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0  INTRODUCTION

Energy efficiency is specified by the European Union 
(EU) as a key driver of the transition toward a low-
carbon society [1]; recent studies show that new district 
heating systems can reduce heating and cooling costs 
by 15 %, which represents €100 billion  per year [2]. 
The successful operation of a district heating system 
requires optimal scheduling of heating resources 
to satisfy the heating demands. The scheduling 
operation requires accurate short-term forecasts of 
future heat load to optimally assign heating resources. 
Energy demand forecasting systems may also be 
helpful in supporting future environmentally friendly 
urban planning [3]. Short-term energy demand 
forecasting has been studied predominantly in the 
field of electricity load forecasting and natural gas 
consumption forecasting [4], and less so in district 
heating forecasting, although similar statistical models 
can be applied [5]. The sources of heat load variations 
in district heating systems are both seasonal and daily 
and are mainly a consequence of variations in outdoor 
temperature and the social behaviour of customers [6]. 

Various forecasting approaches have been applied 
to analyse and support the operation of district heating 

systems, including a simple forecasting model [7], a 
grey-box forecasting approach [8], a lifting scheme 
combined with ARIMA models [9], and functional 
clustering combined with linear regression [10]. An 
efficient forecasting approach to energy demand 
forecasting based on semiparametric regression 
smoothing was proposed by [5]. Other approaches 
include a general fixed district heating model structure 
that can be adapted for any particular district heating 
system and used in cost-optimization studies [11], 
a forecasting method for space heating in a single-
family houses [12], and nonparametric regression 
model [13]. Whereas linear ARX models have been 
successfully applied in load-forecasting applications 
[14], nonlinear ARX models based on neural networks 
have also been proposed [15].

In this paper, short-term forecasting solutions 
for a district heating network are investigated, and 
several models are proposed and compared for one 
day ahead forecasting of heat load. The study is based 
on heat load data for the district heating network of 
Ljubljana, which is the largest district heating network 
in Slovenia. Various weather related parameters are 
collected and included in the forecasting models, 
and models are constructed and tested through cross-
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validation procedures to verify the generalization 
performance on independent data. 

The paper is structured as follows. Section 1 
presents the case study data applied in this paper, 
including the heat load data, weather-related 
parameters, and additional extracted features. Sections 
2 and 3 present the formulation of the forecasting 
problem and description of various linear and neural 
network-based forecasting models. The results 
are presented in Section 4 and conclusions are 
summarized in Section 5.

1  DATA

This study is based on district heating data from 
September 2008 to February 2013, obtained from 
the company Energetika Ljubljana, d.o.o. The data 
comprise daily heat load Q, and various measurement 
weather data (outdoor temperature T, solar radiation S, 
wind speed W, relative humidity H). Q data represent 
the heat transfer entering the district heating system. 

Fig. 1 presents the complete Q data in daily 
resolution with winter and summer seasons marked. 

Fig. 1.  Heat load data Q from September 2008 until February 2013 in daily resolution

Linear dependence Q(T) between the heat load Q and 
outdoor temperature T on a daily scale is presented in 
Fig. 2. In this study, only winter data, which are more 
difficult to estimate due to strong weather-related 
influences, are analysed. The transient period between 
the  and summer seasons is not discussed in this paper 
although it also presents a challenging forecasting 
problem. 

Fig. 2.  Relation between heat load Q and outdoor temperature T 
(on daily scale) with linear fits for winter and summer seasons

1.1  Feature Extraction

Beside the original heat (Q) and weather-related time 
series data (T, S, W, H), additional features were 
extracted in order to facilitate the construction of 
efficient forecasting models:
• td linear time expressed in days since the 

beginning of the data,
• tcos seasonal cycle, expressed by cos(2πtd/365),
• dwork dummy variable expressing workday,
• dSat dummy variable expressing Saturday,
• dSun dummy variable expressing Sunday or 

holiday.
Dummy variables denoting various days of the 

week are primarily related to the behavior of end users 
that is considerably different during the week and the 
weekend. Linear time and seasonal cycle features take 
into consideration linear trends in heat consumption 
and basic seasonal cycles. 

