
CONTENTS Metodološki zvezki, Vol. 13, No. 2, 2016

Emilio Gomez–Deniz and Enrique Calderin
The Mixture Poisson Exponential–Inverse Gaussian Regression Model:
An application in Health Services 71

Kristina Veljkovic
X bar Control Chart for Non-normal Symmetric Distributions 87

Marta Ferreira
Estimating the Coefficient of Asymptotic Tail Independence:
a Comparison of Methods 101

Wararit Panichkitkosolkul
Approximate Confidence Interval for the Reciprocal of a
Normal Mean with a Known Coefficient of Variation 117

Gloria Mateu-Figueras, Josep Daunis-i-Estadella, Germa Coenders,
Berta Ferrer-Rosell, Ricard Serlavos and Joan Manuel Batista-Foguet

Exploring the Relationship between two
Compositions using Canonical Correlation Analysis 131



 

 

Metodološki zvezki, Vol. 13, 2016 

 

Reviewers for Volume Thirteen  
 
Mojca Bavdaž 
Rok Blagus 
Gregor Dolinar 
Anuška Ferligoj 
Herwig Friedl 
Andreja Jaklič 
Borut Jurčič Zlobec   
Damjana Kastelec 
Tina Kogovšek 
Katarina Košmelj 
Vyacheslav Lyubchich 
Susana Martins 
Stanislav Mejza 
Giovanni Millo 
Irena Ograjenšek 
Klemen Pavlic 
Marko Robnik Sikonja 
Jože Rovan 
Támas Rudas 
Damjam Skulj 
Gregor Sočan 
Janez Stare 
Jordan Stoyanov 
Gaj Vidmar 
Blaz Zupan 
Aleš Žiberna 
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The Mixture Poisson Exponential–Inverse
Gaussian Regression Model:

An application in Health Services

Emilio Gómez–Déniz1, Enrique Calderı́n–Ojeda2

Abstract

In this paper a mixed Poisson regression model for count data is introduced. This
model is derived by mixing the Poisson distribution with the one–parameter con-
tinuous exponential–inverse Gaussian distribution. The obtained probability mass
function is over–dispersed and unimodal with modal value located at zero. Esti-
mation is performed by maximum likelihood. As an application, the demand for
health services among people 65 and over is examined using this regression model
since empirical evidence has suggested that the over–dispersion and a large portion
of non–users are common features of medical care utilization data.

1 Introduction
Counting data are common in many social and biomedical studies to explain differences
among cases that generate small counts of events. The Poisson distribution plays an im-
portant role in the modeling of count data. In this regard, Poisson regression models have
been traditionally used to analyze data with a nonnegative integer response variable in a
wide range of different applied areas, for example, biostatistics, epidemiology, accident
analysis and prevention, insurance and criminology among other fields. Nevertheless, the
rigidity of the Poisson mean–variance relationship makes the Poisson regression models
exposed to over–dispersion (i.e. the empirical variance is larger than the empirical mean).
This is a crucial modeling issue for count data since inadequate confidence interval cov-
erage is produced when over–dispersed count data are considered. The Poisson model
does not allow for heterogeneity among individuals. Often there is additional heterogene-
ity between individuals that is not accounted for by the predictors in the model which
results in over–dispersion. To overcome this difficulty, practitioners usually use more
general specifications, e.g. negative binomial regression model (Hilbe (2007) and Greene
(2009)). The latter model is an example of mixed Poisson regression model. Mixed Pois-
son regression models are natural extensions of the Poisson regression model allowing for
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over–dispersion. This feature can be included in the model by assuming that the parame-
ter of the Poisson distribution is not fixed due to the heterogeneity of the population, being
likewise considered a random variable. For instance, for over–dispersed count–panel data
the negative binomial and Poisson–Inverse Gaussian regression models are well–known
in the statistical literature. In this regard, by using a gamma distribution for the unknown
parameter θ, the former model is obtained. The latter model was proposed by Dean et
al. (1989), in this case an inverse Gaussian distribution is used to describe the parame-
ter of the Poisson distribution. These models account for over–dispersion by assuming
that there will be unexplained variability among individuals who have the same predicted
value. It leads to larger variance in the overall outcome distribution but has no effect on
the mean.

Regrettably, other mixed Poisson regression models have not been used since they
involve special functions and appropriate numerical methods are required. Nevertheless,
due to the fast improvement of mathematical software these models can be handled rela-
tively easily. In this article a new mixed Poisson regression model is proposed. As mixing
distribution, a particular case of the continuous Exponential–Inverse Gaussian distribution
in Bhattacharya and Kumar (1986) when one of the parameter tends to infinity is consid-
ered. Furthermore, as it arises from a mixed Poisson distribution, many of its properties
can be derived from the ones of the mixing distribution. In this sense, it displays interest-
ing features such as over–dispersion, unimodality, closed–form expressions for factorial
moments of any order among other nice properties. The mixed Poisson regression model
introduced in this paper does not belong to the linear exponential family of distributions.
However, as Wedderburn (1974) showed, the parameter estimation and inference theory
developed for the exponential family (i.e. generalized linear models), can be extended to
models where a relation between the mean and variance of the response variable can be
specified, even though they were not associated with a known likelihood. In this sense,
the unconditional distribution obtained in the Poisson–Inverse Gaussian regression model
(Dean et al. (1989)) is not part of the exponential family of distributions.

In this manuscript, the demand for health services among people 65 and over is an-
alyzed by using this new mixed Poisson regression model. In particular, the number of
hospital stays among the elderly population is considered as response variable. Moreover,
as it will be shown later, the data include two important features a high proportion of
zeros and over–dispersion. The use of regression model to explain the demand for health
services has been studied by Gurmu and Elder (2000) where bivariate regression model
for count data was used and also by Lahiri and Xing (2004) by using two–parts model
based on Poisson selection model.

The remainder of the paper is structured as follows. Section 2 introduces the new
Poisson distribution together with some properties; additionally parameter estimation is
discussed; section 3 describes the mixed Poisson regression model derived from this dis-
tribution. Estimation is performed by maximum likelihood. Next, a numerical application
to analyze factors explaining medical care of people 65 and over is examined in section
4. Finally, some conclusions are drawn in section 5.
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2 The discrete model
The continuous Exponential–Inverse Gaussian distribution in Bhattacharya and Kumar
(1986) can be simplified by letting one of its parameters tends to infinity. Then a more
simple probability density function (pdf) is obtained. Then, the pdf of a random variable
Θ following an Exponential–Inverse Gaussian distribution with a single scale parameter
φ (henceforward EIG(φ)) is given by

f(θ|φ) =

√
φ

2 θ
exp

(
−
√

2φ θ
)
, with θ > 0 and φ > 0. (2.1)

Let us now consider the Poisson distribution (henceforward P(θ)) whose probability
mass function is given by

Pr{Y = y} = e−θ
θy

y!
, y = 0, 1, . . . , θ > 0. (2.2)

Definition 1. We say that a random variable Y has a Poisson–Exponential–Inverse Gaus-
sian distribution if it admits the stochastic representation:

Y |θ ∼ P(θ) (2.3)
θ ∼ EIG(φ), (2.4)

with φ > 0. We will denote this distribution by Y ∼ PEIG(φ).

Then, the unconditional probability mass function (pmf) of Y is given by

py =

√
2φΓ(2y + 1)

22y+1 y!
U
(

1

2
+ y,

1

2
,
φ

2

)
, y = 0, 1, . . . , (2.5)

where U(a, b, z) represents the Tricomi confluent hypergeometric function given by (a, z >
0):

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−zssa−1(1 + s)b−a−1ds (2.6)

(see Gradshteyn and Ryzhik (1994), page 1085, formula 9211–4).
The probability generating function is given by

GY (s) =

√
φπ

1− s exp

{
φ

2(1− s)

}[
1− erf

(√
φ

2(1− s)

)]
, (2.7)

where erf(z) is the error function given by

erf(z) =
2√
π

∫ z

0

e−t
2

dt =
2z√
π

1F1(1/2, 3/2,−z2),

being 1F1(·, ·, ·) the confluent hypergeometric function.
The factorial moments of order k can be obtained from (2.5). They are provided by

µ[k](Y ) = E[Y (Y − 1) · · · (Y − k + 1)] =
2k Γ(2k)

(2φ)k
, (2.8)
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with k = 1, 2, . . .
From the latter expression it can be seen that (2.5) is over–dispersed, since

var(Y )

E(Y )
=

5

φ
+ 1 > 1.

Additionally, as (2.1) has an asymptotic mode at 0, the discrete model (2.5) is uni-
modal with mode at 0 (see Holgate (1970)). Besides, as (2.1) is log–convex, then (2.5) is
infinitely divisible and therefore, it is a compound Poisson distribution (see Propositions
8 and 9 in Karlis and Xekalaki, 2005).

Let us now suppose that Y = (Y1, ..., Yn) is a random sample of size n from the
PEIG distribution with pmf (2.5). The log–likelihood function is proportional to

`(φ;Y) ∝ n

2
log φ+

n∑

i=1

logU
(

1

2
+ Yi,

1

2
,
φ

2

)
. (2.9)

Having into account that

∂

∂z
U(a, b, z) = −a U(a+ 1, b+ 1, z),

the maximum likelihood estimate of the parameter φ can be simply obtained by solving
this normal equation

∂`(φ;Y)

∂φ
=
n

φ
−

n∑

i=1

(
1
2

+ Yi
)
U
(
3
2

+ Yi,
3
2
, φ
2

)

U
(
1
2

+ Yi,
1
2
, φ
2

) = 0. (2.10)

The Fisher’s information matrix can be approximated from

∂2`(φ;Y)

∂φ2
= − n

φ2
−

n∑

i=1

(
Yi − 1

2

) {
M1(Yi, φ) + [M2(Yi, φ)]2

}

[M3(Yi, φ)]2
, (2.11)

where

M1(Yi, φ) = −
(

3

2
+ Yi

)
U
(

5

2
+ Yi,

5

2
,
φ

2

)
U
(

1

2
+ Yi,

1

2
,
φ

2

)
,

M2(Yi, φ) =

(
1

2
+ Yi

)[
U
(
Yi +

3

2
,
3

2
,
φ

2

)]2
,

M3(Yi, φ) = U
(

1

2
+ Yi,

1

2
,
φ

2

)
.

