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A Model-Based Approach

Dragan, D.
Dejan Dragan*

University of Maribor, Faculty of Logistics, Slovenia

One of the key issues in modelling for fault detection is how to accommodate the level of detail 
of the model description to suit the diagnostic requirements. The paper addresses a two-stage modelling 
concept to an industrial heat exchanger, which is located in a tyre factory. Modelling relies on both, prior 
knowledge and recorded data. During the identification procedure, the estimates of continuous model 
parameters are calculated by the least squares method and the state variable filters (SVF). It is shown 
that the estimates are largely invariant of the bandwidth of the SVFs. This greatly reduces the overall 
modelling effort and makes the whole concept applicable even for less experienced users. The main issues 
of the modelling procedure are emphasized. Based on the process model, a simple detection system is 
derived. An excerpt of the results obtained on operating records is given.
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0 INTRODUCTION

Model-based condition monitoring of 
industrial processes aims at early revelation 
of degradations in process equipment and 
instrumentation. A sensible process model acts as 
an additional virtual instrument, which contributes 
to a higher quality of production and better safety. 
There are many papers and books dealing with 
model-based techniques for detecting, isolating 
and identifying faults [1] to [6]. However, in many 
real applications deriving a proper model still 
takes a bulk of overall design effort. Moreover, 
proper shaping of the model precision with respect 
to the diagnostic requirements remains to be rather 
an art.

This paper deals with the design of a 
fault detector for a heat exchanger as a possible 
alternative to some other approaches [7] to [11]. 
The work represents part of the prototyping design 
of a condition monitoring system for the process 
of incineration of vulcanisation gasses located in 
a tyre factory [6]. 

A brief idea of the process can be grasped 
from Fig. 1. Vulcanisation gas (VU gas), which is 
one of hand products of vulcanisation, is generated 
on vulcanisation lines. Prior to the emission into 
the atmosphere, all the carbon particles contained 
in the gas need to be destroyed by incineration in a 
combustion chamber.

The entire system consists of three major 
parts [6]:
•	 pre-heating of the VU gas in a gas-gas heat 

exchanger;
•	 incineration of the VU gas in a combustion 

chamber; 
•	 transportation of the flue gasses to the 

chimney.
The focus of this paper is on model-based 

condition monitoring of the cold part of heat 
exchanger. The goal is to improve the support 
to the maintenance team through permanent 
monitoring of the condition of sensors and 
detection of fouling. The project aims at designing 
a detector with the highest precision possible. For 
that purpose, the extra redundancy is achieved by 
means of an analytical model of the plant. 

The modelling concept consists of two 
stages in which prior knowledge and recorded 
data are combined (grey-box modelling concept). 
In the first stage, the model structure is derived 
up to unknown parameters by strongly relying 
on reasoning from first principles. After taking 
the available instrumentation into consideration, 
the set of prior assumptions and the diagnostic 
requirements the modelling procedure ended up 
with a continuous-time model linear in parameters.

For the purpose of parameter estimation, 
the least squares method (LSM) combined with 
state variable filters (SVF) is adopted in the second 
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stage. It is shown that the use of LSM leads to the 
identification results, which are largely invariant 
of the bandwidth of the SVFs. This observation 
deserves attention since the choice of bandwidth, 
as a design parameter, turns out to be quite an easy 
task. This is believed to be one of the contributions 
of the paper.

Fig. 1. The incineration system

The derived model of the cold part of an 
exchanger employs the temperatures (Tco, Tho) and 
flow of the VU gas (ΦVU). The measured signals 
(c.f. Fig. 1) are collected, displayed and stored 
by the FactoryLinkTM SCADA system (USDATA 
Corp.)

Finally, the model-based diagnostic 
algorithm is designed to run on-line as an external 
C module of SCADA.

The proposed design of the condition 
monitoring system is very simple and the 
suggested detector is a helpful indicator for the 
operator to take corrective action.

The derivation of the model structure and 
the parameter estimation approach is described in 
the first section. An excerpt of the experimental 
results is given in the second section. Finally, the 
diagnostic procedure is overviewed in the third 
section.

