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Abstract

Crossing-critical graphs were introduced by Širáň, who proved existence of infi-
nite families of 3-connected k-crossing-critical graphs for every k ≥ 3. Kochol
proved existence of infinite families of simple 3-connected k-crossing-critical
graphs, k ≥ 2. Richter and Thomassen started the research on degrees in
crossing-critical graphs by proving that there are only finitely many simple
k-crossing-critical graphs with minimum degree r for every two integers r ≥ 6
and k ≥ 1. Salazar observed that their argument implies the same conclusion
for every rational r > 6, integer k ≥ 1, and simple k-crossing-critical graphs
with average degree r. For every rational r ∈ [4, 6) he proved existence of an
infinite sequence {kr,i}∞i=0 such that for every i ∈ N there exists an infinite
family of simple 4-connected kr,i-crossing-critical graphs with average degree r
and asked about existence of such families for rational r ∈ (3, 4). The question
was partially resolved by Pinontoan and Richter, who answered it positively
for r ∈ (31

2
, 4). In the present work we extend the theory of tiles, developed by

Pinontoan and Richter, to encompass a generalization of the crossing-critical
graphs constructed by Kochol. Combining tiles with a new graph operation,
the zip product, which preserves the crossing number of the involved graphs,
we settle the question of Salazar and combine the answer with the results of
Širáň and Kochol into the following theorem: there exists a convex continuous
function f : (3, 6) → R+, such that, for every rational number r ∈ (3, 6) and
every integer k ≥ f(r), there exists an infinite family of simple 3-connected
crossing-critical graphs with average degree r and crossing number k.

Beineke and Ringeisen investigated the crossing numbers of Cartesian prod-
ucts of small graphs with cycles and established the crossing numbers of the
Cartesian product of Cn � G where G is any simple graph of order four, ex-
cept the 3-star, K1,3. Jendrol’ and Ščerbová closed this gap and also obtained
the crossing number of Pm � K1,3. They conjectured the general result for
Pm � K1,n, which was proven for n = 4 by Klešč. We prove their conjecture
in a slightly more general setting: by combining the result of Asano about
the crossing number of K1,3,n with the zip product, we establish the crossing
number of T � K1,n where T is any tree of maximum degree three and n ≥ 3
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is any integer. We supplement this result by the crossing number of T � K1,3

for any tree T , the crossing number of Pm � Wn for any m ≥ 1, n ≥ 3, and
some other exact results and bounds.

Seymour regretted that the crossing number does not work well with graph
minors, as the contraction of an edge can both increase and decrease the value
of this graph invariant. We introduce the minor crossing number, a minor-
monotone graph invariant that allows for further minimization of the number
of crossings by allowing replacement of vertices by trees and minimizing the
number of crossings in the resulting graph. We argue that this graph invariant
is more natural in the VLSI applications than the ordinary crossing number,
prove several general lower bounds on the minor crossing number, study the
structure of graphs with bounded minor crossing number and provide some
exact results and bounds for specific graphs. In particular, we generalize a
result of Moreno and Salazar, who bounded the crossing number of a graph
from below using the crossing number of its minor of small maximum degree.

Math. Subj. Class. (2000): 05C62 Graph representations (geometric and inter-
section representations, etc.),

05C10 Topological graph theory, imbedding,
05C83 Graph minors.

Keywords: crossing number, crossing-critical graph, average degree, Cartesian
product, star, path, tree, wheel, minor crossing number, graph minor.



Povzetek

Raziskovanje prekrižno-kritičnih grafov je začel Širáň, ki je za vsak cel k ≥ 3
konstruiral neskončno družino 3-povezanih k-prekrižno-kritičnih grafov. Ko-
chol je za vsak cel k ≥ 2 konstruiral neskončno družino enostavnih 3-povezanih
k-prekrižno-kritičnih grafov. Richter in Thomassen sta začela s študijem sto-
penj vozlǐsč v prekrižno-kritičnih grafih, ko sta pokazala, da za vsaka cela r ≥ 6
in k ≥ 1 obstaja le končno mnogo k-prekrižno-kritičnih grafov z minimalno
stopnjo r. Salazar je opazil, da iz njunega argumenta sledi obstoj le končno
mnogo k-prekrižno-kritičnih grafov s povprečno stopnjo r za vsak cel k ≥ 1
in vsak racionalen r > 6. Pokazal je, da za vsak racionalen r ∈ (4, 6) obstaja
tako zaporedje {kr,i}∞i=0, da za vsak i ∈ N obstaja neskončna družina kr,i-
prekrižno-kritičnih grafov s povprečno stopnjo r, in vprašal po obstoju takih
družin za r ∈ (3, 4). Na vprašanje sta delno pozitivno odgovorila Pinontoan
in Richter, ki sta razvila teorijo tlakovcev in z njeno pomočjo konstruirala
iskane družine za r ∈ (31

2
, 4). V disertaciji nadgradimo njuno delo, da omogoči

posplošitev prekrižno-kritičnih grafov, ki jih je konstruiral Kochol. Kombi-
nacija teorije tlakovcev in nove operacije na grafih in njihovih risbah, šiva,
nam omogoči popoln odgovor na Salazarjevo vprašanje in njegovo povezavo z
rezultati Širáňa in Kochola v obliki naslednjega izreka: obstaja taka zvezna
konveksna funkcija f : (3, 6) → R+, da za vsako racionalno število r ∈ (3, 6)
in vsako celo število k ≥ f(r) obstaja neskončna družina prekrižno-kritičnih
grafov s povprečno stopnjo r in prekrižnim številom k.

Beineke in Ringeisen sta raziskovala prekrižno število kartezičnih produktov
malih grafov in ciklov ter določila natančne vrednosti za vse Cn � G, kjer
je G poljuben graf reda štiri, razen 3-zvezda K1,3. Jendrol’ in Ščerbová sta
zapolnila to vrzel. Ugotovila sta tudi prekrižno število Pm � K1,3 in postavila
domnevo za splošen rezultat o Pm � K1,n. Domnevo je za n = 4 dokazal
Klešč. V nekoliko splošneǰsi različici jo za vsak n ≥ 3 dokažemo v pričujočem
delu: rezultat Asana o prekrižnem številu grafa K1,3,n povežemo z operacijo
šiv in dobimo prekrižno število grafa T � K1,n, kjer je T poljubno drevo z
maksimalno stopnjo tri in n ≥ 3 poljubno celo število. Ta rezultat dopolnimo s
prekrižnim številom grafov T � K1,3 za poljubno drevo T , prekrižnim številom
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grafov Pm � Wn za poljubna m ≥ 1, n ≥ 3, ter več drugimi eksaktnimi
rezultati in mejami.

Seymour je obžaloval, da prekrižno število ne sodeluje na naraven način
s teorijo grafovskih minorjev: stiskanje povezave lahko vrednost te invariante
poveča ali zmanǰsa. V tem delu uvedemo minorsko prekrižno število. To
je minorsko monotona invarianta, ki omogoča dodatno zmanǰsevanje števila
križǐsč v risbi, tako da vozlǐsča zamenjamo z drevesi in minimiziramo število
križǐsč v risbah vseh takih grafov. Ta invarianta ima bolj naravne uporabe
pri izdelavi elektronskih vezij kot navadno prekrižno število. V delu pokažemo
več splošnih mej za njeno vrednost, razǐsčemo strukturo grafov z omejenim
minorskim prekrižnim številom in predstavimo nekaj eksaktnih rezultatov in
mej za posamezne družine grafov. Ena od spodnjih mej je posplošitev rezultata
Morene in Salazarja, ki sta prekrižno število grafa omejila s prekrižnim številom
njegovega minorja z majhno maksimalno stopnjo.

Math. Subj. Class. (2000): 05C62 Predstavitve grafov (geometrijske predstavi-
tve, predstavitve s preseki itd.),

05C10 Topološka teorija grafov, vložitve,
05C83 Grafovski minorji.

Ključne besede: prekrižno število, prekrižno-kritičen graf, povprečna stopnja, kar-
tezični produkt, zvezda, pot, drevo, kolo, minorsko prekrižno šte-
vilo, grafovski minor.







I implore my memory to reach back, to seize all doubts and

despairs, all hopes and passions, all dreams and funerals, all

prophecies and disappointments, all the killed, crippled and

wounded, desecrated, all exalted on altars and wrapped in flags,

all intoxicated by happiness and sobered from sorrow, let me re-

member all weepings and jubilations, all funny stories and loves,

all sins, all leaps into the unknown, all fires, floods, earthquakes

and God’s commandments, let all the tender fragile ties that bind

body and soul, me and someone else, be revealed, let me perceive

all conceptions and gentle abandons, all the shameful confessions

and states of purity, let the remembrances of all these vibrate

inside me and my surroundings, and let me be included in the

collective guilt and the collective absolution. I, thus, request to be

able to keep neighbors in front of and behind me, be the middle-

man of messages from the future even though they at times are

strange, incomprehensible, threatening or calming, brief or te-

dious. It is probable that none of us fully understands the whole

game, but courage itself is absolute and all-knowing.

Edvard Kocbek, 1977

There were many who helped me in my partial understanding of the game. The
mother, the father, the sister, the brother, the relatives, the friends, the teachers,
the professors, and others. Their trust gave wind to the wings of my thoughts, their
doubts challenged me to look deeper and sharpen the arguments.

Some of them are closely related to this work. Bojan Mohar, the supervisor, was with
it from the very beginning. He found a balance between encouragement and doubt,
strengthened with patience. The weekly meetings of the Graph Theory Workshop
he led in Ljubljana were of high value to an apprentice. Gašper Fijavž introduced
me to crossing number problems at a conference in Košice. In Stará Lesná, Marián
Klešč pointed out a problem that later turned out to be easily accessible with the
developed tools. Bruce Richter and Gelasio Salazar not only developed the funda-
ment on which this work was built, but also expressed interest in it at a stimulating
meeting in Waterloo, just prior the text was written up. Matt DeVos, always willing
for a mathematical debate, had several terminological suggestions. Deborah Kent
took time to improve on the English. Andrej Vodopivec, together with Deborah,
Matt, and the Mohar family, made the stay in Burnaby, where the work has been
completed, an enjoyable experience. Franziska Berger was the inspiration to many
of the thoughts in the thesis.

To all, my sincerest thanks.





Prosim, da bi mi spomin segel daleč nazaj in obsegel vse dvome

in obupe, vsa upanja in zanose, vse sanje in pogrebe, vse prerokbe

in razočaranja, vse ubite, pohabljene in ranjene, oskrunjene, vse

na oltar povzdignjene in v zastave ovite, blazne od sreče in trezne

od nesreče, naj se spomnim vseh jokov in vriskov, vseh smešnic

in ljubezni, vseh grehov, vseh skokov v neznano, vseh požarov,

povodnji, potresov in božjih zapovedi, naj si odkrijem vse nežne

nitke, ki vežejo telo in dušo, mene in blǐznjika, naj si predočim

vsa spočetja in blage sprostitve, vsa sramotna priznanja in vsa

čista stanja, vsega tega naj se spomnim v sebi in v svoji okolici,

predvsem pa naj se vključim v skupno krivdo in v skupno odvezo.

Prosim torej, da bi se še dalje držal soseda pred seboj in soseda

za seboj in sprejemal poročila od spredaj in jih predajal nazaj,

čeprav so včasih tuja, nerazumljiva, preteča ali pomirljiva, kratka

in naporna. Morda nihče med nami ne razume igre do kraja,

vendar je drznost brezpogojna in vsevedna.

Edvard Kocbek, 1977

Mnogo jih je bilo, ki so mi pomagali pri iskanju razumevanja igre. Mati, oče, sestra,
brat, sorodniki, prijatelji, učitelji, profesorji in drugi. Njihovo zaupanje je dalo po-
leta mojim zamislim, njihovi dvomi so izzvali globlji pogled in izostritev argumentov.

Nekateri od njih so tesno povezani s tem delom. Bojan Mohar, mentor, je bil z
njim od vsega začetka. Našel je ravnovesje med spodbudo in dvomom, utrjeno s
potrpežljivostjo. Tedenska srečanja Grafovske delavnice, ki jo je vodil v Ljubljani,
so bila dober poduk za vajenca. Gašper Fijavž mi je na konferenci v Košicah pred-
stavil prekrižno število grafov. V Staŕı Lesńı je Marián Klešč izpostavil problem, ki
se je kasneje izkazal za lahko dostopnega z izdelanimi orodji. Bruce Richter in Gela-
sio Salazar sta ne le zgradila temelje, na katerih sloni to delo, ampak tudi izkazala
zanimanje zanj na spodbudnem srečanju v Waterlooju tik pred pisanjem besedila.
Matt DeVos, vedno pripravljen na matematični razgovor, je imel več terminoloških
predlogov. Deborah Kent si je vzela čas za izbolǰsavo uporabljene angleščine. An-
drej Vodopivec je skupaj z Deborah, Mattom in družino Moharjevih poskrbel, da je
bil čas v Burnabyu, kjer je bilo delo dokončano, prijetna izkušnja. Franziska Berger
je bila navdih mnogim mislim v disertaciji.

Vsem iskrena hvala.
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Part I

The Crossing Number

1





Introduction

In his 1917 book, Amusements in Mathematics, Henry Ernest Dudeney pub-
lished the following problem [28]:

There are some half-dozen puzzles, as old as the hills, that are perpetually
cropping up, and there is hardly a month in the year that does not bring
inquiries as to their solution. Occasionally one of these, that one had thought
was an extinct volcano, bursts into eruption in a surprising manner. I have
received an extraordinary number of letters respecting the ancient puzzle that
I have called “Water, Gas, and Electricity.” It is much older than electric
lighting, or even gas, but the new dress brings it up to date. The puzzle is
to lay on water, gas, and electricity, from W, G, and E, to each of the three
houses, A, B, and C, without any pipe crossing another. Take your pencil and
draw lines showing how this should be done. You will soon find yourself landed
in difficulties.

A contemporary graph-theoretical view of the problem provides a simple
proof that the puzzle has no solution: it is asking for a planar embedding
of the complete bipartite graph K3,3, which does not exist due to the Euler
Formula. This puzzle is to our knowledge the first appearance of the problem of
minimizing the number of crossings in a drawing. Although the origins of this
problem can be traced back to recreational mathematics, it turns to be quite
difficult and has attracted considerable attention of modern mathematicians,
including Turán, Erdős, and Tutte. The bounds on the minimum number of
crossings in a drawing of a graph on a surface, called the crossing number,
have been applied in several areas of mathematics.

In this thesis we study two structural approaches to the crossing number
invariant. After the introductory Part I we investigate crossing-critical graphs
in Part II and the minor crossing number in Part III.

In the first part we introduce the terminology and notation in Chapter 1
and review the results on the crossing number in Chapter 2.

The second part contains solutions to two previously open problems. In
it, we study the crossing-critical graphs, which are minimal graphs with the
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4

crossing number above some predefined bound and thus give insights into the
structural behavior of this graph invariant. In Chapter 3 we define a new graph
operation, the zip product, which can preserve the crossing number and the
criticality of the involved graphs. Chapter 4 builds upon the theory of tiles
of Pinontoan and Richter, which we augment with a general construction of
crossing-critical graphs and with some new gadgets that are used to establish
lower bounds on the crossing numbers of graphs. The tools designed in these
two chapters are applied in Chapter 5, where we settle a question of Salazar,
and discuss the new insights these tools provide into the structure of crossing-
critical graphs. The zip product also has applications in studies of the crossing
numbers of Cartesian products of graphs, which we present in Chapter 6. There
we settle a conjecture of Jendrol’ and Ščerbová.

Connections between the theory of graph minors and the crossing number
are studied in the third part of this thesis. In Chapter 7 we introduce a new
minor-monotone graph invariant, the minor crossing number, and establish
some of its basic properties. This invariant allows us to apply the techniques of
graph minors in the study of the crossing minimization problem. In Chapter 8
we present some general bounds for the minor crossing number and in Chapter
9 we discuss the structure of graphs with bounded value of this graph invariant
and apply the results to improve the previously obtained bounds. We conclude
the study of the minor crossing number by establishing some exact results and
bounds for several classical families of graphs in Chapter 10.



Chapter 1

Graphs and their drawings

In this chapter, we define the mathematical framework and the notation that
will be used in subsequent chapters. We assume familiarity with basics of
Graph Theory [27] and related Topology of Surfaces [85]. Also, some argu-
ments have an algebraic flavor [52]. The respective references provide sufficient
background for these topics.

1.1 Graphs

1.1.1 Basic definitions

A graph G is a structure consisting of two sets: V (G) are the vertices of G
and E(G) are the edges of G. Each edge e connects precisely two endvertices
u and v, which is denoted by e = uv. The endvertices need not be distinct,
and an edge whose endvertices are equal is called a loop. An edge is incident
with its endvertex and vice versa. Two endvertices of the same edge are
adjacent, as well as two edges sharing an endvertex. Adjacent vertices are
neighbors of each other. For a vertex v ∈ V (G) we denote with NG(v) =
{u ∈ V (G) | uv ∈ E(G)} its neighborhood in G. We also define the multiplicity
neighborhood N∗

G(v), which is the multiset that contains each neighbor u of v
with multiplicity of the edge uv in E(G). Then the degree of v in G equals
the size of N∗

G(v), degG(v) = |NG(v)|. The maximum and minimum degree of
a graph G are denoted by ∆(G) and δ(G), respectively. A graph is d-regular
if all its vertices have degree d. Graphs with maximum degree three are called
subcubic graphs and 3-regular graphs are called cubic graphs. A graph can
have multiple edges but not loops, for reasons discussed in Section 1.2.2. When
loops are present, we employ the term multigraph. A graph that has neither
loops nor multiple edges is a simple graph.
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6 Graphs and their drawings

We call a vertex v ∈ V (G) a dominating vertex of G if it is adjacent to
every other vertex in G. A vertex cover of G is a set S of vertices of G, such
that each edge of G is incident with some vertex in S.

Let G1 and G2 be two graphs and ϕ : V (G1) → V (G2) a function. If uv ∈
E(G1) is equivalent to ϕ(u)ϕ(v) ∈ E(G2), we say that ϕ is a homomorphism
of G1 into G2. If ϕ is also a bijection, then it is an isomorphism and G1 and G2

are isomorphic graphs. Throughout this thesis we do not distinguish between
isomorphic graphs.

A graph G is a subgraph of a graph H whenever V (G) ⊆ V (H) and E(G) ⊆
E(H). We denote such a relationship with G ≤ H . If U ⊆ V (G), then G[U ] is
the subgraph of G that contains the vertices U and precisely all the edges of
G with both endvertices in U . Similarly, for F ⊆ E(G), the graph G[F ] is the
graph that contains all the edges of F and precisely those vertices of G that are
endvertices of edges in F . We say that G[U ] and G[F ] are spanned by U and F ,
respectively. A subgraph G ≤ H is a spanning subgraph if V (G) = V (H). It
is induced if H [V (G)] = G, i.e. if it contains all the edges of H that have both
endvertices in H . If there exists a subgraph of G, isomorphic to H , we refer
to it as a subgraph H in G. For a graph G, an edge e ∈ E(G), and a vertex
v ∈ V (G) we define G − e = (V (G), E(G) \ {e}) and G − v = G[V (G) \ {v}]
to be the subgraphs obtained by removing e or v from G. Similarly we define
G − S for S ⊆ V (G) ∪ E(G).

The path of length m, Pm, is the graph consisting of a sequence of vertices
v0, v1, . . . , vm such that precisely every two consecutive vertices vi−1 and vi

are adjacent, i = 1, . . . , m. Similarly, the cycle Cm is the graph consisting of
a sequence of vertices v0, v1, . . . , vm−1 such that precisely every two vertices
vi−1 and vi are adjacent, i = 0, . . . , m − 1, where the subtraction is modulo
m. We denote the segment of P between u, v ∈ V (P ) with uPv, and we use
a shorthand Pu for v0Pu and uP for uPvm. The length of a cycle or a path
is the number of its edges. Note that both Pm and Cm have m edges, but Pm

has m + 1 vertices, one more than Cm. Girth r(G) of a graph G is the length
of the shortest cycle in G. A graph G is a forest if it contains no cycles. If, in
addition, it is connected, then it is a tree.

Two vertices u, v ∈ V (G) are connected in G if there exists a path uPv
in G. This is an equivalence relation. The subgraphs of G spanned by its
equivalence classes are called components of G. A set S ⊆ V (G) ∩ E(G) is
a separator in G if G − S has more components than G. We say that G is
connected, or 1-connected, if G has only one component. G is k-connected
if |V (G)| ≥ k + 1 and G − S is connected for any set S ⊆ V (G), |S| < k.
Similarly, we define k-edge-connected for S ⊆ E(G). A vertex v ∈ V (G) or an
edge e ∈ E(G) is a cutvertex (cutedge) if {v} ({e}) is a separator in G.

Two edges e, f ∈ E(G) are in the same block of G if they are equal or
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if there exists a cycle C in G with e, f ∈ E(C). This is another equivalence
relation; the subgraphs spanned by the equivalence classes are called blocks of
G. For a graph G we define its block graph H as follows: the set of vertices
V (H) contains all the cutvertices and blocks of G, and the set of edges of H
contains precisely all the edges of the form vB where v is a cutvertex, B a
block, and v ∈ V (B).

Proposition 1.1 ([27]). The block graph H of any graph G is a forest. H is
connected if and only if G is connected.

Let G1, G2 be two subgraphs of G. The intersection G1∩G2 is the subgraph
of G, having the vertices V (G1) ∩ V (G2) and the edges E(G1) ∩ E(G2). Let
G1, G2 be two disjoint graphs. Their disjoint union G1∪G2 has vertices V (G1)∪
V (G2) and edges E(G1)∪E(G2). Their join G1+G2 is obtained from G1∪G2 by
adding all the edges of {uv | u ∈ V (G1), v ∈ V (G2)}. Their Cartesian product
G1 � G2 has vertices V (G1) × V (G2); two vertices (u1, v1) and (u2, v2) are
adjacent if and only if u1u2 ∈ E(G1) or v1v2 ∈ E(G2). Complement Gc of a
(simple) graph G is the simple graph on vertices V (G) in which two vertices
are adjacent if and only if they are not adjacent in G. Line graph L(G) of G
is the graph whose vertices are E(G) and two of them are adjacent if and only
if they share a vertex in G.

Let e = uv be an edge of a graph G. A subdivision of e results in the graph
obtained from G by replacing e in G with a new vertex w adjacent precisely
to u and v. A graph H is a subdivision of G if it is obtained from G by a
sequence of subdivisions of edges. In such case, we also say that G and H are
homeomorphic graphs.

Let u ∈ V (G) be a vertex of degree three with neighbors x, y, z. The
Y ∆-transformation of G at u is the graph obtained from G − v after adding
the edges xy, yz, and zx. Conversely, if xy, yz, and zx are three edges (a
triangle) in G, then the ∆Y -transformation of G at the triangle xyz is the
graph obtained from G−{xy, yz, zx} by adding a new vertex v and the edges
xv, yv, and zv.

A k-coloring of vertices of G is a mapping c : V (G) → {1, . . . , k} that
assigns different colors to adjacent vertices. A k-edge-coloring is defined simi-
larly. The chromatic number χ(G) of a graph G is the smallest number k for
which a k-vertex coloring of G exists. The chromatic index χ′(G) of G is the
smallest k for which a k-edge-coloring of G exists.

1.1.2 Families of graphs

In this section we define several particular families of graphs used through-
out the thesis. The complete graph Kn is the graph with vertices V (Kn) =
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{v1, . . . , vn} and edges E(Kn) = {vivj | 1 ≤ i < j ≤ n}, i.e. it contains an edge
between any pair of distinct vertices. The empty graph K̄n is the complement
of Kn: it has n vertices V (K̄n) = {v1, . . . , vn} but no edges. The complete
bipartite graph Km,n has vertices partitioned into two sets A = {u1, . . . , um},
B = {v1, . . . , vn}, V (Km,n) = A ∪ B, and has all possible edges between ver-
tices of these sets: E(Km,n) = {uivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The n-star Sn

is the complete bipartite graph K1,n. We have already defined the path Pm

and the cycle Cm. The wheel Wn is the join of the cycle Cm with the graph
K1. The hypercube of dimension d is the graph Qd whose vertices are strings
of length d over the alphabet {0, 1}. Two such strings are adjacent in Qd if
and only if they differ in precisely one position. An alternative definition is
Qd = K2 � K2 � · · · � K2 with precisely d factors K2.

1.1.3 Graph minors

Let e = uv be an edge of a graph G that is not a loop. The contraction of e
results in the graph G/e in which the edge e is removed and the vertices u and
v are identified into a new vertex. In the context of graph minors, we forbid
removal of cutedges of G. Thus, cut-edges can only be contracted and loops
can only be removed.

A graph G is a minor of a graph H if G can be obtained from a subgraph of
H by a sequence of edge-contractions. We denote this relationship by G ≤m H .
Then the set of edges of H can be partitioned into the set E(G) of original
edges, C of contracted edges, and the set R = E(H) \ (E(G)∪C) of removed
edges. H [C] is a forest since the loops are removed and not contracted. To each
vertex v ∈ V (G), there corresponds a unique maximal tree Tv, a component
of H [C], which is contracted to v.

A property P is a subclass of the class of all graphs. It is minor-closed if, for
every H ∈ P, the property P contains every minor G of H . A graph invariant
ι, which assigns real numbers to graphs, is minor-monotone if G ≤m H implies
ι(G) ≤ ι(H). The property Pk = {G | ι(G) ≤ k} is minor-closed whenever ι is a
minor-monotone graph invariant. The following theorem provides a structural
characterization of graphs in minor-closed properties.

Theorem 1.2 ([27]). Let P be a minor-closed property. Then there exists a
finite set of graphs FP , such that G ∈ P if and only if G does not contain a
minor that is isomorphic to a graph in FP .

The family FP from this theorem is the set of forbidden minors of P.
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1.2 Drawings

1.2.1 Embeddings of graphs on surfaces

A surface Σ is a compact connected 2-manifold without a boundary, i.e. a
compact connected Hausdorff space in which every point has a neighborhood
homeomorphic to R2. Surfaces can be classified into orientable surfaces Sh,
h ≥ 0, and nonorientable surfaces Nc, c ≥ 1, where Sh denotes the 2-sphere
with h handles and Nc denotes the 2-sphere with c crosscaps. The number
h is the orientable genus of Sh and c is the nonorientable genus of Nc. Some
particular surfaces we consider are the torus S1, the projective plane N1, and
the Klein bottle N2.

An embedding of a graph G in a surface Σ consists of two mappings (ϕ, ε),
such that ϕ : V (G) → Σ maps vertices of G injectively into points in Σ
and ε : E(G) × [0, 1] → Σ maps edges of G into simple (polygonal) paths
in Σ, such that (i) for e = uv the corresponding path connects the images
of the respective endvertices, i.e. ε(e, 0) = ϕ(u) and ε(e, 1) = ϕ(v), (ii) the
interiors of any two paths are disjoint, i.e. ε(e, (0, 1))∩ ε(f, (0, 1)) = ∅ for any
e, f ∈ E(G), e 6= f , and (iii) the interiors of paths avoid the images of vertices,
i.e. ε(e, (0, 1)) ∩ ϕ(V (G)) = ∅ for e ∈ E(G).

Let G be a graph and (ϕ, ε) its embedding in a surface Σ. The (open)
connected components of Σ \ ε(E(G) × [0, 1]) are the faces of the embedding.
If a vertex or an edge is embedded in the boundary ∂f of the face f , then v or
e is incident with f . Two faces whose boundaries intersect in the image of an
edge are adjacent. The boundary of a face f determines a sequence of vertices
and edges incident with f , which is called a facial walk of f . For a vertex
v ∈ V (G), the embedding determines a cyclic permutation of edges emanating
from v, which corresponds to a cyclic permutation of the neighbors of v. This
permutation is called the vertex (edge) rotation around v.

For every surface Σ, there exists a constant χ(Σ), called the Euler char-
acteristic of Σ, such that if G is a graph with n vertices and m edges whose
embedding in Σ has f faces, all homeomorphic to disks, then

n − m + f = χ(Σ). (1.1)

The equation (1.1) is called the Euler Formula. The constant depends only
on the (non)orientable genus of Σ: χ(Sg) = 2 − 2g and χ(Ng) = 2 − g. To
unify these formulas, we define the Euler genus of a surface to be eg(Sg) = 2g
and eg(Ng) = g; then χ(Σ) = 2 − eg(Σ).

For a graph G, we define its orientable genus g(G) as the smallest g, such
that there exists an embedding of G into Sg. The nonorientable genus g̃(G) is
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defined similarly with Ng in place of Sg. The Euler genus eg(G) is defined as
eg(G) = min{2g(G), g̃(G)}.

1.2.2 Drawings of graphs and the crossing number

A drawing D = (ϕ, ε) of G in a surface Σ is a generalization of an embedding
in Σ, in which the interiors of the ε-images of edges are allowed to intersect.
Again, ϕ : V (G) → Σ is an injective mapping and ε : E(G) × [0, 1] → Σ
maps edges of G to simple (polygonal) curves in Σ, such that ε(uv, 0) = ϕ(u)
and ε(uv, 1) = ϕ(v), and ϕ(V (G)) does not intersect ε(E(G) × (0, 1)). When
the context is clear we do not distinguish between a graph, its vertices or edges,
and their images in a surface.

Let e and f be distinct edges of G and let r and s be their images in Σ.
Suppose that x ∈ r ∩ s is not an image of some vertex of G. Let U be a
neighborhood of x such that for each disk neighborhood B ⊆ U of x both
B ∩ r ∩ s = {x} and |∂B ∩ (r ∪ s)| = 4. We say that e and f or that r and
s cross at x (and call x a crossing) if points of r and s interlace along ∂B for
every such B, and say that r and s touch otherwise. In the latter case, we call
x a touching of r and s (of e and f).

A drawing D is normal if the ε-images of any two edges intersect in a finite
number of points, D has no touchings, and for each crossing x of D there
are at most two edges of G whose crossing is x. We will assume that all the
drawings are normal. Let D = (ϕ, ε) be one such drawing of a graph G and let
X be the set of crossings of D. The graph of the drawing D, GD, has vertices
V (GD) = V (G) ∪ X. Two of its vertices u, v ∈ V (GD) are adjacent if there is
an edge e ∈ E(G) whose ε-image contains u and v, but the u − v segment of
that image contains no other vertex of GD.

The crossing number of a graph G in Σ, denoted by cr(G, Σ), is defined
as the minimum number of crossings in any normal drawing of G in Σ. The
symbol cr(G) denotes the crossing number of G in the sphere. A drawing of
G in Σ that achieves the minimum number of crossings is called an optimum
drawing . For a drawing D = (ϕ, ε) of G in Σ, connected regions of Σ\ε(E(G))
are called faces of D. By our standards, a drawing of G in the plane R2 is
a drawing of G in the sphere S0, equipped with an infinite point ∞ avoiding
the image of G. The infinite face of a drawing of G in the plane is the face
containing ∞.

A graph G is k-crossing-critical in a surface Σ if cr(G, Σ) ≥ k and cr(G −
e, Σ) < k for any edge e ∈ E(G). A graph is crossing-critical in Σ if it is
k-crossing-critical for some k.

A rectilinear drawing is a drawing of a simple graph G in the plane, R2, in
which the image of any edge is a straight line segment. The rectilinear crossing
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number rcr(G) is the smallest number of crossings in any rectilinear drawing
of G in the plane.

Loops do not affect the crossing number of graphs: we can always draw
them in a small neighborhood of the vertex without any crossings. Thus, a
graph with a given crossing number can have arbitrarily many loops, and a
crossing-critical graph contains none.
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Chapter 2

Results on the crossing number

In this chapter, we review significant results on the crossing number. First, we
outline the historic development of the topics in Section 2.1. Then, we concen-
trate on general crossing number bounds in Section 2.2 and on exact results
in Section 2.3. Next, we continue with an overview of results on crossing-
critical graphs in Section 2.4 and applications of the crossing number invariant
in mathematics and engineering in Section 2.5. Finally, we conclude with the
contribution of this thesis to the knowledge about crossing numbers in Section
2.6.

2.1 Historic overview

In 1930, Kuratowsky characterized planar graphs as the graphs that contain
neither a K3,3 nor a K5 subdivision [74]. This result was followed in 1934 by
Chojnacki, who established planarity of any graph that has a plane drawing
in which no pair of edges crosses an odd number of times [24]. In the present
terminology, this result states that any graph with odd crossing number equal
to zero is planar. Many years later, Tutte proved this result in his attempt
to create algebraic foundations for the theory of crossing numbers [131]. The
module over the set of pairs of edges that he created made the proof clearer,
but was applied only in few other results [124].

Turán asked about the smallest number of crossings of rail tracks between
kilns and storage places [130]. In graph theoretical formulation, he was inter-
ested in the crossing number of the complete bipartite graph Km,n. This initial
question already demonstrated all the fallaciousness of the crossing number
problems: in 1952 Turán presented the problem to Zarankiewicz, who claimed
to have solved it in 1954 [137]. However, a fault in the proof was discovered by
Kainen and Ringel and described by Guy [47], who also conjectured the cross-

13



14 Results on the crossing number

ing number of complete graph Kn. Until today, both problems were solved
only in some special cases (cf. Section 2.3).

After the 1950s, the research on crossing numbers continued in various di-
rections. Some of it was dedicated to finding or estimating crossing numbers
of graphs, cf. Sections 2.2 and 2.3. There were also attempts to characterize
properties of graphs with given crossing number. The result of Kuratowsky
characterizes graphs with crossing number zero in terms of forbidden subdi-
visions, but for larger crossing numbers no such general results are known.
Kulli, Akka and Beineke characterized line graphs with crossing number one
[73]. Bloom, Kennedy and Quintas conjectured that a graph with crossing
number at least two contains a subgraph with crossing number equal to two
[17]. Several special cases of this conjecture were proven by Richter [99], who
also established that every cubic graph with crossing number at least two con-
tains a subdivision of one of eight graphs [98], which extends a similar result of
Glover and Huneke [43] for cubic graphs that do not embed in the projective
plane. A complementary result of McQuillan and Richter states that every
cubic 2-crossing-critical graph has crossing number equal to two [81]. This
relates to crossing-critical graphs, which were first defined in [17]. As they are
one of the main topics of this thesis, we devote them more space in Section
2.4.

Garey and Johnson opened the algorithmic aspect of the crossing number
by showing that the question cr(G) ≤ k is NP-complete [40]. Their trans-
formation to the optimal linear arrangement problem uses multigraphs with
high multiplicity of edges and high vertex degree. Recently, Hliněný improved
upon their transformation to the optimal linear arrangement problem by using
simple cubic graphs [55]. The result is that the crossing number problem is
NP-complete already for cubic graphs. For a fixed value of k, the problem
turns to be polynomial (i.e. the crossing number problem is fixed-parameter
tractable). A näıve algorithm that runs in time O(m2k+1) chooses k pairs of
edges, subdivides each of them, identifies the two new vertices of every pair,
and checks whether the new graph is planar. Significantly better theoretically,
but still inappropriate for application, is the fairly recent algorithm of Grohe
that answers cr(G) ≤ k in quadratic time for fixed k [45]. The algorithm uses
bounded treewidth of crossing-critical graphs to compute a monadic second-
order logic formula, which can be evaluated in linear time. Buchheim, Ebner,
Jünger, Klau, Mutzel, and Weiskircher have developed an algorithm that al-
lows exact crossing minimization for sparse graphs of order less than 40 [22].
For realistic applications to graphs of higher order, we have to rely on approx-
imations of the crossing number. Drawings of a bounded degree graph G of
order n with O(log2 n(cr(G)+n)) crossings can be obtained by combining algo-
rithms of Bhatt and Leighton [13] with those of Chung and Yau [25], cf. [116].
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Some attention has also been devoted to drawings of graphs respecting specific
constraints and to various heuristics; references can be found in [132].

