and B2

Figure 31: Case B∆123C∆132 C1 and C2

It can be observed that C1 is isomorphic to the dual of B1. If we map points
1, 2, 3, 4, 5, 6, 7 of C1 to lines `12, `23, `13, `56, `14, `34, `24, respectively, of B1, we
have an isomorphism. Similarly, C2 is isomorphic to the dual of B2. An isomor-
phism maps points 1, 2, 3, 4, 5, 6, 7 of C2 to lines `12, `13, `23, `56, `24, `34, `17, re-
spectively, of B2. Consequently, we have only cases B1 and B2 to deal with.

Case B∆123C∆132B1.
Consider the quadrangle �1562. Condition D can only be satisfied if the third point
on `12 is collinear with point 3. But then triangle ∆123 would satisfy condition A,
which is not allowed. Condition E can be satisfied if `24 intersected `56. This is
shown in Figure 32. Condition F can only be satisfied if the third line through 6
intersected `15 in point 3. However, 6 and 3 are already collinear. Condition G can
be satisfied if the third line through 5 intersected `14. The third line through 5 cannot
be `24, for ∆124 would then satisfy condition A. Thus, the third line through 5 must
be a new line, as shown also in Figure 32.

Case B∆123C∆132B1�1562E.
Consider the triangle ∆267. Condition B can be satisfied if the third line through 6
intersected `12. The third line through 6 cannot be `14, as the triangle ∆123 would
then satisfy condition A. Hence, the third line through 6 must be a new line, as
shown in Figure 33. Condition C can only be satisfied if points 4 and 5 are collinear.
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Figure 32: Case B∆123C∆132B1�1562 E and G

The line containing 4 and 5 cannot be `14 and it cannot be `34. Therefore Condition
C is impossible, and we must have B∆123C∆132B1�1562E∆267B, shown in
Figure 33.

Figure 33: Case B∆123C∆132B1�1562E∆267B

This structure is found to be isomorphic to the dual of B∆123B∆132C∆267B
�1673G, shown in Figure 26. The isomorphism maps points 1, 2, 3, 4, 5, 6, 7, 8
to lines `24, `26, `56, `15, `34, `18, `68, `14. This completes case B∆123C∆132B1
�1562E.

Case B∆123C∆132B1�1562G.
Consider the quadrangle �2651. Condition D can only be satisfied if the third point
on `23 is collinear with point 3. However triangle ∆132 would then satisfy condition
A. Condition E can only be satisfied if `14 intersected `56. The point of intersection
cannot be 7. If it were point 4, then ∆563 would then satisfy condition A. Hence
condition E is not possible. Condition F can only be satisfied if `57 intersected `26
in point 3. However 5 and 3 are already collinear. Condition G can be satisfied if the
third line through 6 intersected `24. The point of intersection cannot be 4. The only
possibility is a new line through 6, as shown in Figure 34.

Consider the quadrangle �4863. Condition D can only be satisfied if the third point
on `34 is collinear with point 2. The triangle ∆342 would then satisfy condition A,
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Figure 34: Cases B∆123C∆132B1�1562G : �2651G and �2651G�4863G

which is not allowed. Condition E can only be satisfied if `13 intersected `68 in
either 1 or 5. However, 1 and 5 are already each on 3 lines. Condition F can only be
satisfied if `56 intersected `48 in 2. However 6 and 2 are already collinear. Condition
G can be satisfied if the third line through 8 intersected `14. The point of intersection
can only be 7, shown in the right diagram of Figure 34.

Consider the quadrangle �6512. Condition D can only be satisfied if the third point
on `12 were collinear with point 3. But triangle ∆123 would then satisfy condition
A. Condition E can only be satisfied if `24 intersected `15 in 3. This is not possi-
ble. Condition F can only be satisfied if `14 intersected `56. This is not possible.
Condition G can only be satisfied if `57 intersected `68. This is shown in Figure 35.

Figure 35: Cases �6512G and �6512G�5743G

Consider the quadrangle �5743. Condition D can only be satisfied if the third point
on `34 were collinear with point 1. But then triangle ∆341 would satisfy condition
A. Condition E can only be satisfied if `23 intersected `47 in point 1. This is not
possible. Condition F can only be satisfied if `24 intersected `57 in 9. This is not
possible. Condition G can only be satisfied if `78 intersected `56 in a new point, also
shown in Figure 35.

Consider the triangle ∆157. Condition B can only be satisfied if `12 intersected
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`56. The point of intersection must be point 0. Condition C can only be satisfied if
points 4 and 9 are collinear. The line of collinearity must be `34. The resulting two
structures are both isomorphic to the Desargues configuration, with one incidence
missing, as can be seen from Figure 1.1. If we then consider ∆268, the remaining
incidence is forced. This completes case B∆123C∆132B1�1562G and also case
B∆123C∆132B1.