This maximum likelihood estimate can also be calculated by using the EM algorithm.
This method is a powerful technique that provides an iterative procedure to compute max-
imum likelihood estimation when data contain missing information. This methodology
is suitable for distributions arising as mixtures since the mixing operation produces miss-
ing data. One of the main advantages of the EM algorithm is its numerical stability,
increasing the likelihood of the observed data in each iteration. It does not guaran-
tee convergence to the global maximum. It can be usually reached by starting the pa-
rameters at the moment estimates. The EM algorithm maximizes `(φ;Y) by iteratively



The Mixture Poisson Exponential–Inverse Gaussian Regression Model. . . 75

maximizing E(`(φ;Y,Z)) where Y = (Y1, ..., Yn) denotes the sample observations and
Z = (θ1, ..., θn) denotes the missing observations and `(φ;Y, Z) is the complete log–
likelihood function.

The EM algorithm is based on two steps, the E–step, or expectation, fills in the missing
data. Once the missing data are built–in, the parameters are estimated in the M–step
(maximization step).

At the E–step of the (j+1)-th iteration the expected log–likelihood of the complete
data model is computed by

E(`(φ;Y, Z) | Y, φ̂(j)). (2.12)

In the M–step, the updated parameter estimate is computed from maximizing the
quantity (2.12) with respect to φ. Then, if some terminating condition is satisfied we
stop iterating, otherwise move back to E–step for more iterations.

In mixed Poisson distributions (Karlis, 2005) the unobserved quantities are the real-
izations of θi of the unobserved mixing parameter for each data point Yi, i = 1 . . . n.
Additionally, we assume that the distribution of Yi | θi is Poisson with θi following (2.1).
On the other hand, when the complete model is from the exponential family then the E–
step computes the conditional expectations of its sufficient statistics. As it can be seen
below, the continuous distribution given in (2.1) is a member of the exponential family of
probability distributions since it can be written as

f(θ|φ) = h(θ) exp (A(φ)T (θ)−B(φ)) where

h(θ) =
1√
2θ

, A(φ) = −√2φ, T (θ) =
√
θ and B(φ) = − log

√
φ. Then, T (θ) is a

sufficient statistic of this distribution.
The EM type algorithm for this model can be described as follows. From the current

estimates φ(j)

• E–step: Calculate the pseudo–values

ti = E(
√
θi | Yi, φ̂(j))

for i = 1, . . . , n.

• M–step: Find the new estimates φ̂(j+1)

φ̂(j+1) =
1

2

(
n∑n
i=1 ti

)2

.

• If some convergence condition is satisfied then stop iterating, otherwise move back
to the E–step for another iteration.

3 The regression model
Let us now consider a random variable Yi denoting event counts and a vector of covariates
or explanatory variables xi = (xi1, . . . , xip)

t, including an intercept, related to the i-th
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observation that denotes a weight of observable features. In this model with fixed effects,
it is assumed that

Yi|θi ∼ P(θiµi)

θi ∼ EIG(φ)

µi = exp(xi
tβ), (3.1)

where β = (β1, β2, . . . , βp)
t a vector of regression coefficients.

The PEIG distribution has mean µ = 1/φ and variance 1/φ+ 5/φ2. If we parameter-
ize µi = 1/φ = exp(xi

tβ), the marginal mean and the marginal variance of the response
distribution distribution are given by

E(Yi|xi) = exp(xi
tβ) and

var(Yi|xi) = E(Yi|xi) + 5E(Yi|xi)2,

respectively.
Likewise the conditional mean of the response variable is related to the explana-

tory variables through a link function, g(E(Yi|xi)) = xi
tβ, where g(·) is a monotonic

function. The link function determines the function of the conditional mean that is pre-
dicted by xi

tβ. As the mean of (2.5) is non-negative, the log–link is the usual choice for
PEIG regression model since it guarantees a non-negative value for the conditional mean.
Additionally, as var(Yi|xi) > E(Yi|xi), this mixed Poisson regression model is over–
dispersed. In addition to this, as the variance is determined by the mean, no additional
variance estimate is required. Besides, this model does not nest the Poisson regression
model. Maximum likelihood estimation for this fixed effect regression model involves
setting the partial derivatives of the log–likelihood function with respect to regression
coefficients βj with j = 1, . . . , p equal to zero.

Let us now suppose that (yi,xi), i = 1, . . . , n are n independent realizations of the
regression model given in (3.1) where yi is the response variable and xi a vector of ex-
planatory variables. Then, the log–likelihood function can be expressed as

`(β1, . . . , βp) =
n∑

i=1

`i(µi; β1, . . . , βp)

= −n
2

log µi +
n∑

i=1

log Γ(2yi + 1)−
(

2
n∑

i=1

yi +
n

2

)
log 2

−
n∑

i=1

log yi! +
n∑

i=1

logU
(

1

2
+ yi,

1

2
,

1

2µi

)
. (3.2)

Then, the normal equations to obtain the maximum likelihood estimates are given by

∂`

∂βs
=

n

2

n∑

i=1

xis +
n∑

i=1

(
1

2
+ yi

)
xis
2

1

µi

U
(

3
2

+ yi,
3
2
, 1
2µi

)

U
(

1
2

+ yi,
1
2
, 1
2µi

) ,
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with s = 1, 2, . . . , p.
Furthermore, the required expressions to approximate the Fisher’s information matrix

associated with maximum–likelihood estimates are provided by

∂2`

∂βs∂βk
= −

n∑

t=1

(
1

2
+ yi

)
xisxik

2

(
1

2
+ yi

)
1

µi

×

[
U
(

3
2

+ yi,
3
2
, 1
2µi

)
−
(
3
2

+ yi
)
U
(

5
2

+ yi,
5
2
, 1
2µi

)]

U
(

1
2

+ yi,
1
2
, 1
2µi

)

+



(

1

2
+ yi

)
xisxik

2

(
1

2
+ yi

)
1

µi

U
(

3
2

+ yi,
3
2
, 1
2µi

)

U
(

1
2

+ yi,
1
2
, 1
2µi

)




2

,

for s = 1, 2, . . . , p and k = 1, 2, . . . , p.

4 Application to health service data

4.1 Estimation of parameters
In the following, we are going to illustrate the performance of this mixed Poisson regres-
sion model. For that reason, let us consider now the number of hospital stays among
the elderly population age 65 and over in the U.S. This amount represents a significant
portion of the annual expenditures on hospital care since government insurance programs
in the U.S. bear the highest financial burden for health care. Moreover, it has been fore-
casted that the number of elderly will continue to grow in the coming years. This set of
data appears originally in Deb and Trivedi (1997) in their analysis of various measures of
health–care utilization using a sample of 4406 single–person households in 1987. Data
have been obtained from the Journal of Applied Econometrics 1997 Data Archive. Es-
timation of model and all the data analyses were done using Mathematica 9.0 software
package. All the codes used to obtain reported results and all additional information
useful to make research reproducible can be found on the journal’s website or it will be
made available by the authors on request. Our goal is to model the number of hospital
stays (HOSP) as the response variable. This measure includes two interesting features,
on the one hand over–dispersion, the mean and variance of the empirical distribution are
0.30 and 0.56 respectively, and, on the other hand, a very high proportion of non–users
(80.36%). Since the Poisson regression model is not able to capture the the heterogeneity
among individuals found in the data, the PEIG regression model is used to explain the
demand for health services.

Let us firstly considered the model without covariates. Parameter estimates, standard
errors (in brackets) and the maximum of the log–likelihood (`max) of the distribution of
the hospital stays are θ̂ = 0.296 (0.01) and `max = −3304.51 for Poisson model and
µ̂ = 0.308 (0.01), `max = −3021.92 for PEIG model respectively. For the latter model,
the estimate can also be obtained by using the EM algorithm after 25 iterations when the
relative change of the estimate between two successive iterations is smaller than 1×10−10,
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after taking initial starting value in the neighborhood of the moment estimate. Therefore,
it can be concluded that the PEIG model provides a better fit to the data than Poisson
distribution by considering maximum of the log–likelihood as criterion of comparison.
For the standard model given in (2.5) the estimated value of φ is 3.24783 with a stan-
dard error of 0.138. Since the empirical distribution is over-dispersed the Poisson model
seems to be inadequate for estimating these count data. Next, in Figure 1 the histogram
of the empirical distribution of the number of hospital stays (Observed), together with
fitted distribution, obtained from the Poisson distribution and PEIG distribution has been
plotted. As it can be observed, there is a clear spike of extra zeros representing the non-
hospitalization of the elderly population with the best fit to the data obtained with the
PEIG model.

0 1 2 3 4 5 6 7 8

Observed

Poisson-Exponential-Inverse Gaussian

Poisson

0

500

1000

1500

2000

2500

3000

Figure 1: Observed and fitted (PEIG and Poisson) distribution of the number of hospital
stays (HOSP)

Let us now analyze the model with covariates. The explanatory variables are as fol-
lows: (1) a dummy variable (EXCLHLTH) which takes the value 1 if self–perceived
health is excellent; (2) a dummy variable (POORHLTH) which takes the value 1 if self–
perceived health is poor; (3) a count variable (NUMCHRON) giving the number of chronic
disease and condition (cancer, heart attack, etc.); (4) age (AGE) divided by 10; (5) a
dummy variable (MALE) with value 1 if the patient is male. For the ith patient, the
number of hospital stays Yi follows a PEIG whose mean depends on a set of covari-
ates trough the log–link function. The goal is to predict the number of hospital stays Yi
(response variable) using a vector of explicative variables (covariates).