Let us conclude this historic overview with another controversy about cross-
ing numbers. In Section 1.2.2, we introduced two versions of the crossing
number invariant: the ordinary and the rectilinear crossing number. However,
there can be more: one could count just the number of pairs of edges that
cross (the pair crossing number), or count just those pairs of edges that cross
an odd number of times (the odd crossing number). According to [100], the
problem of seemingly mismatching definitions was first pointed out by Mohar
in Burlington, Vermont, in 1995. Pach and Tóth described the problem in [92],
where they observed that the result of Chojnacki [24] and Tutte [131] states
that odd crossing number zero implies planarity. When these discrepancies
were revealed, distinctness of the rectilinear crossing number and the ordinary
one was already known: for any prescribed crossing number k ≥ 4 Bienstock
and Dean exhibited families of graphs with arbitrarily high rectilinear cross-
ing number [14] and showed that for graphs of bounded maximum degree the
rectilinear crossing number is bounded by a function of the degree and the or-
dinary crossing number [15]. Pach and Tóth proved that the ordinary crossing
number of a graph is bounded from above by two times the square of the odd
crossing number. They also extended some results about the crossing number
to the odd crossing number. Recently Pelsmajer, Schaefer, and Štefankovič
showed that the odd crossing number of a graph can be different from the pair
crossing number and thus from the ordinary one [94]. They designed graphs

for which odd crossing number does not exceed (
√

3
2

+ o(1)) cr(G).

2.2 General bounds

During the study of the crossing number, three general lower bounds for the
value of this invariant have emerged. They can all be traced back to Leighton’s
pioneering work on applications of crossing number in VLSI design [76]. We
review these results in the present section.

The most straightforward general lower bound for the crossing number of a
simple graph follows from the Euler Formula: if the graph has too many edges,
then it cannot be planar and each excessive edge must cross some other. The
Crossing Lemma uses this fact and boosts it with a probabilistic argument:

Theorem 2.1 (The Crossing Lemma). Let G be a simple graph with n
vertices and m edges, m ≥ 4n. Then,

cr(G) ≥ 1

64

m3

n2
.
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Proof. Let D be an optimal drawing of G. We may assume that no pair of
edges crosses twice in D and that adjacent edges do not cross. The graph of
D is thus a simple graph with cr(G) + n vertices and 2 cr(G) + m edges. The
Euler Formula implies 3(cr(G) + n) − 6 ≥ m + 2 cr(G), i.e.

cr(G) ≥ m − 3n + 6. (2.1)

Let D′ be a random induced subdrawing of D, obtained by choosing each
vertex of G with probability p. Let n′, m′, c′ denote the random variables,
respectively representing the number of vertices, edges, and crossings of D′.
Inequality (2.1) holds for any drawing and we infer that c′ ≥ m′−3n′. The same
holds for the expected values of these variables. These are easy to compute:
E(n′) = pn, E(m′) = p2m, and E(c′) = p4 cr(G). By setting p = 4n

m
we obtain

cr(G) ≥ m

p2
− 3n

p3
,

cr(G) ≥ m3

16n2
− 3m3

64n2
,

cr(G) ≥ m3

64n2
.

This bound, with a general constant c in place of 1
64

, was conjectured by
Erdős and Guy in 1973 [34]. It was proven by Leighton [76] and independently
by Ajtai, Chvátal, Newborn and Szemerédi [4] for c = 1

100
in 1982. The above

proof emerged in an email communication between Chazelle, Sharir, and Welzl
and is featured in The Book [3]. The result has several interesting applications
outside Graph Theory, cf. Section 2.5. The constant has been improved first
by Pach and Tóth [91] and then by Pach, Radoičić, Tardos, and Tóth [88].
Currently, the strongest version of the Crossing Lemma is the following:

Theorem 2.2 ([88]). The crossing number of any simple graph G on n ver-
tices and m edges satisfies

cr(G) ≥ 1

31.1

m3

n2
− 1.06n.

If m ≥ 103
6

n, then

cr(G) ≥ 1024

31827

m3

n2
.
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The key improvement, which provides additional advantage over the above
stated proof, is improving the bounds implied by the Euler Formula. The
authors achieve this by studying drawings of sparse graphs in which every
edge is crossed a bounded number of times.

Pach, Spencer, and Tóth generalized the Crossing Lemma to graphs satisfy-
ing certain monotone graph properties in [90]. Specifically, they examined high
girth and forbidden complete bipartite subgraphs. They also investigated be-
havior of graphs with super-linear, sub-quadratic number of edges and proved
the following:

Theorem 2.3 ([90]). If n ≪ e ≪ n2, then define

κ(n, e) = min
n(G) = n
e(G) = e

cr(G)

for simple graphs G and

C = lim
n→∞

κ(n, e)
n2

m3
.

The limit C exists and C > 0.

Moreover, the limit C is the same for every the surface in which we consider
the crossing number.

Another general lower bound on the crossing number of a graph G employs
an embedding f of some other graph H , |V (H)| ≤ |V (G)|, into G: f maps
vertices of H into vertices of G and edges of H into paths between correspond-
ing vertices in G. For this reason, it is called the embedding method [116].
The edge congestion µf counts the maximum number of such paths running
through an edge of G and the vertex congestion mf a maximum number of
paths through a vertex. Using these concepts, Shahrokhi and Székely prove
the following:

Theorem 2.4 ([119]). Let G be a graph of order n and f an embedding of
a graph H into G. Then,

cr(G) ≥ cr(H)

µ2
f

− n

2

(
mf

µf

)2

.

This method, like the other two, can be applied to the crossing number in any
orientable or nonorientable surface. The advantage is that it can be applied
to multigraphs. The definitions, proofs, and some extensions can be found in
[116, 117, 119]. The method generalizes an earlier work of Leighton, who used
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embeddings of Kn to estimate the crossing numbers of shuffle-exchange graphs
and meshes of trees [76].

The bisection method is the third general method for bounding the crossing
numbers of graphs that we describe. The bisection width of a graph G is the
smallest number of edges between two vertex subsets of G, each of which
contains at least one third of the vertices of G. The method was first applied
by Leighton, who showed the following using the planar separator theorem by
Lipton and Tarjan [78]:

Theorem 2.5 ([76]). Let G be a simple graph of order n and bounded max-
imum degree. Then,

cr(G) + n = Ω(b2),

where b is the bisection width of G.

This theorem was sharpened by Pach, Shahrokhi, and Szegedy to use par-
ticular vertex degrees of G [89]. Sýkora and Vrťo extended the bisection
method to surfaces of higher genus [120].

2.3 Exact results

The lower bounds discussed in Section 2.2 usually provide at most a correct
order of magnitude of the crossing number of the graph in question, but are
of little use when exact values need to be known. These are often hard to
determine and standard methods do not exist. For some highly symmetric
graphs, they are obtained using ad hoc arguments. The results can roughly
be divided into four groups: the study of complete, complete bipartite, and
similar graphs; the study of Cartesian products, in particular hypercubes and
Cartesian products of two cycles; the study of generalized Petersen graphs;
and the recent study of circulant graphs. All these graphs exhibit high levels
of symmetry, which is used essentially in the arguments.

As mentioned in Section 2.1, the problem of the crossing numbers of com-
plete and complete bipartite graphs roots in the very beginning of the theory
of crossing numbers. The topic is dominated by the following two conjectures:

Conjecture 2.6 ([137]). Let n, m ≥ 3 be integers. Then,

cr(Km,n) =

⌊
n

2

⌋⌊
n − 1

2

⌋ ⌊
m

2

⌋ ⌊
m − 1

2

⌋
.

Conjecture 2.7 ([47]). Let n ≥ 5 be an integer. Then,

cr(Kn) =
1

4

⌊
n

2

⌋⌊
n − 1

2

⌋ ⌊
n − 2

2

⌋ ⌊
n − 3

2

⌋
.



2.3 Exact results 19

Conjectured optimal drawings of Km,n were designed by Zarankiewicz [137]
and of Kn by Blažek and Koman [16], but their optimality is confirmed only
for small values of parameters by Guy [46]. For Kn, these are cr(Kn) = 0 for
n ≤ 4, cr(K5) = 1, cr(K6) = 3, cr(K8) = 9, cr(K9) = 18, and cr(K10) = 36.
Recently, Pan and Richter announced an extension to the next two values of n:
cr(K11) = 100 and cr(K12) = 150 [93]. For n ≤ 10, Guy and Hill determined
the crossing number of the complement of Cn, which is the complete graph
Kn with a Hamilton cycle removed [48]. For complete bipartite graphs, the
known results date back to 1971, when Kleitman [65] confirmed Conjecture
2.6 for all n and 3 ≤ m ≤ 6. Later, Woodall [134] designed a computer based
proof for 7 ≤ m ≤ 8 and 7 ≤ n ≤ 10. Asano established a related result:
the crossing number of K1,3,n and K2,3,n [10]. Richter and Thomassen studied
the asymptotics and showed that the asymptotic validity of the conjectured
result for Kn,n would imply the asymptotic validity for Kn [107]. The crossing
numbers of complete and complete bipartite graphs were also studied on higher
surfaces [60, 117]. The only exact results are the toroidal crossing number of Kn

for n ≤ 10 by Guy, Jenkins, and Schaer [50], and the crossing number of K3,n

in any surface by Richter and Širáň [104], who generalized the corresponding
result of Guy and Jenkins for the torus [49].

Eggleton and Guy first studied the crossing numbers of hypercubes [30].
They found an error in the announced result – which came as no surprise to the

crossing number theory – and the upper bound cr(Qd) ≤ 5
32

4n −
⌊

n2+1
2

⌋
2n−2

became a conjecture [34]. The first proven upper and lower bounds were
established by Madej [80]. Using the embedding method, Sýkora and Vrťo
obtained cr(Qd) = Θ(4d) in [121], and their lower bound is the best known
to date. Madej’s upper bound was first improved by Faria and Figueiredo
[36]. Recently, Faria, Figueiredo, Sýkora, and Vrťo described a drawing that
establishes the upper bound conjectured by Erdős and Guy in [34]:

Theorem 2.8 ([37]). cr(Qd) ≤ 5
32

4n −
⌊

n2+1
2

⌋
2n−2 for d ≥ 3.

Dean and Richter proved the only nonplanar exact result known [26]: Q4 is
isomorphic to C4 � C4 and has crossing number eight.

Another view of the crossing numbers of hypercubes also attracted some
interest. Kainen observed that if the genus of the surface in which Qd is drawn
is allowed to vary, then the crossing numbers seem independent of d [61]. More
precisely, if Σ is a surface of genus g(Qd) − k and k ≤ min{g(Qd), 2d−4} is a
nonnegative integer, then 4k ≤ cr(Qd, Σ) ≤ 8k. Kainen and White proved
a similar result for Qd � K4,4 in [62], which Pica, Pisanski, and Ventre gen-
eralized to Qd � K4,4 � G for bipartite graphs G of maximum degree d + 1
[97].
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The aforementioned result of Dean and Richter intersects the study of
cubes with that of another difficult family of graphs: the Cartesian product
Cm � Cn. The best drawing of these graphs is easy to obtain, but determining
its optimality proved to be a hard problem. Harary, Kainen, and Schwenk
proved cr(C3 � C3) = 3 in 1973 and conjectured cr(Cm � Cn) = (m − 2)n for
3 ≤ m ≤ n [51]. For m = 3, this was proven by Ringeisen and Beineke using
induction and an auxiliary Lemma stating that if no triangle has a crossed
edge in some drawing of C3 � Cn, then the drawing has at least n crossings
[108]. This paper already announces the result for m = 4, which was published
in [12]. The proof examines distinct types of crossings and combines a careful
partition of edges with an induction on n as the main tool. The topic was
put aside for a decade and a half, until Klešč and, independently, Richter and
Stobert established the conjecture for m = 5 in [71]; Richter and Salazar for
m = 6 in [102]; and Adamsson and Richter for m = 7 in [2]. All of them
relied on the induction as the main tool. In all of the cases m = 3, 4, 5, 6, 7,
the base case n = m was published separately [51, 26, 106, 5, 6], with the
proof for C4 � C4 appearing in [26] only after the result was used. The recent
state-of-the-art on the problem is the result of Glebsky and Salazar:

Theorem 2.9 ([42]). cr(Cm � Cn) = (m − 2)n for m ≥ 3 and n ≥ 1
2
(m +

1)(m + 2).

The result relies on several insightful ideas developed prior to this paper:
Richter and Thomassen established the lower bound for the crossing num-
bers of drawings of Cm � Cn with both families of principal cycles pairwise
disjoint [106] and Salazar extended this to drawings with just one family pair-
wise disjoint [110]. The latter result was strengthened by Juarez and Salazar
and applied to show half of the conjectured value as the best known general
lower bound [58]. For 5 ≤ m ≤ n ≤ 5

4
(m − 1), the best lower bound 3

5
mn

was obtained by Shahrokhi, Sýkora, Székely, and Vrťo [118]. They also proved
lower bounds in the projective plane and in the Klein bottle. In their proof
of Theorem 2.9, Juarez and Salazar applied the theory of arrangements intro-
duced by Adamsson [1] and Adamsson and Richter [2], which they extended
by a different assignment of crossings to the principal cycles.

There was also a substantial amount of research done on other Cartesian
products besides hypercubes and Cm � Cn. Beineke and Ringeisen determined
the crossing number of G � Cn for any graph G of order 4, except S3 = K1,3

[12]. This gap was bridged by Jendrol’ and Ščerbová, who determined the
crossing number of S3 � Cn, S3 � Pm, and S4 � P2 and conjectured the
following:

Conjecture 2.10 ([57]). cr(Sn � Pm) = (m−1)
⌊

n
2

⌋ ⌊
n−1

2

⌋
for n ≥ 3, m ≥ 1.
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Klešč proved this conjecture for n = 4 and m ≥ 1 in [66], where he also
determined cr(S4 � Cm) for m ≥ 3. In [70], he determined the crossing
number of G � Pm and G � Sn for any graph G of order four and, in [67],
the crossing number of G � Pm for any graph G of order five. For several
graphs of order five, the crossing numbers of their Cartesian product with Cn

or Sn are also known, as well as some other Cartesian products, most of which
are due to Klešč [66, 67, 68, 69, 71]. The methods rely on the high degree of
symmetry that these Cartesian products exhibit and mostly apply the following
approach: if no copy of G has a sufficient amount of crossings, then enough
crossings can be found in the drawing, otherwise the claim follows by induction.
Also, a carefully chosen partition of edges of the Cartesian product in question
is usually applied.

Generalized Petersen graphs form another family of graphs whose crossing
numbers were studied. Already in 1981, Exoo, Harary, and Kabell showed
cr(P (2k + 1, 2)) = 3 for k ≥ 3 by observing that these graphs contain a
subdivision of P (7, 2) and by showing that this graph has crossing number
three [35]. Since the other possibilities can be easily obtained, cr(P (n, 2)) is
known for n ≥ 3. Fiorini has claimed to have established the crossing number
of P (8, 3) and subsequently P (3k + 2, 3), but later some doubt was shed on
this result [39]. McQuillan and Richter simplified the proof for P (8, 3) in [82]
and later Richter and Salazar corrected an error in Fiorini’s induction and
established the crossing number of P (n, 3) for all n ≥ 9 in [103]. For general
graphs P (n, k), only the upper and lower bounds are known [114].

Another family of graphs that exhibits rich symmetry are circulant graphs
and their crossing numbers have recently attracted attention from various au-
thors. Yuansheng, Xiaohui, Jianguo, and Xin established cr(C(n, {1, 3})) =⌊

n
3

⌋
+ (n mod 3), n ≥ 8, in [135] and cr(C(3k, {1, k})) = k, k ≥ 3, in [136].

Ma, Ren, and Lu established cr(C(2m + 2, m)) = m + 1, m ≥ 3, in [79]. Also
recently, the crossing numbers of some of fractal-like Sierpiński graphs were es-
tablished by Klavžar and Mohar [64]. Their structure and symmetry required
aid of involved algebraic arguments.

To conclude this section, we note that the asymptotics of many of the above
families could be studied using the theory of tiles of Pinontoan and Richter,
which we introduce later. Examples are demonstrated in [95].

2.4 Crossing-critical graphs

Crossing-critical graphs give insight into structural properties of the crossing
number invariant and have thus generated considerable interest. Širáň intro-
duced crossing-critical edges and proved that any such edge e of a graph G
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with cr(G − e) ≤ 1 belongs to a Kuratowsky subdivision in G [127]. More-
over, such a claim does not hold for edges with cr(G − e) ≥ 5. In [128], Širáň
constructed the first infinite family of 3-connected k-crossing-critical graphs
for arbitrary given k ≥ 3. Kochol [72] constructed the first infinite family of
simple 3-connected k-crossing-critical graphs (k ≥ 2). Richter and Thomassen
proved the following:

Theorem 2.11 ([105]). cr(G) ≤ 5
2
k + 16 for a k-crossing-critical graph G.

This result was used to prove the first in a sequence of results on vertex
degrees in simple crossing-critical graphs.

Theorem 2.12 ([105]). Let k ≥ 1 and r ≥ 6 be integers. There are only
finitely many simple k-crossing-critical graphs with minimum degree r.

Richter and Thomassen constructed an infinite family of simple 4-regular 4-
connected 3-crossing-critical graphs and posed a question about existence of
simple 5-regular k-crossing-critical graphs. Salazar observed that their argu-
ment can be extended to the average degree:

Theorem 2.13 ([111]). Let r > 6 be a rational number and k > 0 an integer.
There are only finitely many simple k-crossing-critical graphs of average degree
r.

Since the finiteness of the set of simple 3-regular k-crossing-critical graphs
can be established using Robertson-Seymour graph minor theory, it follows
that the only average degrees for which an infinite family of simple k-crossing-
critical graphs could exist are r ∈ (3, 6]. Salazar constructed an infinite family
of simple k-crossing-critical graphs with average degree r for any r ∈ [4, 6) and
posed the following question:

Question 2.14 ([111]). Let r be a rational number in (3, 4). Does there
exist an integer k and an infinite family of (simple) graphs, each of which has
average degree r and is k-crossing-critical?

Question 2.14 was partially answered by Pinontoan and Richter [96]. They
proposed constructing crossing-critical graphs from smaller pieces or tiles, and
applied this idea to design infinite families of simple k-crossing-critical graphs
for any prescribed average degree r ∈ (31

2
, 4).

Salazar improved the factor 5
2

in Theorem 2.11 to 2 for large k-crossing-
critical graphs [112] and for graphs of minimum degree four [113].

Other structural results on crossing-critical graphs are the following theo-
rem and corollary by Hliněný:
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Theorem 2.15 ([53, 54]). There exists a function f such that no k-cros-
sing-critical graph contains a subdivision of a binary tree of height f(k). In
particular, k − 1 ≤ f(k) ≤ 6(72 log2 k + 248)k3.

Corollary 2.16 ([54]). Let f be the function from Theorem 2.15. If G is a
k-crossing-critical graph, then the path-width of G is at most 2f(k)+1 − 2.

Existence of a bound on the path-width of k-crossing-critical graphs was first
conjectured by Geelen, Richter, Salazar, and Thomas in [41], where they es-
tablished a result implying a bound on the tree-width of k-crossing-critical
graphs.

Hliněný defined crossed k-fences, which are k-crossing-critical graphs, in
[53]. Crossed k-fences from some particular family contain subdivisions of
binary trees of height k − 1 and thus have path-width at least 2k − 2.

Focus of the research on crossing-critical graphs was on 3-(edge)-connect-
ed crossing-critical graphs. This condition eliminates vertices of degree two
that are trivial with respect to the crossing number. But the condition is
much stronger and its application was justified only recently by the following
structural result of Leaños and Salazar:

Theorem 2.17 ([75]). Let G be a connected crossing-critical graph with
minimum degree at least three. Then there is a collection G1, . . . , Gm of 3-
edge-connected crossing-critical graphs, each of which is contained as a subdi-
vision in G, and such that cr(G) =

∑m
i=1 cr(Gi).

2.5 Applications

In this section, we review applications of the crossing number invariant. They
include Very Large System Integration (VLSI), approximation, discrete geom-
etry, additive number theory, measure theory, and linguistics.

Leighton was the first to apply crossing number arguments to VLSI design
[76]. He proposed several approaches to lower bounds for the crossing number
(cf. Section 2.2), which he showed to have impact in the design of electronic
circuits via the following two theorems:

Theorem 2.18. Given a drawing D for a n-node graph G with c crossings it
is possible to construct a layout for G with area at most O((c+n) log2(c+n)).

Theorem 2.19. Any circuit that computes a n-variable transitive Boolean
function in time T = o(

√
n) must have at least c wire crossings, where cT 2 ≥

Ω(n2).
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Theorem 2.18 shows that it is worth finding drawings of graphs with few cross-
ings. Also, one can translate lower bounds on the area of graph layouts (draw-
ings) into lower bounds for the crossing number. Theorem 2.19 shows that
graphs of fast circuits will have high crossing numbers. Further applications
of the crossing number in VLSI amount mostly to obtaining good layouts of
various graphs. Bhatt and Leighton designed a general algorithm for this
purpose [13]. Leighton provided lower bounds on the area and the maximal
edge-length of several layouts in [77]. Sýkora and Vrťo established a lower
bound on the crossing numbers of arrangement graphs [122] as Chockalingam
did for star-connected cycles [23].

Regarding approximation, recent results of Bodlaender and Grigoriev show
that several polynomial time approximation schemes for planar graphs can be
extended to graphs, embeddable in some surface with only few crossings per
edge [18]. These include approximation schemes for the maximum independent
set problem, the minimum vertex cover problem, and the minimum dominating
set problem.

Applications of the crossing number were introduced into discrete geometry
through the following theorem of Szemerédi and Trotter. The original proof
of this theorem was simplified by Székely using the Crossing Lemma:

Theorem 2.20 ([125],[126]). The maximum number I(n, m) of incidences
between n points and m straight lines of the real plane satisfies I(n, m) =
O(n2/3m2/3 + n + m).

Proof. We may assume that each line is incident with at least one point.
Let G be the graph whose vertices are the n points in which two of them are
adjacent if they lie consecutively on the same line. Let D be the drawing of
G in which vertices are represented by the corresponding points and edges are
drawn as straight line segments between them. Each of the m lines crosses at
most m−1 others, thus cr(G) ≤ cr(D) ≤ m2. Each line has one incidence with
a point more than there are edges drawn on it, thus there are m incidences
more than there are edges in G. Now the claim follows: either |E(G)| ≤ 4n or

Theorem 2.1 implies m2 ≥ cr(G) ≥ 1
64

(i−m)3

n2 .

Székely applied Theorem 2.1 in a similar way and obtained several other count-
ing results in discrete geometry, including the following improvement of the
previously best known exponent 3

4
:

Theorem 2.21 ([125]). Given n points in the plane, one of them determines
at least cn4/5 distinct distances from the others.

The theorem of Szemerédi and Trotter was applied to establish several
bounds in additive number theory. Through these applications, the crossing
number relates to the following results:
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Theorem 2.22 ([31]). There is a constant c > 0 such that the following holds
for every set A of size n containing real numbers: cn5/4 ≤ max{|A+A|, |A·A|}.

Theorem 2.23 ([33]). There is a positive constant c, such that cn5/4 ≤ |A+
A−1| for every set A of real numbers of size n.

Other results of a similar flavor are surveyed in [32].
Perhaps the most astonishing is the following application of the crossing

number in measure theory. Let µ be a probability distribution in the plane
such that the probability of three µ-randomly chosen points be collinear equals
zero and let p(µ) be the probability that four µ-randomly chosen points form
a convex quadrilateral. In 1865, Sylvester asked about the infimum of p(µ)
over all uniform distributions over open sets F with finite Lesbesgue measure
[123]. Only an approximation was known for the restricted case of convex F ,
until Scheinerman and Wilf showed the following:

Theorem 2.24 ([115]). Let p∗ = inf p(µ), where µ runs over all probability
distributions µ such that the probability of three µ-randomly chosen points be
collinear equals zero and let c∗ = limn→∞

rcrn(Kn)

(n

4
)

. Then, p∗ = c∗.

At the time of writing it is known that 0.37553 ≤ c∗ ≤ 0.3838. The lower
bound is due to Balogh and Salazar [11] and the upper bound due to Brodsky,
Durocher, and Gethner [21].

We conclude with an application that relates the crossing number even
to topics outside mathematics. Let w be a word over an alphabet Σ and let
Gw be the simple graph, whose vertices are elements of Σ contained in w, in
which two vertices are adjacent if and only if the corresponding symbols are
consecutive in w. When w is a sequence of letters in a sentence of a natural
language, or a sequence of words in a text, the crossing number of Gw was
proposed as a measure of complexity of the language [63]. The difficulty of
this graph invariant is probably the reason that not much research has been
done in this direction. Thus eodermdromes, which are meaningful words or
sentences w with nonplanar graphs Gw, have become a domain of recreative
linguistics [29].

2.6 Contribution of this thesis

We extend three areas of the theory of the crossing number in this thesis: we
investigate crossing-critical graphs, prove the exact crossing numbers of several
Cartesian products, and introduce a minor-monotone variant of the crossing
number.
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In Chapter 3, we introduce a new graph operation, the zip product, which
combines two graphs or two drawings. We establish a sufficient connectiv-
ity condition under which the zip product preserves the crossing numbers of
graphs, as well as a symmetry condition under which it preserves their critical-
ity. The theory of tiles by Pinontoan and Richter [96] is extended in Chapter
4 to yield a general construction of crossing-critical graphs. In Section 4.3.2,
we develop the staircase strips, a new gadget used to establish the crossing
numbers of certain graphs. We apply them together with the zip product
in Chapter 5 to design three families of crossing-critical graphs and combine
them into a seven-parameter family of crossing-critical graphs using which we
prove the main result of the thesis: a careful choice of parameters allows us
to prescribe not only any average degree r ∈ (3, 6), but also any sufficiently
high crossing number. We thus settle Question 2.14 and combine the results
of Salazar, Pinontoan and Richter with those of Širáň and Kochol.

The aforementioned constructions extend our knowledge about the struc-
ture of crossing-critical graphs in two directions. First, the staircase strips
show that there exist infinite families of almost cubic 3-connected k-crossing-
critical graphs with relatively few vertices of degree four. According to Richter
and Salazar, similar generalizations of Kochol’s 2-crossing-critical graphs were
studied before, but their crossing numbers were not established until this the-
sis [101]. Second, Richter and Salazar observed that all known families of
k-crossing-critical graphs with fixed k are built using tiles [100]. The zip prod-
uct, with its ability to preserve criticality of graphs, demonstrates that the
ring-like structure present in tiled k-crossing-critical graphs is not the only
one: several crossing-critical graphs with such rings can be combined to yield
a family of k-crossing-critical graphs, and each ring can grow independently
to yield other graphs in the family. In Section 3.2, we show that criticality
is contagious in the sense that performing a zip product of a crossing-critical
and noncritical graph makes the edges involved in the product critical. Thus,
we can turn noncritical graphs with a vertex cover satisfying a certain connec-
tivity condition into a part of a crossing-critical graph using the zip product.
Such structural consequences are discussed in Section 5.5.

Cartesian products of graphs with trees can be built recursively using the
zip product. However, when applying this operation to find the crossing num-
bers of such products, we are left with excessive vertices corresponding to the
leaves of the tree. In some cases, we can successfully eliminate them and ob-
tain exact crossing numbers. These cases include the Cartesian product of
stars K1,n and wheels Wn with paths, as well as some other results of similar
flavor. In particular, we prove Conjecture 2.10 for any n, m ≥ 1.

We have mentioned that drawings of graphs with few crossings are of cer-
tain importance in VLSI design. Within the setup of the ordinary crossing
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(a) (b) (c)

Figure 2.1: mcr and the crossing numbers of electronic circuits.

number, the goal is to minimize the number of crossings in the given graph of
an electronic circuit. In this setup, we do not use the equality of the electric
potential of the wires in the circuit that do not contain any electronic element.
They can be contracted to a single vertex and expanded in a different manner
to yield an equivalent circuit, whose graph may have smaller crossing number.
We illustrate this in Figure 2.1: (a) shows the original drawing of a circuit of
an ultrasonic transmitter [129], (b) shows the equivalent circuit in which all
the points with the same potential are contracted to a single vertex, and (c)
shows an equivalent circuit with one crossing less than (a).

The minor crossing number invariant that we study in Chapters 7–10 over-
comes this problem. With this invariant of a graph G we seek the minimum
number of crossings over all drawings of graphs that can be obtained from G
by replacing its vertices with arbitrary trees. In an electronic circuit such a
replacement corresponds to spreading the wires with equal potential. Thus
obtained, a realizing graph of G has G as a minor and this variant of the cross-
ing number is minor-monotone. It therefore solves a problem, discussed by
Seymour [7], who complained: “Isn’t it a shame that crossing numbers don’t
work well with minors?” Indeed, a removal of an edge never increases the
crossing number, but a contraction can change it in either way.

Our studies of this new invariant focus on establishing lower bounds (Chap-
ter 8), studying structure of graphs with bounded minor crossing numbers
(Chapter 9), and on applying minor crossing number bounds to certain fami-
lies of graphs (Chapter 10). Our first lower bound uses the maximum degree of
a graph and establishes a sandwich theorem for the minor crossing number in
terms of the ordinary crossing number. It generalizes a result of Moreno and
Salazar, who proved a similar result for graphs of maximum degree four in [86].
We also bound the minor crossing number in terms of the genus of a graph
and improve a bound implied by the Euler Formula by using the newly discov-
ered structure of graphs with bounded minor crossing numbers. In addition
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to several bounds for complete graphs, complete bipartite graphs, hypercubes,
and Cartesian products of two cycles, we establish exact results for the minor
crossing numbers of Kn, 1 ≤ n ≤ 8, and of K3,n and K4,n, n ≥ 3.
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Crossing-critical Graphs
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Chapter 3

Zip product

In this section, we introduce the zip product, an operation on graphs and their
drawings that under certain conditions preserves the crossing numbers and
the criticality of graphs. We apply this operation in Chapter 5 and construct
crossing-critical graphs with prescribed crossing number and average degree.
Another application follows in Chapter 6, where we establish the crossing
numbers of graphs of several families.

3.1 Definition and basic lemmas

For i = 1, 2, let Gi be a graph and let vi ∈ V (Gi) be its vertex of degree d. Let
Ni = N∗

Gi
(vi) be the multiplicity neighborhood of vi and let σ : N1 → N2 be

a bijection. We call σ a zip function of graphs G1 and G2 at vertices v1 and
v2. The zip product of graphs G1 and G2 according to σ is defined to be the
graph G1 ⊙σ G2 obtained from the disjoint union of G1 − v1 and G2 − v2 after
adding the edge uσ(u) for every u ∈ N1. Let G1 v1

⊙v2
G2 denote the set of all

graphs obtained as a zip product G1 ⊙σ G2 for some bijection σ : N1 → N2.
Let Di be a drawing of the graph Gi and let a bijection πi : Ni →

{1, . . . , d} be a labeling respecting the edge rotation around vi in Di. We
define σ : N1 → N2, σ = π−1

2 π1, to be the zip function of drawings D1 and
D2 at vertices v1 and v2. The zip product of D1 and D2 according to σ is the
drawing D1⊙σ D2 obtained from D1 by adding a mirrored copy of D2 that has
v2 incident with the infinite face disjointly into some face of D1 incident with
v1, by removing vertices v1 and v2 together with small disks around them from
the drawings, and then by joining the edges according to function σ, cf. Fig-
ure 3.1. As σ respects the edge rotation around v1 and v2, the edges between
D1 and D2 may be drawn without introducing any new crossings. Clearly,
D1 ⊙σ D2 is a drawing of G1 ⊙σ G2. This implies the following:

31
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π1π1π1

π2π2π2

D1D1

D2 D′
2

D1 ⊙σ D2

Figure 3.1: Zip product of drawings D1 and D2.

Lemma 3.1. For i = 1, 2, let Di be an optimal drawing of Gi, let vi ∈ V (Gi)
be a vertex of degree d, and let σ be a zip function of D1 and D2 at v1 and v2.
Then, cr(G1 ⊙σ G2) ≤ cr(G1) + cr(G2).

Lemma 3.2. Let G1 and G2 be two graphs with vertices v1 ∈ V (G1) and
v2 ∈ V (G2) of degree d, and let G ∈ G1 v1

⊙v2
G2. Then, cr(G) ≤ cr(G1) +

cr(G2) +
(

d−1
2

)
.

Proof. Let G = G1 ⊙σ G2. For i = 1, 2, let Di be an optimal drawing of Gi.
The edge rotation π1 around v1 in D1 combined with σ induces a permutation
π2 of edges incident with v2. From D2, we can obtain a drawing D′

2 respecting
π2 by introducing at most

(
d−1
2

)
new crossings. The drawing D = D1 ⊙σ D′

2 of

G has at most cr(G1) + cr(G2) +
(

d−1
2

)
crossings.

In specific cases, the number of crossings can be further minimized using
the symmetry of involved graphs.

Let v ∈ V (G) be a vertex of degree d in G. A bundle of v is a set B of d
edge disjoint paths from v to some vertex u ∈ V (G), u 6= v. Vertex v is the
source of the bundle and u is its sink. Other vertices on the paths of B are
internal vertices of the bundle. Let Ĕ(B) = E(B) ∩ E(G − v) denote the set
of edges of B that are not incident with v. They are called distant edges of
B. Two bundles B1 and B2 of v are coherent if their sets of distant edges are
disjoint. Edges of a bundle B that are not distant are near edges.

Lemma 3.3. For i = 1, 2, let Gi be a graph, vi ∈ V (Gi), deg(vi) = d, Ni =
N∗

Gi
(vi). Assume that v2 has a bundle B in G2. For every bijection σ : N1 →

N2 and every drawing D of G = G1 ⊙σ G2, there are at least cr(G1) crossings
in D of an edge from E(G1 − v1) with an edge from E(G1 − v1) ∪ Ĕ(B) ∪
{uσ(u) | u ∈ N1}.
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uuu

v

P1P1

P1

P1

P2P2

P2
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w3w3
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Figure 3.2: Splitting the internal vertices of a bundle.

Proof. Let Ḡ be the subgraph of G induced by the edges of E(G1 − v1) ∪
Ĕ(B) ∪ {uσ(u) | u ∈ N1} ⊆ E(G) and let D̄ be the D-induced subdrawing of
Ḡ. We establish the claim by splitting some vertices of D̄ and producing a
drawing D′ of a subdivision of G1.