Case B∆123C∆132B2.
Refer to Figure 30. Consider the triangle ∆173. Condition B can be satisfied if
the third line through 7 intersected `12. The point of intersection cannot be point 2.
Therefore it is a new point, as shown in Figure 36. Condition C can be satisfied if
points 4 and 5 are collinear. The line of collinearity cannot be `56, for triangle ∆453
would then satisfy condition A. Hence `45 is a new line, also shown in Figure 36. be
satisfied if `57 intersected `68. This is shown in Figure 35.

Figure 36: Cases B∆123C∆132B2∆173 B and C

Now case B∆123C∆132B2∆173C is isomorphic to case B∆123B∆132C∆267B,
shown in Figure 25. As both diagrams have 7 points, the isomorphism can be given
by a permutation, (1, 5, 6)(2, 3, 4), which maps diagram B∆123B∆132C∆267B
to B∆123C∆132B2∆173C. Thus we need only consider case B∆123C∆132B2

∆173B.

Consider the triangle ∆781 in the left diagram of Figure 36. Condition B can be
satisfied if the third line through 8 intersected `37. The point of intersection cannot
be 3. Therefore there must be a line `48, as shown in Figure 37. Condition C can
be satisfied if the third point on `17 is collinear with point 2. The line of collinearity
cannot be `26, for if point 6 were on `17, triangle ∆173 would satisfy condition A.
Hence `24 must intersect `17 in a new point. This is also shown in Figure 37.

Case B∆123C∆132B2∆173B∆781B.
Consider the triangle ∆365. Condition B can be satisfied if the third line through
6 intersected `37. The point of intersection cannot be 4, because `48 would then
contain 6, causing a triangle ∆682 satisfying condition A. Line `17 cannot contain
6, for then triangle ∆136 would satisfy condition A. Therefore condition B requires
that `78 contain 6, shown in Figure 38. Condition C can be satisfied if the third point
on `56 were collinear with point 1. The line of collinearity must be `17, also shown
in Figure 38.
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Figure 37: Cases B∆123C∆132B2∆173B∆781 B and C

Figure 38: Case B∆123C∆132B2∆173B∆781B∆365 B and C

Case B∆123C∆132B2∆173B∆781B∆365B.
Refer to the left diagram of Figure 38. Consider the quadrangle �2176. Condition
D can only be satisfied if points 3 and 8 were collinear. This is not possible as
3 and 8 are already incident on 3 lines each. Condition E can only be satisfied if
`56 intersected `17, shown in Figure 39. Condition F can only be satisfied if `37
intersected `12 in 8. However, 7 and 8 are already collinear. Condition G can only
be satisfied if `15 and `24 intersected. The point of intersection must be 5, making
triangle ∆132 satisfy condition A. We conclude that only E is possible.

Figure 39: Case B∆123C∆132B2∆173B∆781B∆365B�2176E

Consider the quadrangle �2156. Condition D can only be satisfied if points 3 and
9 were collinear, which is impossible. Condition E can only be satisfied if `67 in-
tersected `15 in point 3, which is impossible. Condition F can only be satisfied if
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the third line through 5 intersected `12 in point 8, which is impossible. Condition
G can only be satisfied if `17 and `24 intersected. The point of intersection must be
point 9, also shown in Figure 39. As can be seen from the diagram, this is the Pappus
configuration with one incidence missing. We conclude that this case results in the
Pappus configuration.

Case B∆123C∆132B2∆173B∆781B∆365C.
Refer to the right diagram of Figure 38. Consider the quadrangle �7123. Condition
D can only be satisfied if points 4 and 6 are collinear, which is impossible. Condition
E can only be satisfied if `13 contains 8, which is impossible. Condition F can only
be satisfied if `24 contains point 9. Condition G can only be satisfied if `78 inter-
sected `13. The point of intersection must be 5, creating a triangle ∆195 satisfying
condition A, a contradiction. We conclude that only condition F is possible, shown
in Figure 40.

Figure 40: Cases B∆123C∆132B2∆173B∆781B∆365C�7123F and �2371F

Consider the quadrangle �2371. Condition D can only be satisfied if points 8 and
9 are collinear, which is impossible. Condition E is only possible if `13 contains 4,
which is impossible. Condition F is possible only if `78 contains 6. Condition G
is only possible if `29 and `35 intersected, which is impossible. We conclude that
condition F is necessary.