2  FORECASTING APPROACH

Various forecasting model structures are explored 
with the aim of developing an efficient and robust 
forecasting model for the forecasting of heat load Q 
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one day in advance. At the time t expressed in the 
daily resolution, our aim is to forecast future heat load 
Q(t+h) with the forecasting horizon h = 1 day. Longer 
forecasting horizons are currently not relevant because 
heat load forecasting is required only for short-term 
optimization of heating resources.

Due to a highly linear relation between the 
daily heat load Q and the outdoor temperature T 
(shown in Fig. 2), we expect linear forecasting 
models to sufficiently describe the heat consumption 
phenomena, but we also apply neural network-based 
nonlinear forecasting models to explore the eventual 
nonlinear heat demand response. Applied forecasting 
models are described in Section 3.

For the evaluation of forecasting models, 
we introduce the so-called mean absolute range 
normalized error (MARNE), which is a relative 
measure depending on the size of the district heating 
system and can easily be interpreted in technical or 
economical terms. The MARNE error is calculated as 
the average of the absolute differences of the forecast 
Qf heat consumption and the actual heat consumption 
Qa, normalized by the maximum transmission capacity 
of the district heating network Qmax:
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where Nd is the number of days of the heat load time 
series, which in our case study amounts to Nd = 1614.

Currently, there are no direct links to estimate 
savings based on forecasting results. Heat load 
forecasts are required for short-term optimization of 
heating resources within the company, which may 
include decisions about switching particular heaters 
on/off at the right time and considering secondary 
energents if necessary. Actual savings are, therefore, 
very difficult to estimate and are also subject to the 
confidential policy of the company. Consequently, the 
optimality of the proposed forecasting approach can 
be currently estimated only through the forecasting 
accuracy measures, such as the MARNE measure 
proposed in this paper.

The generalization performance of forecasting 
models was evaluated based on cross-validation 
principle. Available data (as shown in Fig. 1) were 
split into training and testing subsets, containing 60 % 
and 40 % of data, respectively, which corresponds 
to the first three winter seasons of training data and 
the remaining two winter seasons of testing data. The 
forecasting errors in both data sets were denoted as 
MARNEtrain and MARNEtest, and the final criterion 

for evaluation of model performance was testing error 
MARNEtest, which presents an independent measure 
of model accuracy and its generalization ability to 
perform well on novel data.

3 FORECASTING MODELS

Various model structures were examined in this study 
to find a suitable forecasting model for short-term heat 
load forecasting. The modelling approaches can be 
summarized into three groups as follows:
• Benchmark models 
 - random walk model,
 - temperature correlation model.
• Linear models
 - regression model,
 - autoregressive models,
 - stepwise regression.
• Nonlinear neural network models
 - feedforward neural network,
 - feedforward neural network with a direct linear  

   link.
The following paragraphs describe the structures 

of examined forecasting models, and the list of 
regressors included in each model is summarized in 
Table 1.

3.1 Random Walk Model

The random walk (RW) model predictor Q(t+1) 
derives its value from past heat load Q(t), with 
e(t) denoting noise and t the arbitrary time in daily 
resolution:

 Q t Q t e t+( ) = ( ) + +1 1( ).  (2)

The random walk model is only considered as a 
basis to evaluate the other, more elaborate models, as 
recommended in [16] where RW model is implicitly 
included in the proposed mean absolute scaled error 
measure.

3.2  Temperature Correlation Model

The temperature correlation model (TC) correlates the 
heat load Q(t+1) with the average daily temperature 
T(t+1):

 Q t b bT t e t+( ) = + +( ) + +( )1 1 1
0 1

.  (3)

The motivation for this model is the strong 
negative correlation between daily outdoor 
temperature and heat load, as described in Section 1.
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3.3  Regression Model

The linear regression model (REG) expands the 
selection of a single temperature input of a TC model 
in Eq. (3) by including also delayed temperature 
values T(t), T(t–1), …, and also informative features 
as described in Section 1.1. The list of included 
regressors is shown in Table 1.

3.4  Autoregressive Models

Autoregressive models (ARX) further expand the 
REG model by including as inputs as well as delayed 
heat load values Q(t), Q(t–1), … . Various applied 
ARX models differ only in the selection of additional 
weather-related inputs (see Table 1 for details). 

The ARIX model has the same structure as the 
ARX model but forecasts the differences in daily heat 
load ΔQ instead of forecasting the absolute heat load 
Q.