At first sight, it seems logical that due to the presence of over–dispersion, a relative
large long right tail, and a high proportion of zeros as compared to the proportion of other
values, a simple Poisson regression model is not adequate to explain the number of hospi-
tal stays since it tends to overestimate the probability of lower values and underestimate
the probability of larger values. For that reason, it is expected that a a mixed Poisson re-
gression model will describe in a more accurate way the right tail of empirical data and the
high proportion of zeros in the sample. As it can be observed in Table 1, the PEIG and
a Poisson (in brackets) regression model have been fitted to data. From left to right pa-
rameter estimates, standard errors, t-Wald and p-values are shown for both models. After
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observing the values of the estimated regressors, there exists some differences between
estimated effects of both models. In this sense, the PEIG regression model predicts a
higher use of the health service when self–perceived health is poor, the number of chronic
disease and condition and age increases and the patient is male. Furthermore, when self–
perceived health is excellent then the predicted change in the number of hospital stays
decreases at a lower rate than in the Poisson regression model. The intercept coefficient
−3.959 is the predicted logarithm of the number of hospital stays when the values of EX-
CLHLTH, POORHLTH, NUMCHR, AGE and MALE are equal to 0. Having said that,
it can be concluded, from this numerical application, that the PEIG regression model
predicts a higher use of the health service for this set of explanatory variables. All of
parameter estimates are significant at the usual nominal level.

Table 1: Parameter estimates, standard errors, t-Wald and p-values for PEIG and Poisson
(in brackets) regression models for the number of hospital stays.

Parameter Estimate S.E. t-Wald Pr > |t|
INTERCEPT –3.959(–3.220) 0.52(0.32) –7.63(–10.19) 0.00(0.00)
EXCLHLTH –0.688(–0.720) 0.22(0.18) –3.15(–4.10) 0.00(0.00)
POORHLTH 0.683(0.613) 0.12(0.07) 5.60(9.18) 0.00(0.00)
NUMCHRON 0.326(0.264) 0.03(0.02) 9.72(14.48) 0.00(0.00)
AGE 0.268(0.183) 0.07(0.04) 3.93(4.39) 0.00(0.00)
MALE 0.196(0.109) 0.10(0.06) 2.17(1.94) 0.03(0.05)

Following the work of Wedderburn (1974), we have also estimated the parameters
by using a quasi–likelihood model. In this case, we need only to specify the marginal
response variance in terms of the marginal mean, i.e. var(Yi) = µi + 5µ2

i , (i = 1, . . . , n).
Via quasi–likelihood estimation, the estimates are very close to the ones shown in Table
1. Note that they are given in the same order as in Table 1, that is, –3.92958, –0.679321,
0.605773, 0.307492, 0.262405 and 0.187604. The value of the negative of the maximum
of the log–likelihood is 2896.79.

4.2 Model assessment

Several measures of model validation to compare the PEIG and Poisson regression
model are shown in Table 2. Firstly, the value of the negative of the maximum of the
log–likelihood (NLL) and Akaike Information Criterion (AIC) are given in the first two
rows of this Table; as a lower value of these measures is desirable, the PEIG regression
model is preferable. Bozdogan (1987) proposed a corrected version of AIC, the Con-
sistent Akaike Information Criteria (CAIC), in an attempt to overcome the tendency of
the AIC to overestimate the complexity of the underlying model. Bozdogan (1987) also
observed that AIC does not directly depend on the sample size and, as a result, it lacks
certain properties of asymptotic consistency. See also Anderson et al. (1998). When for-
mulating the CAIC, a correction factor based on the sample size is used to compensate for
the overestimating nature of AIC. The CAIC is defined as CAIC = 2 NLL+(1+log n) p,
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where p refers to the number of estimated parameters and n is the sample size. Again, a
model that minimize the Consistent Akaike Information Criteria is preferable. As it can
be observed, the PEIG regression model also dominates the Poisson regression model in
terms of the CAIC.

Table 2: Measures of model selection for the models considered.

Distribution
Criterion Poisson PEIG

NLL 3047.32 2895.11
AIC 6116.63 5802.22

CAIC 6150.98 5846.57
Pearson statistic, (εPi )2 7071.90 4626.74
Deviance residual/df –0.30183 –0.33572

Now we perform some diagnostic checks based on analysis of residuals. This is a
useful method to detect outliers and check the variance assumption in a more general
setting (see Cameron and Trivedi (1986), for details). Perhaps the most common choice is
Pearson’s residuals. They are used to identify discrepancies between models and data, and
they are based upon differences between observed data points and fitted values predicted
by the model. The i-th Pearson residual for a given model is provided by

εPi =
yi − µ̂i√
var(µ̂i)

, (4.1)

where µ̂i is the fitted marginal mean and var(µ̂i) is the estimated marginal variance un-
der the discussed model. Hence, if the model is correct, the variability of these residuals
should appear to be fairly constant, when they are plotted against fitted values or predic-
tors. The Pearson’s residuals are often skewed for non–normal data, and this make the
interpretation of the residual plots more difficult to interpret. For that reason, other quan-
tifications of the discrepancy between observed and fitted values have been suggested in
the literature. In this regard, another choice in the analysis of residual is the signed square
root of the contribution to the deviance goodness–of–fit statistic (i.e. deviance residuals).
This is given by D =

∑n
i=1 di, where

di = sgn(yi − µ̂i)
√

2(`(yi)− `(µ̂i)), i = 1, 2, . . . , n,

and sgn is the function that returns the sign (plus or minus) of the argument. The `(yi)
term is the value of the log likelihood when the mean of the conditional distribution for
the i-th individual is the individual’s actual score of the response variable. The `(µ̂i) is
the log–likelihood when the conditional mean is plugged into the log–likelihood. Usually
the deviance divided by its degree of freedom is examined by taking into account that a
value much greater than one indicates a poorly fitting model. See for example De Jong
and Heller (2008).
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It is well–known that for the Poisson distribution with parameter θi the deviance resid-
uals are given by (see Dunteman and Ho 2006))

di = sgn(yi − θ̂i)
[
2

(
yi log

(
yi

θ̂i

)
− (yi − θ̂i)

)]1/2
, i = 1, 2, . . . , n. (4.2)

For the model introduced in this manuscript the deviance residuals are easily obtained
by

di = sgn(yi − µ̂i)
{

2

[
log

( U(0.5 + yi, 0.5, (2yi)
−1)

U(0.5 + µ̂i, 0.5, (2µ̂i)−1)

)
− 1

2
log

(
yi
µ̂i

)]}1/2

,

i = 1, 2, . . . , n.

Note that the deviance does not exist whenever there are zero responses in the data.
However, it is usually assumed that di = 0 when yi = 0 (e.g. yi log yi is zero for yi =
0). The Pearson’s statistics together with the deviance residual divided by the degree of
freedom are shown in Table 2. The PEIG dominates widely the Poisson distribution in
terms of the Pearson’s statistics and small differences appear in the value of the deviance
residual. Recall that we have taken this value as zero when the observed response variable
takes the value zero.

Graphical model diagnostic may also be developed using expression (4.1). In this

case, for the Poisson regression model this reduces to εPi = (yi − θ̂i)/
√
θ̂i, while for the

distributionPEIG regression model, this expression is given by εPi = (yi−µ̂i)/
√
µ̂i(1 + 5µ̂i)

as it can be easily verified. For this example, not much differences are found between
these plots and those ones produced by the raw residuals, yi − θ̂i, which are shown in
Figure 2. On the other hand, the Pearson’s residuals are usually standardized by divid-
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Figure 2: Plots of the raw residuals for the Poisson (left) and the PEIG (right) regression
models.

ing by
√

1− hi, where hi are the leverages obtained from the diagonal of the hat matrix
W 1/2X(X ′WX)−1X ′W 1/2, being W equal to the n × n diagonal matrix with i–th en-
try wi, given by wi = (∂θi/∂x

′β))2 /var(Yi). This results θi for the Poisson regression
model and µi/(1 + 5µ2

i ) for the regression based on the new distribution presented here.
See Cameron and Trivedi (1986) for details about the construction of the hat matrix. The
standardized Pearson’s residuals have also been plotted, they are shown in Figure 3. As
it can be seen, for the Poisson regression model many of the values of the Pearson’s stan-
dardized residuals lie outside the range (−2, 2), pointing out a poorer fit to data than the
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Figure 3: Standardized Pearson’s residuals for the Poisson (left) and the PEIG (right)
distributions

one obtained for the PEIG regression model presented in this work. See Hilbe (2007)
for details.

In the following, as the regression model introduced in this paper is not nested in
the Poisson regression model, the Vuong’s test can be used to compare the estimates of
the Poisson regression model and PEIG regression model. In this regard, one might be
interested in testing the null hypothesis that the two models are equally close to the actual
model, against the alternative one that one of the model is closer (see Vuong (1989)). The
z-statistic is

Z =
1

ω
√
n

(
`(µ̂)− `(θ̂)

)
,

where

ω2 =
1

n

n∑

i=1

[
log

(
f(µ̂)

g(θ̂)

)]2
−
[

1

n

n∑

i=1

log

(
f(µ̂)

g(θ̂)

)]2

and f and g represent here the PEIG and Poisson distributions, respectively.
Due to the asymptotic normal behaviour of the Z statistic under the null hypothesis,

rejection of null hypothesis in favour of the alternative one that f occurs with significance
level α, when Z > z1−α being z1−α the (1− α) quantile of the standard normal distribu-
tion. For the Vuong’s test, Z = 3.95754, then the PEIG model is preferred at the usual
nominal levels.

4.3 Comparisons with other models
Finally the fit obtained with the PEIG regression model is compared to two other mixed
Posisson regression models traditionally used in the statistical literature, the negative bi-
nomial and the Poisson–Inverse Gaussian regression models (see Dean et al. (1989)).
Furthermore, when the empirical data includes a high presence of zeros it is usual to con-
sider a reparameterization of the parent distribution to capture all zeros in the sample, the
zero–inflated (ZI) model. If the parent distribution is p(x), a ZI distribution is built as
follows (see Cohen (1966))

p(x) =

{
(1− ψ) + ψ p(0), x = 0,
ψ p(x), x > 0,
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where p(x) is the parent distribution and 0 < ψ ≤ 1 is the inflated parameter. The PEIG,
negative binomial and Poisson–Inverse Gaussian distributions have been reparameterized
to obtain the maximum likelihood estimates under the ZI model and the results, together
with the homogeneous models (without inflation), are displayed in Table 3.

Table 3: Maximum of the log–likelihood and Consistent Akaike Information Criteria
(CAIC) for different homogeneous and ZI models.