1 SYSTEM IDENTIFICATION

1.1 Determination of Model Structure 

The purpose of this section is to emphasize 
the importance of prior knowledge in deriving 
the model structure. This knowledge is essential 

in early modelling steps, in particular in defining 
causal relationships between process variables. 
Depending on the diagnostic requirements, these 
relationships can range from loose (qualitative) 
to precise (quantitative) descriptions. In case of 
poor prior knowledge and/or loose diagnostic 
requirements, model precision can be restricted to 
qualitative relationships defined on sign, interval 
or fuzzy sets. Perfect prior knowledge allows for 
precise expressions that are fully defined on the 
set of real numbers. Since in many practical cases 
prior knowledge is incomplete, process data that 
represent the carrier of additional information 
needed to complete the model description need 
to be employed. Here, the finest level of detailed 
description is observed.

The process of the heat exchange between 
(cool) VU gas and (hot) flue-gas is illustrated in 
Fig. 2. 

The modelling procedure starts with setting 
the energy balance equation for an infinitesimally 
small piece of the VU gas channel and pipe wall. 
This results in the following partial differential 
equations respectively [1]:
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where TC(x,t), TH(x,t) and TW(x,t) represent space-
time behaviour of the temperatures of the cold 
part of the exchanger, hot part and pipe wall, 
respectively, while (o1 = 2πr1, o2 = 2πr2). 

In order to identify the relationship 
between the measured variables (Tco, Tho, ΦVU), 
the distributed parameter models in Eqs. (1) and 
(2) need to be converted into the lumped models.

The lumping procedure is based on the 
following set of assumptions:
1.	 specific mass (ρVU) and specific heat (cVU) of 

the VU gas are assumed to be constant,
2.	 flow of the VU gas is space independent 

(ΦVU(x,t) = ΦVU(t)),
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3.	 convective heat exchange coefficients are 
independent of time and space (α1(x,t) = α1, 
α2(x,t) = α2),

4.	 as the wall is only 4 mm thin Aw ≈ 0 and 
∂TW(x,t) / ∂t ≈ 0 can be assumed.

5.	 The retention time of vulcanisation gasses in 
the heat exchanger is fairly low, as the speed 
of VU gasses is relatively high while the 
length of the heat exchange channel is quite 
short. This implies an almost momentary 
formation of temperature profiles along the 
heat exchange channel.  

Assumption 4 implies short time constant 
for the dynamics of the wall temperature TW(x,t) 
in Eq. (2). Transients can be neglected so that the 
following static relation emerges:
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In the next step let us combine Eqs. (3) and 
(1) at x = L, which results in:
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Then, according to assumption 5, the 
temperature profiles along the heat exchange 
channels exhibit almost static behaviour. From the 
steady-state condition at x = L, Eq. (4) results in 
the following expression:
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where bars over symbols denote stationary values. 
However, a number of identification runs, 

carried out on model structures based on Eq. (5), 
turned to produce one-step-ahead predictor with 
relatively poor performance. Careful examination 
of the unmodelled effects related to the derivation 
of  Eq. (5), suggests the approximation of the 
gradient ∂TC(x,t) / ∂x at x = L by a richer structure 
in order to improve the predictive power of the 
final process model. It can be shown that the 
gradient is related with the measured input and 
ouput temperatures and flow in a very complicated 
manner. Instead of an exact solution a black-box 
structure is sought so that experimental data are 
fitted as well as possible while keeping the number 
of unknown parameters at a minimum. Among 
many candidates (polynomials, neural networks) 
it turned out that already a simple structure 
with only two free parameters can significantly 
raise the quality of fit of the model Eq. (4). The 
approximation reads very similarly to Eq. (5) i.e. 
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If Eq. (6) is entered to Eq. (4), the following 
expression is obtained:
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i.e.

Fig. 2. Illustration of the heat exchange process
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Eq. (8) represents the lumped model of 
the cold part of the heat exchanger. The same 
modelling procedure can be applied to derive a 
model of the hot part. Unfortunately, the task is 
not that easy due to a lack of a flow sensor in 
the flue-gas channel (hot part). Nevertheless, a 
careful analysis indicates that the unmeasurable 
flow mostly depends on flow of the vulcanisation 
gasses, roughly in a linear way. With this in mind 
a model of the hot part being entirely similar to 
that of the cold part is achieved. Due to a lack of 
space the hot part will not be treated here. In the 
sequel emphasis is on the cold part only.

1.2 Parameter Estimation

In order to identify the model parameters 
batch the least squares method is chosen. 