3.5  Stepwise Regression Model

The stepwise regression model (SR) in this study is 
based on the initial selection of regressors provided by 
ARX models and is constructed by iteratively adding 
and removing regressors based on their statistical 
significance in a regression [17]. The method 

begins with an initial model and then compares the 
explanatory power of incrementally larger and smaller 
models. At each step, the p-value of an F-statistic 
is computed in order to test models both with and 
without a potential input. Tested inputs are iteratively 
added or removed from the model until the procedure 
converges to a locally optimal forecasting model with 
statistically significant input variables. This method 
also resolves the collinearity problem by reducing the 
available set of inputs to the relevant ones.

3.6  Feedforward Neural Network

Feedforward neural network (NN) models [18] can 
be considered to be nonlinear auto-regressive models 
(NARX) that extend the ARX models with the ability 
to also encapsulate nonlinear system responses. In our 
study, a feedforward neural network with sigmoidal 
activation functions was applied, and the number of 
hidden neurons was kept low to prevent overfitting. 
For the same reason, the Levenberg-Marquardt 
learning algorithm with Bayesian regularization was 
applied to improve generalization.

The architecture of the NN with one hidden layer 
of neurons with sigmoidal activation function and a 
linear output layer is shown in Fig. 3. Based on the 
initial simulation results, the hidden layer consists of 
5 hidden neurons. Increasing the number of hidden 

Table 1.  Summary of forecasting models and included regressors

Linear models RW TC REG ARX1 ARX2 ARX3 ARX4 SR ARIX

Neural net models
NN2

NNLL2
NN4

NNLL4
NNSR

NNLLSR
Forecast: Q(t+1) Q(t+1) Q(t+1) Q(t+1) Q(t+1) Q(t+1) Q(t+1) Q(t+1) ΔQ(t+1)

Regressors:

Extracted features

  td td td td td td td
tcos tcos tcos tcos tcos tcos tcos

dwork dwork dwork dwork dwork dwork dwork

dSat dSat dSat dSat dSat dSat dSat

dSun dSun dSun dSun dSun dSun dSun

Outdoor temperature T

 T(t+1) T(t+1) T(t+1) T(t+1) T(t+1) T(t+1) T(t+1) T(t+1)
 T(t) T(t) T(t) T(t) T(t) T(t) T(t)

T(t-1) T(t-1) T(t-1) T(t-1) T(t-1)   
T(t-2) T(t-2) T(t-2) T(t-2) T(t-2)
T(t-3) T(t-3) T(t-3) T(t-3) T(t-3)

Heat consumption Q

Q(t)   Q(t) Q(t) Q(t) Q(t) Q(t) Q(t)
 Q(t-1) Q(t-1) Q(t-1) Q(t-1)   

Q(t-2) Q(t-2) Q(t-2) Q(t-2)
Q(t-3) Q(t-3) Q(t-3) Q(t-3) Q(t-3) Q(t-3)

Solar radiation S
    S(t+1) S(t+1) S(t+1) S(t+1) S(t+1)

S(t) S(t) S(t)   
Wind speed W      W(t+1) W(t+1)   
Relative humidity H       H(t+1)   
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neurons did not improve the generalization ability of 
the model.

Fig. 3.  Feedforward neural net (NN)

3.7  Feedforward NN with Direct Linear Link

In addition to the classic neural network architecture 
described above, an additional NN architecture with 
a direct linear link (NNLL) was applied due to the 
strong linear relationship between the input and output 
variables. The advantage of the NNLL architecture is 
its improved ability to directly model linear mappings 
with the additional capacity to add nonlinear 
responses. The NNLL architecture is presented in 
Fig. 4 where a direct linear link from the inputs to 
the output layer is shown. In this configuration, the 
hidden layer can be considered as a nonlinear feature 
extractor that provides additional features to the linear 
regression model implemented by a linear output 
layer. In our case study, only 2 nonlinear hidden layer 
neurons were used to prevent unnecessary overfitting.

Fig. 4.  Feedforward neural net with direct linear link (NNLL)

The training procedure for all neural network 
models (NN and NNLL) included 200 repeated 
random initializations followed by gradient-based 
learning (until learning converged). The results 
reported include the average and the best result 
obtained from 200 training realizations.