Homegeneous ZI
Distribution NLL CAIC NLL CAIC
PEIG 2895.11 5846.57 2851.90 5769.74

NB 2857.11 5779.95 2853.37 5781.87
PIG 2877.33 5820.40 2847.69 5770.51

As it can be seen in this Table, the (ZI) PEIG regression model provides the best fit to
data for this particular dataset when the CAIC is used as a criterion of comparison since
the other two mixed Poisson regression models include an additional parameter. Since
the global maximum of the log–likelihood surface is not guaranteed, different initial val-
ues of the parametric space were considered as a seed point. The calculations have been
completed by using the FindMaximum function of Mathematica software package v.9.0
(Wolfram (2003)) (the derivative of the modified Bessel function of the third kind is avail-
able in this package). Additionally, by using other different methods such as Newton,
PrincipalAxis and QuasiNewton the same results were obtained.

5 Conclusions
In this paper, a new mixed Poisson regression model to explain the demand for health
services among people 65 and over to account for a large portion of non–users has been
proposed. This model has been derived by mixing the Poisson distribution with a par-
ticular case of the continuous Exponential–Inverse Gaussian distribution when one of its
parameter tends to infinity. Additionally, it is over–dispersed and unimodal with modal
value located at zero. The model might be considered an alternative to Poisson regression
model when the empirical data include a high proportion of zeros. In this regard, several
measures of model assessment, including the Vuong’s test for non-nested model selec-
tion, have been provided to support this goal. Apart from that, due to the high proportion
of zeros in the empirical data, a zero–inflated version of this model has also been used to
explain the demand for health services of elderly people.
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X bar control chart for non-normal symmetric
distributions

Kristina Veljkovic 1

Abstract

In statistical quality control, X bar control chart is extensively used to monitor a
change in the process mean. In this paper, X bar control chart for non-normal sym-
metric distributions is proposed. For chosen Student, Laplace, logistic and uniform
distributions of quality characteristic, we calculated theoretical distribution of stan-
dardized sample mean and fitted Pearson type II or type VII distributions. Width of
control limits and power of the X bar control chart were established, giving evidence
of the goodness of fit of the corresponding Pearson distribution to the theoretical dis-
tribution of standardized sample mean. For implementation of X bar control chart in
practice, numerical example of construction of a proposed chart is given.

1 Introduction
The X bar chart is extensively used in practice to monitor a change in the process mean.
It is usually assumed that measured quality characteristic has normal or approximately
normal distribution. On the other hand, occurrence of non-normal data in industry is quite
common (see Alloway and Raghavachari, 1991; Janacek and Meikle, 1997). Violation of
normality assumption results in incorrect control limits of control charts (Alwan, 1995).
Misplaced control limits lead to inappropriate charts that will either fail to detect real
changes in the process or which will generate spurious warnings when the process has not
changed.

In the case of non-normal symmetric distribution of quality characteristics, no rec-
ommendations, except the use of the normal distribution, are given in the quality control
literature. Approximation of the distribution of sample mean with normal distribution is
based on the central limit theorem, but in practice small sample sizes are usually used.

We will consider four types of non-normal symmetric distributions of quality char-
acteristic: Student, Laplace, logistic and uniform distributions. These distributions are
chosen because of their applications in various disciplines (economics, finance, engineer-
ing, hydrology, etc., see for instance Ahsanullah, et al., 2014; Balakrishnan, 1992; Kotz
et al., 2001). For each of these distributions, we calculated theoretical distribution of the
standardized sample mean (or its best approximation) and approximated it with Pearson
type II or type VII distributions. Pearson system of distributions is known to provide
approximations to a wide variety of observed distributions (Johnson et al., 1994).

1 Department of Probability and Statistics, Faculty of Mathematics, University of Belgrade, Serbia;
kristina@matf.bg.ac.rs
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It is presumed that a process begins in in-control state with mean µ0 and that single
assignable cause of magnitude δ results in a shift in the process mean from µ0 to either
µ0 − δσ or µ0 + δσ, where σ is the process standard deviation (Montgomery, 2005). It is
also assumed that the standard deviation remains stable. Center line of the X bar chart is
set at µ0 and upper and lower control limits, respectively, µ0 + kσ/

√
n and µ0 − kσ/

√
n,

where n represents the sample size and k width of control limits. Samples of size n are
taken from the process and the sample mean is plotted on the X bar chart. If a sample mean
exceeds control limits, it is assumed that some shift in the process mean has occurred and
a search for the assignable cause is initiated.

The rest of the paper is organized as follows. In Sections 2, 3 and 4, respectively,
descriptions of chosen distributions of quality characteristic, distributions of standardized
sample mean and Pearson types II and VII distributions are given. Construction of the X
bar control chart and its power are examined in Section 5, along with the comparisons of
theoretical distribution of sample mean with the corresponding Pearson distribution. In
Section 6, implementation of proposed X bar chart is considered. Finally, conclusions are
drawn in Section 7.

2 Distribution of quality characteristic
We considered four types of non-normal symmetric distributions of quality characteristic
X: Student distribution t(10), standard Laplace L(1) distribution and logistic distribution
LGS(1) (see Johnson et al. 1994; Johnson et al. 1995) as representatives of symmetric
distributions with heavier tails than normal distribution (Figure 1) and uniform U(0, 1)
distribution as a representative of symmetric distributions with lighter tails than normal
distribution. For simplicity, we have chosen standard forms of all four distributions.

Figure 1: Probability density functions of Student t(10), Laplace L(1), logistic LGS(1)
and standard normal N(0, 1) distributions
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Distribution fX µ σ2 α4

t(10) 315
256
√
10

(
1 + x2

10

)−5.5
, x ∈ R 0 1.25 4

L(1) 1
2
e−|x| x ∈ R 0 2 6

LGS(1) e−x

(1+e−x)2
x ∈ R 0 π2

3
4.2

U(0, 1) x, x ∈ [0, 1] 0.5 1
12

1.8

Table 1: Chosen distributions of quality characteristics

Distributions are given in Table 1 by their probability density function fX , mean µ,
variance σ2 = V ar(X) and kurtosis α4 = E(X−E(X))4

σ4 . As all chosen distributions are

symmetric around the zero, skewness α3 = E(X−E(X))3

σ
3
2

= 0.

3 Distribution of standardized sample mean
For chosen distributions of quality characteristic, we will derive the distribution of stan-
dardized sample mean Tn = X−µ

σ

√
n. As all chosen distributions are symmetric, skew-

ness of standardized sample mean will also be equal to 0.

3.1 Sample from Student’s distribution
Witkowský (2001, 2004) proposed a method for numerical evaluation of the distribution
function of a linear combination of independent Student variables. The method is based
on the inversion formula which leads to the one-dimensional numerical integration.

Let (X1, X2, . . . , Xn) be a sample from Student t(ν) distribution. Further, let Y =∑n
k=1Xk be sum of these variables and φXk(t) denote the characteristic function of Xk.

The characteristic function of Y is

φY (t) =
n∏

k=1

φXk(t) =
n∏

k=1

1

2
ν
2
−1Γ(ν

2
)

(
ν

1
2 |t|
) ν

2
Kν/2

(
ν

1
2 |t|
)
,

where Kα(z) denotes modified Bessel function of the second kind.
The cumulative distribution function FY (y) of random variable Y is, according to the

inversion formula due to Gil-Pelaez (1951), given by

FY (y) =
1

2
+

1

π

∫ ∞

0

sin (ty)φY (t)

t
dt (3.1)

For any chosen y algorithm tdist in R package tdist (Witkowský and Savin, 2005)
evaluates the integral in (3.1) by multiple p-points Gaussian quadrature over the real inter-
val t ∈ (0, 10π). The whole interval is divided in m subintervals and the integration over
each subinterval is done with p-points Gaussian quadrature which involves base points
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bij , and weight factors wij , i = 1, 2, . . . , p, j = 1, 2, . . . ,m. So,

FY (y) ≈ 1

2
+

1

π

m∑

j=1

p∑

i=1

sin (bijy)

bij
wijφY (bij).

Then, cumulative distribution function of standardized sample mean is equal to

FTn(t) = FY

(√
5n

2
t

)
, t ∈ R.

Kurtosis of Tn is equal to α4,Tn = 3 + 1
n

3.2 Sample from Laplace distribution
Let (X1, X2, . . . , Xn) be a sample from standard Laplace L(1) distribution. Difference of
two independent random variables with standard exponential ε(1) distribution has stan-
dard Laplace distribution. Further, standard exponential distribution is gamma distribu-
tion, Γ(1, 1). Sum of n independent variables with Γ(1, 1) distribution is gamma distri-
bution Γ(n, 1). In that way, we conclude that sum Y of n independent random variables
X1, X2, . . . , Xn with standard Laplace distribution can be written as the difference of
two random variables with gamma distribution Γ(n, 1) which is called bilateral gamma
distribution.

Bilateral gamma distribution is symmetric around 0 (Küchler and Tappe, 2008), with
cumulative distribution function for y > 0

FY (y) =
1

2
+

1

2n
· 1

(n− 1)!

n∑

k=0

akγ(k + 1, y)

where the coefficients (ak)k=0,...,n−1 are given by

ak =

(
n− 1

k

)
1

2n−1−k

n−2−k∏

l=0

(n+ l), an−1 = 1.

and γ(n, y) is incomplete gamma function.
Then, cumulative distribution function of standardized sample mean is equal to

FTn(t) = FY

(√
2nt
)
, t ∈ R.

Kurtosis of standardized sample mean is equal α4,Tn = 3 + 3
n

.

3.3 Sample from logistic distribution
Let (X1, X2, . . . , Xn) be a random sample from logistic LGS(1) distribution. Insofar, the
best approximation of the distribution of standardized sample mean Tn is given by Gupta
and Han (1992). They considered the Edgeworth series expansions up to order n−3 for
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the distribution of the standardized sample mean. Cumulative distribution function of Tn
is given by

FTn(t) ≈ Φ(t)− ϕ(t)

(
1

n

(
1

4!

6

5
H3(t)

)
+

1

n2

(
1

6!

48

7
H5(t) +

+
35

8!

(
6

5

)2

H7(t)

))
+

1

n3

(
1

8!

432

5
H7(t) +

210

10!

48

7

6

5
H9(t) +

+
5775

12!