Let u ∈ V (G) be the sink of B and w ∈ V (G) an internal vertex of the
bundle B. Assume that w lies on t paths P1, . . . , Pt of B. We split w into t
vertices w1, . . . , wt, such that wj is incident precisely with the two edges of Pj

incident with w. The graph Ĝ obtained from Ḡ after performing this split on all
internal vertices of B is isomorphic to a subdivision of G1. From D̄, we produce
a drawing D̂ of Ĝ by removing a small disk around every internal vertex w of
B in D̄ and connecting the edges of paths through w in the interior of the disk
(cf. Figure 3.2). We can eliminate possible new crossings by rerouting crossed
pairs of paths and possibly relocating the vertices wi inside the corresponding
disks, as well as any crossing of two edges of Ĕ(B) ∪ {uσ(u) | u ∈ N1}, since
the crossed paths emanate from the same vertex u. Let D′ be the drawing of
Ĝ obtained from D̂ by such uncrossing. As D′ is a drawing of a subdivision of
G1 and all the crossings of D′ appear in D, the claim follows.

The process applied to the D-induced subdrawing of Ḡ in the proof of
Lemma 3.3 is called splitting the internal vertices of the bundle B.

Theorem 3.4. For i = 1, 2, let Gi be a graph, vi ∈ V (Gi) its vertex of
degree d, and Ni = N∗

Gi
(vi). Also assume that vi has two coherent bundles

Bi,1 and Bi,2 in Gi. Then, cr(G1 ⊙σ G2) ≥ cr(G1) + cr(G2) for any bijection
σ : N1 → N2.

Proof. Let G = G1 ⊙σ G2 and F = {vσ(v) | v ∈ N1} ⊆ E(G). For i, j = 1, 2,
let Ei = E(Gi − vi) ⊆ E(G) and let Gij be the subgraph of G spanned by the

edges of Ei, Fij = Ĕ(Bij) and F .
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Let D be an optimal drawing of G, and let Dij be the induced subdrawing
of Gij. Lemma 3.3 implies cr(G1) ≤ crD(E1, E1) + crD(E1, F ) + crD(E1, F2j),
thus also cr(G1) ≤ crD(E1, E1) + crD(E1, F ) + 1

2
crD(E1, F21 ∪ F22).

A similar inequality holds for cr(G2). The sum of the two inequalities
yields:

cr(G1) + cr(G2) ≤ crD(E1, E1) + crD(E2, E2)+
1
2

(crD(E1, F21 ∪ F22) + crD(E2, F11 ∪ F12)) +
crD(E1 ∪ E2, F )

≤ crD(E1, E1 ∪ F ) + crD(E2, E2 ∪ F ) + crD(E1, E2)
= cr(D) − crD(F, F ) ≤ cr(G).

Note that Fij ⊆ Ei are disjoint for i, j = 1, 2, thus a crossing of any e ∈ E1

with some f ∈ E2 is counted at most twice in the sum of crD(Ei, F3−i,j). This
justifies the second inequality.

If one of the graphs is planar, we need only one bundle.

Lemma 3.5. For i = 1, 2, let Gi be a graph, vi ∈ V (Gi) its vertex of degree
d, and Ni = N∗

Gi
(vi). Assume that G1 is planar and that v1 has a bundle B1

in G1. Then, cr(G1 ⊙σ G2) ≥ cr(G2) for any bijection σ : N1 → N2. Equality
holds if, for i = 1, 2, σ respects the edge rotation around vi in some optimal
drawing Di of Gi.

Proof. Since v1 has a bundle in G1, any drawing of G = G1 ⊙σ G2 can be
turned into a drawing of a subdivision of G2 by splitting the bundle B. The
lower bound follows. If σ respects the edge rotation around v1 and v2, then
the drawing D = D1 ⊙σ D2 contains only the crossings of D2 and the claim
follows.

We use the following observations in iterative applications of the zip prod-
uct.

Lemma 3.6. Let G1 and G2 be disjoint graphs, vi ∈ V (Gi), degGi
(vi) = d,

and G ∈ G1 v1
⊙v2

G2.

(i) If v2 has a bundle in G2 and v ∈ V (G1) has k pairwise coherent bundles
in G1, then v has k pairwise coherent bundles in G.

(ii) If, for i = 1, 2, the graph Gi is ki-connected, ki ≥ 2, then G is k-connected
for k = min(k1, k2).

(iii) If, for i = 1, 2, the graph Gi is ki-edge-connected, ki ≥ 2, then G is
k-edge-connected for k = min(k1, k2).
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Proof. (i): Assume G = G1 ⊙σ G2 and let B1, . . . , Bk be the bundles of v in
G1 and B the bundle of v2 in G2. For an edge e = uv2, let Pe be the path of
B containing e. A path P ∈ ⋃k

i=1 Bi can have at most two edges that are in
P incident with v1. If there are none, define P ′ = P . If there is only one such
edge wv1, define P ′ = Pwσ(w)Pe, e = σ(w)v2. For two such edges wv1 6= zv1

on P , define P ′ = Pwσ(w)PePfσ(z)zP , e = σ(w)v2, f = σ(z)v2. As the paths
of B are pairwise edge disjoint and each of them is used at most once in the
construction of some P ′, the paths P ′

1 and P ′
2 are edge disjoint for edge disjoint

paths P1, P2 ∈
⋃k

i=1 Bi. If P1, P2 in G1 share only the edge incident with v, so

do P ′
1 and P ′

2 in G. If u 6= v1 is the endvertex of the path P ∈ ⋃k
i=1 Bi, then

u is the endvertex of P ′. If v1 is the endvertex of the path P ∈ ⋃k
i=1 Bi, then

the endvertex of P ′ is the sink of B. These three statements imply that the
sets B′

i = {P ′ | P ∈ Bi}, i = 1, . . . , k, are pairwise coherent bundles of v in G.
(ii): Let S ⊆ V (G) be a separator of G. If S ⊆ Gi−vi, then, as G3−i−v3−i

is nonempty and (k3−i − 1)-connected, S is a separator in Gi and |S| ≥ k. Let
Si = S ∩ Gi − vi and Si 6= ∅ for i = 1, 2. If Si ∪ vi is a separator in Gi for one
of i = 1, 2, then |S| ≥ k. Otherwise, the vertices of Gi − vi − S are all in the
same component of G − S for both i = 1, 2, thus |S| ≥ d ≥ k.

(iii): The argument is similar to (ii).

3.2 Homogeneity condition

In this section, we introduce a sufficient condition for the zip product to pre-
serve criticality of graphs.

Let S ⊂ V (G) be a set and Γ ⊆ Aut(G) a group. We say that S is
Γ-homogeneous in G if any permutation π of S can be extended to an auto-
morphism σ ∈ Γ. For S ⊆ V (G), let Γ(S) be the pointwise stabilizer of S in
Aut(G). We say that a vertex v ∈ V (G) has a homogeneous neighborhood in
G if NG(v) is Γ({v})-homogeneous in G.

If all the vertices in NG(v) have the same set of neighbors for a vertex
v ∈ V (G), then v has a homogeneous neighborhood G. Thus, every vertex of
a complete or complete bipartite graph K has a homogeneous neighborhood
in K.

A vertex v in a graph G is semiactive if it has two coherent bundles in
G. If, in addition, v has no incident multiple edges and has a homogeneous
neighborhood, then v is active. S(G) and A(G) respectively denote the sets
of semiactive and active vertices of G.

Theorem 3.7. For i = 1, 2, let Gi be a graph with a vertex vi ∈ V (Gi) of
degree d. If v1 ∈ S(G1) and v2 ∈ A(G2), then the following holds for every
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graph G ∈ G1 v1
⊙v2

G2:

(i) cr(G) = cr(G1) + cr(G2).

If, in addition, v1 ∈ A(G1), then:

(ii) If, for i = 1, 2, the graph Gi is ki-crossing-critical, then G is k-crossing-
critical for k = max {cr(Gi) + k3−i | i ∈ {1, 2}}.

(iii) If, for j ∈ {1, 2}, v ∈ A(Gj), v 6= vj , and NGj
(v) is ΓGj

({v, vj})-
homogeneous, then v ∈ A(G).

Proof. For the proof, assume N1 = N∗
G1

(v1), N2 = N∗
G2

(v2), and let the zip
function of G be σ : N1 → N2.

(i): For i = 1, 2, let Di be an optimal drawing of Gi and let πi denote
the vertex rotation around vi in Di. Because there exists an automorphism
ρ ∈ ΓG2

({v2}) with ρ/N2 = σπ1σ
−1π−1

2 , we can rearrange the vertices in D2

using ρ and obtain a drawing D′
2 of G2 with cr(D2) crossings in which the

vertex rotation of v2 is σπ1σ
−1. Since v2 has no multiple edges, Claim (i)

follows by Lemma 3.1 and Theorem 3.4.
(ii): Claim (i) implies cr(G) ≥ k. Let e ∈ E(G), and assume e ∈ E(G1 −

v1). Let D1 be an optimal drawing of G1 − e and D2 an optimal drawing of
G2. We adjust D2 using the appropriate automorphism in ΓG2

({v2}) similarly
as in the proof of (i) and combine D2 with D1 to produce a drawing of G − e
with at most k crossings. Similar arguments apply for e ∈ E(G2 − v2).

If e = vσ(v) for v ∈ N1, let D1 be an optimal drawing of G1 − vv1 and D2

an optimal drawing of G2 − v2σ(v). Let π1 be the vertex rotation around v1 in
D1 and ρ ∈ ΓG2

({v2}) an automorphism of G2 with ρ/(N2 \{σ(v)}) = σπ1σ
−1.

The vertices of N2 can be rearranged with ρ as in the proof of (i), thus by
Lemma 3.1, G − e can be drawn with at most k1 + k2 crossings.

(iii): Assume that j = 1, case j = 2 is similar. Due to v ∈ S(G1), Lemma
3.6 (i) implies v ∈ S(G). For a permutation π of N = NGj

(v), there exists
σ1 ∈ ΓG1

({v, v1}), such that σ1/N = π. Let π1 = σ1/N1, and set π2 = σπ1σ
−1.

As v2 ∈ A(G2), there exists an automorphism σ2 ∈ ΓG2
(v2) with σ2/N2 = π2.

It is easy to verify that a function Φ : G → G with Φ/(Gi−vi) = σi/(Gi−vi),
for i = 1, 2, is an automorphism of ΓG(v), for which Φ/N = π. Thus, v has a
homogeneous neighborhood in G. The claim (iii) follows.

Note that we did not apply rotation and mirroring of the drawings in our
proofs of (i) and (ii). These operations relax the condition that Aut(G) acts as
a full symmetric group on the neighborhoods. Some specific examples where
the relaxed condition applies will be studied in Chapter 6, but we believe
that vertices of degree three are the only interesting general example, as the
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dihedral group of order three is equal to the full symmetric group of this order.
The argument does not extend in (iii).

Theorem 3.8. For i = 1, 2, let Gi be two graphs with vertices vi ∈ V (Gi)
of degree three. If vi ∈ S(Gi), then the following hold for every graph G ∈
G1 v1

⊙v2
G2:

(i) cr(G) = cr(G1) + cr(G2),

(ii) If, for i = 1, 2, Gi is ki-crossing-critical, then G is k-crossing-critical for
k = max {cr(Gi) + k3−i | i ∈ {1, 2}}.

Argument of Theorem 3.7 (ii) has a generalization to (not necessarily criti-
cal) graphs that have a vertex cover consisting of semiactive vertices of degree
three. Let G be a graph and S = {v1, . . . , vt} ⊆ V (G). For each vi ∈ S, let
Gi be a graph and let ui ∈ V (Gi) be a vertex of degree d(ui) = d(vi). Let
S := {(vi, Gi) | i ∈ {1, . . . , t}}. The family GS := Γt is defined inductively as
follows: Γ0 = {G}, and, for i = 1, . . . , t, let Γi :=

⋃
H∈Γi−1 H vi

⊙ui
Gi. Further,

let Si := S \ {(vi, Gi)}.

Theorem 3.9. Let G be a graph, S its vertex cover consisting of semiactive
vertices of degree three, and S defined as above. If, for i = 1, . . . , t, the graph
Gi is ki-crossing-critical, then every Ḡ ∈ GS is k-crossing-critical for k =
max

{
cr(Ḡ) − cr(Gi) + ki | i ∈ {1, . . . , t}

}
and has crossing number cr(Ḡ) =

cr(G) +
∑t

i=1 cr(Gi).

Proof. Iterative application of Theorem 3.8 (i) implies cr(Ḡ) = cr(G) +∑t
i=1 cr(Gi). To establish criticality of Ḡ, let e ∈ E(GS) be an arbitrary edge

and let Ḡj ∈ GSj , j = 1, . . . , t, be the graph, such that Ḡ ∈ Ḡj vj
⊙uj

Gj.
Case 1: Assume e ∈ E(Gj − vj) for some j ∈ {1, . . . , t}. Let D1 be an

optimal drawing of Ḡj with vj in the infinite face and let D2 be an optimal
drawing of Gj − e with uj in the infinite face. We can combine D1 − vj and
D2 − uj into a drawing D of G − e. By Theorem 3.8 (i), D has at most
cr(G) + kj +

∑
i6=j cr(Gi) ≤ k crossings.

Case 2: Assume e 6∈ E(Gi − vi) for any i ∈ {1, . . . , t}. As S is a vertex
cover in G, there exists j ∈ {1, . . . , t}, such that e connects some neighbor
x of uj ∈ V (Gj) with some neighbor y of vj in Ḡj . Let e1 = vjy ∈ E(Ḡj),
e2 = ujx ∈ E(Gj), and let D1 be an optimal drawing of Ḡj − e1 with vj on the
infinite face and D2 an optimal drawing of Gj − e2 with uj in the infinite face.
We can combine D1 − vj and D2 − uj into a drawing D of G− e. By Theorem
3.8 (i), D has at most cr(G − e) + kj +

∑
i6=j cr(Gi) ≤ k crossings.
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Figure 3.3: Graph with a vertex cover of cubic vertices each having two coher-
ent bundles.

Having a vertex cover consisting of cubic vertices with two coherent bundles
seems a strong condition and one may think it forces the graph to be crossing-
critical. This, however, is not the case: the white vertices of the graph G in
Figure 3.3 form such a vertex cover, but since cr(G) = 1 and not all the edges
lie in the K3,3 subdivision in G, this graph is not crossing-critical.

Leaños and Salazar established a decomposition of 2-connected crossing-
critical graphs into smaller 3-connected crossing-critical graphs in Theorem
2.17. Theorem 3.9, in combination with Figure 3.3, suggests that a similar
decomposition does not exist for 3-connected crossing-critical graphs.



Chapter 4

Tiles

In this chapter, we present a variant of the theory of tiles developed by Pinon-
toan and Richter [96]. In particular, we consider general sequences of not
necessarily equal tiles, avoid the condition that the tiles be connected, and
allow forming double edges when joining tiles. Such generalizations do not
hinder the arguments of [96] and are useful in further investigations of tiled
graphs. We establish an effective bound on the number of tiles needed to imply
lower bounds on crossing numbers. Finally, we combine these improvements
into a general construction of crossing-critical graphs.

4.1 Definition and basic lemmas

Let G be a graph and λ = (λ0, . . . , λl), ρ = (ρ0, . . . , ρr) two sequences of
distinct vertices, such that no vertex of G appears in both. The triple T =
(G, λ, ρ) is called a tile. To simplify the notation, we may sometimes use T in
place of its graph G and we may consider sequences λ and ρ as sets of vertices.
For u, v ∈ λ or u, v ∈ ρ, we use u ≤ v or u ≥ v whenever u precedes or succeeds
v in the respective sequence.

A drawing of G in the unit square [0, 1]× [0, 1] that meets the boundary of
the square precisely in the vertices of the left wall λ, all drawn in {0} × [0, 1],
and the right wall ρ, all drawn in {1} × [0, 1], is a tile drawing of T if the
sequence of decreasing y-coordinates of the vertices of each λ and ρ respects
the corresponding sequence λ or ρ. The tile crossing number tcr(T ) of a tile
T is the minimum crossing number over all tile drawings of T .

Let T = (G, λ, ρ) and T ′ = (G′, λ′, ρ′) be two tiles. We say that T is
compatible with T ′ if |ρ| = |λ′|. A tile T is cyclically-compatible if it is
compatible with itself. A sequence of tiles T = (T0, . . . , Tm) is compatible if Ti

is compatible with Ti+1 for i = 0, . . . , m− 1. It is cyclically-compatible if it is

39
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compatible and Tm is compatible with T0. All sequences of tiles are assumed
to be compatible.

The join of two compatible tiles T and T ′ is defined as T ⊗ T ′ = (G ⊗
G′, λ, ρ′), where G⊗G′ is the graph obtained from the disjoint union of G and
G′ by identifying ρi with λ′

i for i = 0, . . . , |ρ|−1. This operation is associative,
thus we can define the join of a compatible sequence of tiles T = (T0, . . . , Tm)
to be the tile ⊗T = T0 ⊗ T1 ⊗ . . . ⊗ Tm. Note that we may produce multiple
edges or vertices of degree two when joining tiles. We keep the double edges,
but remove the vertices of degree two by contracting one of the incident edges.

For a cyclically-compatible tile T = (G, λ, ρ), we define its cyclization ◦T
as the graph, obtained from G by identifying λi with ρi for i = 0, . . . , |ρ| − 1.
Similarly, we define the cyclization of a cyclically-compatible sequence of tiles
as ◦T = ◦(⊗T ).

The suspension of a tile T = (G, λ, ρ) is the graph T ∗, which is obtained
from T by adding a new vertex v (called the apex of T ∗) to G and connecting
it precisely to all the vertices of λ ∪ ρ. Note that neither the cyclization nor
the suspension of a tile is a tile.

Lemma 4.1 ([96]). Let T be a tile. Then, cr(T ∗) ≤ tcr(T ). Let T be a
cyclically-compatible tile. Then, cr(◦T ) ≤ tcr(T ). Let T = (T0, . . . , Tm) be a
compatible sequence of tiles. Then, tcr(⊗T ) ≤ ∑m

i=0 tcr(Ti).

For a sequence ω, let ω̄ denote the reversed sequence. For a tile T =
(G, λ, ρ), let its right-inverted tile T l be the tile (G, λ, ρ̄), its left-inverted tile
lT be the tile (G, λ̄, ρ), and its inverted tile be the tile lT l = (G, λ̄, ρ̄). The
reversed tile of T is the tile T↔ = (G, ρ, λ).

Let T = (T0, . . . , Tm) be a sequence of tiles. A reversed sequence of T
is the sequence T ↔ = (T↔

m , . . . , T↔
0 ). A twist of T is the sequence T l =

(T0, . . . , Tm−1, T
l
m). Let i = 0, . . . , m. Then, an i-flip of T is the sequence

T i = (T0, . . . , Ti−1, T
l
i , lTi+1, Ti+2, . . . , Tm), an i-cut of T is the sequence

T /i = (Ti+1, . . . , Tm, T0, . . . , Ti−1), and an i-shift of T is the sequence Ti =
(Ti, . . . , Tm, T0, . . . , Ti+1). For the last two operations, cyclic compatibility of
T is required.

Two sequences of tiles T and T ′ of the same length m are equivalent if one
can be obtained from the other by a sequence of shifts, flips, and reversals. It
is easy to see that the graphs ◦T and ◦T ′ are equal for equivalent cyclically-
compatible sequences T and T ′ and thus have the same crossing number.
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4.2 Properties of tiles

We say that a tile T = (G, λ, ρ) is planar if tcr(T ) = 0 holds. It is connected
if G is connected. It is perfect if:

(p.i) |λ| = |ρ|,

(p.ii) both graphs G − λ and G − ρ are connected,

(p.iii) for every v ∈ λ or v ∈ ρ there is a path from v to a vertex in ρ (λ) in G
internally disjoint from λ (ρ), and

(p.iv) for every 0 ≤ i < j ≤ |λ| there is a pair of disjoint paths Pij and Pji in
G, such that Pij joins λi with ρi and Pji joins λj with ρj .

Note that perfect tiles are connected.

Lemma 4.2 ([96]). For a cyclically-compatible perfect planar tile T and a
compatible sequence T = (T0, . . . , Tm, T ), there exists n ∈ N, such that for
every k ≥ n, tcr((⊗T ) ⊗ (T k)) = tcr((⊗T ) ⊗ (T n)).

Let T = (G, λ, ρ) be a tile and H a graph that contains G as a subgraph.
The complement of the tile T in H is the tile H−T = (H [(V (H)\V (G))∪λ∪
ρ] − E(G), ρ, λ). We can consider it as the edge complement of the subgraph
G of H from which we remove all the vertices of T not in its walls. Whenever
◦(T ⊗ (H − T )) = H , i.e. if the vertices of λ ∪ ρ separate G from H − G, we
say that T is a tile in H . Using this concept, the following lemma shows the
essence of perfect tiles.

Lemma 4.3. Let T = (G, λ, ρ) be a perfect planar tile in a graph H , such
that there exist two disjoint connected subgraphs Gλ and Gρ of H contained
in the same component of H −T and with G∩Gλ = (λ, ∅), G∩Gρ = (ρ, ∅). If
E(G) and either E(Gλ) or E(Gρ) are not crossed in some drawing D of H , then
the D-induced drawings of T and its complement H − T are homeomorphic
to tile drawings.

Proof. There is only one component of H−T containing the vertices of λ∪ρ,
and as the edges of other components do not cross G nor influence its induced
drawing, we may assume that H − T is that component and, in particular, it
is connected.

Denote by DT the D-induced drawing of T , by T− the tile H − T , and by
D− the D-induced drawing of T−. As the edges of T are not crossed in D
and T− is connected, there is a face F of DT containing D−. The boundary
of F contains all vertices of T ∩ T− = λ ∪ ρ. Let W be the facial walk of F .
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No vertex of λ ∪ ρ appears twice in W : such a vertex would be a cutvertex
in the planar graph G. Then either G − λ or G − ρ would not be connected,
violating (p.ii), or some vertex in λ ∪ ρ would have no path to the opposite
wall satisfying (p.iii).

Let W ′ be the induced sequence of vertices of λ ∪ ρ in W . As the edges of
Gλ or Gρ are not crossed in D and T , Gλ, and Gρ are connected, the vertices
of λ do not interlace with the vertices of ρ in W ′. The ordering of λ in W ′

is the inverse ordering of ρ in W ′, since the disjoint paths from (p.iv) do not
cross in DT . The planarity and the connectedness of T imply that whenever
i < j < l or i > j > l, there is a path Q from Pjl to λi disjoint from Plj. Q
does not cross Plj in DT , thus W ′ = λρ̄ or W ′ = ρλ̄. The claim follows.

The above arguments were in [96] combined with Lemma 4.2 to demon-
strate the following:

Theorem 4.4 ([96]). Let T be a perfect planar tile and for k ≥ 1 let T̄k =
T k ⊗ T l ⊗ T k. Then there exist integers n, N , such that cr(◦(T̄k)) = tcr(T̄n)
for every k ≥ N .

We establish effective values of n and N from the above theorem:

Theorem 4.5. Let T = (T0, . . . , Tl, . . . , Tm) be a cyclically-compatible se-
quence of tiles. Assume that for some integer k ≥ 0 the following hold:
m ≥ 4k − 2, tcr(⊗T /i) ≥ k, and the tile Ti is a perfect planar tile, both
for every i = 0, . . . , m, i 6= l. Then, cr(◦T ) ≥ k.

Proof. We may assume k ≥ 1. Let G = ◦T and let D be an optimal drawing
of G. Assume that D has less than k crossings. Then there are at most 2k− 1
tiles in the set S = {Ti | i = l or E(Ti) crossed in D}. The circular sequence
T is by the tiles of S fragmented into at most 2k−1 segments. By the pigeon-
hole principle the set T \ S, which consists of at least 2k tiles, contains two
consecutive tiles TiTi+1. Assume for simplicity that i = 1, then either T0 or T3

is distinct from Tl. Lemma 4.3 with (G, T1, T0, T2) or (G, T2, T1, T3) in place
of (H, T, Gλ, Gρ) establishes that the induced drawing D− of G − Tj is a tile
drawing for some j ∈ {1, 2}. Since D− contains all the crossings of D, this
contradicts tcr(⊗(T /j)) ≥ k, and the claim follows.

Corollary 4.6. Let T = (T0, . . . , Tl, . . . , Tm) be a cyclically-compatible se-
quence of tiles and k = mini6=l tcr(⊗T /i). If m ≥ 4k − 2 and the tile Ti is a
perfect planar tile for every i = 0, . . . , m, i 6= l, then cr(◦T ) = k.



4.3 Gadgets in tiles 43

Proof. By Lemma 4.1 and the planarity of tiles, cr(◦T ) ≤ tcr((⊗T /i)⊗Ti) ≤
tcr(⊗T /i) for any i 6= l, thus cr(◦T ) ≤ k. Theorem 4.5 establishes k as a lower
bound and the claim follows.

A tile T is k-degenerate if it is perfect, planar, and tcr(T l− e) < k for any
edge e ∈ E(T ). A sequence of tiles T = (T0, . . . , Tm) is k-critical if the tile
Ti is k-degenerate for every i = 0, . . . , m and mini6=m tcr(⊗(T l/i)) ≥ k. Note
that tcr(T l) ≥ k for every tile T in a k-critical sequence.

Corollary 4.7. Let T = (T0, . . . , Tm) be a k-critical sequence of tiles. Then,
T = ⊗T is a k-degenerate tile. If m ≥ 4k − 2 and T is cyclically-compatible,
then ◦(T l) is a k-crossing-critical graph.

Proof. Lemma 4.1 implies that T is a planar tile. By induction it is easy
to show that T is a perfect tile. Let e be an edge of T and let i be such that

e ∈ Ti. The sequence T ′ = (T0, . . . , Ti−1, T
l
i , lTi+1

l
, . . . , lT l

m) is equivalent to

T l. Lemma 4.1 establishes tcr(T l − e) = tcr((⊗T ′) − e) ≤ tcr(T
l
i − e) < k,

thus T is a k-degenerate tile.
Let T be cyclically-compatible. Then cr((◦T l) − e) < k for any edge

e ∈ E(T ). Theorem 4.5 implies cr(◦(T l)) ≥ k for m ≥ 4k − 2. Thus, ◦(T l) is
a k-crossing-critical graph.

4.3 Gadgets in tiles

Results of Section 4.2 provide sufficient conditions for the crossing numbers of
certain graphs to be estimated in terms of the tile crossing numbers of their
subgraphs. This section develops some techniques to estimate the tile crossing
number.

A general tool we employ for this purpose is the concept of a gadget. We do
not define it formally; a gadget can be any structure inside a tile T = (G, λ, ρ),
which guarantees a certain number of crossings in every tile drawing of T . Four
specific types of gadgets are presented: twisted pairs, staircase strips, cloned
vertices, and wheel gadgets. We supplement them by related results that point
out the principles using which new gadgets could be defined.

In general, there can be many gadgets inside a single tile. Whenever they
are edge disjoint, the crossings they force in tile drawings are distinct. The
following weakening of disjointness enables us to prove stronger results. For
clarity we first state the condition in its set-theoretic form.

Let A1, B1, A2, B2 be four sets. The unordered pairs {A1, B1} and {A2, B2}
are coherent if one of the sets Xi, X ∈ {A, B}, i ∈ {1, 2}, is disjoint from
A3−i ∪ B3−i.
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Lemma 4.8. Let {A, B} and {A′, B′} be two pairs of sets. If they are coherent
and

a ∈ A, b ∈ B, a′ ∈ A′ and b′ ∈ B′, (4.1)

then the unordered pairs {a, b} and {a′, b′} are distinct. Conversely, if (4.1)
implies distinctness of {a, b}, {a′, b′} for every quadruple a, b, a′, b′, then the
pairs {A, B}, {A′, B′} are coherent.

Proof. Suppose the pairs are not distinct, then either a = a′ and b = b′, or
a = b′ and b = a′. In both cases, every set has a member in the union of the
other pair, and the pairs are not coherent.

For the converse, suppose the pairs would not be coherent. Then every set
would contain an element in the union of the opposite pair. Let x ∈ A ∩ A′,
assuming the intersection is not empty. If there is an element y ∈ B′ ∩ B,
then the quadruple a = x, b = y, a′ = x, b′ = y satisfies (4.1) but does not
form two distinct pairs. If B ∩ B′ is empty, then there must be a′ ∈ B ∩ A′

and b′ ∈ B′ ∩ A. The quadruple a = a′, b = b′, a′, b′ satisfies (4.1). Assuming
x ∈ A ∩ B′, a similar analysis applies and the claim follows.

Lemma 4.8 has an immediate application to crossings: whenever the pairs
of edges {ex, fx} and {ey, fy} are distinct for two crossings x and y, the cross-
ings x and y are distinct. Distinctness of crossings induced by two coherent
pairs of sets of edges in a graph follows.

The notion of coherence can be generalized. Let {A1, . . . , Am} and {B1, . . . ,
Bn} be two families of sets. They are coherent if the two pairs {Ai, Aj} and
{Bk, Bl} are coherent for every 0 ≤ i < j ≤ m, 0 ≤ k < l ≤ n.

4.3.1 Twisted pairs

A path P in G is a traversing path in a tile T = (G, λ, ρ) if there exist in-
dices i(P ) ∈ {0, . . . , |λ| − 1} and j(P ) ∈ {0, . . . , |ρ| − 1} such that P is a
path from λ(P ) = λi(P ) to ρ(P ) = ρj(P ) and λ(P ), ρ(P ) are the only wall
vertices that lie on P . An (unordered) pair of disjoint traversing paths {P, Q}
is aligned if i(P ) < i(Q) is equivalent to j(P ) < j(Q), and twisted other-
wise. Disjointness of the traversing paths in a twisted pair {P, Q} implies that
some edge of P must cross some edge of Q in any tile drawing of T . Two pairs
{P, Q} and {P ′, Q′} of traversing paths in T are coherent if {E(P ), E(Q)} and
{E(P ′), E(Q′)} are coherent. A family of pairwise coherent twisted (respec-
tively, aligned) pairs of traversing paths in a tile T is called a twisted (aligned)
family in T .

Lemma 4.9 ([96]). Let F be a twisted family in a tile T . Then, tcr(T ) ≥ |F|.
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Let a tile T be compatible with T ′ and let {P, Q} be a twisted pair of
traversing paths of T . An aligned pair {P ′, Q′} of traversing paths in T ′

extends {P, Q} to the right if j(P ) = i(P ′), j(Q) = i(Q′). Then {PP ′, QQ′} is
a twisted pair in T⊗T ′. For a twisted family F in T , a right-extending family is
an aligned family F ′ in T ′, for which there exists a bijection e : F → F ′, such
that the pair e({P, Q}) ∈ F ′ extends the pair {P, Q} on the right. In this case,
the family F⊗eF ′ = {{PP ′, QQ′} | {P ′, Q′} = e({P, Q})} is a twisted family in
T ⊗T ′. Extending to the left is defined similarly. Let T = (T0, . . . , Tl, . . . , Tm)
be a compatible sequence of tiles and Fl a twisted family in Tl. If, for i =
l + 1, . . . , m (respectively, i = l − 1, . . . , 0), there exist aligned right- (left-)
extending families Fi of Fl⊗. . .⊗Fi−1 (Fi+1⊗. . .⊗Fl−1), then Fl propagates to
the right (left) in T . Fl propagates in cyclically-compatible T if it propagates
both to the left and to the right in every cut T /i, i = 0, . . . , m, i 6= l.

A twisted family F in a tile T saturates T if tcr(T ) = |F|, i.e. there exists
a tile drawing of T with |F| crossings. Clearly, all these crossings must be on
the edges of pairs of paths in F .

Corollary 4.10. Let T = (T0, . . . , Tl, . . . , Tm) be a cyclically-compatible se-
quence of tiles and F a twisted family in Tl that propagates in T . If m ≥
4|F| − 2 and the tile Ti is a perfect planar tile for every i = 0, . . . , m, i 6= l,
then cr(◦T ) ≥ |F|. If F saturates Tl, then the equality holds.

Proof. As F propagates in T , Lemma 4.9 implies mini6=l tcr(⊗(T /i)) ≥ |F|.
Theorem 4.5 establishes the claim.

4.3.2 Staircase strips

In this section, we study twisted staircase strips. Using these gadgets, we later
construct new crossing-critical graphs with average degree close to three.

Let P = {P1, P2, . . . , Pn} be a sequence of traversing paths in a tile T with
the property λ(Pi) ≤ λ(Pj) and ρ(Pi) ≥ ρ(Pj) for i < j. Assume that they
are pairwise disjoint, except for the pairs P1, P2 and Pn−1, Pn which may share
vertices, but not edges. For u ∈ V (P1) ∩ V (P2) and v ∈ V (Pn−1) ∩ V (Pn), we
say that u is left of v if there exist internally disjoint paths Qu and Qv from u
to v such that (cf. Figure 4.1):

(s.i) there exist vertices u1, u
′
1, . . . , un, u′

n that appear in this order on Qu,

(s.ii) there exist vertices v1, v
′
1, . . . , vn, v

′
n that appear in this order on Qv,

(s.iii) u = u1 = u′
1 = u2 = v1 and v = u′

n = v′
n−1 = vn = v′

n,
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u = u1 = u′
1 = u2 = v1

v = u′
n = v′

n−1 = vn = v′
n

s s′ s′′u′
2u3 = u′

3

u5 u′
5

un

v′
1 v2 S2

vn−1

Figure 4.1: A general staircase strip in a tile. Leftmost and rightmost arrows
indicate the ordering of the wall vertices. Dashed edges are part of the tile but
not of the staircase strip.

(s.iv) v′
1, v2, v

′
2, u

′
2 6∈ P1 ∩ P2 and vn−1, un−1, u

′
n−1, un 6∈ Pn−1 ∩ Pn,

(s.v) for i = 1, . . . , n, Ri := uiPiu
′
i ⊆ Pi ∩ Qu, with equality for i 6= n − 1,

(s.vi) for i = 1, . . . , n, Si := viPiv
′
i ⊆ Pi ∩ Qv, with equality for i 6= 2,

(s.vii) Rn−1 = (Pn−1 ∩ Qu) − Rn and S2 = (P2 ∩ Qv) − S1,

(s.viii) if ′u, u′ ∈ P1 ∩ P2 are two vertices with v′
1 ∈ ′uP1u

′, then v2 ∈ ′uP2u
′,

(s.ix) if ′v, v′ ∈ Pn−1 ∩ Pn are two vertices with un ∈ ′vPnv′, then u′
n−1 ∈

′vPn−1v
′, and

(s.x) λ(Pi)uiu
′
iviv

′
iρ(Pi) lie in this order on Pi for i = 1, . . . , n.

Similarly, we define when u is right of v. We say that P forms a twisted
staircase strip of width n in the tile T if the vertex u is either left or right of
the vertex v whenever u ∈ V (P1) ∩ V (P2) and v ∈ V (Pn−1) ∩ V (Pn).

Vertex u in Figure 4.1 is left of v. The features establishing this fact are
emphasized. The subpaths u′

iQuui+1 and v′
iQvvi+1 are, for i = 2, . . . , n − 1,

internally disjoint from Pj by (s.v) and (s.vi), for any j = 1, . . . , n, and their
length is at least one. They are represented by solid vertical edges in the figure.
However, the length of Ri and Si, i = 1, . . . , n, may be zero; the thick edges in
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the figure emphasize the instances when their length is positive. Solid edges
in Figure 4.1 are part of a twisted staircase strip, dashed edges are not. Note
that the vertices u and s are left of v and that the vertices s′ and s′′ are right
of v.