4  RESULTS

This section presents forecasting results obtained by 
applying the described forecasting models (Section 
3) to the forecasting problem defined in Section 
2. For all applied models both training and testing 
errors (MARNE) are presented, although only the 
testing error that is considered an estimator of the 
generalization ability of the model is evaluated as a 

final model performance measure. Forecasting results 
for all models are summarized in Table 2.

It should be noted that applied linear models 
always converge to a unique solution, whereas 
nonlinear NN models converge only to locally optimal 
solutions depending on the initial conditions of free 
network parameters (synaptic weights of neurons) 
that form the basis for the subsequent gradient-based 
optimization. Consequently, the average results for 
multiple NN initializations are reported in Table 2 as 
well as the best obtained NN results. The best obtained 
testing results for linear and neural models are marked 
in gray.

Table 2.  Forecasting results

Model Training MARNE [%] Testing MARNE [%]

Benchmark models

RW 3.05 3.23

TC 2.35 3.43

Linear models

REG 1.51 2.62

ARX1 1.14 1.33

ARX2 1.06 1.33

ARX3 1.04 1.35

ARX4 1.03 1.35

SR 1.08 1.24

ARIX 1.36 1.51

Neural network models
Mean Best

NN2 0.76 1.83 1.21

NN4 0.73 1.75 1.24

NNSR 0.80 1.55 1.19

Neural network models with linear link

NNLL2 1.08 1.40 1.23

NNLL4 1.06 1.39 1.21

NNLLSR 1.09 1.26 1.15

Both benchmark models (Table 2) yield initial 
generalization performance above 3 %: 3.23 % for the 
RW model and 3.43 % for the TC model. Although the 
training performance of TC model is better compared 
to RW model, its generalization performance is worse. 

A comparison of linear models reveals that the 
regression model (REG) considerably improves 
the initial performance of both benchmark models 
by reducing the training error to 1.51 % and the 
testing error to 2.62 %. This confirms the benefits of 
including the proposed extracted features and delayed 
terms of outdoor temperatures.

The performance of the REG model is further 
improved by the family of autoregressive models 
(ARX) that include the delayed terms of past 
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heat consumption as inputs. The results clearly 
demonstrate the importance of the autoregressive 
forecasting approach. ARX models that differ only in 
the inclusion of additional weather related inputs (S, 
W, H) show similar performance; therefore, it can be 
concluded that additional weather-related inputs only 
marginally contribute to forecasting performance.

Additional generalization improvement was 
obtained by applying the stepwise regression 
approach that reduces the available inputs to strictly 
relevant ones. In the case of a SR model, a training 
error of 1.08 % was obtained, and a testing error of 
1.24 % which is the best result in the family of linear 
models. Beside the improved generalization ability, 
the SR model also reduces the model complexity and 
is therefore considered as an appropriate model for 
application in the district heating industry.

The application of the ARIX model that includes 
the integrating term and, therefore, forecasts the heat 
consumption difference ΔQ (instead of Q) did not 
improve the results.

The forecasting results obtained by NN-based 
models show the following various interesting 
conclusions:
• NN training depends on the initial (random) 

initialization of network parameters (weights) 
therefore multiple learning initializations 
followed by supervised gradient-based learning 
are required to ensure good NN performance.

• Only a few hidden layer neurons are sufficient 
to model this type of an energy consumption 
process. 

• The best NN results generally achieve and 
exceed the same level as the best linear model, 
but the improvement is slight due to a very linear 
dependence Q(T).

• Due to the same reason of linear Q(T) dependence, 
NN with a direct linear link (NNLL) seems to be 
a good forecasting model, as demonstrated by 
testing results. The best NNLLSR model based on 
inputs selected by an SR model achieves testing 
performance of 1.15 % which is the overall 
best generalization result. In this case, only two 
hidden layer neurons with sigmoidal activation 
functions were used. These two neurons can be 
considered as additional automatic nonlinear 
feature extractors that are added to the linear 
model.
The best testing (generalization) results of applied 

models are compared in Fig. 5. It can be seen that NN 
based models slightly improve the performance of 
linear models. The best linear model (SR) yields a 
testing performance of 1.24 %, and the best NN-based 
model (NNLLSR) yields 1.15 % which represents 
a 7.3 % improvement in testing performance in 
comparison to the SR model.