(
6

5

)3

H11(t)

))
, t ∈ R,

where ϕ(·) and Φ(·) are standard normal pdf and cdf and Hj(x) is the Hermite polyno-
mial.

Kurtosis of standardized sample mean is α4,Tn = 3 + 1.2
n
.

3.4 Sample from uniform distribution
Let (X1, X2, . . . , Xn) be a random sample from uniform U(0, 1) distribution. The sum
Y =

∑n
k=1Xk has Irwin-Hall distribution (Johnson et al., 1995) with cumulative distri-

bution function

FY (y) =
1

2
+

1

2n!

n∑

k=0

(−1)k
(
n

k

)
sgn(y − k)(y − k)n, x ∈ R.

Then, standardized sample mean has cumulative distribution function equal to

FTn(t) = FY

((
t√
12n

+
1

2

)
n

)
, t ∈ R.

Kurtosis of standardized sample mean is α4,Tn = 3− 1.2
n
.

4 Symmetric Pearson distributions

4.1 Pearson type II distribution
Pearson type II distribution can be used for approximation of the distribution of random
variable with skewness α3 = 0 and kurtosis α4 < 3 (Johnson et al., 1994). Cumulative
distribution function of Pearson type II distribution is equal to

F (t) = I t−λ
s

(a, a), 0 <
t− λ
s

< 1,

where

λ = −
√

2α4

3− α4

, s = 2

√
2α4

3− α4

, a =
5α4 − 9

2(3− α4)
+ 1, (4.1)

It(a, b) = Bt(a,b)
B(a,b)

, B(a, b) is beta function and Bt(a, b) is incomplete beta function.
In other words, random variable T−λ

s
has beta distribution B(a, a).
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4.2 Pearson type VII distribution
Pearson type VII distribution can be used for approximation of the distribution of random
variable with skewness α3 = 0 and kurtosis α4 > 3 (Johnson et al., 1994). Cumulative
distribution function of Pearson type VII distribution is equal to

F (t) =
1

2
Ia2/(a2+t2)

(
m− 1

2
,
1

2

)
, t < 0

and

F (t) = 1− 1

2
Ia2/(a2+t2)

(
m− 1

2
,
1

2

)
, t > 0,

where

m =
5α4 − 9

2(α4 − 3)
, a =

√
2α4

α4 − 3
. (4.2)

5 Design of X bar control chart
For sample sizes n = 3, 4, . . . , 10, we calculated theoretical distribution of the standard-
ized sample mean of considered distributions, using results from Section 3 and then we
approximated it with Pearson type II distribution in the case of uniform distribution and
with Pearson type VII distribution in the case of Student, Laplace and logistic distribu-
tions. Parameters of the fitted Pearson types II and VII distributions are calculated using
formulas (4.1) and (4.2). Code for all calculations was written, by the author, in statistical
software R and is available as supplementary code on the web site of the Journal. Width
of control limits of the X bar control chart is calculated from

α = 1− P{µ0 − k
σ√
n
≤ X ≤ µ0 + k

σ√
n
|µ = µ0} = 2(1− FTn(k)), (5.1)

where FTn is cumulative distribution function of standardized sample mean, using Brent’s
root-finding method (Brent, 1973). Same procedure was followed for both the theoretical
distribution of standardized sample mean and corresponding Pearson distribution.

Control limits of the X bar control chart for non-normal symmetric distributions are
calculated for specified probability 0.0027 of type I error, in analogy with X bar control
chart for normal distribution. When quality characteristics is normally distributed, the
probability that sample mean falls outside three standard deviations from the center line
is 0.0027, for in-control process. These are so called three-sigma control limits (here
sigma refers to the standard deviation of sample mean) and they are frequently used in
construction of X bar control chart (Montgomery, 2005).

Calculated widths of control limits, for considered distributions of quality character-
istic, sample sizes n = 3, 4, . . . , 10, probability of false alarm α = 0.0027, for theoretical
distribution of the standardized sample mean and Pearson types II and VII distributions,
are given in Table 2.

As it can be seen in the Table 2, the values of the width of the control limits calcu-
lated from theoretical distribution and corresponding Pearson distribution are very close,
i.e. corresponding Pearson distribution fits very well to the theoretical distribution of the
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Width of control limits
Sample Student t(10) Laplace L(1) Logistic LGS(1) Uniform U(0, 1)

size Theor. Pearson Theor. Pearson Theor. Pearson Theor. Pearson
n = 3 3.21966 3.22227 3.54221 3.53915 3.25580 3.26074 2.59834 2.65308
n = 4 3.16998 3.17156 3.43224 3.43628 3.20035 3.20234 2.72926 2.74902
n = 5 3.13867 3.13966 3.36034 3.36606 3.16405 3.16527 2.79650 2.80355
n = 6 3.11712 3.11775 3.30939 3.31520 3.13877 3.13966 2.83511 2.83866
n = 7 3.10136 3.10178 3.27130 3.27668 3.12021 3.12091 2.86060 2.86314
n = 8 3.08934 3.08962 3.24168 3.24652 3.10602 3.10660 2.87932 2.88118
n = 9 3.07987 3.08005 3.21796 3.22227 3.09482 3.09531 2.89366 2.89502
n = 10 3.07221 3.07233 3.19852 3.20234 3.08577 3.08619 2.90489 2.90597

Table 2: Width of control limits of X bar control chart

standardized sample mean. On the other hand, normal approximation would give value
of k = 2.99998, for all n and all distributions of quality characteristics.

Now, we are interested to see what is the power of X bar control charts for detecting
shifts δ = 0.5, 1.0, . . . , 3.0, for calculated width of control limits. Power of X bar control
chart for detecting shifts from mean µ0 to µ1 = µ0 ± δσ can be calculated from

1− β = 1− P{µ0 − k
σ√
n
≤ X ≤ µ0 + k

σ√
n
|µ = µ1} =

= FTn(−k − δ√n) + FTn(−k + δ
√
n).

We should note that power of proposed X bar control chart for detecting shift δ = 0
is 0.0027 for all considered distributions and sample sizes, i.e. it maintains probability of
type I error.

Mainly, we want to investigate what is the minimum shift that X bar control chart can
detect with a power of at least 90%.

Calculated power of X bar control chart, for considered distributions of quality char-
acteristic, sample sizes n = 3, 4, . . . , 10, shifts δ = 0.5, 1.0, . . . , 3.0 for both theoreti-
cal distribution of standardized sample mean and corresponding Pearson distribution, are
given in Table 3.

¿From the Table 3, we see that X bar control chart can detect shifts of δ = 1.5 with
power of at least 90% for sample sizes of n = 9 and greater for all considered distri-
butions. In order for the X bar chart to detect shifts of δ = 2.0 with power of 90% and
greater, it is necessary to take samples of size at least n = 4 for Student, Laplace and logis-
tic distributions and sample sizes of n = 5 and greater for uniform distribution of quality
characteristic. Also, we can once more notice that the corresponding Pearson distribution
approximates the distribution of standardized sample mean rather well. In general, it can
be concluded that X bar control chart can detect shifts of at least δ = 1.5 with power of
90% and greater for non-normal symmetric distribution of quality characteristic.

6 Implementation of proposed X bar control chart
Now we are interested to see how proposed X bar control chart can be implemented in
practice, in case when the distribution function of the quality characteristic is non-normal,
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symmetric but unknown. For fitting Pearson type II or type VII distributions to data, we
need an estimate of kurtosis based on sample of means.

6.1 Measures of sample kurtosis

We have three measures of sample kurtosis

g∗2 =
m4

m2
2

, G∗2 =
N − 1

(N − 2)(N − 3)
((N + 1)g2 + 6) + 3, b∗2 =

m4

s4
,

where mk are sample central moments.
Joanes and Gill (1998) investigated three measures g2 = g∗2 − 3, G2 = G∗2 − 3 and

b2 = b∗2 − 3 of sample excess kurtosis. They showed that, generating 100000 samples of
different sizes from Student t5 distribution, g2 generally has the smallest mean-squared
error. We followed the same procedure for measures g∗2 , G∗2 and b∗2 and generated 100000
samples of different sizes from distributions of standardized sample mean of Student
t(10), Laplace L(1), logistic LGS(1) and uniform U(0, 1) distributions. We confirm
Joanes and Gill’s findings. So, we will use, for calculation of the parameters of Pearson
types II and VII distributions, measure g∗2 as an estimate of sample kurtosis.

6.2 Empirical power of X bar control chart

In this section, we will calculate the empirical power of proposed X bar control chart in
order to investigate its performance in practice. We will take, by Monte Carlo simulations,
m = 25, 50, 100 samples of sizes 3 to 10 from Student t(10), Laplace L(1), logistic
LGS(1) and uniform U(0, 1) distributions. Sample means, as well as estimates of mean
and standard deviation, are calculated. Further, we estimated kurtosis of the distribution of
sample mean with g∗2 . Then, corresponding Pearson type II or type VII distribution is fitted
to m sample means and control limits and power of the X bar control chart are calculated.
This procedure is repeated 100000 times. The average power of the X bar control chart,
for considered distributions, is presented in Table 4 (rounded to four decimal places). It is
expected that sample size and number of groups will affect sample estimates, i.e. values
of parameters of fitted Pearson distribution and therefore power of proposed X bar control
chart.

We compared the values of empirical power for a number of groups m = 25, 50, 100
with theoretical power from Table 3, giving accent on the values of theoretical power of
90% and greater. We made the following conclusions for shift sizes of 1.5 and greater.
Zero difference is present at sample sizes of at least 7 and δ = 3. Absolute difference
between theoretical and empirical power gets smaller as a number of groups and shift
sizes rise. In most of the cases, the difference exists on third to the fourth decimal place.
In other words, proposed X bar control chart has quite satisfactory performance. General
advice for its use in practice would be to choose preferably more than 25 groups of sample
size of 9 and greater, in order to detect shift δ = 1.5 with the power of at least 90%.
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6.3 Example
Montgomery (2005) gave data set on thickness of a printed circuit board (in inches), for
25 samples of three boards each.