To estimate the parameters of the 
continuous time model in Eq. (8), the derivative 
of Tco is needed. As direct differentiation is prone 
to significant errors due to measurement noise, 
the problem is alleviated by using state variable 
filters. In this case, any stable filter with relative 
degree ≥ 1 and appropriate bandwidth would suit. 
A simple transfer function is employed to filter the 
signals in Eq. (8):

	 G S
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where 1/τ is the bandwidth of filter (τ is the time 
constant). If Eq. (9) is applied to both sides of 
Eq. (8), filtering preserves the original model 
structure.

To improve the numerical properties of 
the algorithm, the filtered signals from Eq. (8) are 
transformed in the next step as for example: 

	 ΔTco_mf (t) = Tco_mf (t) ‒ Tco_mf (t-1) ,	

where index “mf”  refers to the value of the filtered 
signal. Differentiated data preserve the original 
model structure while eliminating the problem of 
offsets in prediction error.

After filtering all the signals in Eq. (8) and 
after transformation of filtered data, an appropriate 
form for identification procedure is obtained. For 
the data collected by the SCADA system, an over-
determined system of equations, which can be 
represented in the following form, is obtained:
	 Y = Ψ · θ + Δnf1 ,	 (10)
where:
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The unknown constant K is added in order 
to take into account the bias in the prediction 
error. In case of perfect model structure (i.e. free 
of modelling errors) the estimated K should be 
zero. Vector Δnf1 is added to encounter the noise 
effects.

The unknown parameters of the system Eq. 
(10) result as follows [12] and [13]: 

	 θθ ΨΨ ΨΨ ΨΨ
∧ −
= ⋅



 ⋅ ⋅T T1

Y. 	 (12)

2 PRACTICAL IDENTIFICATION RESULTS

Process identification was carried out on 
a batch of 14000 samples taken during normal 
operating regime (interval [1, 14000] [min]). 
Outliers and intervals with non-informative data 
are carefully eliminated from further processing.

The results of the estimation achieved at 
various bandwidths of SVF’s (1/τ) are shown in 
Fig. 3. It can be seen that the results of estimation 
do not vary significantly with respect to SVF 
bandwidth changing over two decades. This 
statement includes the variations of parameter 
K a� �( ) ( )τ τ1 , which are small compared to 
the elements of vector Y (Eq. (11)) and can be 
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neglected. Identification results largely invariant 
to pre-filtering imply great freedom in choosing 
the SVF bandwidth. This is an advantage for 
every practitioner.

The purpose of the designed model is to 
predict the difference between temperatures of 
cold and hot part at the end of exchanger. 

Thus, by taking into account Eq. (8) 
process output can be represented as follows: 

	 yf (t) = Tco_mf (t) ‒ Tho_mf (t) ,	 (13)

and the predicted output as:
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respectively. Similarly to Eq. (11), estimated 
constant K y f

  is added to avoid bias in modelling 
error.

A comparison between process output 
Eq. (13) and predicted output Eq. (14) on 
validation set containing 5000 samples (interval  
[14000, 19000] [min]) is shown in Fig. 4. The 
model fits the process reasonably well so that 
the prediction error does not exceed 10% of the 
dynamic range of the signal Eq. (13). In other 
words, the underlying mathematical model can 
be viewed as an additional (virtual) instrument, 
which obviously brings extra redundancy into the 
system.

3 DIAGNOSTIC RESULTS

Inference about faults is made on the basis 
of the residual signal defined as follows:

Fig. 3. The estimated parameters in dependence of different bandwidths (1/τ) of the SVF

Fig. 4. Model validation: measured output, predicted output and  prediction error;  
a) yf(t); b) prediction error
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where yf (t) and y tf
 ( )  are process output Eq. (13) 

and predicted output Eq. (14), respectively. 
Based on the residual Eq. (15) the presence 

of a fault can be detected. This means that if the 
residual is near zero, there is no evidence that a 
fault is present. On the contrary, if the residual 
departs significantly far from zero, the presence of 
a fault can be inferred. Generally,  purely on the 
basis of the residual Eq. (15) it is not possible to 
determine the location of the fault. The exception 
is discussed in the literature [3] and [5]. Indeed, 
provided the parameters θ of the process model 
bear physical meaning, the regressor form of the 
model Eq. (10) reads:

	 Y = Ψ · θ + Δnf1  and  Y
 

= ⋅ΨΨ θθ ,

for the true process and the mathematical 
model. Symbols Y and Y



 denote true and 
predicted outputs, while θ and θθ  denote true and 
estimated process parameters, respectively. By 
differentiating the two equations the following is 
obtained:
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where e denotes the vector of residuals. Since 
e results in a straightforward manner from the 
recorded data and the nominal process model, the 
estimate of the vector Δθ can easily be calculated 
Any non-zero term in Δθ indicates a variation in 
the process parameters due to the fault. Knowing 
the physical origin of such a term in the vector 
θ the position of the fault can be inferred. An 
important technical requirement is that the data 
matrix Ψ is full rank (persistent excitation).