Theorem 4.11. Let T be a tile and assume that P = {P1, P2, . . . , Pn} forms
a twisted staircase strip of width n in T . Then, tcr(T ) ≥

(
n
2

)
− 1.

Proof. If a wall vertex v in a tile T has degree d, then the tile crossing number
of T is not changed if d new neighbors v1, . . . , vd of degree one are attached
to v and v is in its wall replaced by v1, . . . , vd. Thus, we may assume that all
paths in P have distinct startvertices in λ and distinct endvertices in ρ.

Let D be any optimal tile drawing of T . By Lemma 4.9 there are at
least

(
n
2

)
− 2 crossings in D, since the set F = {{Pi, Pj} | 1 ≤ i < j ≤ n} \

{{P1, P2}, {Pn−1, Pn}} is a twisted family in T . For {Pi, Pj} ∈ F , let Pi cross
Pj at xi,j . In what follows, we contradict the assumption

xi,j are all the crossings of D. (4.2)

For i = 1, . . . , n, let Pi be oriented from λ(Pi) to ρ(Pi). The assumption
(4.2) implies that the induced drawing of every Pi is a simple curve. This curve
splits the unit square ∆ = I × I containing D into two disjoint open disks,
the lower disk ∆−

i bordering [0, 1] × {0} and the upper disk ∆+
i bordering

[0, 1] × {1}.
Claim 1: At xi,j , the path Pj crosses from ∆−

i into ∆+
i and the path Pi

crosses from ∆+
j into ∆−

j . This follows from i < j and the orientation of paths
Pi and Pj .

As λ(P2) ∈ ∆−
1 and ρ(P2) ∈ ∆+

1 , there is a vertex u ∈ V (P1)∩V (P2) where
P2 crosses P1 from ∆−

1 to ∆+
1 . Also, there is a vertex v ∈ V (Pn−1) ∩ V (Pn),

such that Pn−1 crosses from ∆+
n into ∆−

n at v. Then Claim 1 holds for x1,2 = u
and xn−1,n = v.

By symmetry, we may assume that u is left of v in T . Let Qu and Qv be
the corresponding paths in T . P2 enters ∆+

1 at u, and (4.2), (s.iii), (s.iv), and
(s.v) imply u′

2 ∈ ∆+
1 . Similarly, vn−1 ∈ ∆+

n by (4.2), (s.iv), (s.iii), and (s.vi).
Claim 2: If any point y of w′

iQw lies in ∆−
i for w ∈ {u, v} and i ∈

{1, . . . , n}, wi 6= un−1, then the path Qw must at w′
i enter ∆−

i . If w 6= u or
i 6= n − 1, the segment w′

iQwy does not cross from ∆+
i to ∆−

i due to Claim 1,
thus it must lie in ∆−

1 .

Claim 3: If there is a point y of Qwwi in ∆−
i for w ∈ {u, v} and i ∈

{1, . . . , n}, wi 6= v2, then Qw must at wi leave ∆−
i . Otherwise, the segment

yQwwi would contradict Claim 1 at xji for some j < i.
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Claim 4: For 3 ≤ i ≤ n, neither of ui, vi lies in ∆−
1 . Assume some

ui ∈ ∆−
1 . As u′

2 ∈ ∆+
1 , the path Qu would contradict Claim 1 at x1,j for some

j, 1 < j < i. Assume vi ∈ ∆−
1 . Due to the orientation of Pi, (4.2), and (s.x),

ui ∈ ∆−
1 , a contradiction.

Claim 5: For 1 ≤ i ≤ n − 2, neither of u′
i, v

′
i lies in ∆−

n . Assume v′
i ∈ ∆−

n .
As vn−1 ∈ ∆+

n , the path Qv would contradict Claim 1 at xj,n for some j,
i < j < n. To complete the proof, observe that if u′

i ∈ ∆−
n , then v′

i ∈ ∆−
n by

(4.2) and (s.x).
In what follows, we prove that the subdrawing of D induced by Qu ∪Qv ∪

(
⋃

i Pi) contains a new crossing, distinct from xi,j, which contradicts (4.2). We
first simplify the subdrawing and obtain a drawing D′ in which for every i, j,
1 ≤ i < j ≤ n, the paths Pi and Pj share precisely one point. We use the
following steps:

• All vertices of P1 ∩ P2, Pn−1 ∩ Pn at which the two paths do not cross
are split.

• As D is a tile drawing, there is an even number of crossing vertices in
V (P1) ∩ V (P2) preceding u on P1. For a consecutive pair x, y of such
vertices, the paths P1 and P2 are uncrossed by rerouting xP1y along
xP2y and vice versa. The vertices x and y are split afterwards. The
segments of Pn−1 and Pn following v are uncrossed in a similar manner.
By (s.i), (s.ii), (s.iii), and (s.x), the paths Qu and Qv are not affected.

• For any pair of vertices of S1 ∩ P2 − {u}, the paths P1 and P2 are un-
crossed in the same way. Due to (s.v), the vertex u′

2 is not on any of the
two affected segments. Due to (s.iv), (s.vi) and (s.viii), neither of the
segments can contain v′

1, v2 or v′
2. Thus, u′

2, v2, v
′
2 ∈ P2 and v′

1 ∈ P1 after
the uncrossing. As all the pairs can be uncrossed, we may assume there
is at most one crossing vertex in S1 ∩ P2 distinct from u. But existence
of such vertex implies by (s.viii) that v2 ∈ ∆−

1 , further implying by (s.vi)
and (s.vii) that v′

2 ∈ ∆−
1 . By (4.2), the segment v′

2Qvv3 does not cross
P1, thus v3 lies in ∆−

1 , contradicting Claim 4.

• As in the previous step, the paths Pn−1 and Pn are uncrossed at any pair
of vertices of Rn ∩ Pn−1. Existence of a single remaining crossing vertex
in Rn ∩ Pn−1 would by (s.iv), (s.v), (s.vii), and (s.ix) imply u′

n−2 ∈ ∆−
n ,

violating Claim 5.

• As D′ is a tile drawing, there is an even number of crossing vertices in
v′
1P1 ∩ P2. By (s.viii) and (s.x), uncrossing the paths P1, P2 as before

does not affect Qv. Similarly, uncrossing the paths Pn−1 and Pnun does
not affect Qu due to (s.ix) and (s.x).
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All crossings in thus obtained drawing D′ are also crossings of D, but some
crossings of P1 with Pi may have become crossings of P2 and Pi and vice versa.
The same applies to the pair (Pn−1, Pn). We replace the labels xi,j accordingly.
Until the end of the proof, we are concerned with the drawing D′ only. In the
new drawing, Claim 2 holds for wi = un−1, Claim 3 for wi = v2, Claim 4 for
i = 2, and Claim 5 for i = n − 1.

Claim 6: For 1 ≤ i < j ≤ n, the subpath Ri of Qu does not cross the
subpath Sj of Qv at xi,j . Suppose it does and take the maximal such i. By
Claim 1 and (s.x), uj and vj lie in ∆−

i . Claim 2 implies that Qu and Qv enter
∆−

i at u′
i and v′

i. Similarly, u′
i and v′

i lie in ∆−
j and Claim 3 implies that Qu

and Qv leave ∆−
j at uj, vj . Thus, the segments u′

iQuuj and v′
iQvvj lie in the

intersection ∆′ = ∆−
i ∩ ∆−

j . ∆′ is a disk as Pi and Pj do not self-cross and
cross each other only once. The vertices u′

i, v′
i, uj, vj lie in this order on the

boundary of ∆′, so the segments must intersect in ∆′. This contradicts either
the assumption (4.2) or the maximality of i. Claim 6 follows.

Let γu denote the simplified path P1uQuvPn−1: whenever this path self-
crosses, the circuit is shortcut. Let γu

1 , γu
2 , and γu

3 be the (possibly empty)
segments of γu corresponding to P1, Qu, and Pn−1. Similarly, let γv denote
the simplified path P2uQvvPn with the segments γv

1 , γv
2 , and γv

3 . Using the
induced orientation of γu and γv, we define disks ∆+

u , ∆−
u , ∆+

v , and ∆−
v to be

the respective lower and upper disks. The endvertices of γu and γv interlace
in the boundary of [0, 1] × [0, 1], thus these paths must cross at some crossing
z = zi,j of segments γu

i and γv
j . We contradict the assumption that z = xi,j for

some i, j. Due to the definition of γu and γv, there are nine possibilities for z:

(1) z = z1,1 = u is a touching of γu and γv.

(2) z = z1,2 = x1,i for some i > 2. Thus, vi ∈ ∆−
1 contradicts Claim 4.

(3) z = z1,3 = x1,n implies un ∈ ∆−
1 .

(4) z = z2,1 = xi,2 for some i > 2, then ui ∈ ∆−
1 .

(5) z = z2,2 = xi,j is a crossing of Si and Rj . Claim 6 implies that 1 ≤ i <
j ≤ n. Choose smallest such i and then smallest j. Qv starts in ∆−

u and
since z is the first crossing of Qv with γu (or one of the other eight cases
would apply), Qv leaves ∆−

u and enters ∆+
u at z. As the orientation of

γu is aligned with the orientation of Rj , Si leaves ∆−
j , which contradicts

Claim 1.

(6) z = z2,3 = xi,n for some i < n, then u′
i ∈ ∆−

n , which contradicts Claim 5.

(7) z = z3,1 = x2,n−1 implies v′
2 ∈ ∆−

n .
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(8) z = z3,2 = xi,n−1 is the crossing of Pn−1 and Si, then v′
i ∈ ∆−

n .

(9) z = z3,3 = v is a touching of γu and γv.

Thus, γu and γv must cross at a new crossing and the statement of the
theorem follows.

4.3.3 Cloned vertices

Cloned vertices were used as gadgets in the construction of 3-connected k-
crossing-critical graphs by Kochol [72].

A clone of a vertex v in a graph G is a vertex v′, such that N∗
G(v) \ {v′} =

N∗
G(v′)\{v}, i.e. v′ has the same multiplicity neighborhood as v (modulo v, v′).

A pair of clones (v, v′) forms a clone gadget of degree d in a graph G if no
multiple edges are incident with these two vertices, |NG(v) \ {v′}| = d and
there exists a bundle B of v in the graph G − v′. For a vertex v and its
clone v′, let E(v, v′) denote the set of edges emanating from v not incident
with v′. We define E(v′, v) similarly. Two clone gadgets (v1, v

′
1), (v2, v

′
2) with

respective bundles B1, B2 are coherent if the sets {E(v1, v
′
1), E(v′

1, v1), Ĕ(B1)}
and {E(v2, v

′
2), E(v′

2, v2), Ĕ(B2)} are coherent.

Lemma 4.12. Let G be a graph, (v, v′) a clone gadget of degree d in G, B a
bundle of (v, v′), and D a drawing of G. There are at least cr(K3,d) crossings

in D involving two edges from distinct sets among E(v, v′), E(v′, v), Ĕ(B).

Proof. The argument uses the splitting of the bundle. Let Ḡ be the
subgraph of G, induced by the edges of E(v, v′) ∪ E(v′, v) ∪ Ĕ(B), and let D̄
be its D-induced subdrawing. By splitting B in D̄ (cf. Lemma 3.3), we obtain
a drawing D′ of a subdivision of K3,d. Since all the crossings of D′ are the
crossings of D, the claim follows.

Proposition 4.13. Let {(v1, v
′
1), . . . , (vt, v

′
t)} be pairwise coherent clone gad-

gets in a graph G. Then, cr(G) ≥ ∑t
i=1 cr(K3,di

), where di is the degree of the
gadget (vi, v

′
i).

Proof. For some j ∈ {1, . . . , t}, let (vj, v
′
j) be a clone gadget of degree dj and

Bj its bundle. By Lemma 4.12, there are at least cr(K3,dj
) crossings with the

property that the two crossed edges come from two distinct sets among Ĕ(Bj),
E(vj, v

′
j), and E(v′

j , vj). As the clone gadgets (vi, v
′
i), 1 ≤ i ≤ t, are pairwise

coherent, these crossings can be exclusively attributed to the gadget (vj, v
′
j).

The claim follows.
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By generalizing bundles in graphs to bundles in tiles using suspensions of
tiles, one can obtain more general clone gadgets that use the structure of tiles.
We can also extend clone gadgets to graphs Kc,d for c > 3.

4.3.4 Wheel gadgets

Cloned vertices use the minimal nonplanar graph K3,3 and its generalizations
as the underlying structure to count crossings. In this section, we introduce
the wheel gadgets that use the other minimal nonplanar graph, K5. To our
knowledge, wheel gadgets were not applied to compute tile crossing numbers.
We use them in Chapter 6 to study the crossing numbers of Cartesian products
of wheels and trees.

Let a vertex v have a bundle B of degree d with the sink u in a graph G. If
there exists a cycle C in G, such that C intersects each path of B at most in
one internal vertex of B, then the triple (v, B, C) forms a wheel in G. Cycle
C is the rim of the wheel, vertex v is the inner hub, and u is the outer hub.
An inner spoke is a subpath from v to C of some path in B, an outer spoke
is a subpath from u to C of some path in B, and an axis is a path in B that
has no vertices in common with C. A wheel gadget in G is a wheel in G that
has at least one axis and at least three inner spokes that meet C in distinct
vertices.

Lemma 4.14. Let G be a simple graph, W = (v, B, C) a wheel gadget in G,
and D a drawing of G. Then, D contains (i) a crossing of some axis of W with
the rim, (ii) a crossing of some spoke of W with the rim, or (iii) a crossing of
an inner spoke with an outer spoke of W .

Proof. Let P1, P2, P3 ∈ B be three paths containing three inner spokes
of W and Q ∈ B an axis of W . Let D̄ be the subdrawing of D induced
by C ∪ Q ∪ ⋃3

i=1 Pi and let D′ be the drawing obtained from D̄ by splitting
the sub-bundle B′ = {P1, P2, P3}. The splitting preserves the crossings of its
paths that occurred in the original drawing. Since the vertices of C ∩B′ lie on
distinct paths of B′, they are not split.

D′ is a drawing of a subdivision of K5, in which C corresponds to a triangle.
We partition the edges of D′ into four sets: the edges of the rim, the inner
spokes, the outer spokes, and the axis. Any two curves in D′ that represent
edges from the same of these sets, share an endvertex of K5 and may be
uncrossed in D′. The crossings between an axis and a spoke can also be
uncrossed. Thus, some crossing of D′ (originating in D) must be between edges
from two different sets and not a crossing of an axis and a spoke, implying one
of (i), (ii), or (iii).
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a) Bridge. (b) Twisted pair. (c) Split pair. (d) Intertwined pair.
(e) One-sided tripod. (f) Two-sided tripod.

We can generalize wheel gadgets from graphs to tiles using generalized
bundles similarly as clone gadgets.

4.3.5 Other gadgets

In Sections 4.3.1–4.3.4, we have described several gadgets that were used in
design of twisted crossing-critical graphs. These are graphs that are obtained
from a twist of a cyclically-compatible sequence of perfect planar tiles. The
crossed k-fences, a family of k-crossing-critical graphs designed by Hliněný in
[53], do not fit this pattern. However, the crossed k-fences can be described
in terms of tiles and a possible gadget that establishes the lower bound on the
tile crossing number is the bridge gadget presented in Figure 4.2 (a). This
gadget has at least two crossings on its edges. It is not clear whether bridges
in combination with twisted pairs suffice to establish the crossing numbers of
crossed k-fences; perhaps we need a more involved gadget resembling staircase
strips.

Minimal gadgets in a tile T that force tcr(T ) ≥ 1 have been classified by
Mohar [83]. They are presented in Figure 4.2. Besides twisted pairs from
Section 4.3.1 they include split pairs, intertwined pairs, and one- or two-sided
tripods. All of these come in their left or right variants. In addition, paper [83]
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classifies gadgets forcing tcr(T ) ≥ 1 in cylinder drawings of tiles (where vertices
from the same wall of T are restricted to be drawn in the respective sequence
in one component of the boundary of the cylinder).

Note that some edges incident with wall vertices of bridges and tripods
may be contracted. The new structure would still be a gadget of the same
tile crossing number. Also, tripods are a generalized clone-gadgets, with the
bundle of the two clones contained in the suspension T ∗ and not in T .

The zip product could be extended to tiles using generalized bundles. Ap-
plying the resulting operation to a vertex v of a tile T and a vertex u of a
graph G, which both have two (generalized) coherent bundles, would result in
a new tile T ′ ∈ T v ⊙u G, whose tile crossing number would be at least the
sum of tcr(T ) and cr(G). Thus, any graph with positive crossing number and
semiactive vertices can be used as a gadget.
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Chapter 5

Constructions

In this chapter, we apply results of Chapters 3 and 4 and construct four new
families of critical graphs. Staircase strips are applied in design of a three-
parameter family of crossing-critical graphs with average degree arbitrarily
close to three. Using twisted pairs, we define two-parameter crossing-critical
graphs with average degree arbitrarily close to six. An iterated zip product
of graphs Kd,d′ yields crossing-critical graphs with arbitrarily many vertices of
degree d. We combine these graphs using the zip product and fine-tune their
parameters to obtain crossing-critical graphs with prescribed average degree
and crossing number.

5.1 Graphs with average degree close to three

The reader shall have no difficulty rigorously describing the tile Sn, n ≥ 3, an
example of which is for n = 7 presented in Figure 5.1 (a). A staircase tile of
width n ≥ 3 is a tile obtained from Sn by contracting some (possibly zero)
thick edges of Sn. Such a tile is a perfect planar tile. A staircase sequence of
width n is a sequence of tiles of odd length in which staircase tiles of width n
alternate with inverted staircase tiles of width n. Any staircase sequence is a
cyclically-compatible sequence of tiles.

Proposition 5.1. Let T be a staircase sequence of width n and odd length
m ≥ 4

(
n
2

)
− 5. The graph G = ◦(T l) is a crossing-critical graph with cr(G) =(

n
2

)
− 1.

Proof. A generalization of the drawing in Figure 5.1 demonstrates that
tcr(Sn) =

(
n
2

)
−1. As m is odd, the cut T l/i contains a twisted staircase strip of

width n for any i = 0, . . . , m−1, and Theorem 4.11 implies tcr(T l/i) ≥
(

n
2

)
−1.

55
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(a) (b)

Figure 5.1: (a) The tile S7. (b) A tile drawing of S7 with 20 crossings.

Planarity of tiles Sn and Lemma 4.1 establish equality and Corollary 4.6 implies
cr(G) =

(
n
2

)
− 1.

After removing any edge from Sn, we can decrease the number of crossings
in the drawing in Figure 5.1 (b). Thus, Sn is a

((
n
2

)
− 1

)
-degenerate tile and

T is a
((

n
2

)
− 1

)
-critical sequence; the criticality of G follows by Corollary 4.7.

Let S ′
n be the inverted tile Sn. For odd m ≥ 1, let Sn,m be the staircase

sequence (Sn, S ′
n, Sn, S

′
n, . . . , Sn) of odd length m. Let S(n, m, c) denote the

set of graphs, obtained from ◦(Sl
n,m) by contracting c thick edges in the tiles of

Sn,m. The graphs in S(n, m, c) are (
(

n
2

)
− 1)-crossing-critical for m ≥ 4

(
n
2

)
− 5

and 0 ≤ c ≤ 2m(n − 2), by Proposition 5.1. They almost settle Question 2.14
for rational r ∈ (3, 4):

Proposition 5.2. Let r = 3 + a
b

with 1 ≤ a < b. If a + b is odd, then, for

n ≥ max
(

5b−a
2(b−a)

, 7a+b
4a

, 4
)
, m(t) = (2t+1)(a+b), and c(t) = (2t+1)((4n−7)a−

b), the family Q(a, b, n) =
⋃∞

t=n2 S(n, m(t), c(t)) contains
((

n
2

)
− 1

)
-crossing-

critical graphs with average degree r.

Proof. For G ∈ Q(a, b, n), let t be such that G ∈ S(n, m(t), c(t)). As
m(t) ≥ 4

(
n
2

)
and m(t) is odd, Proposition 5.1 implies that G is an

((
n
2

)
− 1

)
-

crossing-critical graph. By construction, G has n3 = 4(2m(t)−1)(n−2)−2c(t)
vertices of degree three and n4 = m(t) + c(t) vertices of degree four. A short
calculation establishes that the average degree of G is r. Details can be found
in [19].
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(a) (b)

A
B
C

D
E
F
G

Pi

P1

Pi+1

Qi

Ri

Si

S2w+1

2w + 1 subtiles

Figure 5.2: (a) The tile Hw, w = 1. (b) An optimal tile drawing of H0.

Demanding the average degree of ◦S(m, n, c) to be r = 3 + a
b
, 1 ≤ a < b,

a + b even, forces m(t) to be an even number. The pattern in the staircase
sequences is broken at the join of the first and the last tile and the resulting
graphs are no longer critical. For such r, a more involved construction is
needed.

5.2 Graphs with average degree close to six

Let Hw be a tile, which is for w = 1 presented in Figure 5.2 (a). It is
constructed by joining two subtiles, denoted by dashed edges, with a se-
quence of 2w + 1 subtiles, of which one is drawn with thick edges. The left
(right) wall vertices of Hw are colored black (white). Hw is a perfect planar
tile. Let H(w, s) = (Hw, . . . , Hw) be a sequence of tiles of length s and let
H(w, s) = ◦(H(w, s)l) be the cyclization of its twist.

Proposition 5.3. The graph H(w, s) is a crossing-critical graph with crossing
number k = 32w2 + 56w + 31 whenever s ≥ 4k − 1.

Proof. We define the following sets for 1 ≤ i, p ≤ 2w + 1, p 6= 2w + 1 and
note their sizes:
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Aw = {{A,Pi}, {A,Qi}, {A,Ri}, {A,Si} | 1 ≤ i ≤ 2w + 1}
∪ {{A,C}, {A,D}, {A,E}, {A, G}},

|Aw| = 8w + 8,

Bw = {{B,Pi}, {B,Qi}, {B,Ri}, {B,Si} | 1 ≤ i ≤ 2w + 1}
∪ {{B,D}, {B,E}, {B,G}},

|Bw| = 8w + 7,

Dw = {{D,Pi}, {D,Qi}, {D,Ri}, {D,Sj} | 1 ≤ i, j ≤ 2w + 1, j 6= 2w + 1}
∪ {{D,F}, {D,G}},

|Dw| = 8w + 5,

Ew = {{E,Pi}, {E,Qi}, {E,Ri}, {E,Sj} | 1 ≤ i, j ≤ 2w + 1, j 6= 2w + 1}
∪ {{E,G}},

|Ew| = 8w + 4,

Fw = {{F, S2w+1}},
Gw = {{G,Pi}, {G,Qi}, {G,Ri}, {G,Si} | 1 ≤ i ≤ 2w + 1} ,

|Gw| = 8w + 4,

Pw,i = {{Pi, Pj}, {Pi, Qj}, {Pi, Rl}, {Pi, Sl} | i ≤ j, l ≤ 2w + 1, j 6= i} ,

|Pw,i| = 8w + 6 − 4i,

Qw,i = {{Qi, Pj}, {Qi, Qj}, {Qi, Rj}, {Qi, Sj} | i < j ≤ 2w + 1} ,

|Qw,i| = 8w + 4 − 4i,

Rw,i = {{Ri, Pj}, {Ri, Qj}, {Ri, Rj}, {Ri, Sj} | i < j ≤ 2w + 1} ,

|Rw,i| = 8w + 4 − 4i,

Sw,i = {{Si, Pj}, {Si, Qj}, {Si, Rl}, {Si, Sl} | i < j, l ≤ 2w + 1, l 6= i + 1} ,

|Sw,p| = 8w + 2 − 4p.

The family Hw = Aw∪Bw∪Dw∪Ew∪Fw∪Gw∪
⋃2w+1

i=1 (Pw,i ∪ Qw,i ∪Rw,i ∪ Sw,i)
is an aligned family in Hw. The sets in the union are pairwise disjoint, thus
|Hw| equals the sum of their sizes:

|Hw| = 5 · 8w + 29 +

2w∑

i=1

(4 (8w − 4i) + 16) + 2

= 64w2 + 72w + 31 − 16

2w∑

i=1

i

= 32w2 + 56w + 31

= k.
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The corresponding family H′
w in H

l
w is twisted and propagates in H(w, s)l.

Figure 5.2 (b) presents an optimal tile drawing of H0, its generalization to

w > 0 demonstrates that H′
w saturates H

l
w. The crossing number of H(w, s)

is established by Corollary 4.10.
The number of crossings can be decreased after removing any edge from

the drawing in Figure 5.2 (b). This also applies to the generalization of the
drawing, thus Hw is a k-degenerate tile. The propagation of the twisted family
F ′ demonstrates tcr

(
⊗(H(w, s)l/i)

)
≥ k for any i 6= s, thus H(w, s)l is a k-

critical sequence and the criticality of H(w, s) follows by Corollary 4.7.

5.3 Adapting graphs

For d, d′ ≥ 3, let Kd,d′ be a properly 2-colored complete bipartite graph: ver-
tices of degree d are colored black and vertices of degree d′ are colored white.
For p ≥ 1, let the family R(d, d′, p) consist of graphs with 2-colored vertices, ob-
tained as follows: R(d, d′, 1) = {Kd,d′} and R(d, d′, p) =

⋃
G∈R(d,d′,p−1) G v1

⊙v2

Kd,d′ , where v1 (respectively, v2) is a black vertex in G (Kd,d′). If d = d′ = 3,
we allow vi to be any vertex. We preserve the colors of vertices in the zip
product, thus the graphs in R(d, d′, p) are not properly colored for p ≥ 2.

Proposition 5.4. Let d, d′ ≥ 3. Then every graph G ∈ R(d, d′, p) is a simple
3-connected crossing-critical graph with cr(G) = p cr(Kd,d′).

Proof. By induction on p and using Theorem 3.7 (iii), we show that all
black vertices of G are active. Iterative application of Theorem 3.7 (i) and (ii)
establishes the crossing number of G and its criticality. For d = d′ = 3, the
claim follows similarly by Theorem 3.8.

Jaeger proved the following result:

Theorem 5.5 ([56]). Every 3-connected cubic graph with crossing number
one has chromatic index three.

We use the family R(3, 3, p) to show that a similar result cannot be obtained
for any crossing number greater than one.

Proposition 5.6. For k ≥ 2, there exist simple cubic 3-connected crossing-
critical graphs with crossing number k and with no 3-edge-coloring.

Proof. Let P be the Petersen graph. It is cubic, 3-connected, and has no
3-edge-coloring. Its crossing number is two and it is crossing-critical, since it
is edge-transitive. The claim thus holds for k = 2.
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For k ≥ 3, let G ∈ R(3, 3, k−2) be arbitrary and let Gk be a zip product of
G and P . Since every vertex in P has two coherent bundles, Theorem 3.8 and
Proposition 5.4 assert that Gk has crossing number k and is crossing-critical.
It is 3-connected by Lemma 3.6 (ii).

Suppose Gk has a 3-edge-coloring c. We may assume the colors are nonzero
elements of the group Z2 ×Z2. Since the colors around every vertex add up to
zero, the coloring c represents a nonzero Z2 ×Z2-flow on Gk. Thus, the sum of
colors on any edge-cut of Gk is zero. In particular, the three edges that result
from the zip product of G and P receive distinct colors. This implies existence
of a 3-edge-coloring of P , a contradiction.

Graphs with the above properties can be constructed also as zip products
of k copies of the Petersen graph. The resulting graph has crossing number
2k. A zip product of such graph with crossing number k and any planar cubic
graph has all the stated properties, except it is not crossing-critical. Thus, for
every k ≥ 2 there exists an infinite family of simple cubic 3-connected graphs
with crossing number k and with no 3-edge-coloring.

5.4 Infinite families of crossing-critical graphs

with prescribed average degree and cross-

ing number

In this section we prove the main result of this thesis: we settle Question 2.14.

Theorem 5.7. Let r ∈ (3, 6) be a rational number and k an integer. There
exists a convex continuous function f : (3, 6) → R+ such that for k ≥ f(r)
there exists an infinite family of simple 3-connected crossing-critical graphs
with average degree r and crossing number k.

Proof. We present a constructive proof for

f(r) = 240 + 512
(6−r)2

+ 224
6−r

+ 25
16(r−3)2

+ 40
r−3

.

A sketch of the construction is as follows: The graphs are obtained as a zip
product of crossing-critical graphs from the families S and R, and of the graphs
H , defined in Sections 5.1–5.3. The graphs H allow average degree close to six
and the graphs from S allow average degree close to three. A disjoint union
of two such graphs consisting of a proportional number of tiles would have a
fixed average degree and crossing number. The zip product compromises the
pattern needed for fixed average degree, for which we compensate with the
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graphs from R. Their role is also to fine-tune the desired crossing number of
the resulting graph.

More precisely, let Γ(n, m, c, w, s, p, q) be the family of graphs, constructed
in the following way: first we combine graphs G1 ∈ S(n, m, c) and G2 =
H(w, s) in the family Γ(n, m, c, w, s, 0, 0) =

⋃
G1,G2

⋃
v1,v2

G1 v1
⊙v2

G2. Fur-
ther, we combine the graphs G1 ∈ Γ(n, m, c, w, s, 0, 0) and G2 ∈ R(3, 3, p) in
the family Γ(n, m, c, w, s, p, 0) =

⋃
G1,G2

⋃
v1,v2

G1 v1
⊙v2

G2. Finally, we com-
bine the graphs G1 ∈ Γ(n, m, c, w, s, p, 0) and G2 ∈ R(3, 5, q) in the family
Γ(n, m, c, w, s, p, q) =

⋃
G1,G2

⋃
v1,v2

G1 v1
⊙v2

G2. In each case, vi ∈ V (Gi) is
any vertex of degree three. Propositions 5.1, 5.3, and 5.4 imply that the
graphs used in construction are crossing-critical graphs whenever the follow-
ing conditions are satisfied:

n ≥ 3, (5.1)

m = 2m′ + 1, (5.2)

m′ ≥ 2

(
n

2

)
, (5.3)

c ≥ 0, (5.4)

c ≤ 2m(n − 3), (5.5)

w ≥ 0, (5.6)

s ≥ 4(32w2 + 56w + 31), (5.7)

p ≥ 1, and (5.8)

q ≥ 1. (5.9)

All vertices of degree three in these graphs are semiactive. Results in [65]
establish cr(K3,5) = 4, thus Theorem 3.8 implies that subject to (5.1)–(5.9)
the graphs in Γ(n, m, c, w, s, p, q) are crossing-critical with crossing number

k =

(
n

2

)
+ 32w2 + 56w + p + 4q + 30. (5.10)

Their average degree is

d̄ = 6 − 4(m′(6n − 11) + 3n + 3p + 3q + 4s − c − 7)

2m′(4n − 7) + 4n + 4sw + 9s + 4p + 6q − c − 9
. (5.11)

Using (5.10) we express p in terms of k and other parameters. We set
s and m to be a linear function of a new parameter t, which will determine
the size of the resulting graph. We substitute these values into (5.11). Using
c we eliminate all the terms in the denominator that are independent of t.
Parameter q plays the same role in the numerator. Then t cancels and we
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set the coefficients of the linear functions to yield the desired average degree.
Finally, parameters n, w, and the constant terms of the linear functions are
selected to satisfy the constraints (5.1)–(5.9). A more detailed analysis might
produce a smaller lower bound f , but one constant term was selected to be
zero to simplify the computations.

More precisely, let r = 3 + a
b
, 0 < a < 3b, and k ≥ f(r). Perform the

following integer divisions:

b = b′a + br,

b′ = 4b′′ + b′r,

4b = b̄(3b − a) + b̄r, and

k − b′′(b′′+5)
2

− 8b̄(4b̄ + 7) = k′(2b′′ + 5) + kr.

For some integer t set

n = b′′ + 4,

mt = 2t(27b − 9a − 4b̄r) − 2k′ + 3,

c = 2k′ − 12b′′ − 6kr − 33,

w = b̄,

st = 2t((4b′′ + 9)a − b),

p = k −
(

b′′(b′′+23)
2

+ 8b̄(4b̄ + 7) + 4kr + 56
)

, and

q = 2b′′ + kr + 5.

The family Γ(a, b, k) =
⋃∞

t=k Γ(n, mt, c, w, st, p, q) is an infinite family of
crossing-critical graphs with average degree r and crossing number k. Verifi-
cation of the constraints (5.1)–(5.9) for any r ∈ (3, 6) and k ≥ f(r) requires
some tedious computation that is omitted here; an interested reader can find
it in [19]. The function f is a sum of functions that are convex on (3, 6) and
thus itself convex. The graphs of Γ(a, b, k) are 3-connected by Lemma 3.6 (ii).

The convexity of the function f in Theorem 5.7 implies NI = max{f(r1),
f(r2)} is a universal lower bound on k for rational numbers within any closed
interval I = [r1, r2] ⊆ (3, 6).

5.5 Structure of crossing-critical graphs

Oporowski has established that all large 2-crossing-critical graphs are obtained
as cyclizations of long sequences, composed out of copies of a small number
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Figure 5.3: Structure of known large k-crossing-critical graphs.

of different tiles [87]. The construction of crossing-critical graphs using zip
product demonstrates that no such classification of tiles can exist for k ≥ 4:
by a generalized zip product of a graph and a tile, as proposed in Section 4.3.5,
one can obtain an infinite sequence of k-degenerate tiles, all having the same
tile crossing number. These tiles in combination with corresponding perfect
planar tiles yield k-crossing-critical graphs.

For k large enough, one can obtain k-crossing-critical graphs from an ar-
bitrary (not necessarily critical) graph that has a vertex cover consisting of
semiactive vertices of degree three, cf. Theorem 3.9. Figure 5.3 sketches the
described structure.

Regarding the degrees of vertices in k-crossing-critical graphs, the following
questions remain open:

Question 5.8 ([105]). Do there exist an integer k > 0 and an infinite family
of (simple) 5-regular 3-connected k-crossing-critical graphs?

Question 5.9. Do there exist an integer k > 0 and an infinite family of (sim-
ple) 3-connected k-crossing-critical graphs of average degree six?

Arguments of [105] used to establish that for k > 0 there exist only finitely
many k-crossing-critical graphs with minimum degree six extend to graphs
with a bounded number of vertices of degree different than six. Thus, we may
assume that a family positively answering Question 5.9 would contain graphs
with arbitrarily many vertices of degree larger than six. But only vertices of
degrees three, four, or six appear arbitrarily often in the graphs of the known
infinite families of k-crossing-critical graphs. We thus propose the following
question, an answer to which would be a step in answering Questions 5.8 and
5.9.
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Question 5.10. Does there exist an integer k > 0, such that for every integer
n there exists a 3-connected k-crossing-critical graph Gn with more than n
vertices of degree distinct from three, four and six?

We can obtain arbitrarily large crossing-critical graphs with arbitrarily
many vertices of degree d, for any d, by applying the zip product to graphs
K3,d, Kd,d, and the graphs from the known infinite families. However, the
crossing numbers of these graphs grow with the number of such vertices.



Chapter 6

The crossing numbers of
Cartesian products

In this chapter, we apply the zip product to establish lower and upper bounds
on the crossing numbers of Cartesian products of some graphs with trees. We
obtain several new exact results.