Figure 2: Boxplot of the thickness data (left graph) and empirical cumulative distribution
function of standardized sample means with fitted Pearson type II distribution (right graph)

As we can see on boxplot (Figure 2, left graph), sample distribution seems symmetric.
We tested symmetry of data distribution using Mira test (Mira, 1999), the Cabilio-Masaro
test (Cabilio and Masaro, 1996) and Miao-Gel-Gastwirth (MGG) test (Miao et al., 2006).
Based on results of all three tests, we can conclude that data distribution is symmetric
(Mira test: Test Statistic = 0.9029, p-value = 0.3666; Cabilio-Masaro test: Test Statistic
= 0.8846, p-value = 0.3764; MGG test: Test Statistic = 1.0162, p-value = 0.3095). R
function symmetry.test for these tests can be found in R package lawstat (Gastwirth et al.,
2015).

Now we will test the normality of the sample distribution using Shapiro-Wilk, Ander-
son-Darling and Lilliefors normality tests (Razali and Wah, 2011). Based on results of
all three tests, we conclude that data distribution is not normal (Shapiro-Wilk test: W
= 0.9589, p-value = 0.01584; Anderson-Darling test: A = 1.4759, p-value = 0.00076;
Lilliefors test D = 0.1467, p-value = 0.00039). We used R function shapiro.test (package
stats) for Shapiro-Wilk test and ad.test, lillie.test from R package nortest (Gross and
Ligges, 2015) for Anderson-Darling and Lilliefors normality tests, respectively.

For each of 25 samples, we calculated sample mean. Mean of all sample means is
equal to X = 0.06295 and this is the estimate of unknown process mean and center line
of X bar control chart. Further, we estimated process standard deviation with mean range,
σ̂ = R = 0.00092. Now, we can calculate standardized sample means and kurtosis of
standardized sample means. We got α̂4 = g∗2 = 2.83154 (measures of sample excess
kurtosis can be found in R package e1071 (Meyer et al., 2014)). So, as the distribution
of standardized sample means is symmetric with kurtosis smaller than 3, we will ap-
proximate its distribution with Pearson type II distribution. We calculated parameters of
distribution using equation (4.1). Empirical distribution function along with fitted Pearson
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type II distribution of standardized sample means is given on Figure 2, right graph.

For probability of false alarm α = 0.0027, we get, using equation (5.1), that width of
control limits is equal to k = 2.83665. Now we may calculate lower and upper control
limits of X bar control chart, LCL = X − k R√

n
= 0.06143, UCL = X + k R√

n
= 0.06448

and construct X bar chart (Figure 3). As we can see on Figure 3, all sample means are
within the control limits and we can conclude that process is in-control and keep the
estimates of unknown process mean, standard deviation, as well as the width of control
limits.

Figure 3: X bar control chart for the thickness data

7 Conclusions

We considered design of the X bar control chart when quality characteristic has one of
the following non-normal symmetric distributions: Student distribution with 10 degrees
of freedom, standard Laplace, standard logistic and standard uniform distributions. We
calculated theoretical distribution of the standardized sample mean (or its best approx-
imation) and approximated it with Pearson type II or type VII distributions. Then we
calculated width of control limits of the X bar chart, which gave evidence of the goodness
of fit of the corresponding Pearson distribution to the theoretical distribution of the stan-
dardized sample mean. Further, we examined the power of X bar control chart in detecting
the shifts. Results suggest that the X bar chart can detect shifts of at least δ = 1.5 with
power of 90% and greater. Then we undertook Monte Carlo study in order to calculate
empirical power of proposed X bar control chart, confirming its quite satisfactory perfor-
mance. Finally, we constructed X bar chart for a given data set, when data distribution is
non-normal and symmetric, but unknown.
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Estimating the Coefficient of Asymptotic Tail
Independence: a Comparison of Methods

Marta Ferreira1

Abstract

Many multivariate analyses require the account of extreme events. Correlation is
an insufficient measure to quantify tail dependence. The most common tail depen-
dence coefficients are based on the probability of simultaneous exceedances. The
coefficient of asymptotic tail independence introduced in Ledford and Tawn ([18]
1996) is a bivariate measure often used in the tail modeling of data in finance, en-
vironment, insurance, among other fields of applications. It can be estimated as
the tail index of the minimum component of a random pair with transformed unit
Pareto marginals. The literature regarding the estimation of the tail index is exten-
sive. Semi-parametric inference requires the choice of the number k of the largest
order statistics that lead to the best estimate, where there is a tricky trade-off be-
tween variance and bias. Many methodologies have been developed to undertake
this choice, most of them applied to the Hill estimator (Hill, [16] 1975). We are go-
ing to analyze, through simulation, some of these methods within the estimation of
the coefficient of asymptotic tail independence. We also compare with a minimum-
variance reduced-bias Hill estimator presented in Caeiro et al. ([3] 2005). A pure
heuristic procedure adapted from Frahm et al. ([13] 2005), used in a different con-
text but with a resembling framework, will also be implemented. We will see that
some of these simple tools should not be discarded in this context. Our study will be
complemented by applications to real datasets.

1 Introduction
It is undeniable that extreme events have been occurring in areas like environment (e.g.
climate changes due to pollution and global heating), finance (e.g., market crashes due to
less regulation and globalization), telecommunications (e.g., growing traffic due to a high
expanding technological development), among others. Extreme values are therefore the
subject of concern of many analysts and researchers, who have come to realize that they
should be dealt with some care, requiring their own treatment. For instance, the classical
linear correlation is not a suitable dependence measure if the dependence characteristics in
the tail differ from the remaining realizations in the sample. An illustration is addressed in
Embrechts et al. ([9] 2002). To this end, the tail dependence coefficient (TDC) defined in

1Center of Mathematics of University of Minho, Center for Computational and Stochastic Mathemat-
ics of University of Lisbon and Center of Statistics and Applications of University of Lisbon, Portugal;
msferreira@math.uminho.pt
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Joe ([17] 1997), usually denoted by λ, is more appropriate. More precisely, for a random
pair (X, Y ) with respective marginal distribution functions (dfs) FX and FY , the TDC is
given by

λ = lim
t↓0

P (FY (Y ) > 1− t|FX(X) > 1− t), (1.1)

whenever the limit exists. Roughly speaking, the TDC evaluates the probability of one
variable exceeding a large value given that the other also exceeds it. A positive TDC
means that X and Y are tail dependent and whenever null we conclude the random pair
is tail independent. In this latter case, the rate of convergence towards zero is a kind
of residual tail dependence that, once ignored, may lead to an under-estimation of the
risk underlying the simultaneous exceedance of a large value. On the other hand, by
considering that the random variables (rv’s) X and Y are tail dependent when they are
actually asymptotically independent, it will result in an over-estimation of such risk. The
degree of misspecification depends on the degree of asymptotic independence given by
the mentioned rate of convergence, denoted η in Ledford and Tawn ([18] 1996). More
precisely, it is assumed that

P (FX(X) > 1− t, FY (Y ) > 1− t) = t1/ηL(t), η ∈ (0, 1], (1.2)

whereL(t) is a slowly varying function at zero, i.e., L(tx)/L(t)→ 1 as t ↓ 0 for all x > 0.
We call the parameter η the coefficient of asymptotic tail independence. Whenever η < 1,
X and Y are asymptotically independent and, if η = 1, asymptotic dependence holds if
L(t)→ c > 0, as t ↓ 0. In caseX and Y are exactly independent then η = 1/2 and we can
also discern between asymptotically vanishing negative dependence and asymptotically
vanishing positive dependence if, respectively, η ∈ (0, 1/2) and η ∈ (1/2, 1). Observe
that we can state (1.2) as

P

(
min

(
1

1− FX(X)
,

1

1− FY (Y )

)
> t

)
= t−1/ηL(1/t), (1.3)

and thus η corresponds to the tail index of the minimum of the two marginals standardized
as unit Pareto. The tail index, also denoted extreme value index, quantifies the “weight”
of the tail of a univariate distribution: whenever negative, null or positive it means that the
tail of the underlying model is, respectively, “light”, “exponential” or “heavy”. In what
concerns univariate extreme values, it is the primary parameter as it is implicated in all
other extremal parameters, such as, extremal quantiles, right end-point of distributions,
probability of exceedance of large levels, as well as return periods, among others. There-
fore, the estimation of the tail index is a crucial issue, with numerous contributions in the
literature. A survey on this topic can be seen, for instance, in Beirlant et al. ([2] 2004).

Under a semi-parametric framework in the domain of heavy tails, the Hill estimator,
introduced in Hill ([16] 1975), have proved to possess good properties, being an essential
tool in any application on this topic. For a random sample (T1, . . . , Tn), the Hill estimator
corresponds to the sample mean of the log-excesses of the k + 1 larger order statistics
Tn:n ≥ . . . ≥ Tn−k:n, i.e.,

Hn(k) ≡ H(k) :=
1

k

k∑

i=1

log
Tn−i+1:n

Tn−k:n
, 1 ≤ k < n, (1.4)
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Consistency requires that k must be intermediate, that is, a sequence of integers k ≡ kn,
1 ≤ k < n, such that

kn →∞ and kn/n→ 0, as n→∞.

There is no definite formula to obtain k and it must be chosen not too small to avoid
high variance but also not to large to prevent high bias. Figure 1 illustrates this issue,
particularly the dashed line corresponding to a unit Frchet model where the tail index is 1.
Observe also that there is a kind of stable area of the sample path around the true value of
the tail index, where the variance is no longer high and the bias haven’t started to increase.
This disadvantage is transversal to the semi-parametric tools concerning extreme values
inference. In the particular case of the Hill estimator, many efforts have been made to
minimize the problem, ranging from bias-corrected versions to the implementation of
procedures to compute k. The minimum-variance reduced-bias (MVRB) Hill estimator
presented in Caeiro et al. ([3] 2005; see also Neves et al. [21] 2015) was developed for
the Hall-Welsh class (within Generalized Pareto distributions), with reciprocal quantile
function

F−1(1− 1/x) = Cxγ (1 + γβxρ/ρ+ o(xρ)) , x→∞, (1.5)

where γ > 0 is the tail index of model F , C > 0, and β 6= 0 and ρ < 0 are second order
parameters. The MVRB Hill estimator is given by

CHn(k) ≡ CH(k) := H(k)

(
1− β̂(n/k)ρ̂

1− ρ̂

)
, 1 ≤ k < n, (1.6)

where β̂ and ρ̂ are suitable estimators of β and ρ, respectively. Details about these latter
are addressed in Caeiro et al. ([4] 2009) and references therein. We will denote it “cor-
rected Hill” (CH). Our aim is to compare, through simulation, several methods regarding
the Hill and corrected Hill estimators applied to the estimation of η. We also consider the
graphical and pure heuristic procedure presented in Frahm et al. ([13] 2005) in the con-
text of estimating the TDC λ in (1.1), also relying on the choice of k upper order statistics
with the same bias/variance controversy. All the estimation procedures are described in
Section 2. The simulation study is conducted in Section 3 and applications to real datasets
appear in Section 4. A small discussion ends this work in Section 5.