We next consider quadrangle �4862. Condition D can only be satisfied if points
9 and 3 are collinear, which is impossible. Condition E can only be satisfied if
`21 contains point 7, which is impossible. Condition F is possible only if `69 and
`48 intersect in point 5. Condition G is only possible if `47 and `81 intersected,
which is impossible. We conclude that condition F is necessary, giving the Pappus
configuration. This completes case B∆123C∆132B2∆173B∆781B.

Case B∆123C∆132B2∆173B∆781C.
Refer to the right diagram of Figure 37. Consider triangle ∆243. Condition B can
only be satisfied if the third line through 4 intersected `28. The point of intersection
can only be 8, as shown in Figure 41. Condition C can only be satisfied if points 6
and 7 are collinear. The line of collinearity cannot be `17, as triangle ∆231 would
then satisfy condition A. Hence, the line can only be `78, which must contain 6, as
shown in Figure 41.

Case C is isomorphic to the dual of B∆123C∆132B2∆173B∆178B∆365B,
shown in Figure 38. An isomorphism maps points 1, 2, . . . , 9 of C to lines `67, `34,
`23, `24, `56, `13, `12, `17, `48, respectively, of B. Thus we only need consider case
B.
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Figure 41: Case B∆123C∆132B2∆173B∆178C∆243B and C

Consider the quadrangle �8731. Condition D can only be satisfied if points 2 and 6
are collinear, which is impossible, as the line of collinearity could only be `24. Condi-
tion E cannot be satisfied. Condition F can only be satisfied if `36 intersects `87. The
point of intersection must be 6, as shown in Figure 42. Condition G can only be satis-
fied if `84 and `79 intersect, which is impossible. Thus, only condition F is possible.
But this diagram is isomorphic to case B∆123B∆132C∆267B�1673E�6137E,
shown in Figure 27. An isomorphism is given by (5, 9)(6, 7, 8).

Figure 42: Case B∆123C∆132B2∆173B∆178C∆243B�8731F

We summarise Case B as follows:
An n3 configuration (Σ,Π), which cannot be constructed by a 1-point extension, and

having no triangle satisfying condition A, is one of the Pappus or Desargues configura-
tions.

We still must show that the Fano, Pappus, and Desargues configurations cannot be
obtained by 1-point extensions. This is clearly so for the Fano configuration, as there are
no 63 configurations. Consider the Pappus configuration. One way to show that it cannot be
obtained by a 1-point extension is to start with the unique 83 configuration and to show that
the possible 1-point extensions do not produce the Pappus configuration. Another way is
to show that every ordering of every triangle and quadrilateral in the Pappus configuration
satisfies one of conditions A,B,C,D,E, F,G, so that the Pappus configuration does not
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arise by a 1-point extension. The collineation group of the Pappus configuration has order
108. It is transitive on points, lines, triangles, and quadrangles, so that only one triangle
and one quadrilateral need be tested. We omit the proof.

Figure 43: The Pappus configuration

Consider next the Desargues configuration. Its collineation group has order 120. It is
transitive on points, lines, triangles, quadrangles, and also on quadruples (a0, `2, a1, `3),
where a0, a1 ∈ `2, a0 6= a1, a1 ∈ `3, and `2 6= `3. It is not transitive on pentagons,
hexagons, etc. Refer to Figure 44. We look for a cycle beginning (a0, `2, a1, `3, . . . , `0) =
(1, `13, 3, `34, . . .), satisfying the conditions of Theorem 2.4. Since `′1 ∩ `1 = Ø, where
`′1 = `37, and `1 is the third line through a0 = 1, we must have `1 = `15, so that `0 = `17.
Since a2 6∈ `1, by Theorem 2.4, we cannot have a2 = 5. Hence, a2 = 4.

Figure 44: The Desargues configuration

Then since `′2 ∩ `2 = Ø, we cannot have `′2 = `42, as `42 intersects `2 = `13 in 2.
Therefore `4 = `49, from which we have a3 = 9, and the cycle is (1, `13, 3, `34, 4, `49, 9,
. . . , `17). Since `′3 ∩ `3 = Ø, we cannot have `′3 = `59, as `59 intersects `3 = `34 in 5. It
follows that `5 = `59. But then a4 must be either 1 or 5, both of which are impossible. We
conclude that the Desargues configuration cannot be obtained by a 1-point extension. This
completes the proof of Theorem 4.1.