Fig. 5.  Testing results of linear and NN-based forecasting models

Fig. 6.  Actual (Qa) and forecasted (Qf) heat consumption by a NNLLSR model
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A graph of the forecasting results obtained by the 
best NNLLSR model is presented in Fig. 6. Actual 
heat consumption Qa, forecast heat consumption Qf, 
and absolute forecasting error e = abs(Qa – Qf) are 
shown for the selected test period from October 2011 
to May 2012. The scatter plot of forecasting results 
(Qf vs. Qa) is shown in Fig. 7, where a very close 
matching can be observed (correlation coefficient 
R = 0.996).

Fig. 7.  Scatter plot of all testing forecasting results (Qf vs. Qa)

5  CONCLUSIONS

A study of forecasting models for heat demand a day 
in advance in a district heating system is discussed 
in this paper. The study is based on district heating 
data for the city of Ljubljana, Slovenia, for five 
subsequent winter seasons. Additional weather related 
variables (temperature, solar radiation, wind speed, 
relative humidity) and extracted features (days of 
the week, linear trend, seasonal cycle) were applied 
in our forecasting approach. Various forecasting 
models, including simple benchmark models, linear 
regression and autoregressive models, and nonlinear 
neural network-based models were constructed for 
the forecasting task. The forecasting performance of 
the models was evaluated based on the generalization 
performance obtained by cross-validation on a 
test data set. The conclusions of this study can be 
summarized as follows: 
• There is a strong linear relationship between the 

heat consumption Q and the outdoor temperature 
T. Consequently, the most significant regressor 
for the future heat load Q(t+1) forecasting is the 
outdoor temperature T(t+1). 

• Other weather-related parameters are less 
important with the exception of solar radiation 

S, which has been included as a significant 
regressor via a stepwise regression model. This is 
consistent with the results in the field of natural 
gas forecasting [19]. Wind speed and relative 
humidity do not have a significant impact on heat 
consumption.

• Heat consumption also exhibits autoregressive 
behaviour; therefore, including the past 
heat consumption {Q (t–k), k = 0, 1, …} into 
forecasting models considerably improves the 
forecasting accuracy.

• Due to a strong population influence on heat 
consumption, including additional extracted 
features denoting days of the week, linear trend 
and seasonal cycle, also significantly improves 
the forecasting accuracy. 

• The best linear model for this forecasting task 
is the stepwise regression model (SR) that 
includes only significant regressors. This reduces 
the model complexity and also improves the 
generalization ability. Testing performance 
(expressed as a MARNE error) 1.24 % was 
obtained for the SR model.

• Comparison of linear and nonlinear forecasting 
models reveals that slight improvement is possible 
by applying properly trained nonlinear NN-based 
models. In the case of NN models, multiple 
weight initializations should be applied in order 
to converge network training toward solutions 
emphasizing good generalization ability. 

• The proposed NNLL architecture that combines 
NN with direct linear link results in a simple 
architecture that improves the linear model 
(represented by a direct linear link) with a 
nonlinear feature extractor (hidden nonlinear 
neurons). The NNLLSR model with only two 
hidden neurons resulted in the best generalization 
result, expressed as a MARNE error of 1.15 %.
We can conclude that the proposed linear SR 

model is a suitable and robust candidate for industrial 
forecasting implementation. The advantage of the SR 
model is its low complexity, simple and transparent 
structure, and predictable model response that can be 
easily interpreted in terms of influences of various 
regressors. In contrast, the advantage of NN-based 
models is the ability to even better represent the input-
output mapping required for the forecasting task, but 
this is accompanied by unstable learning that requires 
repeated initializations in order to generate good 
forecasting solutions. The NN-based models also 
suffer from low interpretability. This is not a problem 
if only the forecasting accuracy is relevant but can 
be a hindrance if forecasts have to be understood and 
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interpreted to properly support control and business 
decisions. In our case study, the NNLLSR model 
improved the performance of a linear SR model 
by 7.3 %. This is a significant improvement that 
suggests that NN or the proposed NNLL structures are 
encouraged to be considered as forecasting solutions 
for applied forecasting in the district heating market. 
Further studies will be conducted to evaluate the 
adaptive versions of forecasting models [20], and take 
into account the influences of weather forecasting 
accuracy that influences heat load forecasts in online 
forecasting applications.
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