2 Estimation methods
In this section we describe the procedures that we are going to consider in the estimation
of the coefficient of asymptotic tail independence η given in (1.3) and therefore corre-
sponding to the tail index of

T = min((1− FX(X))−1, (1− FY (Y ))−1). (2.1)

Coefficient η is positive and we can use positive tail index estimators such as Hill. Observe
that T is the minimum between two unit Pareto r.v.’s Alternatively, we can also undertake



104 Marta Ferreira

0 200 400 600 800 1000

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1:nhp

hp

Figure 1: Hill plots of 1000 realizations of a unit Pareto (full line) and a unit Fréchet
(dashed line), both with tail index equal to 1 (horizontal line).

a unit Frchet marginal transformation since 1−FX(X) ∼ − logFX(X). However, in the
sequel, we prosecute with unit Pareto marginals, since the Hill estimator has smaller bias
in the Pareto models than in the Frchet ones (see Figure 1; see also Draisma et al. [6]
2004 and references therein). In order to estimate the unknown marginal df’s FX and FY
we consider their empirical counterparts (ranks of the components), more precisely,

T
(n)
i := min((n+ 1)/(n+ 1−RX

i ), (n+ 1)/(n+ 1−RY
i )), i = 1, . . . , n

where RX
i denotes the rank of Xi among (X1, . . . , Xn) and RY

i denotes the rank of Yi
among (Y1, . . . , Yn).

The estimation of η through the tail index estimators Hill and maximum likelihood
(Smith, [24] 1987) was addressed in Draisma et al. ([6] 2004). Other estimators were
also considered in Poon et al. ([23] 2003; see also references therein) and more recently
in Goegebeur and Guillou ([14] 2013) and Dutang et al. ([8] 2014). However, no method
was analyzed in order to attain the best choice of k in estimation.

In the domain of positive tail indexes, the Hill estimator is the most widely studied
and many developments have been appearing around it. The main topics concern meth-
ods to obtain the value of k related to the number of tail observations to use in estimation
and procedures to control the bias without increasing the variance. The corrected Hill
version in (1.6), for instance, removes from Hill its dominant bias component estimated
by H(k)(β̂(n/k)ρ̂)/(1− ρ̂).

In the following, we describe the methods developed in literature for the Hill estimator
to compute the value of k, that will be used to estimate η (the tail index of rv T in (2.1))
in our simulation study.

Based on Beirlant et al. ([1] 2002) and little restrictive conditions on the underlying
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model, we have

Yi := (i+ 1) log
T

(n)
n−i:nH(i)

T
(n)
n−(i+1):nH(i+ 1)

= η + b(n/k)

(
i

k

)−ρ
+ εi, i = 1, ..., k, (2.2)

where the error term εi is zero-centered and b is a positive function such that b(x)→ 0, as
x→∞. Extensive simulation studies conclude that the results tend to be better when ρ is
considered fixed, even if misspecified. Matthys and Beirlant ([19] 2000) suggest ρ = −1.
From model (2.2), the resulting least squares estimators of η and b(n/k) are given by

η̃LSk,n = Y k − b̃LSk,n/(1− ρ) and b̃LSk,n = (1−ρ)2(1−2ρ)
ρ2

1
k

∑k
i=1

((
i
k

)−ρ − 1
1−ρ

)
Yi. (2.3)

Thus, by replacing these estimates in the Hill’s asymptotic mean squared error (AMSE)

AMSE(H(k)) = η2

k
+
(
b(n/k)
1−ρ

)2
,

we are able to compute k̂1opt as the value of k that minimizes the obtained estimates of the
AMSE and estimate η as H(k̂1opt).

On the other hand, we can compute the approximate value of k that minimizes the
AMSE, given by

kopt ∼ b(n/k)−2/(1−2ρ)k−2ρ/(1−2ρ)
(
η2(1−ρ)2
−2ρ

)1/(1−2ρ)
. (2.4)

See, e.g., Beirlant et al. ([1] 2002). Replacing again η and b(n/k) by the respective least
squares estimates in (2.3) with fixed ρ = −1, we derive k̂opt,k, for k = 3, ..., n, using
(2.4). Then compute k̂2opt = median{k̂opt,k, k = 3, ..., bn

2
c}, where bxc denotes the

largest integer not exceeding x and consider η estimated by H(k̂2opt).
Further reading of the methods is referred to Beirlant et al. ([1] 2002), Matthys and

Beirlant ([19] 2000) and references therein. In the sequel, they are shortly denoted, re-
spectively, AMSE and KOPT.

The adaptive procedure of Drees and Kaufmann ([6] 1998) looks for the optimum k
under which the bias starts to dominate the variance. The method is developed for the
Hall-Welsh class of models defined in (1.5), for which it is proved that the maximum
random fluctuation of

√
i(H(i) − η), i = 1, ..., k − 1, with k ≡ kn an intermediate

sequence, is of order
√
log log n. More precisely, for ρ fixed at −1, we have:

1. Consider rn = 2.5× η̃ × n0.25, with η̃ = η̂2√n,n.

2. Calculate k̃(rn) := min{k = 1, ..., n − 1 : maxi<k
√
i|H(i) − H(k)| > rn}. If√

i|H(i) − H(k)| > rn doesn’t hold for any k, consider 0.9 × rn to rn and repeat
step 2, otherwise move to step 3.

3. For ε ∈ (0, 1), usually ε = 0.7, obtain

k̂DK =

1
3
(2η̃2)1/3

(
k̃(rεn)

(k̃(rn))ε

)1/(1−ε)

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This method will be shortly referred DK.

Sousa and Michailidis (2004) method is based on the Hill sum plot, (k, Sk), k =
1, ..., n − 1, where Sk = kH(k). We have E(Sk) = kη, an thus the sumplot must
be approximately linear for the values of k where H(k) ≈ η, with the respective slope
being an estimator of η. The method essentially seeks the breakdown of linearity. Their
approach is based on a sequential testing procedure implemented in McGee and Carleton
([20] 1970), leaning over approximately Pareto tail models. More precisely, consider the
regression model y = Xη + δ, with y = (S1, ..., Sk)

′, X = [1 i]ki=1 and δ the error term.
It is checked the null hypothesis that a new point y0 is adjacent to the left or to the right
of the set of points y = (y1, ..., yk), through the statistics

TS = s−2
(
(y0 − ŷ∗0)2 +

k∑

i=1

(ŷi − ŷ∗i )2
)
,

where ∗ denotes the predictions based on k + 1 and s2 = (k − 2)−1(y′y − η̂X ′y). Since
TS is approximately distributed by F1,k−2, the null hypothesis is rejected if TS is larger
than the (1 − α)-quantile, F1,k−2;1−α. The method, shortly denoted SP from now on, is
described in the following algorithm:

1. Fit a least-squares regression line to the initial k = νn upper observations, y =
[yi]

k
i=1 (usually ν = 0.02).

2. Using the test statistic TS, determine if a new point y0 = yj for j > k, belongs to
the original set of points y. Go adding points until the null hypothesis is rejected.

3. Consider knew = max(0, {j : TS < F1,k−2;1−α}). If knew = 0, no new points
are added to y and thus move forward to step 4. Return to step 1. if knew > 0 by
considering k = knew.

4. Estimate η by considering the obtained k.

The heuristic procedure introduced in Gomes et al. ([15] 2013), searches for the
supposed stable region encompassing the best k to be estimated. More precisely, we need
first to obtain the minimum value j0, such that the rounded values to j decimal places
of H(k), 1 ≤ k < n, denoted H(k; j) are not all equal. Identify the set of values of k
associated to equal consecutive values of H(k; j0). Consider the set with largest range
` := kmax − kmin. Take all the estimates H(k; j0 + 2) with kmax ≤ k ≤ kmin, i.e., the
estimates with two additional decimal points and calculate the mode. Consider K the set
of k-values corresponding to the mode. Take H(k̂), with k̂ being the maximum of K.
Since it was specially designed for reduced-bias estimators, we shortly referred it as RB
method hereinafter.

Frahm et al. ([13] 2005) also presented a heuristic procedure that can be applied to all
estimators depending on a number k of rv’s whose choice bears the mentioned trade-off
between bias and variance. Indeed is was developed within the estimation of the TDC λ
defined in (1.1). It was adapted to the Hill estimator in Ferreira ([11, 12] 2014, 2015) as
follows:
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1. Smooth the Hill plot (k,H(k)) by taking the means of 2b + 1 successive points,
H(1), ..., H(n− 2b), with bandwidth b = bw × nc.

2. Define the regions pk = (H(k), ..., H(k+m− 1)), k = 1, ..., n− 2b−m+1, with
length m = b

√
n− 2bc. The algorithm stops at the first region satisfying

k+m−1∑

i=k+1

∣∣H(i)−H(k)
∣∣ ≤ 2s,

where s is the empirical standard-deviation of H(1), ..., H(n− 2b).

3. Consider the chosen plateau region pk∗ and estimate η as the mean of the values of
pk∗ (consider the estimate zero if no plane region fulfills the stopping condition).

The estimation of η through the plateau method was analyzed in Ferreira and Silva
([10] 2014) with respect to the sensibility of the bandwidth. The value w = 0.005 seems
a reasonable choice (thus each moving average in step 1. consists in 1% of the data), also
suggested in Frahm et al. ([13] 2005). In the sequel it will be referred as plateau method
(in short PLAT).