6.1 General graphs

Let G(i) be the suspension of order i of a graph G, i.e. the complete join of G
and an empty graph on i vertices {v1, . . . , vi}, called the apices of G(i). For a
multiset L ⊆ V (G2), we denote with G1 �L G2 the capped Cartesian product
of graphs G1 and G2, i.e. the graph obtained by adding a distinct vertex v′

to G1 � G2 for each copy of a vertex v ∈ L and joining v′ to all vertices of
G1 � {v}. We call v′ a cap of v. When L contains precisely all vertices of

degree one in G2, we use G1 �̂G2 in place of G1 �L G2. For v ∈ V (H), let
χL(v) denote the multiplicity of v in L and let ℓ(v) := degG2

(v) + χL(v). An
edge uv ∈ E(G2) is unbalanced if ℓ(u) 6= ℓ(v). Let β(G2) be the number of
unbalanced edges of G2.

Theorem 6.1. Let T be a tree, L ⊆ V (T ) a multiset with ℓ(v) ≥ 2 for every
v ∈ V (T ), and G a graph of order n with a dominating vertex. Define

B =
∑

v∈V (T )

cr(G(ℓ(v))).

Then, B ≤ cr(G �L T ) ≤ B + β(T )
(

n−1
2

)
and cr(G �L T ) = B whenever the

automorphism group of G acts as a symmetric group on the neighbors of the
dominating vertex of G.

65
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Proof. Let L = ℓ(V (T )) be the set of different values of ℓ(v), v ∈ V (T ).
For l ∈ L, let D(l) be a fixed optimal drawing of G(l). Let v1, . . . , vm be some
depth-first search ordering of vertices of T , set li = ℓ(vi), and let ei = viui be
the edge connecting vi with T [{v1, . . . , vi−1}].

Using this setup we construct G �L T as a sequence of zip products of
suspensions of G. Let G1 = G(l1) and for i = 2, . . . , m define Gi = G(li) ⊙ιi

Gi−1, where ιi maps a vertex of the G subgraph of G(li) to its counterpart
in the neighborhood of some cap u′ of ui, u′ ∈ V (Gi−1). The graph Gm is
isomorphic to G �L T . Since G has a dominating vertex, the apices in the
suspensions have two coherent bundles. Iterative application of Theorem 3.4
implies cr(G �L T ) ≥ B.

With the drawings D(l), we construct a drawing of G �L T that establishes
the upper bound. We define D0 = D(l0) and, for i = 2, . . . , m, let Di = D(li)⊙ιi

Di−1. If the symmetry condition is satisfied, then we can avoid introducing
new crossings in the zip product of the drawings by Lemma 3.1. Also, if the
edge viui is balanced, then there is an apex in D(li) that has the same vertex
rotation as some cap of ui in Di−1. We perform the zip product using this apex
and by Lemma 3.1 we introduce no new crossings. If neither of the conditions
is satisfied, then Lemma 3.2 asserts that at most

(
n−1

2

)
new crossings need to

be introduced. The claim follows.

If G has no dominating vertex, then the apices of G(i) have two coherent
bundles only for i ≥ 3. The following more general version of Theorem 6.1
follows using the same arguments as in its proof.

Theorem 6.2. Let T be a tree of order m, L ⊆ V (T ) a multiset with ℓ(v) ≥ 3
for every v ∈ V (T ), and G a graph of order n. Define B =

∑
v∈V (T ) cr(G(ℓ(v))).

Then, B ≤ cr(G �L T ) ≤ B + β(T )
(

n−1
2

)
and cr(G �L T ) = B whenever the

stabilizer subgroup Γ(v) of the automorphism group of G acts as a symmetric
group on V (G) \ {v} for some v ∈ V (G).

In the rest of Chapter 6, we list several special cases of the above theorems.

The following two corollaries imply equality of cr(G � Pm) and cr(G �̂Pm) up
to an additive constant.

Corollary 6.3. cr(G �̂Pm) = (m + 1) cr(G(2)) for a graph G with a dominat-
ing vertex and m ≥ 0.

Proof. For G �̂Pm, the multiset L contains precisely the two vertices of Pm

of degree one. The claim follows by Theorem 6.1, since all edges of Pm are
balanced.
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Corollary 6.4. The following inequality holds for a graph G of order n with
a dominating vertex and m ≥ 2:

(m− 1) cr(G(2)) ≤ cr(G � Pm) ≤ (m− 1) cr(G(2)) + 2

(
cr(G(1)) +

(
n − 1

2

))
.

Proof. G � Pm contains G �̂Pm−2 as a subdivision, thus cr(G � Pm) ≥
(m − 1) cr(G(2)) by Corollary 6.3. Let u, v be the caps of Ḡ = G �̂Pm−2 and

v′, v′′ the apices of two disjoint copies G′, G′′ of G(1). We observe that G � Pm

is isomorphic to some graph in (Ḡ u⊙v′ G′) v⊙v′′ G′′ and the claim follows by
Lemma 3.2.

6.2 Cycles

Lemma 6.5. Whenever (i) 3 ≤ n and 1 ≤ d ≤ 6, (ii) 3 ≤ n ≤ 6 and
1 ≤ d, (iii) 3 ≤ n ≤ 8 and 1 ≤ d ≤ 10, or (iv) 3 ≤ n ≤ 10, 1 ≤ d ≤ 8,

then cr(C
(d)
n ) =

⌊
n
2

⌋ ⌊
n−1

2

⌋ ⌊
d
2

⌋ ⌊
d−1
2

⌋
and, moreover, there exists an optimal

drawing of C
(d)
n in which the vertex rotation around every apex respects the

cyclic ordering imposed by Cn.

Proof. The graph C
(d)
n has Kn,d as a subgraph, thus cr(C

(d)
n ) ≥ cr(Kn,d).

Kleitman established the crossing number of the latter when (i) or (ii) apply
[65], and Woodall established it under conditions (iii) or (iv) [134]. In each of
the cases, we can add the edges of the cycle into an optimal drawing of Kn,d

without introducing new crossings, cf. Figure 6.1 for an example with n = 7,
d = 3. The vertex rotations around the apices in these drawings respect the
ordering imposed by Cn.

Corollary 6.6. Let d be the maximum degree in a tree T and n an integer. If
one of the conditions (i)–(iv) applies to n, d, then, for dv = degT (v), v ∈ V (T ),

cr(Cn �̂T ) =
∑

v∈V (T )

⌊
n

2

⌋ ⌊
n − 1

2

⌋⌊
dv

2

⌋ ⌊
dv − 1

2

⌋
. (6.1)

Proof. The proof follows the arguments of the proof of Theorem 6.2, using
consistency of vertex rotations around apices in optimal drawings of C

(d)
n im-

plied by Lemma 6.5. The major distinction are vertices of degree one and two
in T , since the apices of the graph C

(2)
n have only one coherent bundle. But

C
(2)
n is planar, and Lemma 3.5 applies. Equality (6.1) follows by Lemma 6.5.
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K1,3,3

W
(3)
3

W
(2)
3 K1,2,7 C

(3)
7 W

(2)
7

Figure 6.1: Several optimal drawings.

6.3 Stars

The graph S
(d)
n is isomorphic to the complete tripartite graph K1,d,n, which

can be obtained by contracting an edge of Kd+1,n+1. Also, the graph Sn � Sd

is a subdivision of S
(d)
n . These observations enable us to express the crossing

numbers of Cartesian products of stars with trees as a sum of the crossing
numbers of Cartesian products of two stars:

Corollary 6.7. Let T be a tree and n ≥ 1. Then, for dv = degT (v),

cr(Sn � T ) =
∑

v∈V (T ), dv≥2

cr(K1,dv,n).

Proof. Let T ′ be the tree obtained by deleting all the leaves of T and let L be
the set of leaves of T ′, each leaf v with multiplicity equal to degT (v) − 1. The
graph Sn � T is a subdivision of Sn �L T ′ and the claim follows by Theorem
6.1 since S

(d)
n is isomorphic to K1,d,n.

Corollary 6.8. Let n ≥ 1 be any integer and T a subcubic tree with n2

vertices of degree two and n3 vertices of degree three. Then,

cr(Sn � T ) =

⌊
n

2

⌋(
(n2 + 2n3)

⌊
n − 1

2

⌋
+ n3

)
. (6.2)

Let T be a tree. Then,

cr(S3 � T ) =
∑

v∈V (T ), dv≥2

⌊
dv

2

⌋ (
2

⌊
dv − 1

2

⌋
+ 1

)
. (6.3)
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Proof. Asano proved cr(K1,3,n) =
⌊

n
2

⌋ (
2
⌊

n−1
2

⌋
+ 1

)
in [10]. The equation

(6.3) follows by Corollary 6.7.
The graph K1,2,n has K3,n as a subgraph. Kleitman [65] proved that

cr(K3,n) =
⌊

n
2

⌋ ⌊
n−1

2

⌋
. Figure 6.1 presents a drawing of K1,2,n with this many

crossings (n = 7). Another application of Corollary 6.7 yields (6.2).

A special case of (6.2) was conjectured by Jendrol’ and Ščerbová [57].

Corollary 6.9. cr(Sn � Pm) = (m − 1)
⌊

n
2

⌋ ⌊
n−1

2

⌋
for m, n ≥ 1.

6.4 Wheels

We introduce another operation on graphs that allows us to study the crossing
numbers of Cartesian products of wheels. Let F ⊆ E(G) be a subset of edges
of G and π a permutation of F . A π-subdivision Gπ of G is the graph, obtained
from G by subdividing every edge e ∈ F with the vertex ve and adding the
edges

{
vevπ(e) | e ∈ F

}
.

Theorem 6.10. Let v be a vertex that has a bundle Bv in a graph G and let
π be a cyclic permutation of a subset F of all but one of the edges incident
with v, |F | ≥ 3. Then

cr(Gπ) ≥ cr(G) + 1, (6.4)

with equality if π respects the edge rotation around v in some optimal drawing
of G.

Proof. Let Cv be the cycle on the edges
{
vevπ(e) | e ∈ F

}
in Gπ. Let Dπ

be an optimal drawing of Gπ and D the induced subdrawing of G. The triple
(v, Bv, Cv) is a wheel gadget of degree |F | ≥ 3 in Gπ. Assume it has no crossing
on Cv in Dπ. Then Cv is a simple closed curve in Dπ and the whole drawing
Dπ lies in the same component of Σ − Cv. Without loss of generality, Dπ lies
in the exterior of the disk bounded by Cv and by Lemma 4.14 an inner spoke
must cross an outer spoke. Let c be the number of crossings on the inner
spokes.

Claim 1: Under the above assumptions, cr(D) ≥ cr(G) + c −
⌊

c
|F |

⌋
. Let e

be some inner spoke with the smallest number of crossings. We draw a new
vertex u in the interior of Cv. It is possible to connect u with all vertices of
Cv without introducing new crossings and also to detach e from its endvertex
on Cv and connect it with u (crossing Cv). Let D̄π be the modified drawing,
presented in Figure 6.2, and let D̄ be its subdrawing obtained by removing
the rim and all inner spokes but e from D̄π. In Figure 6.2, we indicate D̄ with
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v

u

e

Cv

Figure 6.2: Drawings D̄π and D̄.

the solid edges. Since D̄ is a drawing of a subdivision of G and has at least

c −
⌊

c
|F |

⌋
crossings less than D, the claim follows.

Either there is a crossing of Dπ on Cv, which is not present in D, or

c −
⌊

c
|F |

⌋
≥ 1. Inequality (6.4) follows.

If π respects the edge rotation around v in an optimal drawing D of G, we
can draw Cv in D with at most one new crossing.

Lemma 6.11. cr(W
(2)
n ) =

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 1 for n ≥ 3.

Proof. The drawing of G = W
(2)
n with k =

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 1 crossings presented

in Figure 6.1 (with n = 7) establishes the upper bound.
Let D be an optimal drawing of G for some n ≥ 3. Partition the edges of G

into the edges E1 of the K3,n subgraph of G, the edges E2 of the path between
the apices u, v of G containing the center w of the wheel, and the edges E3 of
the rim. There are at least k − 1 crossings between the edges of E1. If there
is a crossing involving an edge of E3, the claim follows.

Otherwise the rim is drawn as a simple closed curve γ and we may assume
that G is drawn in the disk ∆ bounded by γ. The edges emanating from each
of the vertices u, v, and w do not cross and separate ∆ into n disks. For
distinct x, y ∈ {u, v, w}, there are at least

⌊
n
2

⌋ ⌊
n−1

2

⌋
crossings between edges

incident with x and y, implying a contradiction cr(D) ≥ 3(k − 1).

Corollary 6.12. cr(Wn � Pm) = (m − 1)
(⌊

n
2

⌋ ⌊
n−1

2

⌋
+ 1

)
+ 2 for m ≥ 1 and

n ≥ 3.

Proof. Two applications of Theorem 6.10 to the graph with two vertices and
n + 1 parallel edges among them prove the claim in case m = 1.
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Let u, v be the caps of G = Wn �̂Pm−2 and let Fu (respectively, Fv) contain
the edges incident with u (v) and a vertex on the rim of the corresponding wheel
in G. Corollary 6.3 and Lemma 6.11 assert cr(G) = (m − 1)

(⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 1

)
.

The graph Wn � Pm is isomorphic to G′ = (Gπ)π′

for properly chosen per-
mutations π of Fu and π′ of Fv. Theorem 6.10 implies cr(G′) = cr(G) + 2.

Lemma 6.13. cr(W
(3)
3 ) = 5.

Proof.
Let G = W

(3)
3 , let D be an optimal drawing of G, and let C be the set of

edges of the rim of W3. In D, there is no crossing between two edges of C.
These therefore bound a disk ∆ in D. Then G − C = S

(3)
3 and let F be the

set of edges of S3 in G − C. The result of Asano [10] implies at least three
crossings on the edges of G − C. If there are two crossings on C, the claim
follows.

Assume there is only one crossing on C. If it is a crossing with an edge
of F , then the induced drawing of G − F has no crossing on C and we may
assume it lies in the interior of ∆. The graph G − F − C is isomorphic to
the graph K3,4, of which three vertices are incident with C, and four are not,
say v1, . . . , v4. The edges emanating from vi and vj must cross for distinct
i, j ∈ {1, 2, 3, 4}. This implies at least six crossings in D.

Assume the only crossing on C is not a crossing with an edge of F , but
with an edge e emanating from one of vi, i ∈ {1, 2, 3, 4}. The induced drawing
of G− e has no crossing on C, thus we may assume it is drawn in the interior
of ∆. By the argument of the previous paragraph, there are at least three
crossings between the edges of K3,3 subgraph of G − vi − C. If there is an
additional crossing on the edges incident with vi distinct from e, the claim
follows. Assume there is none. Then there exists a simple closed curve γ that
starts at the center w of the wheel, follows the edge wvi, continues along an
edge connecting vi with the rim C, along the edges of C, along the other edge
connecting vi and C, and finally closes along viw, such that G − vi − C is
drawn inside the disk ∆′ bounded by γ. The vertex w is incident with other
three vertices on the boundary of ∆′ and we may assume two of the edges lie
on this boundary. Let f be the third of these edges, which separates the other
two neighbors of w in ∆′. There is a drawing of K2,4 in ∆′ with four vertices
on the boundary of ∆′, which has at least two crossings on its edges and at
least two crossings with f .

If there are no crossings on C, then we may assume the whole drawing,
and in particular the subdrawing of K4,3, is in ∆ and has at least six crossings.
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The claim about cr(W3,3) follows, since Figure 6.1 presents a drawing of W
(3)
3

with five crossings.

Corollary 6.14. Let T be a subcubic tree with ni vertices of degree i, i =
1, 2, 3. Then, cr(W3 � T ) = n1 + 2n2 + 5n3.

Proof. We remove all the leaves from T and obtain a tree T ′. Let L be the
multiset of leaves of T ′, each v ∈ L with multiplicity equal to degT (v) − 1.
Thus, ℓ(v) with respect to L and T ′ equals degT (v), which is at least two

for every v ∈ V (T ′). Since Lemmas 6.11 and 6.13 establish cr(W
(2)
3 ) = 2 and

cr(W
(3)
3 ) = 5, Theorem 6.2 implies cr(W3 �L T ′) ≥ 2n2 +5n3. Equality follows

as the vertex rotations are consistent in the optimal drawings of W
(2)
3 and W

(3)
3

in Figure 6.1. This consistency in combination with Theorem 6.10 also implies
that a properly chosen π-subdivision of edges connecting a cap of W3 �L T ′

with the corresponding rim increases the crossing number by precisely one. To
obtain W3 � T from W3 �L T ′, we need one such subdivision for each leaf of
T , and the claim follows.
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The Minor Crossing Number

73





Chapter 7

Preliminaries

Two minor-monotone variations of the crossing number invariant are presented
in this chapter. They are derived from the ordinary crossing number using
general principles of how a graph invariant can be transformed into a minor-
monotone graph invariant, as studied by Fijavž [38]. One of the variations
bounds the crossing number of a graph from above and the other bounds
it from below. As the minimization of the number of crossings and lower
bounds on this number are of more general interest, only this second variation
is studied in greater detail.

The results of this chapter are based on research conducted by Fijavž,
Mohar, and the author [20]. Only few results relating graph minors and the
crossing numbers of graphs have been published prior to this work. Moreno
and Salazar presented a lower bound on the crossing numbers of graphs in
terms of their minors with a small maximum degree [86]. This result is gener-
alized in Section 8.1. Robertson and Seymour [109] determined the forbidden
minors for being a minor of a graph having crossing number at most one. The
minor crossing number introduced in the following section generalizes this con-
cept; these graphs are the forbidden minors for having minor crossing number
at most one. The structure of drawings used to obtain this result is gener-
alized to graphs with larger minor crossing numbers and applied in Chapter
9 to improve a lower bound on the minor crossing number of a graph using
the number of its edges. Another related result is the proof of Hliněný that
shows the crossing number problem is NP -hard for cubic graphs [55]. As sub-
divisions of graphs (which do not affect crossing numbers) are equivalent to
minors for cubic graphs, this result implies that the minor-monotone variant
of the crossing number problem is NP -hard. The fact that for a cubic graph
the crossing number equals the minor crossing number generates additional
interest to studying the crossing numbers of such graphs. Some research in
this direction was conducted by McQuillan and Richter [81, 98].
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7.1 Definitions and basic lemmas

For a given graph G, the minor crossing number is defined as the minimum
crossing number over all graphs that contain G as a minor:

mcr(G, Σ) := min {cr(H, Σ) | G ≤m H} . (7.1)

By mcr(G) we denote mcr(G, S0).
Similarly, the major crossing number of G is the maximum crossing number

taken over all minors of G:

Mcr(G, Σ) := max {cr(H, Σ) | H ≤m G} . (7.2)

The following lemmas follow directly from the definitions:

Lemma 7.1. mcr(G, Σ) ≤ cr(G, Σ) ≤ Mcr(G, Σ) for every graph G and every
surface Σ.

Lemma 7.2. mcr(G, Σ) ≤ mcr(H, Σ) and Mcr(G, Σ) ≤ Mcr(H, Σ) for every
surface Σ, whenever G is a minor of H .

Proof. The minimum in the definition of mcr(H, Σ) is taken over a subset
of graphs considered for mcr(G, Σ). This proves the first inequality. Similarly,
Mcr(G, Σ) is the maximum over a subset of graphs considered for Mcr(H, Σ).

Let ω(k, Σ) = {G | mcr(G, Σ) ≤ k} be the family of graphs G with bounded
mcr(G, Σ) and let Ω(k, Σ) = {G | Mcr(G, Σ) ≤ k} be the family of graphs G
with bounded Mcr(G, Σ). Lemma 7.2 immediately yields:

Corollary 7.3. Let k ≥ 0 be an integer and Σ a surface. The families ω(k, Σ)
and Ω(k, Σ) are minor-closed.

For each graph G, there exists a graph Ḡ such that mcr(G, Σ) = cr(Ḡ, Σ)
and G ≤m Ḡ. We call such a graph Ḡ a realizing graph of G and an optimal
drawing of Ḡ in Σ is called a realizing drawing of G (with respect to Σ).
Realizing graphs and drawings are by no means uniquely determined, but
we shall always assume that G and Ḡ have the same number of connected
components.

As G is a minor of its realizing graph Ḡ, G can be obtained by a series of
contractions from a subgraph of Ḡ. In other words, G = (Ḡ−R)/C for suitable
edge sets R, C ⊆ E(Ḡ). It is clear that every graph G has a realizing graph
Ḡ such that R = ∅. For each vertex v ∈ V (G), there is a unique maximal tree
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Figure 7.1: mcr as an extension of cr.

Tv ≤ Ḡ[C] that is contracted to v. In the following figures, the original edges
will be drawn as thin lines and the contracted edges as thick lines.

The minor crossing number can be considered a natural extension of the
usual crossing number. Clearly, if e, f ∈ E(Ḡ) cross in a realizing drawing of
G, then e, f ∈ C ∪E(G). If both e and f belong to C, then their crossing is a
vertex-vertex crossing , but if both belong to E(G), then their crossing is in an
edge-edge crossing . Otherwise, their crossing is an edge-vertex crossing . This
is illustrated in Figure 7.1. All crossings in the realizing drawing can be forced
to be vertex-vertex crossings by subdividing the original edges appropriately.

7.2 Cubic realizing graphs

If G is a cubic graph, then mcr(G, Σ) = cr(G, Σ). The following proposition
shows that a study of the crossing numbers of cubic graphs is closely related
to the minor crossing numbers of the graphs that have these graphs as minors.

Proposition 7.4. For every graph G and every surface Σ there exists a cubic
realizing graph H . Moreover, if δ(G) ≥ 3, then G can be obtained from H by
contracting edges only. Further, if G is simple, then H is simple, otherwise
there exists a simple cubic realizing graph H ′ of G.

Proof. Let H0 be a realizing graph of G without removed edges and let
D0 = (ϕ, ε) be an optimal drawing of H0. We shall describe H in terms of
its drawing D obtained from D0. For each vertex v of H0 of degree d :=
degH0

(v) 6= 3, let Uv be a closed disk containing ϕ(v) in its interior, which
satisfies the following conditions: (i) a small neighborhood of Uv contains no
crossings, (ii) Uv is disjoint from Uu for every u ∈ V (H0) \ {v}, and (iii)
Uv ∩ ε(E(H0)) is connected.
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. . .
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Figure 7.2: Drawing a cubic realizing graph.

For the cases d > 3, d = 2, and d = 1, we modify D0 in Uv as indicated in
Figure 7.2. Let D be this new drawing and H the graph defined by D.

Clearly, G ≤m H , so cr(H, Σ) ≥ mcr(G, Σ). The fact that D contains
no new crossings implies mcr(G, Σ) = cr(H0, Σ) = cr(D, Σ) ≥ cr(H, Σ). A
combination of these two inequalities proves cr(H, Σ) = mcr(G, Σ).

If δ(G) ≥ 3, then we can assume δ(H0) ≥ 3. This implies |E(H)|−|V (H)| =
|E(H0)| − |V (H0)|. Since H0 ≤m H , the graph G can be obtained from H by
contracting edges only.

If G is simple, we may assume H0 is simple. The construction did not
introduce any new parallel edges, so H is simple. If G is not simple, then H
may have some parallel edges. These may be subdivided without changing
the crossing number and the new vertices of degree two can be replaced as
in Figure 7.2 (b). The resulting graph H ′ is simple and cubic. The same
arguments as before show cr(H ′, Σ) = cr(H, Σ) = mcr(G, Σ).



Chapter 8

Bounds on the minor crossing
number

Several graph invariants are used in this chapter to yield general lower bounds
on the minor crossing numbers of graphs. Section 8.1 relates the minor crossing
numbers and the ordinary crossing numbers in terms of the maximum degree
of graphs. Section 8.2 bounds the minor crossing numbers from below using
the genus of graphs. Finally, Section 8.3 bounds the minor crossing numbers
of graphs in terms of the minor crossing numbers of their components and
blocks. The lower bounds are applied to several families of graphs in Chapter
10. As explained in Section 2.6, lower bounds on minor crossing numbers may
be of interest in VLSI design.

8.1 Using the maximum degree

In this section, we present a generalization of the following result of Moreno
and Salazar:

Theorem 8.1 ([86]). Let G be a minor of a graph H with ∆(G) ≤ 4. Then,
1
4

cr(G, Σ) ≤ cr(H, Σ) for every surface Σ.

Suppose that G = H/e for e = v1v2 ∈ E(H). For i = 1, 2, let di =
degH(vi) − 1 be the number of the edges incident with vi and distinct from e.
We may assume that d1 ≤ d2. As shown in Figure 8.1, any given drawing of
H can be changed into a drawing of G such that every crossing involving e is
replaced by d1 new crossings.

More generally, let G be a minor of H . We assume that G = (H − R)/C,
which implies E(G) = E(H) \ (R ∪ C). Let DH be a drawing of H . Then
DH determines a drawing of H − R in Σ in which no new crossings arise. On
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v1

v2 v1v2

Figure 8.1: Contracting edges on a drawing.

the other hand, by contracting the edges in C, the number of crossings can
increase. If we perform edge-contractions one-by-one and every time apply
the redrawing procedure described above, we can control the number of new
crossings. To do the counting properly, we introduce some additional notation.

Define w(G, H) : E(H) → N by setting w(G, H, e) = 0 if e ∈ R and
w(G, H, e) = 1 if e ∈ E(G). If e ∈ C, then let Tv be the maximal tree
induced by C containing e. Let T1 and T2 be the components of Tv − e and
let di, i = 1, 2, denote the number of edges in E(G) incident with Ti. Set
w(G, H, e) = min{d1, d2}. For e ∈ E(H), we call w(G, H, e) the weight of e.

Let G ≤m H1 ≤m H , so that G = (H1 − R1)/C1, H1 = (H − R′)/C ′, and
G = (H − R)/C, where R = R1 ∪ R′ and C = C1 ∪ C ′. Let DH be a drawing
of H . Furthermore, let D1 be a drawing of H1 obtained from DH by removing
the edges of R′ and applying the described contractions of the edges in C ′ one
after another. When performing these contractions, we proceed as shown in
Figure 8.1 except that the criterion determining whether we contract towards
v1 or v2 is not the degree of v1 or v2, but the quantity d1 or d2 introduced in
the previous paragraph. Similarly, let DG be obtained from D1 by using R1

and C1.

Lemma 8.2. Let G, H , H1 and their drawings DG, DH , D1 be as defined in
the previous paragraph. Then,

∑

x∈X(D1)

w(G, H1, ex) w(G, H1, fx) ≤
∑

x∈X(DH )

w(G, H, ex) w(G, H, fx). (8.1)

Proof. It is enough to prove this for the case when H1 and H differ only by
a single minor operation with respect to G, i.e. R′ ∪ C ′ = {e}. The general
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statement then follows by induction. If H1 = H − e, then w(G, H, e) = 0 and
the sums are equal.

Suppose that H1 = H/e. As simplifying the image of e decreases the
right sum, we may assume that εH(e) is a simple arc. We adopt the notation
introduced above. The edge e is contracted, so e ∈ C. After the contraction
of e, all weights remain the same, i.e. w(G, H1, f) = w(G, H, f) for every
f ∈ E(H) − e. Hence, the difference between the left and the right side in
(8.1) is that the crossings of e in DH are replaced by the newly introduced
crossings in D1 (as shown in Figure 8.1). Let x ∈ X(DH) with ex = e = v1v2

and let E1 be the set of edges incident with v1. Since
∑

f∈E1−e w(G, H1, f) =∑
f∈E1−e w(G, H, f) = w(G, H, e) and to each crossing x of e with some e′ in

D1 correspond exactly the crossings of E1 − e with the edge e′, the inequality
(8.1) follows.

Theorem 8.3. Let G be a minor of a graph H , Σ a surface, and τ :=⌊
1
2
∆(G)

⌋
. Then,

cr(G, Σ) ≤ τ 2 cr(H, Σ).

Proof. Let DH be an optimal drawing of H and let DG be the drawing of
G, obtained from DH as described before Lemma 8.2. We apply Lemma 8.2
with H1 = G. Obviously, cr(G, Σ) ≤ cr(DG, Σ). As all the edges in G have
weight w(G, G, e) = 1, the left side of inequality (8.1) equals the number of
crossings in DG. Since the weights w(G, H, e) of the edges in H are bounded
from above by τ , the theorem follows.

We obtain the following corollary by using Theorem 8.3 together with def-
inition (7.1) and Lemma 7.2.

Corollary 8.4. Let G be a graph, Σ a surface, and τ :=
⌊

1
2
∆(G)

⌋
. Then,

mcr(G, Σ) ≤ cr(G, Σ) ≤ τ 2 mcr(G, Σ).

Corollary 8.5. Let G be a graph, Σ a surface, and τ :=
⌊

1
2
∆(G)

⌋
. Then,

1
τ2 Mcr(G, Σ) ≤ cr(G, Σ) ≤ Mcr(G, Σ).

8.2 Using the genus

In this section we derive some genus-related lower bounds for the minor crossing
numbers of graphs.
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Theorem 8.6. Let G be a graph with genus g(G) and nonorientable genus
g̃(G). If Σ is an orientable surface of genus g(Σ), then mcr(G, Σ) ≥ g(G)−g(Σ)
and mcr(G, Σ) ≥ g̃(G) − 2g(Σ).

If Σ is a nonorientable surface with genus g(Σ), then mcr(G, Σ) ≥ g̃(G) −
g(Σ).

Proof. Let D be an optimal drawing of a realizing graph Ḡ in an orientable
surface Σ. For each crossing in D, we add a handle to Σ and obtain an
embedding of Ḡ in a surface Σ′ of genus g(Σ′) = g(Σ) + mcr(G, Σ). Using
minor operations on D, we can obtain an embedding of G in Σ′, which yields
g(Σ′) ≥ g(G). Thus, we have mcr(G, Σ) ≥ g(G) − g(Σ).

The other two claims can be proven in a similar way by adding crosscaps
at the crossings of D. Note that adding a crosscap to an orientable surface of
genus g results in a surface of nonorientable genus 2g + 1.

When the genus of a graph is not known, one can derive the following lower
bound using the Euler Formula and the same technique as in the preceding
proof.

Proposition 8.7. Let G be a graph with n = |V (G)|, m = |E(G)|, and girth
r and let Σ be a surface of Euler genus g. Then, mcr(G, Σ) ≥ r−2

r
m−n−g+2.

Proof. As in the proof of Theorem 8.6 we obtain an embedding D of G
in Ng+k, where k = mcr(G, Σ). Let f be the number of faces in D. All
faces have length at least r, thus f ≤ 2m

r
. The Euler Formula results in

2 − (g + k) = n − m + f ≤ n − r−2
r

m, which yields the claimed bound.

For an improvement over Proposition 8.7 see Theorem 9.6. The following
proposition relates the minor crossing numbers in different surfaces with those
in the plane.

Proposition 8.8. The inequality mcr(G, Σ) ≤ max(0, mcr(G) − g(Σ)) holds
for every surface Σ and every graph G, where g(Σ) denotes the (non)orientable
genus of Σ.

Proof. We start with a realizing drawing of G in the sphere and remove
at least one existing crossing by adding either a crosscap (if the surface is
nonorientable) or a handle. This increases the genus of the surface by one and
the result follows.

The minor crossing numbers of G in two different surfaces Σ and Σ′ could
be related in a similar fashion.
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8.3 Using the connected components

Let G1, . . . , Gk be the components of a graph G. It is easy to see that
mcr(G) =

∑k
i=1 mcr(Gi). We shall extend this fact to the blocks (2-connected

components) of G, even in the setting of the minor crossing number in a sur-
face.

Let Σ be a surface and k a positive integer. We say that a collection
Σ1, . . . , Σk of surfaces is a decomposition of Σ, and write Σ = Σ1# · · ·#Σk, if
Σ is homeomorphic to the connected sum of Σ1, . . . , Σk.

Theorem 8.9. Let Σ be a surface and let G be a graph with blocks G1, . . . , Gk.
Then,

k∑

i=1

mcr(Gi, Σ) ≤ mcr(G, Σ) ≤ min

{
k∑

i=1

mcr(Gi, Σi)

∣∣∣∣ Σ = Σ1# · · ·#Σk

}

.

(8.2)

Proof. Let D be an optimal drawing of a realizing graph Ḡ in Σ. It contains
an induced subdrawing Di of some graph G̃i with Gi as a minor for every
i = 1, . . . , k. The graphs Gi and Gj , i 6= j, are either disjoint (implying G̃i and
G̃j are disjoint), or they have a cutvertex v in common (implying that G̃i and
G̃j intersect in a subgraph of the tree Tv). Since there are at least mcr(Gi, Σ)
crossings in Di and there are no crossings in the subdrawing induced by Tv for
any v ∈ V (G), the lower bound follows.

We use the block-cutvertex forest of G to reorder the blocks of G in such
way that, for i = 2, . . . , k, the block Gi shares at most one vertex with the
graph Hi :=

⋃i−1
j=1 Gj .

Let Σ1, . . . , Σk be a decomposition of the surface Σ, which attains the
minimum

∑k
i=1 mcr(Gi, Σi). For i = 1, . . . , k, let the Di be some optimal

drawing of Ḡi in Σi. We set D̃1 = D1, H̃1 = Ḡ1, and Π1 = Σ1. For i = 2, . . . , k,
we choose a face fi of D̃i−1 in Πi−1 and f ′

i of Di in Σi. If Hi−1 and Gi share a
vertex v, then we choose fi incident with some vertex xi of Tv ≤ H̃i−1 and f ′

i

incident with some vertex yi of Tv ≤ Ḡi, otherwise the choice can be arbitrary.
By constructing a connected sum of faces fi, f ′

i and, if necessary, connecting xi

with yi in the new face fi # f ′
i , we obtain a drawing D̃i of H̃i in Πi := Πi−1 # Σi.

It is clear that G ≤m H̃k and that D̃k is a drawing of H̃k in Σ with at most∑k
i=1 mcr(Gi, Σi) crossings. This proves the upper bound.

The fact that S0 has only trivial surface decompositions implies the follow-
ing:
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Corollary 8.10. Let G be a graph with blocks G1, . . . , Gk. Then,

mcr(G) =

k∑

i=1

mcr(Gi).

Proof. To prove this, one has to observe that the left-hand side and the
right-hand side of the inequalities in Theorem 8.9 are equal for Σ = S0.

The strictness of the upper bound in Theorem 8.9 is open for surfaces other
than S0.



Chapter 9

Structure of graphs with
bounded mcr(G, Σ)

As mentioned in Chapter 7, the family ω(k, Σ) of all graphs with mcr(G, Σ) at
most k is minor-closed. Let us denote by F (k, Σ) the set of minimal forbidden
minors for ω(k, Σ). Also, let F (k) and ω(k) stand for F (k, S0) and ω(k, S0),
respectively.

The graphs in ω(0, Σ) have a simple topological characterization – they
are precisely the graphs that can be embedded in Σ. A similar topological
characterization holds for graphs in ω(1). They are precisely the graphs that
can be embedded in the projective plane with face-width at most two. This
was observed by Robertson and Seymour in [109], where they determined the
set F (1) of minimal forbidden minors for ω(1):

Theorem 9.1 ([109]). The set F (1) contains precisely the 41 graphs G1, . . . ,
G35 and Q1, . . . , Q6, where G1, . . . , G35 are the minimal forbidden minors for
embeddability in the projective plane and Q1, . . . , Q6 are the projective planar
graphs that can be obtained from the Petersen graph by successively applying
the Y ∆ and ∆Y transformations.