Observe that we have only used 1-point extensions based on triangles and quadrangles
in the proof of Theorem 4.1. Hence we have proved that if an (n+1)3 configuration cannot
be obtained using a 1-point extensions based on triangles or quadrangles, then it is the
Fano, Pappus, Desargues, or a Fano-type configuration. Therefore we have the following
corollary.
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Corollary 4.2. Every (n+1)3 configuration that can be obtained from an n3 configuration
by a 1-point extension, can be obtained using a 1-point extension based on triangles or
quadrangles.

A consequence of this corollary is that the (n + 1)3 configurations can be constructed
from the n3 configurations by constructing all sequences of sequentially incident points
and lines of length at most 4, and testing whether they satisfy the conditions required for a
1-point extension. Isomorphism testing of the resulting (n + 1)3 configurations then gives
all configurations that can be constructed by 1-point extensions. Those which cannot be
constructed in this way are the Fano-type configurations, which can be constructed from
cycles and subdivisions of bipartite 3-regular multigraphs, using Theorem 3.2.

One of the central problems in the theory of n3 configurations is to determine whether
they are geometric, that is, whether they can be coordinatized over the reals and/or rationals.
See [3, 14, 15, 16]. This means to assign homogeneous coordinates in the real and/or
rational projective plane, so that the lines are straight lines, and all incidences and non-
incidences are respected. The application of 1-point extensions to geometric configurations
will be described in another article (in preparation).

5 The 3-Point Extension
Let (Σ,Π) be an n3-configuration. Choose a line `, and let its points be a1, a2, a3. Con-
struct a new configuration (Σ′,Π′) as follows. Σ′ = Σ ∪ {b1, b2, b3, `1, `2, `3}, where
b1, b2, b3 are new points and `1, `2, `3 are new lines. The incidences Π′ are constructed as
follows. `1 contains the points a1, b2, b3. `2 contains the points b1, a2, b3, and `3 contains
the points b1, b2, a3. Choose 3 lines `′1, `

′
2, `
′
3 6= ` such that `′i contains ai. Remove ai

from `′i and place bi on `′i. This is illustrated in the following table. Then Π′ contains all
remaining incidences of Π, except for the incidences a1`′1, a2`

′
2, a3`

′
3.

` `1 `2 `3 `′1 `′2 `′3
a1 a1 b1 b1 b1 b2 b3
a2 b2 a2 b2 · · ·
a3 b3 b3 a3 · · ·

Theorem 5.1. (Σ′,Π′) is an (n + 3)3-configuration.

Proof. Note that each bi is incident on exactly 3 lines, and that each of `′1, `
′
2, `
′
3 is inci-

dent on exactly 3 points. We must verify that any 2 lines of (Σ′,Π′) intersect in at most
one point. Clearly `, `1, `2, `3 intersect each other in at most one point. Similarly for
`, `′1, `

′
2, `
′
3. The same is true for all other lines of Σ′, because it is true for (Σ,Π).

Example 5.2. The Fano configuration has 7 points and 7 lines, all of which are equivalent
under automorphisms. There is one way to choose 3 points a1, a2, a3. The incidences of
`, `1, `2, `3 are uniquely determined. The choice of `′1, `

′
2, `
′
3 is not unique, as each ai is

incident on two lines other than `. There results two possible 3-point extensions of the
Fano configuration. One of these is the Desargues configuration. The other is known as the
“anti-Pappian” configuration [5].

A complete quadrilateral in an n3 configuration is a set of four distinct lines intersect-
ing in six distinct points. Notice that the extended configuration (Σ′,Π′) always contains
a complete quadrilateral `, `1, `2, `3, intersecting in the six points a1, a2, a3, b1, b2, b3. The
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3-point extension can also be constructed from the dual point of view – rather than be-
ginning with 3 collinear points a1, a2, a3, we begin with 3 concurrent lines, and so forth.
This is equivalent to using the 3-point extension in the dual of (Σ,Π), and then dualizing
(Σ′,Π′). In this case, the 3-point extension will always contain a complete quadrangle, that
is, the dual of a complete quadrilateral.

Theorem 5.3. The Fano-type configurations cannot be obtained by a 3-point extension.

Proof. Suppose that a Fano-type configuration (Σ,Π) were obtained by a 3-point exten-
sion. It would then contain a complete quadrilateral `, `1, `2, `3, intersecting in the six
points a1, a2, a3, b1, b2, b3. These four lines and six points must all be part of a single
F ′, Fp, or F`. Refer to Figure 6. Now the points a1, a2, a3 must be collinear. Furthermore,
there must be a line containing a1, b2, b3, and so forth. This determines the labelling of an
F ′, Fp, or F`. But we then find there is a line containing at least one of the pairs a1, b1;
a2, b2; a3, b3, which is not possible in a 3-point extension.
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