However, the idea is not applicable in the 
present case for three reasons:
1.	 The temperature signals Tho and Tco are 

generally too poor from the point of view of 
information content, which means that with 
recursive parameter estimation it would not 
be possible to unambiguously estimate all the 
parameters in Eq. (14);

2.	 Signal to noise ratio in certain intervals of 
process operation can be rather low.

3.	 Not all the parameters in Eq. (14) reflect the 
physical properties of the system (the model 

Eq. (8) is semi-physical); consequently such 
parameteres would be of little use in fault 
localisation.

Having residual Eq. (15) it is neccessary 
to draw the decision about alarm. If pure Boolean 
logic were applied, then frequent, even small 
deviations in residuals in the vicinity of the 
threshold value would lead to large variations 
in the diagnostic results [14] and [15]. In order 
to smooth the diagnostic output, approximate 
reasoning techniques seem to be a better 
alternative. A residual is no longer qualified as 
zero (0) or non-zero (1) but is associated a degree 
of being zero, which is a number between 0 and 
1. In this way, incremental changes in the residual 
Eq. (15) result in incremental changes in the 
diagnostic results. 

For the sake of detection the belief mass 
(Fig. 5) is introduced, which can be represented in 
the following form [14]:

	 bel r
h
r

d

d

d

( )
( )

=
+

−
1

1 1 2δ
δ

γ
,	 (16)

h and γd are threshold and the adjustable smoothing 
parameter respectively, while ( γd = bel(r=h) ).

Fig. 6 shows the response of the detector, 
when two consecutive faults are injected into the 
system. Firstly, the temperature sensor related to 
Tho is stuck high. This fault is emulated by fixing 
the sensor output to 560 °C for the period of 700 
minutes. The next fault is emulated drift in the 
sensor related to Tco. Obviously, the detector is 
quite sensitive to the occurrence of both faults.

Fig. 5. Belief assignment function

Since belief in a non-zero residual also 
significantly increases, the detector provides clear 
evidence of the presence of both faults (c.f. Fig. 6). 
Though obvious, the first fault remains undetected 



Strojniški vestnik - Journal of Mechanical Engineering 57(2011)6, 477-484

483Fault Detection of an Industrial Heat-Exchanger:A Model-Based Approach 

by the classical alarm system. Indeed, the alarm is 
set at 600 °C as lower values can be easily reached 
during normal operating conditions (not presented 
in Fig. 6). On the contrary, the model-based 
detector reacts quite quickly and accurately. This 
detector reacts relatively promptly in the case of a 
drift type of fault as well. For example, it reports 
the presence of fault at approx. t = 4100 min with 
70% belief. The classical alarm system would 
react, but much later (at approx. 5200 min).

To sum up, by running the suggested 
detector on the recorded data sets it has been 
possible to reveal several temporary erroneous 
sensor readings during operation of the real plant. 
These were completely overlooked by the existing 
alarm system (missed alarms).

Fig. 6. Detection of sticking high of sensor Tho  
and detection of drift in sensor Tco

4 CONCLUSIONS

A two-stage modelling procedure is 
presented and applied to a heat exchanger in 
an incineration unit. It relies on blending prior 
knowledge with the information contained in 
data records. Prior knowledge serves to derive the 

model structure, while data are used to identify 
unknown model parameters. 

The paper makes a significant contribution 
in two ways. Firstly, a set of prior (heuristic) 
assumptions provides a means for determining  
the model structure. Secondly, it is shown that 
the results of estimation, obtained using the 
least squares method, are largely invariant of the 
bandwidth of the SVF. This greatly reduces the 
overall modelling effort and is an advantage for 
every practitioner. 

The suggested detection algorithm is very 
simple for execution in real time. The diagnostic 
results show that the module is able to accurately 
indicate the presence of incipient faults and 
thus facilitate timely on-condition maintenance. 
Traditional alarm systems based on thresholding 
are insensitive to such faults, i.e. do not react until 
large deviations and failures occur. 
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