This theorem establishes the following linear time algorithm for testing if
mcr(G) ≤ 1: first embed G in the projective plane [84] and then check whether
the face-width of the embedding is less than or equal to two [59].

Let us remark that the forbidden minors for the projective plane have been
determined by Glover, Huneke, and Wang [44] and Archdeacon [8]. There are
seven graphs that can be obtained from the Petersen graph by Y ∆ and ∆Y
operations (known as the Petersen family), but one of them is a forbidden
minor for the projective plane.

We will prove that every family ω(k, Σ) has a similar topological represen-
tation, for which we need some further definitions.
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9.1 Systems of curves

Let γ be a onesided simple closed curve in a nonorientable surface Σ of Euler
genus g. Cutting Σ along γ and pasting a disk to the resulting boundary yields
a surface of Euler genus g − 1, denoted by Σ/γ. We say that Σ/γ is obtained
from Σ by annihilating a crosscap at γ.

Let us call a set of pairwise noncrossing, onesided, simple closed curves
Γ = {γ1, . . . , γk} in a nonorientable surface Σ a k-system in Σ. It is easy to see
that the surface (Σ/γi)/γj is homeomorphic to (Σ/γj)/γi for distinct γi, γj ∈ Γ.
Therefore the order in which we annihilate the crosscaps at prescribed curves
is irrelevant and we define Σ/Γ := Σ/γ1/ . . . /γk. We say that the k-system Γ
in Σ is an orienting k-system if the surface Σ/Γ is orientable.

Suppose that D is a drawing of G in a nonorientable surface Σ with at most
c crossings. If there exists an (orienting) k-system Γ in Σ with each γ ∈ Γ
intersecting D in at most two points, then we say that D is (orientably) (c, k)-
degenerate, and we call Γ an (orienting) k-system of D. If c = 0, then D is an
embedding and we also say that it is k-degenerate. Note that an embedding of
a graph in the projective plane is 1-degenerate precisely when the face-width
of the embedding is at most two.

Lemma 9.2. Let Σ be an (orientable) surface of Euler genus g and let k ≥ 1
be an integer. Then, for any l ∈ {1, . . . , k}, the family ω(k, Σ) consists precisely
of all those graphs G ∈ ω(k − l, Ng+l) for which there exists a graph G̃ that
contains G as a minor and that can be drawn in the nonorientable surface Ng+l

of Euler genus g + l with (orienting) degeneracy (k − l, l).

Proof. Let G ∈ ω(k, Σ) and let Ḡ be its realizing graph, drawn in Σ with at
most k crossings. Choose a subset of l crossings of Ḡ. By replacing a small
disk around each of the chosen crossings with a Möbius band, we obtain a
drawing of Ḡ in Ng+l with (orienting) degeneracy (k − l, l). The replacement
at one such crossing and the corresponding curve annihilating the crosscap are
illustrated in Figure 9.1.

For the converse, we first prove the induction basis l = 1. Let G̃ be the
graph that contains G as a minor and is drawn in Ng+1 with at most k − 1
crossings and let us assume that an (orienting) onesided curve γ intersects the
drawing of G̃ in at most two points, x and y. After cutting the surface along
γ and pasting a disk ∆ on the resulting boundary, we get a surface of Euler
genus g. On the boundary of ∆, two copies of x and y interlace. By adding
paths Px and Py to join the copies of x and y, respectively, we obtain a drawing
D′ of a graph G′, which contains G̃ (and hence also G) as a minor. Clearly,
D′ is a drawing in Σ and has one crossing more than the drawing of G̃ (the
one between Px and Py). As D′ has at most k crossings, G ∈ ω(k, Σ).
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Figure 9.1: Replacing a crossing by a crosscap and a respective annihilating
curve.

If l ≥ 2, we may annihilate the crosscaps consecutively, since the curves
in the corresponding l-system are noncrossing. Note that if the l-system is
orienting, we obtain an orientable surface Σ.

Lemma 9.3. Let G̃ be a graph with an (orientably) k-degenerate embedding
in a surface Σ. If G is a surface minor of G̃, then G is also (orientably)
k-degenerate.

Proof. It suffices to verify the claim for edge-deletions and edge-contractions.
For edge-deletions, there is nothing to prove. For edge contractions, we verify
that a k-system for G̃ can be transformed into a k-system for G̃/e, e = uv.

Let Γ be a k-system of G̃ and let Γe ⊆ Γ contain the curves of Γ that
intersect e. If γ ∈ Γe intersects e twice, we may replace γ in Γ by a curve that
does not intersect G at all. We may thus assume that each γ ∈ Γe intersects
e exactly once. Let t = |Γe|, let x1, . . . , xt be the points of intersection of e
with curves in Γe, and let x0 = u, xt+1 = v. By contracting segments xixi+1,
i = 0, . . . , t we obtain an embedding of G̃/e in which the curves of Γe are
modified to touch at the new vertex, obtained by the contraction of e. Thus,
the modified curves of Γ form a k-system of G̃/e.

If we restrict edge-contraction to edges that are not involved in crossings,
Lemma 9.3 can be extended to drawings with crossings.

9.2 Structure theorem

A direct consequence of Lemmas 9.2 and 9.3 is the following:

Theorem 9.4. Let Σ be an (orientable) surface of Euler genus g and let k ≥ 1
be an integer. Then, ω(k, Σ) consists of precisely all the graphs that can
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f1f1f1 f2
f2f2 f2f2f2

(a) (b) (c)

Figure 9.2: Embeddings in the Klein bottle with orienting degeneracy 2.

be embedded in the nonorientable surface Ng+k of Euler genus g + k with
(orienting) degeneracy k.

Proof. Let G be embedded in Ng+k with (orienting) degeneracy k. Then
G ∈ ω(k, Σ) by Lemma 9.2.

Let G ∈ ω(k, Σ). By Lemma 9.2, there exists a graph G̃ ∈ ω(k, Σ) that has
G as a minor and has a k-degenerate embedding in Ng+k. Then G has such
embedding by Lemma 9.3.

Figure 9.2 (a) exhibits the geometric structure of a realizing graph in the
Klein bottle, (b) shows the general structure of its minors G with mcr(G) ≤ 2,
and (c) is a degenerate example of this structure in which the curves of the
corresponding 2-system {γ1, γ2} touch twice.

Theorem 9.4 can be used to express a more intimate relationship between
the graphs in ω(k, Σ) and ω(0, Σ).

Corollary 9.5. Let Σ be a surface of Euler genus g, k ≥ 0 an integer, and let
G ∈ ω(k, Σ). Then there exists a graph H , which embeds in Σ, such that G
can be obtained from H by identifying at most k pairs of vertices.

Proof. Let G ∈ ω(k, Σ). Then G has an (orientably) k-degenerate embedding
in Ng+k by Theorem 9.4. Let Γ be a corresponding (orientable) k-system. We
may assume that all the intersections of curves in Γ with G are at the vertices
of G, thus each γ ∈ Γ intersects G in at most two vertices.

Assume first that Γ = {γ} and that γ intersects G at the vertices u, v. We
cut Ng+1 along γ and paste a disk ∆ to the boundary of the cut surface. We
thus obtain an embedding of a graph G′ in Σ that has the vertices u, v, u′, v′

on the boundary of ∆. We add the edge uu′ and contract it to obtain a graph
H embedded in Σ. Then G is obtained from H by identifying the vertices v
and v′.
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As the curves in Γ are pairwise noncrossing, we may resolve the case |Γ| > 1
by induction.

9.3 Improved bound

Theorem 9.4 can be used to improve the lower bound of Proposition 8.7.

Theorem 9.6. Let G be a simple graph with n = |VG|, m = |EG| and let Σ
be a surface of Euler genus g. Then,

mcr(G, Σ) ≥ 1
2
(m − 3(n + g) + 6).

We need two technical lemmas to prove this result. Let Σ be a closed surface
and x, y ∈ Σ. Let Γ = {γ1, . . . , γk} be a k-system of onesided noncrossing
simple closed curves in Σ such that γi ∩ γj = {x, y} for all 1 ≤ i < j ≤ k. Let
γi = γ1

i ∪γ2
i where γl

i is an arc from x to y. If a curve γl
i ∪γm

j (i 6= j) bounds a
disk in Σ whose interior contains no segment of curves in Γ, then we say that
γl

i ∪ γm
j is a Γ-digon.

Lemma 9.7. A k-system Γ has at most k − 1 Γ-digons.

Proof. Let us contract one of the segments, say γ1
1 . Then each other γl

i

becomes a loop in Σ. Since Γ is a k-system of onesided noncrossing loops,
the loops in Γ generate a k-dimensional subspace of the first homology group
H1(Σ; Z2). Therefore, the 2k−1 loops L =

{
γl

i | 1 ≤ i ≤ k, l = 1, 2
}
\{γ1

1} also
generate at least k-dimensional subspace. If there are k Γ-digons, then k of
the loops could be removed from L and the remaining k − 1 loops would still
generate the same k-dimensional subspace. This contradiction completes the
proof.

Let G be a graph and D its k-degenerate embedding in a surface Σ. Let
Γ = {γ1, . . . , γk} be the corresponding k-system of D. The curves γi are
pairwise noncrossing, so we may assume that γi and γj (i 6= j) intersect (touch)
only in points where they intersect the graph. We modify the curves in Γ so
that they intersect D only at vertices. If γi intersects D at vertices ui and vi,
we add to D two new edges ei, fi with endvertices ui, vi whose embedding in
Σ coincides with γi. (If ui = vi, we add one loop ei at vi.) We call the resulting
embedding D′ a k-augmented embedding of D and the corresponding graph
G′ a k-augmented graph of G (with respect to Γ). Note that G is a subgraph
of G′.
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Lemma 9.8. Let D be a k-degenerate embedding of a simple graph G in a
nonorientable surface Σ and let D′ be a k-augmented embedding of D. Then,
D′ has at most k faces of length two and has no faces of length one.

Proof. Since G is a simple graph, any face of length one or two involves some
edge ei, fi (i ∈ {1, . . . , k}). If ei is a loop, it cannot bound a face since γi is
a onesided curve in Σ. Two loops cannot form a facial boundary, since then
they would be homotopic, but homotopic onesided curves always cross each
other. An edge ei or fi can thus be a part of a face of length two only when
ui 6= vi.

For simplicity of notation, suppose that γ1, . . . , γt all contain the same pair
of vertices u1 and v1. It suffices to show that the edges ei, fi (i = 1, . . . , t) and
possible edge e0 = u1v1 of G together form at most t faces of length two. By
Lemma 9.7, {ei, fi | 1 ≤ i ≤ t} form at most t − 1 faces of length two, and e0

can give rise to one additional such face. The application of this argument to
all pairs ui, vi completes the proof of the lemma.

With these two Lemmas in hand, we are prepared to prove Theorem 9.6.
Proof of Theorem 9.6. Let mcr(G, Σ) = k. By Theorem 9.4, there exists
an embedding D of G in Ng+k with crossing degeneracy k. Let D′ be a k-
augmented embedding of D. By Lemma 9.8, removing at most k edges from D′

yields an embedding D′′ without faces of length two, implying |FD′′ | ≤ 2
3
|ED′′|.

The Euler Formula implies n − |ED′′| + |FD′′ | = 2 − (g + k) and the stated
inequality follows.

The extension of the bound of Proposition 8.7 for graphs of girth r ≥ 4
requires additional arguments.



Chapter 10

Applications to families of
graphs

In this chapter, we apply the lower bounds on the minor crossing number
developed in the preceding chapters to several families of graphs. In general,
Theorem 8.3 yields better bounds for graphs of small maximum degree (cubes,
Cm � Cn), while Theorem 8.6 suits graphs with large maximum degree better,
e.g. complete bipartite graphs. Theorem 9.6 performs best on dense graphs of
girth three, e.g. complete graphs.

10.1 Complete graphs

Both Theorem 8.6 and Theorem 9.6 imply the following inequality, which is
sharp for n ∈ {3, . . . , 8}, as demonstrated in Figure 10.1:

Proposition 10.1. mcr(Kn) ≥
⌈

1
4
(n − 3)(n − 4)

⌉
for n ≥ 3.

The following proposition establishes an upper bound:

Proposition 10.2. mcr(Kn) ≤
⌊

1
2
(n − 5)2

⌋
+ 4 for n ≥ 9.

Proof. We shall exhibit graphs K̃n (n ≥ 9) together with their drawings Dn

so that K̃n contains Kn as a minor and that cr(Dn) =
⌊

1
2
(n − 5)2

⌋
+ 4. Figure

10.2 presents drawings of K̃10 and K̃11. Different vertex symbols (diamond,
circle, triangle, etc.) represent vertices in the same tree Tv, v ∈ V (Kn), which
contracts to the vertex v in the Kn minor. By contracting the thick edges of
the graphs in Figure 10.2, we obtain K10 and K11, respectively.

The reader shall have no difficulty placing the tree Tn+1 into Dn in order
to obtain Dn+1. The tree Tn+1 crosses precisely each Tv with 7 ≤ v ≤ n. To
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Figure 10.1: Realizing drawings of K6, K7, and K8.

connect Tn+1 with the trees T1, . . . , T6, we need three new crossings if n is even
(T1 with T2, T3 with T4, and T5 with T6) and no new crossing if n is odd.

Let cn denote the number of crossings in the drawing of K̃n described above,
and let ak = c2k. We have a4 = 6, a5 = 14, a6 = 26 and a recurrence equation,

ak+1 = c2k+2 = c2k+1 + (2k − 1 − 6)

= c2k + (2k − 6) + 3 + (2k − 1 − 6)

= c2k + 4k − 8

= ak + 4k − 8,

whose solution is ak = 2k2 − 10k + 14. For even values of n, this yields

cn = 1
2
((n − 5)2 + 3)

and, for odd values of n,
cn = 1

2
(n − 5)2 + 4.

Corollary 10.3. Let Σ be a fixed surface and cn = mcr(Kn,Σ)
n(n−1)

for n ≥ 3. The

sequence {cn}∞n=3 is nondecreasing and, for Σ = S0,

c∞ := lim
n→∞

cn ∈
[

1
4
, 1

2

]
.

Proof. We first prove the following claim: if mcr(Kn, Σ) ≥ c n(n − 1), then
mcr(Km, Σ) ≥ c m(m − 1), for every m ≥ n.

It suffices to prove this for m = n + 1. Let D̄ be a realizing drawing of
Kn+1 in Σ. Let Ti be the tree in D̄ which contracts to the vertex i of Kn+1.
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T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

Figure 10.2: Drawings of graphs K̃10 and K̃11.

If we remove Ti and all incident edges from D̄, we obtain a drawing of a
graph with Kn minor. This can be done in n + 1 different ways. These n + 1
drawings contain at least (n + 1) mcr(Kn, Σ) crossings altogether. We may
assume there are no removed edges in D̄, as their number can only increase
the number of crossings. Each crossing from D̄ then appears in at most n − 1
of these drawings. Therefore, (n − 1) mcr(Kn+1, Σ) ≥ (n + 1) mcr(Kn, Σ) ≥
c (n + 1) n (n − 1).

The stated bounds on c∞ for Σ = S0 follow from Proposition 10.1 and
Proposition 10.2.

We believe that the minor crossing numbers of complete graphs lie close
to the upper bound from Proposition 10.2 and that the following asymptotic
holds: mcr(Kn) = 1

2
n2 + O(n).

10.2 Complete bipartite graphs

The nonorientable genus of complete bipartite graphs [85] in combination with
Theorem 8.6 establishes the following proposition:

Proposition 10.4. mcr(Km,n) ≥
⌈

1
2
(m − 2)(n − 2)

⌉
for 3 ≤ m ≤ n.

To establish the upper bound, consider a set of graphs K̃m,n. These are
constructed in a similar way as their complete analogues K̃n. An example is
presented in Figure 10.3 (a).

Proposition 10.5. mcr(Km,n) ≤ (m − 3)(n − 3) + 5 for 4 ≤ m ≤ n.
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(a) (b) (c)

Figure 10.3: (a) A drawing of the graph K̃8,7 with 22 crossings, (b) a realizing
drawing of K3,13, (c) a realizing drawing of K4,13.

Proof. For 4 ≤ m ≤ n, let the drawing analoguous to the one in Figure 10.3
(a) have k(m, n) crossings. Then,

k(m, n) = (m − 4)(n − 4) + 2

⌈
m − 2

2

⌉
+ 2

⌈
n − 4

2

⌉

≤ (m − 4)(n − 4) + (m − 2) + 2 + (n − 4) + 2

= (m − 3)(n − 3) + 5.

The lower bound from Proposition 10.4 is sufficient to establish exact values
of mcr(Km,n) for small m.

Theorem 10.6. mcr(K3,n) =
⌈

n−2
2

⌉
and mcr(K4,n) = n − 2 for n ≥ 3.

Proof. Proposition 10.4 implies mcr(K3,n) ≥
⌈

n−2
2

⌉
for n ≥ 3 and mcr(K4,n)

≥ n − 2 for n ≥ 4. Drawings, analogous to those in Figure 10.3 (b) and (c),
demonstrate these lower bounds are tight.

Despite the fact that the lower bound from Proposition 10.4 is attainable
for m = 3, 4, we believe that the upper bound from Proposition 10.5 lies closer
to the actual minor crossing number: mcr(Km,n) = mn+ O(m+ n) for m ≥ 5.

10.3 Hypercubes

Applying Proposition 8.7 to hypercubes yields
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Figure 10.4: A drawing of Q̃5 with 64 crossings. Dashed edges correspond to
the original edges of a matching between two Q̃4 subgraphs.

Proposition 10.7. mcr(Qn) ≥ (n − 4)2n−2 + 2 for n ≥ 4.

Proof. The graph Qn has v = 2n vertices, e = n2n−1 edges, and girth r = 4.
Proposition 8.7 implies mcr(Qn) ≥ r−2

r
e − v + 2 = (n − 4)2n−2 + 2.

Combining the best known lower bound for crossing numbers of hypercubes
cr(Qn) > 4n/20− (n2 + 1)2n−1 by Sýkora and Vrťo [121] with Corollary 8.4 we
can deduce an alternative lower bound. It is stronger than Proposition 10.7
for large values of n:

Proposition 10.8. mcr(Qn) > 1
n2

(
1
5

4n − 2n+1
)
− 2n+1 for n ≥ 4.

Proof. In the graph Qn, vertices have degree n. Set τ =
⌊

n
2

⌋
. By Corollary

8.4, we have mcr(Qn) ≥ 1
τ2 cr(G) > 1

n2

(
1
5

4n − 2n+1
)
− 2n+1.

As demonstrated in Figure 10.4, one can obtain a family of graphs Q̃n and
their drawings Dn with ∆(Q̃n) = 4 and Q̃n having Qn as a minor. These,
which were inspired by Figures 2 and 3 in [80], establish the following upper
bound:
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Figure 10.5: A drawing of G7,9 with 30 crossings. Dashed edges correspond to
the original edges of a cycle corresponding to C9.

Proposition 10.9. mcr(Qn) ≤ 2 · 4n−2 − (n − 1)2n−1 for n ≥ 2.

Proof. Let a drawing Dn of a graph with Qn minor be iteratively designed
as in Figure 10.4 and let q(n) be its number of crossings. Then q(3) = 0 and
q(n) = 2q(n − 1) +2n−1(2n−3 − 1) for n ≥ 3. Solving this recurrence relation
establishes q(n) = 2 · 4n−2 − (n − 1)2n−1.

10.4 Cartesian products of cycles

Combining the results presented in [42] with Theorem 8.3 implies the following:

Proposition 10.10. 1
4
(m − 2)n ≤ mcr(Cm � Cn) for either 3 ≤ m ≤ 7,

n ≥ m, or m ≥ 7, n ≥ 1
2
(m + 1)(m + 2).

Figure 10.5 presents a drawing of the graph G7,9 whose generalization Gm,n,
3 ≤ m ≤ n contains a Cm � Cn minor. It was constructed by Richter, Salazar,
and the author [101] and establishes an upper bound for mcr(Cm � Cn).

Proposition 10.11. Let 3 ≤ m ≤ n. Then, mcr(Cm � Cn) ≤ 2
⌊

m−1
2

⌋ ⌊
n+1

2

⌋
.

Proof. For odd m, the edges of a (red) cycle corresponding to Cm cross in
m−1

2
crossings, where one vertex of each cycle is not crossed. For even m, two

vertices need not be crossed, thus the number of crossings amounts to m−2
2

.
In general this implies

⌊
m−1

2

⌋
crossings per red cycle. In Figure 10.5, these

crossings are between thick edges and they are all the crossings for even n. For
odd n, additional

⌊
m−1

2

⌋
crossings appear on the original edges of the (blue)

cycles corresponding to Cn. In Figure 10.5, these crossings are between thin
edges.
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[34] P. Erdős, R. K. Guy, Crossing number problems, Amer. Math. Monthly
80 (1973), 52–58.

[35] G. Exoo, F. Harary, J. Kabell, The crossing numbers of some generalized
Petersen graphs, Math. Scand. 48 (1981), 184–188.

[36] L. Faria, C. M. H. de Figueiredo, On Eggleton and Guy conjectured upper
bound for the crossing number of the n-cube, Math. Slovaca 50 (2000),
271–287.



100 BIBLIOGRAPHY

[37] L. Faria, C. M. H. de Figueiredo, O. Sýkora, I. Vrťo, An improved upper
bound on the crossing number of the hypercube, in: H. L. Bodlaender,
ed., Graph-theoretic Concepts in Computer Science, Lecture Notes in
Comput. Sci. 2880, Springer, Berlin, 2003, 230–236.
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[54] P. Hliněný, Crossing-critical graphs have bounded path-width, J. Combin.
Theory Ser. B 88 (2003), 347–367.
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Index of Terms

active vertex, 35
adjacent

edges, 5
faces, 9
vertices, 5

aligned
family, 44, 58
pair, 44

annihilating a crosscap, 86
apex, 40, 65
area, 23
augmented

embedding, 89
graph, 87, 89

average degree, 22, 26, 56, 60, 63
axis, 51

binary tree, 23
bisection width, 18
block, 6, 7, 83
bridge gadget, 52
bundle, 32, 50, 69

coherent, 32–35, 38
splitting of, 32–34, 50, 51

cap, 65
Cartesian product, 7, 20, 68, 96

capped, 65, 66
chromatic

index, 7, 59
number, 7

circuit, 23, 27
clone, 50

coherent
bundles, 32–35, 38
clone gadgets, 50
gadgets, 43
pairs, 44
sets, 44

coloring, 7, 59
compatible

sequence, 39
tiles, 39

complement
of a graph, 7
of a tile, 41

complete
bipartite graph, 8, 59, 93
graph, 7, 91

component, 6
congestion, 17
connected, 23, 83

graph, 6
tile, 41
vertices, 6

contracted edge, 8, 76, 79, 80
cover, vertex, 6, 37
critical sequence, 43, 45, 55, 57
crosscap, 9, 82
crossed fence, 23
crossing, 10

edge-edge, 77
edge-vertex, 77
vertex-vertex, 77

Crossing Lemma, 15, 16, 24
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crossing number, 10
major, 76
minor, 27, 76
odd, 15
pair, 15
rectilinear, 11, 25
tile, 39

crossing-critical
edge, 21
graph, 10, 21, 35, 43, 60

cubic graph, 5, 59, 77
cut, 40, 42, 45
cutedge, 6
cutvertex, 6
cycle, 67, 96
cyclically-compatible

sequence, 39, 42
tile, 39

cyclization, 40, 42, 45, 55, 57

decomposition
of a crossing-critical graph, 23,

38
of a surface, 83

degenerate
drawing, 86, 87
tile, 43, 55, 57

degree
average, 22, 26, 56, 60, 63
maximum, 5, 79, 81
minimum, 5, 22
of a clone gadget, 50
of a vertex, 5

digon, 89
disjoint union, 7
distance, 24
distant edge, 32
dominating vertex, 6, 65, 66
drawing, 10

degenerate, 86, 87
graph of, 10, 89

normal, 10
optimum, 10
realizing, 76, 82
rectilinear, 10
tile, 39

edge, 5
congestion, 17
contracted, 8, 76, 79, 80
crossing-critical, 21
distant, 32
near, 32
original, 8, 76
removed, 8, 76
rotation, 9, 31
unbalanced, 65

edge-coloring, 7, 59
edge-connected graph, 6, 23
embedding

augmented, 89
into a graph, 17
into a surface, 9, 87
method, 17

empty graph, 8, 65
endvertex, 5
eodermdrome, 25
equivalent sequences, 40
Euler

characteristic, 9
Formula, 9, 82, 89, 90
genus, 9, 10, 87, 89

extending
family, 45
of a pair, 45

face
infinite, 10
of a drawing, 10
of an embedding, 9

facial walk, 9
family
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aligned, 44, 58
extending, 45
infinite, 60
propagating, 45, 57
saturating, 45
twisted, 44, 57

fence, crossed, 23
flip, 40
forbidden minor, 8, 85
forest, 6
function, zip, 31

gadget, 43
bridge, 52
clone, 50
coherent, 43
wheel, 51, 69

genus, 82
Euler, 9, 10, 87
of a graph, 9
of a surface, 9

girth, 6, 82
graph, 5

augmented, 87, 89
complete, 7, 91

bipartite, 8, 59, 93
crossing-critical, 10, 21, 35, 43,

60
cubic, 5, 59, 77
edge-connected, 6, 23
empty, 8, 65
homeomorphic, 7
isomorphic, 6
line, 7, 14
of a drawing, 10, 89
Petersen, 59, 85
realizing, 27, 76, 77
regular, 5, 22, 63
simple, 5
subcubic, 5

handle, 9, 82

homeomorphic graph, 7
homogeneous neighborhood, 35
homomorphism, 6
hub, 51
hypercube, 8, 19, 94

incidence, 24
incident

edge and face, 9
vertex and edge, 5
vertex and face, 9

index, chromatic, 7, 59
induced subgraph, 6
infinite

face, 10
family, 60
point, 10

internal vertex, 32, 51
intersection, 7
intertwined pair, 52
inverted tile, 40, 56
isomorphic graph, 6
isomorphism, 6

join
of a sequence, 40
of graphs, 7
of tiles, 40

Klein bottle, 9, 88

left
in a tile, 45
inverted tile, 40
wall, 39

length, 6
line, 24

graph, 7, 14
loop, 5

major crossing number, 76
maximum degree, 5, 79, 81
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minimum degree, 5, 22
minor, 8, 79, 81

crossing number, 27, 76
forbidden, 8, 85

minor-closed property, 8, 76
multigraph, 5
multiplicity neighborhood, 5, 31

near edge, 32
neighbor, 5
neighborhood, 5

homogeneous, 35
multiplicity, 5, 31

nonorientable surface, 9
normal drawing, 10
number

chromatic, 7
crossing, 10

odd crossing number, 15
optimum drawing, 10
orientable surface, 9
orientably degenerate drawing, 86
orienting system, 86
original edge, 8, 76

pair
aligned, 44
coherent, 44
crossing number, 15
intertwined, 52
split, 52
twisted, 44, 57

path, 6, 66, 69, 70
traversing, 44, 45

path-width, 23
perfect tile, 41, 42
Petersen graph, 59, 85
planar tile, 41
point, 24

infinite, 10
random, 25

product
capped Cartesian, 65, 66
Cartesian, 7, 20, 68, 96
zip, 26, 31, 59, 60, 65

projective plane, 9, 85
propagating family, 45, 57
property, minor-closed, 8, 76

realizing
drawing, 76, 82
graph, 27, 76, 77

rectilinear
crossing number, 11, 25
drawing, 10

regular graph, 5, 22, 63
removed edge, 8, 76
reversed

sequence, 40
tile, 40

right
in a tile, 45
inverted tile, 40
wall, 39

rim, 51
rotation

of edges, 9, 31
of vertices, 9, 65

saturating family, 45
semiactive vertex, 35
separator, 6
sequence

compatible, 39
critical, 43, 45, 55, 57
cyclically-compatible, 39, 42
equivalent, 40
reversed, 40
staircase, 55

shift, 40
simple graph, 5
sink, 32, 51
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source, 32, 51
spanned subgraph, 6
spanning subgraph, 6
sphere, 9, 83
split pair, 52
splitting a bundle, 32–34, 50, 51
spoke, 51, 69
staircase

sequence, 55
strip, 26, 46, 47, 55
tile, 55

star, 8, 68
subcubic graph, 5
subdivision, 7, 69
subgraph, 6

induced, 6
spanned, 6
spanning, 6

surface, 9
nonorientable, 9
orientable, 9

suspension, 65, 67
of a graph, 65
of a tile, 40

system, 86

tile, 26, 39
compatilbe, 39
connected, 41
crossing number, 39
cyclically-compatible, 39
degenerate, 43, 55, 57
drawing, 39
in a graph, 41
inverted, 40, 56
perfect, 41, 42
planar, 41
reversed, 40
staircase, 55

torus, 9
touching, 10

transformation, Y ∆, ∆Y , 7, 85
traversing path, 44, 45
tree, 6, 65, 68, 72

binary, 23
tree-width, 23
triangle, 7
tripod, 52
twist, 40
twisted

family, 44, 57
pair, 44, 57
staircase strip, 46, 55

unbalanced edge, 65
union, disjoint, 7

vertex, 5
active, 35
congestion, 17
cover, 6, 37
dominating, 6, 65, 66
internal, 32, 51
rotation, 9, 65
semiactive, 35

VLSI, 15, 23, 26

walk, facial, 9
wall, 39
weight, 80
wheel, 8, 69

gadget, 51, 69
in a graph, 51

width
bisection, 18
path-, 23
tree-, 23

zip
function, 31
product, 26, 31, 59, 60, 65
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Ḡ, 76
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G[F ], 6
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GD, 10

Gc, 7

G(i), 65

GS , 37
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⊙v2

G2, 31

G1 � G2, 7

G1 �L G2, 65

G1 �̂ G2, 65

Kn, 7

K̄n, 8

Km,n, 8

L(G), 7

Mcr(G,Σ), 76

NG(v), 5

N∗
G(v), 5

Pm, 6

Pu, 6

Qd, 8
Sn, 8
Tv, 8, 77
V (G), 5
Wn, 8
degG(v), 5
eg(G), 10
eg(Σ), 9
g(G), 9
g̃(G), 9
ℓ(v), 65
mcr(G), 76
mcr(G,Σ), 76
r(G), 6
rcr(G), 11
uP , 6
uPv, 6
A(G), 35
S(G), 35
Ng, 9
Sg, 9
∆(G), 5
Σ, 9
Σ/γ, 86
Ω(k,Σ), 76
β(G), 65
δ(G), 5
χ(G), 7
χ′(G), 7
χ(Σ), 9
χL(v), 65
ω(k), 85
ω(k,Σ), 76, 85
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Razširjeni povzetek

Definicije

V tem razdelku predstavimo osnovne pojme teorije prekrižnega števila. Pri
tem predpostavimo, da je bralec seznanjen s terminologijo teorije grafov in
topologije. Viri za seznanjanje s temi temami so [27, 38, 52].

Z izrazom graf označimo multigraf brez zank. Zanke namreč pri študiju
prekrižnega števila niso pomembne, saj lahko v vsako risbo grafa dodamo po-
ljubno mnogo zank, ne da bi povečali število križǐsč. Kadar želimo poudariti,
da graf nima večkratnih povezav, uporabimo izraz enostaven graf . Od stan-
dardne terminologije nekoliko odstopa le pojem okolice vozlǐsča v grafu. Z
NG(v) označimo običajno okolico vozlǐsča v v grafu G, t. j. množico vseh so-
sedov v. Z N∗

G(v) pa označimo multiokolico vozlǐsča v, t. j. multimnožico, v
kateri se vsak sosed vozlǐsča v pojavi tolikokrat, kot je večkratnost njegove
povezave z v.

Risba grafa G na ploskvi Σ je par preslikav D = (ϕ, ε), od katerih je ϕ :
V (G) → Σ injektivna vložitev vozlǐsč grafa na ploskev, ε : E(G)× [0, 1] → Σ
pa slika povezave grafa v enostavne (poligonalne) krivulje na Σ z upoštevanjem
slik krajǐsč povezav. Tako velja ε(uv, 0) = ϕ(u), ε(uv, 1) = ϕ(v) in nobena
slika vozlǐsča ne leži v notranjosti slik povezav, ε(E(G)×(0, 1))∩ϕ(V (G)) = ∅.

Naj bo D = (ϕ, ε) risba grafa G na ploskvi Σ. Povezane komponente
Σ \ ε(E(G) × [0, 1]) imenujemo lica risbe D.

Naj bo x slika vozlǐsča v na risbi D na ploskvi Σ in naj bo U taka okolica
x, da je ε(E × [0, 1]) ∩ U homeomorfna množici intervalov, spojenih v x. Naj
bo B ⊆ U okolica x, homeomorfna disku, za katero velja |∂B ∩ ε(E× [0, 1])| =
degG(v). Vsaka točka tega preseka ustreza eni povezavi, sosednji z v, in njihovo
zaporedje na ∂B določa ciklično permutacijo povezav, s tem pa tudi vozlǐsč,
sosednjih z v. Tej permutaciji rečemo ciklična rotacija povezav ali vozlǐsč okrog
v na risbi D.

Naj bosta e in f dve poljubni povezavi v G s slikama r in s na Σ. Predpo-
stavimo, da x ∈ r ∩ s ni slika vozlǐsča iz G. Naj bo U taka okolica x v Σ, da
za vsako okolico B ⊆ U točke x, homeomorfno disku, velja B ∩ r ∩ s = {x} in
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|∂B ∩ (r ∪ s)| = 4. Če se točke r in s prepletajo na meji ∂B pri kaki okolici
B (in zato pri vseh), pravimo, da se e in f oz. r in s križata v x, točko x pa
označimo s pojmom križǐsče. Če se točke r in s na meji ∂B ne prepletajo,
potem se e in f (r in s) v x dotikata, x pa poimenujemo dotikalǐsče.

Risba D je normalna, če imata v D sliki poljubnih dveh povezav končen
presek, D ne vsebuje dotikalǐsč in se v vsakem križǐsču D sekata največ dve
različni povezavi. Za normalno risbo D grafa G definiramo GD kot graf risbe
D; njegova vozlǐsča so natanko vozlǐsča grafa G in križǐsča risbe D, dve vozlǐsči
pa sta povezani, če med njima obstaja enostavna krivulja v risbi D, torej del
risbe neke povezave G, ki ne vsebuje nobenega drugega vozlǐsča GD.

Prekrižno število grafa G na Σ, cr(G, Σ), je definirano kot minimalno število
križǐsč na neki normalni risbi grafa G na Σ. S cr(G) označimo prekrižno
število grafa G na sferi oz. ravnini. Risba grafa na ravnini je homeomorfna
risbi grafa na sferi, ki je opremljena z dodatno točko ∞, katera ne leži na
sliki kake povezave ali vozlǐsča. Licu ravninske risbe, ki vsebuje točko ∞,
rečemo neskončno lice. Optimalna risba grafa G na Σ je risba, ki ima natanko
cr(G, Σ) križǐsč. Zlahka preverimo, da je vsako optimalno risbo grafa G mogoče
lokalno spremeniti v normalno risbo brez uvedbe novih križǐsč, zato bomo v
nadaljevanju za vse risbe predpostavili, da so normalne.

Graf G je k-prekrižno-kritičen za Σ, če velja cr(G, Σ) ≥ k in cr(H, Σ) < k
za vsak pravi podgraf H grafa G. Graf je prekrižno-kritičen za Σ, če je k-
prekrižno-kritičen za Σ za neki k. Kadar omembo ploskve izpustimo, predpo-
stavimo kritičnost za ravnino (sfero).

Premočrtna risba enostavnega grafa je risba na ravnini R
2, na kateri je

risba ε(e, [0, 1]) vsake povezave e ∈ E(G) daljica. Premočrtno prekrižno število
rcr(G) je najmanǰse število križǐsč na premočrtni risbi grafa G.

Prispevek disertacije k teoriji prekrižnega šte-

vila

Rezultati disertacije razširjajo teorijo prekrižnega števila v treh smereh: z
novo konstrukcijo prekrižno-kritičnih grafov pokažemo na strukturo, ki jo lahko
imajo tovrstni grafi, pokažemo več rezultatov o prekrižnih številih kartezičnih
produktov grafov, poleg tega pa uvedemo minorsko monotono različico pre-
križnega števila grafov.

Prekrižno-kritični grafi so minimalni s predpisanim prekrižnim številom,
zato njihove lastnosti omogočajo vpogled v strukturno obnašanje te grafovske
invariante. Uvedel jih je Širáň, ki je za vsak k ≥ 3 konstruiral neskončno
družino k-prekrižno-kritičnih grafov [127]. Kochol je za vsak k ≥ 2 konstru-
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iral neskončno družino enostavnih k-prekrižno kritičnih grafov [72]. Richter
in Thomassen sta začela opazovati stopnje vozlǐsč v enostavnih prekrižno-
kritičnih grafih [105]. Najprej sta pokazala, da je prekrižno število takega
grafa G omejeno z linearno funkcijo parametra k, cr(G) ≤ 5

2
k + 16, iz česar

sledi, da za vsak k ≥ 1 in r ≥ 6 obstaja le končno mnogo enostavnih k-
prekrižno-kritičnih grafov z minimalno stopnjo r. Salazar je argument razširil
na povprečno stopnjo: za vsak racionalen r > 6 obstaja le končno mnogo eno-
stavnih k-prekrižno-kritičnih grafov s povprečno stopnjo r [111]. Konstruiral
je neskončno družino enostavnih k-prekrižno-kritičnih grafov s povprečno sto-
pnjo r za vsak racionalen r ∈ [4, 6) ter za neskončno različnih k in zastavil
naslednje vprašanje:

Vprašanje 1 ([111]). Naj bo r racionalno število z intervala (3, 4). Ali ob-
staja celo število k in neskončna družina (enostavnih) 3-povezanih grafov s
povprečno stopnjo r, ki so vsi k-prekrižno-kritični?

Na vprašanje 1 sta deloma pozitivno odgovorila Pinontoan in Richter, ki sta
iskane družine konstruirala za r ∈ (31

2
, 4) [96]. Za ta namen sta razvila teorijo

tlakovcev, ki jo bomo uporabili tudi v pričujočem delu.
V nadaljevanju uvedemo novo grafovsko operacijo, šiv , s pomočjo katere

lahko kombiniramo dva grafa ali dve risbi. Ob ustrezni povezanosti grafa pri
vozlǐsčih, ki so vpletena v šivanje, ta operacija ohranja prekrižno število gra-
fov, ob zadostni simetriji v soseščini teh vozlǐsč pa ohranja tudi kritičnost
grafov. Operacijo šivanja uporabimo skupaj z razširitvijo teorije tlakovcev Pi-
nontoana in Richterja [96], ki omogoči posplošitev prekrižno-kritičnih grafov
Kochola [72]. Tako izdelamo sedemparametrično družino prekrižno-kritičnih
grafov, s pomočjo katere pokažemo osnovni rezultat tega dela: natančen iz-
bor parametrov omogoča, da konstruiranim grafom predpǐsemo ne le poljubno
racionalno povprečno stopnjo r ∈ (3, 6), ampak tudi poljubno dovolj veliko
prekrižno število, s čimer v polnosti odgovorimo na Salazarjevo vprašanje in v
enem izreku zaobjamemo prej omenjene rezultate o obstoju neskončnih družin
k-prekrižno-kritičnih grafov.

Poudarek na raziskovanju prekrižno-kritičnih grafov je bil na 3-(povezav-
no)-povezanih grafih. Ta pogoj onemogoči vozlǐsča stopnje dve, ki so trivialna
za prekrižno število. Vendar je pogoj mnogo močneǰsi in šele pred kratkim
sta ga upravičila Leaños in Salazar, ko sta našla dekompozicijo 2-povezanih
prekrižno-kritičnih grafov v 3-povezane komponente [75]. S pomočjo šivanja
prekrižno-kritičnih grafov pokažemo, da podobna dekompozicija ne obstaja za
k-povezane prekrižno kritične grafe, k ≥ 3.

Zaradi obilice simetrije so kartezični produkti grafov pritegnili precej po-
zornosti pri določanju prekrižnih števil. Beineke in Ringeisen sta določila pre-
križno število grafov G � Cn za vse grafe G reda štiri, razen za K1,3 [12].



120 Razširjeni povzetek

(a) (b) (c)

Slika 1: Minorsko prekrižno število in križǐsča v elektronskih vezjih.

To vrzel sta zapolnila Jendrol’ in Ščerbová, ki sta poiskala prekrižno število
S3 � Cn, S3 � Pm in S4 � P2 ter postavila naslednjo domnevo:

Domneva 2 ([57]). cr(Sn � Pm) = (m − 1)
⌊

n
2

⌋ ⌊
n−1

2

⌋
za n ≥ 3, m ≥ 1.

Klešč je domnevo pokazal za n = 4 in m ≥ 1 v [66], kjer je določil tudi
cr(S4 � Cm) za m ≥ 3. V [70] je določil prekrižno število G � Pm in G � Sn

za vsak graf G reda štiri in v [67] prekrižno število G � Pm za vsak graf
reda G pet. Za več grafov reda pet je znano tudi prekrižno število njihovega
kartezičnega produkta s Cn ali Sn, poleg tega pa še več drugih kartezičnih
produktov [66, 71, 67, 69, 68], največ jih je pokazal Klešč.

Kartezične produkte grafov z drevesi lahko iterativno sestavimo s pomočjo
šivanja. Če pri tem zahtevamo spoštovanje pogoja povezanosti, ki zagota-
vlja ohranjanje prekrižnega števila, nam kot motnja preostanejo le odvečna
vozlǐsča, ki ustrezajo listom drevesa. V nekaterih primerih lahko z dodatno
operacijo taka vozlǐsča dopolnimo do pravega kartezičnega produkta. Tako
pokažemo več rezultatov o prekrižnih številih kartezičnih produktov, med dru-
gim o kartezičnem produktu zvezd K1,n in koles Wn z drevesi. V posebnem
razrešimo domnevo Jendrol’a in Ščerbove za vsak n, m ≥ 1.

Prekrižno število ima več uporab pri izdelavi integriranih vezij [13, 23, 76,
77, 122]. Pri tem je cilj poiskati ravninsko risbo grafa danega elektronskega
vezja, ki ima najmanǰse število križǐsč. Na ta način pa ne izkoristimo lastno-
sti elektronskega vezja, da imajo točke, povezane z navadnimi žicami, enak
električni potencial. Zato lahko ustrezne povezave stisnemo in razširimo na
drugačen način. S tem dobimo ekvivalentno elektronsko vezje, katerega graf
pa ima lahko manǰse prekrižno število. Ta pristop ilustriramo na sliki 1: (a)
prikazuje originalno shemo visokofrekvenčnega oddajnika [129], (b) prikazuje
ekvivalentno shemo, v kateri so točke z enakim potencialom stisnjene v eno
vozlǐsče, (c) pa prikazuje shemo, ki je ekvivalentna preǰsnjima dvema in ima
eno križǐsče manj kot (a).



Razširjeni povzetek 121

Minorsko prekrižno število, ki ga uvedemo v nadaljevanju, je naraven mo-
del za ta problem. Z njim ǐsčemo najmanǰse število križǐsč v taki risbi grafa,
v kateri smo vozlǐsča nadomestili z drevesi in se povezave teh dreves lahko se-
kajo. Taka zamenjava v elektronskem vezju ustreza raztegnitvi točke z enakim
potencialom v več žic. Tako dobljen realizirajoči graf vsebuje originalni graf G
kot minor in ta različica prekrižnega števila je minorsko monotona. S tem ra-
zrešimo problem, ki ga je odprl Seymour, ko je obžaloval, da prekrižno število
ne sodeluje s teorijo grafovskih minorjev: odstranitev povezave prekrižnega
števila nikoli ne poveča, stiskanje povezave pa ga lahko spremeni v obe smeri
[7].

V delu pokažemo več splošnih spodnjih mej za to grafovsko invarianto,
razǐsčemo strukturo grafov z omejenim minorskim prekrižnim številom in zna-
nje o njej uporabimo za izbolǰsavo spodnjih mej. Ena od spodnjih mej je
posplošitev rezultata Morene in Salazarja, ki sta podoben rezultat pokazala
za grafe z maksimalno stopnjo štiri v [86]. Meje uporabimo na polnih grafih,
polnih dvodelnih grafih, hiperkockah in na produktih dveh ciklov. Poleg tega
pokažemo eksaktne vrednosti za male polne grafe Kn, 1 ≤ n ≤ 8, ter za polne
dvodelne grafe K3,n in K4,n, n ≥ 1.

Prekrižno-kritični grafi

Šiv grafov in risb

Za i = 1, 2 naj bo Gi graf in vi ∈ V (Gi) njegovo vozlǐsče stopnje d. Naj bo
Ni = N∗

Gi
(vi) multiokolica vi in σ : N1 → N2 bijekcija. Funkcijo σ imenujemo

igla grafov G1 in G2 pri vozlǐsčih v1 in v2. Šiv grafov G1 in G2 z iglo σ je graf
G1 ⊙σG2, ki ga dobimo iz disjunktne unije grafov G1−v1 in G2−v2, ko dodamo
povezavo uσ(u) za vsak u ∈ N1. Z oznako G1 v1

⊙v2
G2 opǐsemo množico paroma

neizomorfnih grafov, ki jih dobimo kot šiv G1 ⊙σG2 za neko iglo σ : N1 → N2.

Naj bo Di risba grafa Gi. Ta določa rotacijo vozlǐsč iz Ni okrog vozlǐsča
vi. Vozlǐsča Ni usklajeno z rotacijo vozlǐsč označimo z bijekcijo πi : Ni →
{1, . . . , d}. Funkcija σ : N1 → N2, σ = π−1

2 π1, je igla risb D1 in D2 pri
vozlǐsčih v1 in v2. Šiv risb D1 in D2 z iglo σ je risba D1 ⊙σ D2, ki jo dobimo iz
D1 z vložitvijo zrcalne slike risbe D2, ki ima v2 na neskončnem licu, disjunktno
v neko lice D1, ki vsebuje v1, z odstranitvijo vozlǐsč v1 in v2 skupaj z njunima
majhnima diskastima okolicama ter s spojitvijo povezav okrog v1 in v2 v skladu
z iglo σ, prim. sliko 2. Ker σ odraža zaporedje vozlǐsč okrog v1 in v2, je povezave
med D1 in D2 mogoče spojiti brez dodatnih križǐsč. Šiv risb D1 ⊙σ D2 je risba
grafa G1 ⊙σ G2, torej velja naslednja lema:
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Dp

π1π1π1

π2π2π2

D1D1

D2

D1 ⊙σ D2

Slika 2: Šiv risb D1 in D2.

Lema 3. Za i = 1, 2 naj bo Di optimalna risba grafa Gi, vi ∈ V (Gi) vozlǐsče
stopnje d in σ igla risb D1 in D2 pri v1 in v2. Potem je cr(G1 ⊙σ G2) ≤
cr(G1) + cr(G2).

Kadar igla ne spoštuje rotacije vozlǐsč v optimalni risbi, je mogoče pokazati
nekoliko šibkeǰso zgornjo mejo:

Lema 4. Kadar je G ∈ G1 v1
⊙v2

G2 ter je za i = 1, 2 vozlǐsče vi ∈ V (Gi)
stopnje d, velja cr(G) ≤ cr(G1) + cr(G2) +

(
d−1
2

)
.

Naj bo v ∈ V (G) vozlǐsče stopnje d v G. Butara B pri v je množica
d povezavno disjunktnih poti od v do nekega vozlǐsča u ∈ V (G), u 6= v.
Vozlǐsče v je začetek butare in u njen konec. Ostala vozlǐsča na poteh v B
so notranja vozlǐsča butare. Za butaro B pri vozlǐsču v ∈ V (G) naj Ĕ(B) =
E(B)∩E(G−v) predstavlja množico povezav na poteh v B, ki niso sosednja z
v. Imenujemo jih oddaljene povezave butare B. Dve butari B1 in B2 pri v sta
usklajeni, če imata disjunktni množici oddaljenih povezav. Povezave butare
B, ki niso oddaljene, so bližnje povezave.

Kadar šivamo grafe pri vozlǐsčih, ki imajo butaro, prekrižno število novega
grafa ne pade pod prekrižno število originalnega. To sledi iz naslednje leme,
ki jo pokažemo s pomočjo razcepitve poti butare pri njenih notranjih vozlǐsčih
v risbi šiva. Nova risba vsebuje podrisbo subdivizije originalnega grafa. Ker
nismo pridobili novih križǐsč, trditev velja.

Lema 5. Za i = 1, 2 naj bo Gi graf, vi ∈ V (Gi), deg(vi) = d, Ni = N∗
Gi

(vi).
Privzemimo, da obstaja butara B pri v2 v G2 in naj bo D risba G = G1⊙σ G2.
Za poljubno iglo σ : N1 → N2 je v D na povezavah iz E(G1 − v1) ∪ Ĕ(B)
vsaj cr(G1) križǐsč.
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Lemo 5 skupaj z ustrezno delitvijo križǐsč med štirimi (skoraj) subdivizijami
grafov G1 in G2 v šivu uporabimo v dokazu naslednje spodnje meje, ki je
ključna pri uporabi šivanja za dokazovanje prekrižnega števila grafov:

Lema 6. Za i = 1, 2 naj bo Gi graf in vi ∈ V (Gi) njegovo vozlǐsče stopnje d,
Ni = N∗

Gi
(vi) ter naj pri vi obstajata dve usklajeni butari Bi,1 in Bi,2 v Gi.

Potem velja cr(G1 ⊙σ G2) ≥ cr(G1) + cr(G2) za poljubno iglo σ : N1 → N2.

Kadar je eden od grafov ravninski, namesto navedenih štirih zadošča zgolj
ena butara pri vozlǐsču iz ravninskega grafa.

Šivanje večkrat uporabljamo iterativno. Za take primere pokažemo, da ob
ustreznih pogojih ohranja (povezavno) povezanost grafov in število paroma
usklajenih butar pri vozlǐsčih šivanih grafov.

Poleg vrednosti prekrižnega števila lahko šivanje ohranja tudi kritičnost
grafov. Pogoj, ki mu morata grafa zadoščati, je zadostna simetričnost sosedov
šivanih vozlǐsč. Naj bo S ⊂ V (G) množica vozlǐsč G in Γ ⊆ Aut(G) podgrupa
grupe avtomorfizmov grafa. Pravimo, da je S Γ-homogena v G, če za vsako
permutacijo π elementov S obstaja avtomorfizem σ ∈ Γ, za katerega je σ/S =
π. Za S ⊆ V (G) naj Γ(S) predstavlja stabilizator množice S v Aut(G) po
točkah. Vozlǐsče v ∈ V (G) ima homogeno okolico v G, če je NG(v) Γ({v})-
homogena v G. Zadosten pogoj za homogenost okolice v enostavnem grafu je,
da imajo vsi sosedi isto množico sosedov. Tako so polni in polni dvodelni grafi
primer grafov, v katerih ima vsako vozlǐsče homogeno okolico.

Vozlǐsče v grafa G je polaktivno, če pri njem obstajata dve usklajeni butari
v G. Če ima v poleg tega tudi homogeno okolico v G in nima sosednjih
večkratnih povezav, potem je v aktivno vozlǐsče. S(G) in A(G) zaporedoma
označujeta množici polaktivnih in aktivnih vozlǐsč G.

Naslednji izrek omogoča izdelavo novih prekrižno-kritičnih grafov s šiva-
njem manǰsih prekrižno-kritičnih grafov. Dokažemo ga s šivanjem optimalnih
risb teh manǰsih grafov, pri čemer simetrija v vozlǐsčih zagotavlja, da je šiv
mogoče brez uvedbe novih križǐsč izvesti tudi z optimalnimi risbami grafov, ki
smo jim odstranili povezavo.

Izrek 7. Za i = 1, 2 naj bo Gi graf z vozlǐsčem vi ∈ Gi stopnje d. Če je
v1 ∈ S(G1) in v2 ∈ A(G2), potem za vsak graf G ∈ G1 v1

⊙v2
G2 velja:

(i) cr(G) = cr(G1) + cr(G2).

Ob dodatni predpostavki v1 ∈ A(G1) velja:

(ii) Če je za j = 1, 2 graf Gj kj-prekrižno-kritičen, potem je G k-prekrižno-
kritičen za k = maxj(cr(Gj) + k3−j).



124 Razširjeni povzetek

(iii) Če za j ∈ {1, 2} velja v ∈ S(Gj), v 6= vj in je NGj
(v) ΓGj

({v, vj})-
homogena, potem v ∈ A(G).

Pri dokazu izreka 7 ne uporabimo dejstva, da lahko risbo pred šivanjem
zrcalimo. Edina zanimiva razširitev izreka z uporabo zrcaljenja je pri vozlǐsčih
stopnje tri, ko lahko s pomočjo zrcaljenja in cikličnih rotacij dosežemo vse
možne permutacije povezav v šivu. V tem primeru pri (i) in (ii) ni treba
zahtevati pogoja homogenosti okolice, trditev (iii) pa ne velja. To posebnost
vozlǐsč stopnje tri lahko izkoristimo tudi za izdelavo prekrižno-kritičnih gra-
fov iz manǰsih, nekritičnih grafov. Kadar imajo slednji vozlǐsčno pokritje iz
polaktivnih vozlǐsč stopnje tri, lahko na vsako od vozlǐsč pokritja prǐsijemo
prekrižno-kritičen graf, ki zagotovi kritičnost povezav, sosednjih z vozlǐsčem
šivanja.

Leaños in Salazar sta našla dekompozicijo 2-povezavno-povezanih prekriž-
no-kritičnih grafov na manǰse 3-povezavno-povezane prekrižno-kritične grafe
[75]. Zgornja konstrukcija pove, da za 3-povezavno-povezane prekrižno-kritične
grafe podobna dekompozicija ne obstaja, saj obstajajo grafi z ustreznim vo-
zlǐsčnim pokritjem, ki niso prekrižno-kritični.

Tlakovci

Naj bo G graf in λ = (λ0, . . . , λl), ρ = (ρ0, . . . , ρr) dve disjunktni zaporedji
vozlǐsč v G, v katerih vsako vozlǐsče G nastopa kvečjemu enkrat. Urejeni trojki
T = (G, λ, ρ) pravimo tlakovec. Risbi G na enotskem kvadratu [0, 1] × [0, 1],
na katerega robovih ležijo natanko vozlǐsča leve stene λ na {0}× [0, 1] in desne
stene ρ na {1} × [0, 1], rečemo tlakovska risba T , če je zaporedje padajočih y-
koordinat vozlǐsč v λ in ρ usklajeno z zaporedjema λ in ρ. Tlakovsko prekrižno
število tcr(T ) tlakovca T je najmanǰse število križǐsč na kaki tlakovski risbi T .

Tlakovec T = (G, λ, ρ) je združljiv s tlakovcem T ′ = (G′, λ′, ρ′), če velja
|ρ| = |λ′|. Tlakovec T je krožno združljiv , če je združljiv sam s seboj. Za-
poredje tlakovcev T = (T0, . . . , Tm) je združljivo, če je Ti združljiv s Ti+1 za
i = 0, . . . , m − 1. Zaporedje je krožno združljivo, če je združljivo in je Tm

združljiv s T0. Za vsa zaporedja tlakovcev privzamemo, da so združljiva.

Spoj dveh združljivih tlakovcev T in T ′ je definiran kot T ⊗ T ′ = (G ⊗
G′, λ, ρ′), kjer je G ⊗ G′ graf, ki ga dobimo iz disjunktne unije grafov G in
G′ po identifikaciji ρi z λ′

i za i = 0, . . . , |ρ| − 1. Ker je operacija asociativna,
lahko definiramo spoj združljivega zaporedja T = (T0, . . . , Tm) kot tlakovec
⊗T = T0 ⊗ T1 ⊗ . . .⊗ Tm. Spoj dveh tlakovcev lahko vsebuje dvojne povezave
ali vozlǐsča stopnje dve. Dvojne povezave obdržimo, vozlǐsča stopnje dve pa
odstranimo s stiskanjem ene od sosednjih povezav.
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Za krožno združljiv tlakovec T = (G, λ, ρ) definiramo njegov krožni spoj
◦T kot graf, ki ga dobimo iz G po identifikaciji λi z ρi za i = 0, . . . , |ρ| − 1.
Podobno definiramo krožni spoj krožno združljivega zaporedja tlakovcev kot
◦T = ◦(⊗T ). Ker lahko tlakovske risbe združljivih tlakovcev spajamo brez
uvedbe novih križǐsč, velja naslednja lema:

Lema 8 ([96]). Za krožno združljiv tlakovec T velja cr(◦T ) ≤ tcr(T ). Za
združljivo zaporedje tlakovcev T = (T0, . . . , Tm) velja tcr(⊗T ) ≤ ∑m

i=0 tcr(Ti).

Za zaporedje ω naj ω̄ predstavlja obratno zaporedje. Naj bo T = (G, λ, ρ)
tlakovec. Njegov desno-zviti tlakovec T l je (G, λ, ρ̄), njegov levo-zviti tlakovec
lT je (G, λ̄, ρ), njegov zviti tlakovec je lT l = (G, λ̄, ρ̄). Obrnjeni tlakovec
tlakovca T je T↔ = (G, ρ, λ).

Naj bo T = (T0, . . . , Tm) zaporedje tlakovcev. Obrat zaporedja T je

T ↔ = (T↔
m , . . . , T↔

0 ). Zvitje zaporedja T je T l = (T0, . . . , Tm−1, T
l
m). Za

i = 0, . . . , m je zaporedje T i = (T0, . . . , Ti−1, T
l
i , lTi+1, Ti+2, . . . , Tm) i-skok za-

poredja T . Zaporedje T /i = (Ti+1, . . . , Tm, T0, . . . , Ti−1) je i-rez zaporedja T .
Zaporedje Ti = (Ti, . . . , Tm, T0, . . . , Ti+1) je i-prevoj zaporedja T . Pri zadnjih
dveh operacijah predpostavljamo krožno združljivost zaporedja T .

Dve zaporedji tlakovcev T in T ′ iste dolžine sta ekvivalentni, če lahko
dobimo eno iz drugega z zaporedjem prevojev, skokov in obratov. Grafa, ki ju
dobimo s krožnim spojem takih zaporedij, sta enaka.

Tlakovec T = (G, λ, ρ) je ravninski, če velja tcr(T ) = 0, in je povezan, če
je G povezan. Je popoln, če velja (i) |λ| = |ρ|, (ii) grafa G − λ in G − ρ sta
povezana, (iii) za vsak v ∈ λ (in v ∈ ρ) v G obstaja pot do ρ (oz. λ), notranje
disjunktna z λ (oz. ρ) in (iv) za vsak 0 ≤ i < j ≤ |λ| obstaja par disjunktnih
poti Pij in Pji v G, tako da Pij povezuje λi z ρi in Pji povezuje λj z ρj .

Naj bo T = (G, λ, ρ) tlakovec in H graf, ki vsebuje G kot podgraf. Kom-
plementarni tlakovec za T v H je tlakovec H−T = (H [(V (H)\V (G))∪λ∪ρ]−
E(G), ρ, λ). Obravnavamo ga lahko kot komplement G v H , iz katerega smo
odstranili vsa vozlǐsča T razen njegovih sten. Če velja ◦(T⊗(H−T )) = H , t. j.
vozlǐsča λ∪ρ ločijo G od H−G, pravimo, da je T tlakovec v H . Z uporabo tega
koncepta naslednja lema pokaže bistveno lastnost popolnih tlakovcev. Izrek,
ki sledi lemi, to lastnost uporabi za spodnjo mejo prekrižnega števila grafov,
ki jih dobimo s krožnim spojem zaporedij tlakovcev, njegova posledica pa za
natančno določitev prekrižnega števila. Splošneǰso obliko izreka potrebujemo
v nadaljevanju za dokaz kritičnosti v konstrukciji prekrižno-kritičnih grafov iz
zaporedij tlakovcev.

Lema 9. Naj bo T = (G, λ, ρ) popoln ravninski tlakovec v H , za katerega
obstajata disjunktna podgrafa Gλ in Gρ v H , vsebovana v isti komponenti
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H − T , za katera velja G ∩ Gλ = (λ, ∅), G ∩ Gρ = (ρ, ∅). Če v neki risbi D
grafa H na povezavah množice E(G) in vsaj še ene od E(Gλ) ali E(Gρ) ni
križǐsč, potem sta D-inducirani risbi T in H − T homeomorfni tlakovskima
risbama.

Izrek 10. Naj bo T = (T0, . . . , Tl, . . . , Tm) krožno združljivo zaporedje tlakov-
cev. Če velja m ≥ 4k − 2 in za vsak i = 0, . . . , m, i 6= l, velja tcr(⊗(T /i)) ≥ k
ter je Ti popoln ravninski tlakovec, potem velja cr(◦T ) ≥ k.

Posledica 11. Naj bo T = (T0, . . . , Tl, . . . , Tm) krožno združljivo zaporedje
tlakovcev in k = mini6=l tcr(⊗(T /i)). Če je m ≥ 4k−2 in je Ti popoln ravninski
tlakovec za vsak i = 0, . . . , m, i 6= l, potem je cr(◦T ) = k.

Tlakovec T je k-izrojen, če je popoln, ravninski in za vsako povezavo e ∈
E(T ) velja tcr(T l−e) < k. Zaporedje tlakovcev T = (T0, . . . , Tm) je k-kritično,
če je tlakovec Ti k-izrojen za vsak i = 0, . . . , m in je mini6=m tcr(⊗(T l/i)) ≥
k. Naslednjo splošno konstrukcijo k-prekrižno-kritičnih grafov pokažemo s
pomočjo k-kritičnih zaporedij tlakovcev in izreka 10.

Posledica 12. Naj bo T = (T0, . . . , Tm) k-kritično zaporedje tlakovcev. Po-
tem je T = ⊗T k-izrojen tlakovec. Če je m ≥ 4k−2 in je T krožno združljivo,
potem je ◦(T l) k-prekrižno-kritičen graf.

Z izrekom 10 in posledicama 11 ter 12 smo ugotavljanje prekrižnega števila
grafa in njegove kritičnosti prevedli na ugotavljanje tlakovskega prekrižnega
števila. V nadaljevanju razvijemo ovire, s pomočjo katerih si pri slednjem lahko
pomagamo. V splošnem je v danem tlakovcu lahko prisotnih več ovir. Če so
te konsistentne, potem so križǐsča, ki jih povzročijo v tlakovski risbi, različna.
Primer konsistentnih ovir so povezavno disjunktne ovire, pojem konsistentnosti
pa lahko opredelimo širše s pomočjo teorije množic.

Zviti par {P, Q} v tlakovcu T = (G, λ, ρ) je ovira, sestavljena iz dveh
prekrižanih prečnih poti, t. j. disjunktnih poti od λ do ρ, katerih začetka z
indeksoma i(P ), i(Q), si v λ sledita v obratnem vrstnem redu kot njuna konca
z indeksoma j(P ), j(Q) v ρ. V vsaki tlakovski risbi T mora biti vsaj eno
križǐsče povezave prve poti iz zvitega para s povezavo druge poti. Konsistentni
družini zvitih parov rečemo zvita družina. Moč vsake zvite družine v tlakovcu
je spodnja meja za njegovo tlakovsko prekrižno število.

Par prečnih poti, ki ni zvit, je poravnan, poravnana družina pa je kon-
sistentna družina poravnanih parov. Naj bo tlakovec T združljiv s tlakov-
cem T ′ in naj bo {P, Q} zvit par v T . Poravnan par {P ′, Q′} v T ′ razširja
{P, Q} na desno, če velja j(P ) = i(P ′), j(Q) = i(Q′). V tem primeru je
{PP ′, QQ′} zvit par v spoju T ⊗ T ′. Desno-razširjajoča družina F ′ zvite
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u = u1 = u′
1 = u2 = v1

v = u′
n = v′

n−1 = vn = v′
n

s s′ s′′u′
2u3 = u′

3

u5 u′
5

un

v′
1 v2 S2

vn−1

Slika 3: Stopničasti tlakovec. Prekinjene povezave so del tlakovca, a ne del
stopničastega traku.

družine F v T je poravnana družina F ′ v T ′, za katero obstaja taka bijekcija
e : F → F ′, da par e({P, Q}) ∈ F ′ razširja par {P, Q} na desni. V tem pri-
meru je F⊗eF ′ = {{PP ′, QQ′} | {P ′, Q′} = e({P, Q})} zvita družina v T ⊗T ′.
Podobno definiramo razširjanje na levo.

Naj bo T = (T0, . . . , Tl, . . . , Tm) združljivo zaporedje tlakovcev in Fl zvita
družina v Tl. Če za i = l + 1, . . . , m (oz. i = l − 1, . . . , 0) obstaja poravnana
družina Fi za Fl ⊗ . . . ⊗ Fi−1 (oz. Fi+1 ⊗ . . . ⊗ Fl−1), ki razširja slednjo v
desno (oz. levo), potem se Fl v zaporedju T razteza v desno (levo). Fl zapolni
krožno združljivo zaporedje T , če se razteza v desno in v levo v vsakem rezu
T /i, i 6= l. Zvita družina F nasiti tlakovec T , če zaobjame vsa njegova nujna
križǐsča, t. j. tcr(T ) = |F|.

Posledica 13. Naj bo T = (T0, . . . , Tl, . . . , Tm) krožno združljivo zaporedje
tlakovcev in F zvita družina v Tl, ki zapolni T . Če je Ti popoln ravninski
tlakovec za vsak i = 0, . . . , m, i 6= l, in je m ≥ 4|F|− 2, potem velja cr(◦T ) ≥
|F|. Enakost velja vedno, ko F nasiti Tl.

S pomočjo posledice 13 v nadaljevanju konstruiramo prekrižno-kritične
grafe, katerih povprečna stopnja je blizu šest. Najprej pa se posvetimo oviri,
ki omogoči konstrukcijo prekrižno-kritičnih grafov s povprečno stopnjo blizu
tri.

Naj bo P = {P1, P2, . . . , Pn} množica prečnih poti v T , za katero velja
λ(Pi) ≤ λ(Pj) in ρ(Pi) ≥ ρ(Pj) za i < j. Poti naj bodo paroma disjunktne,
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razen parov P1, P2 in Pn−1, Pn, za katera zahtevamo zgolj povezavno disjunk-
tnost. Za u ∈ V (P1) ∩ V (P2) in v ∈ V (Pn−1) ∩ V (Pn) pravimo, da je u levo
od v (prim. sliko 3), če obstajata notranje disjunktni poti Qu in Qv od u do v
z naslednjimi lastnostmi:

(s.i) na poti Qu obstajajo vozlǐsča u1, u
′
1, u2, u

′
2, . . . , un, u′

n v tem vrstnem
redu,

(s.ii) na poti Qv obstajajo vozlǐsča v1, v
′
1, v2, v

′
2, . . . , vn, v′

n v tem vrstnem redu,

(s.iii) u = u1 = u′
1 = u2 = v1 in v = u′

n = v′
n−1 = vn = v′

n,

(s.iv) v′
1, v2, v

′
2, u

′
2 6∈ P1 ∩ P2 in vn−1, un−1, u

′
n−1, un 6∈ Pn−1 ∩ Pn,

(s.v) za i = 1, . . . , n velja Ri := uiPiu
′
i ⊆ Pi ∩ Qu, z enakostjo pri i 6= n − 1,

(s.vi) za i = 1, . . . , n velja Si := viPiv
′
i ⊆ Pi ∩ Qv z enakostjo pri i 6= 2,

(s.vii) Rn−1 = Pn−1 ∩ Qu − Rn in S2 = P2 ∩ Qv − S1,

(s.viii) če sta ′u, u′ ∈ P1 ∩ P2 dve vozlǐsči, za kateri velja v′
1 ∈ ′uP1u

′, potem
v2 ∈ ′uP2u

′,

(s.ix) če sta ′v, v′ ∈ Pn−1 ∩ Pn dve vozlǐsči, za kateri velja un ∈ ′vPnv′, potem
u′

n−1 ∈ ′vPn−1v
′, in

(s.x) λ(Pi)uiu
′
iviv

′
iρ(Pi) ležijo v tem vrstnem redu na Pi za vsak i = 1, . . . , n.

Podobno definiramo, da je u desno od v. Družina poti P tvori zviti sto-
pničasti trak širine n v tlakovcu T , če je za vsak par u ∈ V (P1) ∩ V (P2) in
v ∈ V (Pn−1) ∩ V (Pn) vozlǐsče u levo ali desno od v. Na sliki 3 je vozlǐsče u
levo od vozlǐsča v; izpostavljene so vse posebnosti grafa, ki to dokazujejo. Poti
u′

iQuui+1 in v′
iQvvi+1 so za i = 2, . . . , n− 1 in j = 1, . . . , n notranje disjunktne

od Pj po (s.v) in (s.vi) in njihova dolžina je vsaj ena. Na sliki so predstavljene
z navpičnimi povezavami. Dolžina poti Ri in Si, i = 1, . . . , n, pa je lahko nič;
primere s pozitivno dolžino smo izpostavili s krepkimi povezavami. Nepreki-
njene povezave na sliki 3 so del zvitega stopničastega traku, prekinjene niso.
Vozlǐsči u in s sta levo od v in vozlǐsči s′ in s′′ sta desno od v.

Množica n poti v zvitem traku določa
(

n
2

)
−2 konsistentnih zvitih parov, kar

je po posledici 13 spodnja meja za tlakovsko prekrižno število tlakovca s takim
trakom. S pomočjo lastnosti (s.i)–(s.x) pokažemo, da mora vedno obstajati
vsaj še eno križǐsče.

Izrek 14. Naj bo T tlakovec, v katerem P = {P1, P2, . . . , Pn} tvori zviti sto-
pničasti trak širine n. Potem je tcr(T ) ≥

(
n
2

)
− 1.



Razširjeni povzetek 129

(a) (b)

Slika 4: (a) Tlakovec S7. (b) Tlakovska risba S7 z 20 križǐsči.

V dokazu usmerimo poti Pi od leve proti desni steni. Najprej pokažemo,
da lahko predpostavimo, da sliki vsakih dveh poti delita največ eno točko.
To da skupaj z usmeritvijo povezav risbi dovolj strukture, da lahko poǐsčemo
novo križǐsče na povezavah poti Qu in Qv, pri čemer sta u ∈ V (P1) ∩ V (P2)
in v ∈ V (Pn−1) ∩ V (Pn) vozlǐsči, kjer se v tlakovski risbi sekata sliki teh dveh
parov poti (če katera od teh točk ne bi bila vozlǐsče, bi bilo križǐsč že dovolj).

Poleg zvitih parov in zvitih stopničastih trakov definiramo še več drugih
ovir: podvojena vozlǐsča, kolesne ovire, mostove, prečne pare, prepletene pare,
ter eno- ali dvostranske trinožnike. Vse zagotavljajo vsaj eno ali dve križǐsči v
tlakovski risbi. V delu uporabimo le kolesno oviro, s katero si pomagamo pri
dokazovanju prekrižnega števila nekaterih kartezičnih produktov.

Konstrukcije

Bralec bo brez težav eksaktno opisal tlakovec Sn, n ≥ 3, katerega primer
je za n = 7 prikazan na sliki 4 (a). Stopničasti tlakovec širine n ≥ 3, ki je
popoln ravninski tlakovec, dobimo iz Sn s stiskanjem nekaj (morda nič) krepkih
povezav Sn. Stopničasto zaporedje širine n je zaporedje tlakovcev lihe dolžine,
v katerem stopničasti tlakovci širine n alternirajo z obrnjenimi stopničastimi
tlakovci širine n. Vsako stopničasto zaporedje je krožno združljivo in tlakovec,
ki ga dobimo s spojem zvitja takega zaporedja, vsebuje zvit stopničast trak.
Z uporabo leme 8, posledic 11 in 12 ter izreka 14 dokažemo naslednjo trditev:

Trditev 15. Naj bo T stopničasto zaporedje širine n in lihe dolžine m ≥
4
(

n
2

)
− 5. Graf G = ◦(T l) je prekrižno-kritičen s prekrižnim številom cr(G) =(

n
2

)
− 1.
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(a) (b)

A
B
C

D
E
F
G

Pi

P1

Pi+1

Qi

Ri

Si

S2w+1

2w + 1 tlakovcev

Slika 5: (a) Tlakovec H1, gradnik grafa H(1, s). (b) Optimalna tlakovska risba
H0.

S pomočjo krožnih spojev stopničastih zaporedij lahko pozitivno odgovo-
rimo na Salazarjevo vprašanje za vsak r ∈ (3, 4), kjer je r = 3 + a

b
in sta a

in b različne parnosti. Če sta enake parnosti, potem bi morala biti dolžina
stopničastega zaporedja tlakovcev soda, krožni spoj takega zaporedja pa ne bi
bil prekrižno-kritičen graf.

Naj bo Hw tlakovec, ki je za w = 1 predstavljen na sliki 5 (a). Zgrajen je iz
podtlakovcev, predstavljenih s prekinjenimi črtami, ki ju spojimo z zapored-
jem 2w + 1 podtlakovcev, od katerih je eden predstavljen s krepkimi črtami.
Vozlǐsča leve (desne) stene tlakovca Hw so obarvana črno (belo). Hw je popoln
ravninski tlakovec. Oznaka H(w, s) = (Hw, . . . , Hw) naj predstavlja zaporedje
teh tlakovcev dolžine s, H(w, s) = ◦(H(w, s)l) pa naj bo krožni spoj zvitja
takega zaporedja. V tlakovcu Hw lahko najdemo družino zvitih parov, ki ga
nasiti in zapolni zaporedje H(w, s), zato po posledicah 12 in 13 velja naslednja
trditev:

Trditev 16. Za k = 32w2 + 56w + 31 in s ≥ 4k− 1 je graf H(w, s) prekrižno-
kritičen graf s prekrižnim številom k.

Za d, d′ ≥ 3 naj Kd,d′ predstavlja polni dvodelni graf s pravilno obarvanimi
vozlǐsči: vozlǐsča stopnje d naj bodo črna in vozlǐsča stopnje d′ naj bodo bela.
Za p ≥ 1 naj družina R(d, d′, p) predstavlja grafe z obarvanimi vozlǐsči, ki jih
dobimo iterativno z R(d, d′, 1) = {Kd,d′} in R(d, d′, p) =

⋃
G∈R(d,d′,p−1) G v1

⊙v2

Kd,d′. Pri tem sta v1 in v2 črni vozlǐsči v G (oz. Kd,d′). Če velja d = d′ = 3, je vi
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lahko katerokoli vozlǐsče. Pri šivanju grafov ohranimo barve vozlǐsč, zato grafi v
R(d, d′, p) niso pravilno obarvani za p ≥ 2. Za take grafe z induktivno uporabo
izreka 7 (iii) pokažemo, da so vsa črna vozlǐsča aktivna. Tako po izreku 7 (ii)
oz. po ustrezni trditvi za vozlǐsča stopnje tri velja naslednja trditev:

Trditev 17. Za d, d′ ≥ 3 je vsak graf G ∈ R(d, d′, p) enostaven 3-povezan
prekrižno-kritičen graf s prekrižnim številom cr(G) = p cr(Kd,d′).

Jaeger je pokazal, da ima vsak 3-povezan kubičen graf s prekrižnim številom
ena kromatični indeks tri. Grafi iz družine R(3, 3, p) v šivu s Petersenovim
grafom zagotavljajo, da ni mogoča posplošitev Jaegrovega rezultata na grafe s
prekrižnim številom enakim k za noben k ≥ 2.

Družine S(n, m, c), H(w, s), R(3, 3, p) in R(3, 5, q) uporabimo v razrešitvi
Salazarjevega vprašanja in hkratnem kombiniranju odgovora z rezultati Širáňa
in Kochola.

Izrek 18. Naj bo r ∈ (3, 6) racionalno število. Obstaja zvezna konveksna
funkcija f : (3, 6) → R+, tako da za vsako celo število k ≥ f(r) obstaja ne-
skončna družina enostavnih 3-povezanih prekrižno-kritičnih grafov s povprečno
stopnjo r in prekrižnim številom k.

Izrek dokažemo konstruktivno za

f(r) = 240 + 512
(6−r)2

+ 224
6−r

+ 25
16(r−3)2

+ 40
r−3

.

Pri tem sestavimo sedemparametrično družino Γ(n, m, c, w, s, p, q), ki vse-
buje šive grafov iz S(n, m, c), H(w, s), R(3, 3, p) in R(3, 5, q). Grafi H(w, s)
omogočajo povprečno stopnjo blizu šest in grafi iz S omogočajo povprečno sto-
pnjo blizu tri. Disjunktna unija dveh takih grafov sestavljenih iz sorazmernega
števila tlakovcev bi imela predpisano povprečno stopnjo in prekrižno število.
Ko taka grafa sešijemo, šiv pokvari vzorec, ki zagotavlja predpisano povprečno
stopnjo. To nepravilnost odpravimo z grafi iz R, s katerimi zagotovimo tudi
predpisano prekrižno število.

Ker imajo vsa vozlǐsča stopnje tri v navedenih grafih dve usklajeni butari,
so grafi iz Γ(n, m, c, w, s, p, q) prekrižno-kritični po izreku 7 in trditvah 15, 16
in 17, kadar je zadoščeno naslednjim pogojem: n ≥ 3, m = 2m′+1, m′ ≥ 2

(
n
2

)
,

c ≥ 0, c ≤ 2m(n − 3), w ≥ 0, s ≥ 4(32w2 + 56w + 31), p ≥ 1 in q ≥ 1.
Prekrižno število omenjenih grafov je enako

k =

(
n

2

)
+ 32w2 + 56w + p + 4q + 30, (1)

povprečna stopnja pa

d̄ = 6 − 4(m′(6n − 11) + 3n + 3p + 3q + 4s − c − 7)

2m′(4n − 7) + 4n + 4sw + 9s + 4p + 6q − c − 9
. (2)
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Slika 6: Struktura znanih velikih k-prekrižno-kritičnih grafov.

Enakost (1) določi p z vrednostmi predpisanega prekrižnega števila k in
ostalih parametrov. Da bosta ciklični strukturi rastli sorazmerno, določimo
s in m kot linearni funkciji novega parametra t, ki določa velikost grafa. Ko
te vrednosti vstavimo v (2), uporabimo c za izničenje členov imenovalca, ki
so neodvisni od t. S parametrom q izničimo take člene v števcu. Vrednost
t se pokraǰsa, kar zagotovi, da bodo grafi za vsak t imeli predpisano pov-
prečno stopnjo, ki jo določimo z vrednostima koeficientov linearnih funkcij.
Na koncu z vrednostmi parametrov n in w ter konstantnih členov linearnih
funkcij poskrbimo, da je zadoščeno prej naštetim pogojem. Dobljena družina
Γ(a, b, k) =

⋃∞
t=k Γ(n, mt, c, w, st, p, q) je neskončna družina grafov s povprečno

stopnjo r = 3 + a
b

in prekrižnim številom k. Funkcija f je konveksna na inter-
valu (3, 6), saj je vsota funkcij, ki so konveksne na tem intervalu. Ta lastnost
pove, da je NI = max{f(r1), f(r2)} univerzalna spodnja meja za vrednost k
za vsa racionalna števila r s poljubnega zaprtega intervala I = [r1, r2] ⊆ (3, 6).

Struktura prekrižno-kritičnih grafov

Oporowski [87] je pokazal, da je mogoče velike 2-prekrižno-kritične grafe dobiti
kot krožne spoje dolgih zaporedij nekaj različnih vrst tlakovcev. Konstrukcija
prekrižno-kritičnih grafov s šivanjem pokaže, da za k ≥ 4 taka klasifikacija ne
obstaja, saj bi lahko s šivanjem pridobili poljubno mnogo različnih tlakovcev
z enakim tlakovskim prekrižnim številom. Ta konstrukcija tudi pokaže, da je
za velike k mogoče dobiti prekrižno-kritične grafe s šivanjem manǰsih takih
grafov na nekritične grafe z ustreznim vozlǐsčnim pokritjem. Nova spoznanja
o strukturi prekrižno-kritičnih grafov prikazuje slika 6.

Glede stopenj vozlǐsč v k-prekrižno-kritičnih grafih ostajata odprti nasle-
dnji vprašanji:
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Vprašanje 19 ([105]). Ali obstaja celo število k > 0 in neskončna družina
enostavnih 5-regularnih 3-povezanih k-prekrižno-kritičnih grafov?

Vprašanje 20. Ali obstaja k > 0 in neskončna družina enostavnih 3-poveza-
nih k-prekrižno-kritičnih grafov s povprečno stopnjo šest?

Argumente, s katerimi Richter in Thomassen v [105] pokažeta, da za k > 0
obstaja le končno mnogo k-prekrižno-kritičnih grafov z minimalno stopnjo šest,
je mogoče uporabiti za grafe z omejenim številom vozlǐsč stopnje različne od
šest. Tako lahko predpostavimo, da bi družina, ki bi pozitivno odgovorila
na vprašanje 20, vsebovala grafe s poljubno mnogo vozlǐsči stopnje, večje od
šest. Vendar pa se v znanih neskončnih družinah k-prekrižno-kritičnih grafov
le vozlǐsča stopenj tri, štiri in šest pojavljajo poljubnomnogokrat. Tako predla-
gamo naslednje vprašanje, odgovor na katerega bi bil korak v smeri razrešitve
vprašanj 19 in 20.

Vprašanje 21. Ali obstaja tak k > 0, da za vsako celo število n obstaja
enostaven 3-povezan k-prekrižno-kritičen graf Gn z več kot n vozlǐsči stopenj
različnih od tri, štiri in šest?

Šiv grafa K3,d in grafov iz znanih neskončnih družin k-prekrižno-kritičnih
grafov pokaže, da obstajajo neskončne družine prekrižno-kritičnih grafov s po-
ljubno mnogo vozlǐsči stopnje d. Vendar prekrižno število grafov teh družin
narašča s številom takih vozlǐsč.

Kartezični produkti

Naj G(i) predstavlja suspenzijo reda i grafa G, t. j. popolni spoj grafa G in
praznega grafa na i vozlǐsčih {v1, . . . , vi}, ki jih imenujemo temena suspenzije
G(i). Za multimnožico L ⊆ V (H) naj G �L H predstavlja pokriti kartezični
produkt grafov G in H , t. j. graf, ki ga dobimo z dodajanjem novega vozlǐsča v′

k grafu G � H za vsako vozlǐsče v ∈ L, pri čemer v′ povežemo z vsemi vozlǐsči
v G � {v}. Vozlǐsče v′ imenujemo pokrov vozlǐsča v. Ko L vsebuje natanko

vsa vozlǐsča stopnje ena v H , uporabimo oznako G �̂H namesto G �L H . Za
v ∈ V (H) definiramo ℓ(v) := degH(v) + χL(v), kjer χL(v) predstavlja mnogo-
kratnost vozlǐsča v v multimnožici L. Povezava uv ∈ E(H) je neuravnovešena,
če je ℓ(u) 6= ℓ(v), β(H) pa predstavlja število neuravnovešenih povezav v
H . V tem kontekstu z induktivno uporabo šivanja optimalnih risb suspenzij
pokažemo naslednji izrek:
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Izrek 22. Naj bo T drevo reda m ≥ 2, L ⊆ V (T ) multimnožica z ℓ(v) ≥ 2 za
vsak v ∈ V (T ) in G graf reda n z dominirajočim vozlǐsčem v. Definiramo

B =
∑

v∈V (T )

cr(G(ℓ(v))).

Potem velja B ≤ cr(G �L T ) ≤ B+β(T )
(

n−1
2

)
. Kadar grupa avtomorfizmov G

deluje kot polna simetrična grupa na sosedih v v G, velja enakost cr(G �L T ) =
B.

Zgornji izrek velja za vsak graf G, če zahtevamo ℓ(v) ≥ 3. Ta pogoj
zagotavlja zadostno število butar v suspenziji grafa G.

Preprosta posledica izreka je, da velja cr(G �̂Pm) = (m+1) cr(G(2)) za graf
G z dominirajočim vozlǐsčem m ≥ 0. Dobimo tudi meje za prekrižno število
navadnega kartezičnega produkta: za graf G reda n z dominirajočim vozlǐsčem
in za m ≥ 2 velja

(m− 1) cr(G(2)) ≤ cr(G � Pm) ≤ (m− 1) cr(G(2)) + 2

(
cr(G(1)) +

(
n − 1

2

))
.

Ta trditev omogoča asimptotično določanje prekrižnega števila kartezičnega
produkta grafov s potmi.

Za produkte ciklov z drevesi lahko pokažemo naslednjo trditev, pri kateri
bistveno uporabimo Kleitmanove in Woodalove rezultate o prekrižnem številu
polnih dvodelnih grafov [65, 134]

Posledica 23. Naj za celi števili n in d velja eden od pogojev (i) 3 ≤ n in
1 ≤ d ≤ 6, (ii) 3 ≤ n ≤ 6 in 1 ≤ d, (iii) 3 ≤ n ≤ 8 in 1 ≤ d ≤ 10 oz. (iv)
3 ≤ n ≤ 10 in 1 ≤ d ≤ 8. Potem za vsako drevo T z maksimalno stopnjo d in
za dv = degT (v), v ∈ V (T ), velja:

cr(Cn �̂T ) =
∑

v∈V (T )

⌊
n

2

⌋ ⌊
n − 1

2

⌋ ⌊
dv

2

⌋⌊
dv − 1

2

⌋
.

Suspenzija zvezde S
(d)
n je izomorfna polnemu tripartitnemu grafu K1,d,n, ki

ga dobimo s stiskanjem ene povezave v Kd+1,n+1. Graf Sn � Sd je subdivi-

zija grafa S
(d)
n . Tako lahko prekrižno število kartezičnega produkta drevesa in

zvezde s pomočjo izreka 22 zapǐsemo kot vsoto prekrižnih števil kartezičnih
produktov dveh zvezd:

cr(Sn � T ) =
∑

v∈V (T ), dv≥2

cr(K1,dv,n).

S pomočjo Asanovega rezultata o prekrižnem številu K1,3,n lahko pokažemo
naslednje:
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Posledica 24. Za celo število n ≥ 1 in podkubično drevo T z n2 vozlǐsči
stopnje dve in n3 vozlǐsči stopnje tri velja

cr(Sn � T ) =

⌊
n

2

⌋ (
(n2 + 2n3)

⌊
n − 1

2

⌋
+ n3

)
.

Za poljubno drevo T velja

cr(S3 � T ) =
∑

v∈V (T ), dv≥2

⌊
dv

2

⌋ (
2

⌊
dv − 1

2

⌋
+ 1

)
.

Poseben primer posledice 24 sta Jendrol’ in Ščerbová domnevala v [57].

Posledica 25. cr(Sn � Pm) = (m − 1)
⌊

n
2

⌋ ⌊
n−1

2

⌋
za m, n ≥ 1.

Tudi pri kartezičnemu produktu koles si lahko pomagamo s subdivizijami,
vendar moramo dodati za en cikel povezav, s čimer povečamo prekrižno število
grafa. Najprej formaliziramo to operacijo: naj bo π permutacija podmnožice
povezav F ⊆ E(G). π-subdivizija Gπ grafa G je graf, ki ga dobimo iz G s
subdividiranjem povezav e ∈ F z vozlǐsčem ve in dodajanjem novih povezav{
vevπ(e) | e ∈ F

}
. Če F predstavlja množico povezav, sosednjih z nekim vo-

zlǐsčem, in π ciklično rotacijo povezav okrog tega vozlǐsča v neki optimalni
risbi G, potem π-subdivizija ne spremeni prekrižnega števila grafa. Če pa ne-
kaj povezav izpustimo in nam ostanejo vsaj tri, potem se v primeru, da pri
tem vozlǐsču obstaja butara, prekrižno število poveča vsaj za ena. S pomočjo
te ugotovitve ter leme, da za n ≥ 3 velja cr(W

(2)
n ) =

⌊
n
2

⌋ ⌊
n−1

2

⌋
+ 1, ugotovimo

natančno prekrižno število kartezičnega produkta kolesa s potjo:

Posledica 26. cr(Wn � Pm) = (m − 1)
(⌊

n
2

⌋ ⌊
n−1

2

⌋
+ 1

)
+ 2 za m ≥ 2, n ≥ 3.

Z analizo primerov ugotovimo tudi cr(W
(3)
3 ) = 5, iz česar sledi zametek analoga

posledice 24 za kolesa:

Posledica 27. cr(W3 � T ) = n1 + 2n2 + 5n3 za podkubično drevo T z ni

vozlǐsči stopnje i, i = 1, 2, 3.

Minorsko prekrižno število

V tem razdelku s pomočjo tehnik za izdelavo minorsko monotonih invariant, ki
jih je študiral Fijavž [38], uvedemo minorsko monotono različico prekrižnega
števila. Rezultati razdelka so osnovani na raziskavah Fijavža, Moharja in av-
torja te disertacije, objavljenih v [20]. Pred tem delom je bilo znanih le malo
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Slika 7: mcr kot razširitev cr.

rezultatov, ki so povezovali prekrižno število z grafovskimi minorji. Moreno
in Salazar sta objavila spodnjo mejo za prekrižno število grafa, ki temelji na
prekrižnem številu njegovega minorja majhne maksimalne stopnje [86]. Njun
rezultat posplošimo v nadaljevanju. Robertson in Seymour [109] sta določila
prepovedane minorje za lastnost biti minor grafa s prekrǐznim številom največ

ena. Strukturo risb grafov, ki izhaja iz te lastnosti, razǐsčemo tudi za večja
prekrižna števila in jo uporabimo za izbolǰsavo spodnje meje, ki izhaja iz Eu-
lerjeve formule.

Minorsko prekrižno število iskanega grafa G v ploskvi Σ definiramo kot
najmanǰse prekrižno število grafa, ki vsebuje G kot minor,

mcr(G, Σ) := min {cr(H, Σ) | G ≤m H}

in z mcr(G) označimo mcr(G, S0). Podobno definiramo majorsko prekrižno
število grafa G kot največje prekrižno število v kakem minorju G,

Mcr(G, Σ) := max {cr(H, Σ) | H ≤m G} .

Iz definicije izhaja neenakost mcr(G, Σ) ≤ cr(G, Σ) ≤ Mcr(G, Σ) za vsak graf
G in vsako ploskev Σ, prav tako očitno za vsak minor G grafa H v vsaki ploskvi
velja mcr(G, Σ) ≤ mcr(H, Σ) in Mcr(G, Σ) ≤ Mcr(H, Σ). Ker sta mcr(·, Σ) in
Mcr(·, Σ) minorsko monotoni, sta družini

ω(k, Σ) = {G | mcr(G, Σ) ≤ k} in Ω(k, Σ) = {G | Mcr(G, Σ) ≤ k}

zaprti za minorje.
Za vsak graf G obstaja graf Ḡ, ki vsebuje G kot minor in za katerega

velja mcr(G, Σ) = cr(Ḡ, Σ). Vsakemu takemu grafu Ḡ rečemo realizirajoči
graf grafa G, njegova optimalna risba v ploskvi Σ pa je realizirajoča risba
grafa G (glede na Σ). Privzeli bomo, da imata G in Ḡ enako število povezanih
komponent.
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Ker je G minor realizirajočega grafa Ḡ, ga lahko dobimo iz podgrafa Ḡ z
zaporedjem stiskanj povezav, t. j. G = (Ḡ−R)/C za ustrezno izbrane množice
povezav R, C ⊆ E(Ḡ). Povezave R imenujemo odstranjene povezave, povezave
v C pa stisnjene povezave. Ker zank ne stiskamo, je množica C aciklična.
Opazimo, da množica E(G) = E(Ḡ) \ (R ∪ C) vsebuje originalne povezave
grafa G. Očitno je, da za vsak graf G obstaja realizirajoči graf Ḡ, za katerega
velja R = ∅.

Za vsako vozlǐsče v ∈ V (G) v grafu Ḡ obstaja enolično maksimalno drevo
Tv ≤ Ḡ[C], ki ga stisnemo v v. Na slikah tega razdelka bomo stisnjene povezave
risali krepko, originalne pa tanko.

Minorsko prekrižno število je naravna posplošitev navadnega prekrižnega
števila, pri kateri dovolimo tudi križǐsča povezav z vozlǐsči (križǐsča original-
nih in stisnjenih povezav v realizirajoči risbi) ter križǐsča dveh vozlǐsč (dveh
stisnjenih povezav), prim. sliko 7.

Za kubične grafe velja mcr(G, Σ) = cr(G, Σ), kar neposredno poveže teorijo
minorskega prekrižnega števila z navadnim. Taka povezava obstaja tudi za
grafe z vozlǐsči vǐsjih stopenj, saj za vsak graf obstaja kubični realizirajoči graf:
vozlǐsča realizirajočega grafa lahko v majhni okolici brez uvedbe novih križǐsč
zamenjamo z drevesom (če so stopnje več od tri) ali z ravninskim kubičnim
grafom (če so stopnje manj od tri) in tako dobimo kubični realizirajoči graf.

Meje

Naj bo G = H/e za e = v1v2 ∈ E(H). Za i = 1, 2 naj bo di = degH(vi) − 1
število povezav, sosednjih z vi in različnih od e, pri čemer predpostavimo
d1 ≤ d2. Kot je prikazano na sliki 8, lahko vsako risbo H pretvorimo v risbo
G, tako da vsako križǐsče na povezavi e nadomestimo z največ d1 novih križǐsč.

Bolj v splošnem naj bo G minor H , G = (H −R)/C. Potem velja E(G) =
E(H) \ (R ∪ C). Risba DH grafa H v Σ določa inducirano risbo H − R v Σ
brez novih križǐsč. S stiskanjem povezav v C pa lahko pridobimo nova križǐsča.
Če stiskanja izvajamo zaporedoma, lahko število novih križǐsč nadzorujemo s
pomočjo opazovanja števila originalnih povezav, ki so pripete na drevesa v
H [C]. Na ta način pokažemo naslednji izrek:

Izrek 28. Naj bo G minor grafa H , Σ ploskev in τ :=
⌊

1
2
∆(G)

⌋
. Potem velja

cr(G, Σ) ≤ τ 2 cr(H, Σ).

Izrek posploši rezultat Morene in Salazarja, ki sta navedeno trditev poka-
zala za ∆(G) = 4 [86]. Iz njega neposredno sledijo naslednje meje za prekrižno
število: mcr(G, Σ) ≤ cr(G, Σ) ≤ τ 2 mcr(G, Σ) in 1

τ2 Mcr(G, Σ) ≤ cr(G, Σ) ≤
Mcr(G, Σ).
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Slika 8: Stiskanje povezav na risbi.

Z nadomeščanjem križǐsč s projektivnimi ravninami in ročaji lahko minor-
sko prekrižno število omejimo z (neorientabilnim) rodom grafa:

Izrek 29. Naj bo G graf z rodom g(G) in neorientabilnim rodom g̃(G). Za
orientabilno ploskev Σ roda g(Σ) velja mcr(G, Σ) ≥ g(G)−g(Σ) in mcr(G, Σ) ≥
g̃(G) − 2g(Σ).

Za neorientabilno ploskev Σ roda g(Σ) velja mcr(G, Σ) ≥ g̃(G) − g(Σ).

Kadar rod grafa ni znan, si lahko pomagamo z naslednjo spodnjo mejo, ki
sledi iz Eulerjeve formule. Tudi v dokazu te meje uporabimo lepljenje projek-
tivnih ravnin in ročajev namesto križǐsč:

Trditev 30. Za graf G z n = |V (G)|, m = |E(G)| in notranjim obsegom r ter
ploskev Σ Eulerjevega roda g velja mcr(G, Σ) ≥ r−2

r
m − n − g + 2.

To spodnjo mejo lahko izbolǰsamo z uporabo strukture grafov z omeje-
nim prekrižnim številom, prim. izrek 36. Tehniko menjave križǐsč za projek-
tivne ravnine in ročaje lahko uporabimo tudi za primerjavo prekrižnih števil v
različnih ploskvah:

Trditev 31. Neenakost mcr(G, Σ) ≤ max(0, mcr(G) − g(Σ)) velja za vsako
ploskev Σ in vsak graf G, kjer g(Σ) predstavlja (ne)orientabilni rod ploskve Σ.

Naj bo Σ ploskev in k pozitivno celo število. Družina ploskev Σ1, . . . , Σk

je dekompozicija ploskve Σ, Σ = Σ1# · · ·#Σk, če je Σ homeomorfna povezani
vsoti Σ1, . . . , Σk.

Izrek 32. Naj bo Σ ploskev in G graf z bloki G1, . . . , Gk. Potem velja

k∑

i=1

mcr(Gi, Σ) ≤ mcr(G, Σ) ≤ min

{
k∑

i=1

mcr(Gi, Σi)

∣∣∣∣ Σ = Σ1# · · ·#Σk

}

.
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Povezave iz drevesa Tv, v ∈ V (G), se v realizirajoči risbi ne sekajo, zato
je število križǐsč med povezavami iz istega bloka strogo manǰse od števila vseh
križǐsč in spodnja meja sledi. Pri zgornji meji uporabimo drevo blokov grafa,
da induktivno sestavimo risbo grafa G v Σ kot povezano vsoto risb grafov Gi

v ploskvah Σi. Ker ima sfera S0 le trivialne dekompozicije, za vsak graf velja
enakost mcr(G) =

∑k
i=1 mcr(Gi).

Struktura grafov z omejenim mcr

Naj družina F (k, Σ) predstavlja množico minimalnih prepovedanih minorjev
za ω(k, Σ), F (k) in ω(k) pa naj označujeta F (k, S0) in ω(k, S0).

Grafi v ω(0, Σ) imajo preprost topološki opis — to so natanko grafi, ki jih
je mogoče vložiti v ploskev Σ. Robertson in Seymour sta opazila, da je na po-
doben način mogoče opisati grafe iz ω(1): to so natanko grafi, ki jih je mogoče
vložiti v projektivno ravnino z lično širino dve [109]. S pomočjo tega opisa sta
določila družino prepovedanih minorjev F (1) za ω(1). Ta vsebuje natanko 41
grafov: G1, . . . , G35 so prepovedani minorji za vložitev v projektivno ravnino,
Q1, . . . , Q6 pa so projektivni grafi, ki jih dobimo iz Petersenovega grafa z Y ∆,
∆Y transformacijami. V nadaljevanju bomo pokazali, da ima vsaka družina
ω(k, Σ) podoben topološki opis.

Naj bo γ enostranska enostavna sklenjena krivulja v neorientabilni ploskvi
Σ Eulerjevega roda g. Z rezom Σ vzdolž γ in lepljenjem diska na dobljeno
mejo dobimo ploskev Σ/γ, katere Eulerjev rod je g − 1. Pravimo, da smo Σ/γ
dobili iz Σ z izničenjem projektivne ravnine pri γ.

Množico paroma neprekrižanih enostranskih enostavnih sklenjenih krivulj
Γ = {γ1, . . . , γk} v neorientabilni ploskvi Σ imenujemo k-sistem v Σ. Za
različni γi, γj ∈ Γ sta ploskvi (Σ/γi)/γj in (Σ/γj)/γi homeomorfni, torej za-
poredje, v katerem izničimo krivuljam pripadajoče projektivne ravnine, ni po-
membno. Tako lahko definiramo Σ/Γ := Σ/γ1/ . . . /γk. Pravimo, da je k-
sistem Γ v Σ orientirajoči k-sistem, če je ploskev Σ/Γ orientabilna.

Naj bo D risba grafa G v neorientabilni ploskvi Σ z največ c križǐsči. Če
obstaja (orientirajoči) k-sistem Γ v Σ, tako da vsaka krivulja γ ∈ Γ seka D v
največ dveh vozlǐsčih, je risba D (orientirajoče) (c, k)-izrojena, množico Γ pa
imenujemo (orientirajoči) k-sistem za D. Če je c = 0, potem je D k-izrojena
vložitev. Vložitev v projektivno ravnino je 1-izrojena natanko tedaj, kadar ima
lično širino največ dve. Z zamenjavo križǐsč za projektivne ravnine za prvo oz.
z izničevanjem projektivnih ravnin za drugo smer pokažemo naslednjo lemo:

Lema 33. Naj bo Σ (orientabilna) ploskev Eulerjevega roda g in naj bo k ≥ 1
celo število. Potem za vsak l ∈ {1, . . . , k} družina ω(k, Σ) vsebuje natanko tiste
grafe iz G ∈ ω(k − l, Ng+l), za katere obstaja graf G̃, ki vsebuje G kot minor



140 Razširjeni povzetek

in ga je mogoče narisati v neorientabilni ploskvi Ng+l Eulerjevega roda g + l z
(orientirajočo) izrojenostjo (k − l, l).

Za naslednjo trditev opazimo, da se krivulje v k-sistemu Γ lahko dotikajo.
Če več krivulj iz Γ seka isto povezavo vložitve, jih pri stiskanju povezave lahko
premaknemo, da se dotikajo v stisnjenem vozlǐsču.

Lema 34. Naj bo G̃ graf z (orientirajočo) k-izrojeno vloživijo v ploskvi Σ. Če
je G ploskovni minor G̃, potem je inducirana vložitev G tudi (orientirajoče)
k-izrojena.

Iz lem 33 in 34 sledi naslednji izrek:

Izrek 35. Naj bo Σ (orientabilna) ploskev Eulerjevega roda g in naj bo k ≥ 1
celo število. Potem družina ω(k, Σ) vsebuje natanko vse grafe, ki jih je mogoče
vložiti v neorientabilno ploskev Ng+k Eulerjevega roda g + k z (orientirajočo)
izrojenostjo k.

S pomočjo izreka 35 lahko pokažemo, da za vsak graf G ∈ ω(k, Σ) obstaja
graf H ∈ ω(0, Σ), tako da je G mogoče dobiti iz k z identifikacijo največ k parov
vozlǐsč. Izrek lahko uporabimo tudi za izbolǰsavo spodnje meje za minorsko
prekrižno število, ki izhaja iz Eulerjeve formule (trditev 30).

Izrek 36. Naj bo G enostaven graf z n = |VG|, m = |EG| in Σ ploskev Euler-
jevega roda g. Potem velja

mcr(G, Σ) ≥ 1
2
(m − 3(n + g) + 6).

Za dokaz izreka potrebujemo dve tehnični lemi. S prvo pokažemo, da lahko
k-sistem Γ, katerega krivulje se vse paroma dotikajo v dveh točkah, v ploskvi
Σ določa največ k − 1 diskov, ki imajo za meje le dva loka krivulj iz Γ. k-
izrojeno vložitev grafa G v neko ploskev nato dopolnimo z 2k povezavami, ki
jih določajo krivulje k-sistema. Z odstranitvijo največ k od teh povezav se
znebimo vseh lic dolžine dve. Na preostanku razširjenega grafa uporabimo
Eulerjevo formulo in izrek 36 sledi.

Uporaba

Prej navedene meje v tem razdelku uporabimo na več družinah grafov. Za
polne grafe pokažemo:

Trditev 37.
⌈

1
4
(n − 3)(n − 4)

⌉
≤ mcr(Kn) ≤

⌊
1
2
(n − 5)2

⌋
+ 4 za n ≥ 9.
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Slika 9: Risbi grafov z minorjema K10 in K11.

Trditev sledi iz izreka 29 ter konstrukcije, prikazane na sliki 9. Za 3 ≤ n ≤ 8
je spodnja meja natančna, tako velja mcr(Kn) = 0 za n ≤ 4 ter mcr(K5) = 1,
mcr(K6) = 2, mcr(K7) = 3 in mcr(K8) = 5.

Naslednjo trditev pokažemo z opazovanjem risb Kn−1 v optimalni risbi Kn.

Posledica 38. Naj bo Σ neka ploskev in cn = mcr(Kn,Σ)
n(n−1)

za n ≥ 3. Zaporedje

{cn}∞n=3 je nepadajoče in limita c∞ := limn→∞ cn obstaja. Za S0 je c∞ ∈
[

1
4
, 1

2

]
.

Za polne dvodelne grafe pokažemo naslednje meje:

Trditev 39.
⌈

1
2
(m − 2)(n − 2)

⌉
≤ mcr(Km,n) ≤ (m − 3)(n − 3) + 5 za 4 ≤

m ≤ n.

Spodnja meja sledi iz izreka 29. Za m = 3, 4 je spodnja meja natančna:

mcr(K3,n) =

⌈
n − 2

2

⌉
in mcr(K4,n) = n − 2.

Z uporabo izreka 28 in z najbolǰsimi znanimi spodnjimi mejami za prekrižno
število hiperkock pokažemo naslednje meje:

Trditev 40. Za n ≥ 4 velja max
(
(n − 4)2n−2 + 2, 1

n2

(
1
5

4n − 2n+1
)
− 2n+1

)
≤

mcr(Qn) ≤ 4n−2 − (n − 1)2n−1.

Prva spodnja meja sledi iz trditve 30, druga pa iz rezultatov Sýkore in Vrťa
[121] ter izreka 28. Ta izrek dá tudi najbolǰso spodnjo mejo za prekrižno število
produkta dveh ciklov:

Trditev 41. 1
4
(m − 2)n ≤ mcr(Cm � Cn) ≤ 2

⌊
m−1

2

⌋ ⌊
n+1

2

⌋
za 3 ≤ m ≤ 7,

n ≥ m, in za m ≥ 7, n ≥ 1
2
(m + 1)(m + 2).
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