Both RB and PLAT are simultaneously graphical and free-assumption methods since
they are based on the search of a plane region of the estimator’s plot that presumably con-
tains the best sample fraction k to be estimated through a totally “ad-hoc” procedure. The
sumplot is also a graphical method and the remaining procedures are neither graphical
nor free-assumption.

3 Simulation study
In this section we compare through simulation the performance of the methods described
above within the estimation of η through the under study estimators Hill in (1.4) and
corrected Hill in (1.6).

We have generated 100 runs of samples of sizes n = 100, 1000, 5000 from the follow-
ing models:

• Bivariate Normal distribution (η = (1+ρ)/2; see, e.g., Draisma et al. [6] 2004); we
consider correlation ρ = −0.2 (η = 0.4), ρ = 0.2 (η = 0.6) and ρ = 0.8 (η = 0.9);
we use notation, respectively, N(−0.2), N(0.2) and N(0.8).

• Bivariate t-Student distribution tν with correlation coefficient given by ρ 6= −1
(λ = 2Ftν+1

(
−
√

(ν + 1)(1− ρ)/(1 + ρ)
)

, see Embrechts et al. [9] 2002; we
have λ > 0 and thus η = 1); we consider ν = 4 and ρ = 0.25 (λ = 0.1438) and
ν = 1 and ρ = 0.75 (λ = 0.6464); we use notation, respectively, t4 and t1.

• Bivariate extreme value distribution with a asymmetric-logistic dependence func-
tion `(x, y) = (1 − a1)x + (1 − a2)y + ((a1x)

1/α + (a2y)
1/α)α, with x, y ≥ 0,
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dependence parameter α ∈ (0, 1] and asymmetric parameters a1, a2 ∈ (0, 1] (λ =
2− l(1, 1), see Beirlant et al. [1] 2004; we have λ > 0 and thus η = 1); we consider
α = 0.7 and a1 = 0.4, a2 = 0.2 (λ = 0.1010) and α = 0.3 and a1 = 0.6, a2 = 0.8
(λ = 0.5182); we use notation, respectively, AL(0.7) and AL(0.3).

• Farlie-Gumbel-Morgenstern distribution with dependence 0.5 (η = 0.5, see Dutang
et al. [8] 2014); we use notation FGM(0.5).

• Frank distribution with dependence 2 (η = 0.5, see Dutang et al. [8] 2014); we use
notation Fr(2).

Observe that the case N(0.8) is an asymptotic tail independent model close to tail
dependence since η = 0.9 ≈ 1. On the other hand, the cases t4 and AL(0.7) are tail
dependent cases (η = 1) near asymptotic tail independence since λ = 0.1438 ≈ 0 and λ =
0.1010 ≈ 0, respectively. We consider these examples in order to assess the robustness of
the methods in border cases.

In Figures 2 and 3 are plotted, respectively, the results of the simulated values of
the absolute bias and root mean squared error (rmse), for the Hill and corrected Hill
estimators, in the case n = 1000. All the results are presented in Table 1 concerning
the Hill estimator and Table 2 with respect to the corrected Hill. Observe that this latter
case requires the estimation of additional second order parameters (β and ρ). To this end,
we have followed the indications in Caeiro et al. ([4] 2009). For the ρ estimation, there
was an overall best performance whenever it was taken fixed at value −1, leading to the
reported results.

The largest differences between Hill and corrected Hill can be noticed in the above
mentioned border cases, with the corrected one presenting lower absolute bias and rmse.
The other models also show this difference but in a small amount. We remark that we are
working with the minimum of Pareto rv’s and the Hill estimator is unbiased in the Pareto
case. The FGM and Frank models behave otherwise with a little lower absolute bias and
rmse within the Hill estimator, for either estimated or several fixed values tried for ρ.

The failure cases in the DK method (column “NF” of Tables 1 and 2) correspond to
an estimate of k out of the range {1, . . . , n − 1}, which were ignored in the results. It
sets up the worst performance, which may be justified by the fact that the class of models
underlying the scope of application of this method excludes the simple Pareto law.

The corrected Hill exhibits better results in general, particularly for methods KOPT,
PLAT and AMSE, followed by SP and RB, in large sample sizes (n¿=1000). The PLAT
procedure also performs well with the Hill estimator unlike the SP.

For n = 100, we have good results within RB and SP based on corrected Hill. Once
again, the PLAT method behaves well in both estimators.

The border cases of weak tail dependence (t4 and AL(0.7)) are critical throughout all
evaluated procedures and estimators. On the other hand, the methods are robust in the
border case of tail independence near dependence expressed in model N(0.8).

4 Applications
In this section we illustrate the methods with three datasets analyzed in literature:
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Figure 2: Simulated results of the absolute bias of Hill (full) and corrected Hill (dashed), for
n = 1000, of the models (left-to-right and top-to-down): N(−0.2), N(0.2), N(0.8), t4, t1,

AL(0.3), AL(0.7), FGM(0.5) and Fr(2).

• I: The data consists of closing stock index levels of S&P 500 from the US and FTSE
100 from the UK, over the period 11 December 1989 to 31 May 2000, totalizing
2733 observed pairs (see, e.g., Poon et al. ([23] 2003)).

• II: The wave-surge data corresponding to 2894 paired observations collected during
1971-77 in Cornwall (England); it was analyzed in Coles and Tawn ([5] 1994) and
later also in Ramos and Ledford ([22] 2009) under a parametric view.

• III: The Loss-ALAE data analyzed in Beirlant et al. ([2] 2004; see also references
therein) consisting of 1500 pairs of registered claims (in USD) corresponding to an
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Figure 3: Simulated results of the rmse of Hill (full) and corrected Hill (dashed), for
n = 1000, of the models (left-to-right and top-to-down): N(−0.2), N(0.2), N(0.8), t4, t1,

AL(0.3), AL(0.7), FGM(0.5) and Fr(2).

indemnity payment (loss) and an allocated loss adjustment expense (ALAE).

The respective scatter-plots are placed in Figure 4. For the US and UK stock mar-
ket returns, the largest values in each tail for one variable correspond to reasonably large
values of the same sign for the other variable, hinting an asymptotic independence but
not exactly independence. In the wave-surge data, the dependence seems a bit more per-
sistent within large values, as well as in Loss-ALAE data. The Hill and corrected Hill
sample paths of η estimates are pictured in Figure 5. Table 3 reproduces the estimates
obtained with each method and estimators under study. The estimation results found in
literature for the financial (I), environmental (II) and insurance datasets (III) are respec-
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tively approximated by 0.731, 0.85 and 0.9. The results seem to be in accordance with the
simulation study.
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Figure 4: From left to right: scatter-plots of datasets I, II and III.
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Figure 5: From left to right: sample paths of Hill (full;black) corrected Hill (dashed;grey) of
datasets I, II and III.

5 Discussion

In this paper we have analyzed some simple estimation methods for the coefficient of
asymptotic tail independence, with some of them revealing promising results. However,
the choice of the estimator is not completely straightforward. It can be seen from simula-
tion results that the ordinary Hill estimator may be still preferred over the corrected one
in some situations. Also in boundary cases of tail dependence near independence, there
are still some worrying errors to correct. These will be topics of a future research.
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H(k) I k II k III k
DK 0.6510 21 0.8255 83 0.7827 78
SP 0.6025 2592 0.5922 2893 0.6584 1499

KOPT 0.6733 744 0.9137 738 0.8444 135
AMSE 0.6494 955 0.7076 1244 0.6850 1172

RB 0.6041 2477 0.5967 2772 0.7428 708
PLAT 0.7148 – 0.8755 – 0.8110 –
CH(k) I k II k III k

DK 0.7654 5 0.4521 1 0.7044 27
SP 0.6725 2592 0.8581 2893 0.8671 1499

KOPT 0.7070 585 0.8991 412 0.8661 176
AMSE 0.6925 726 0.8997 596 0.8386 678

RB 0.6652 2264 0.8300 2040 0.8671 1499
PLAT 0.7261 – 0.8908 – 0.8524 –

Table 3: Estimates of η and respective values k, of datasets I, II and III.
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Approximate Confidence Interval for the 
Reciprocal of a Normal Mean with a Known 

Coefficient of Variation 
Wararit Panichkitkosolkul1 

 Abstract 

An approximate confidence interval for the reciprocal of a normal 
population mean with a known coefficient of variation is proposed. This has 
applications in the area of nuclear physics, agriculture and economic when 
the researcher knows the coefficient of variation. The proposed confidence 
interval is based on the approximate expectation and variance of the 
estimator by Taylor series expansion. A Monte Carlo simulation study was 
conducted to compare the performance of the proposed confidence interval 
with the existing confidence interval. Simulation results show that the 
proposed confidence interval performs as well as the existing one in terms of 
coverage probability. However, the approximate confidence interval is very 
easy to calculate compared with the exact confidence interval. 

1 Introduction 

The reciprocal of a normal mean is applied in the area of nuclear physics, 

agriculture and economic. For example, Lamanna et al. (1981) studied a charged 

particle momentum, 1p µ−=  where µ  is the track curvature of a particle. The 

reciprocal of a normal mean is defined by 1,θ µ−=  where µ  is the population mean. 

Many researchers studied the reciprocal of a normal mean. For instance, Zaman 

(1981) discussed the estimators without moments in the case of the reciprocal of a 

normal mean. The maximum likelihood estimate of the reciprocal of a normal mean 

with a class of zero-one loss functions was proposed by Zaman (1985). Withers and 

1 Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat 
University, Thailand; wararit@mathstat.sci.tu.ac.th 
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Nadarajah (2013) presented the theorem to construct the point estimators for the 

inverse powers of a normal mean.  

Wongkhao et al. (2013) proposed two confidence intervals for the reciprocal of 

a normal mean with a known coefficient of variation. Their confidence intervals 

can be applied when the coefficient of variation of a control group is known. One 

of their confidence intervals is developed based on an exact method in which this 

confidence interval is constructed from the pivotal statistics ,Z  where Z  follows 

the standard normal distribution. The other confidence interval is constructed based 

on the generalized confidence interval (Weerahandi, 1993). Simulation results 

show that the coverage probabilities of the two confidence intervals are not 

significantly different. However, the confidence interval based on the exact method 

is shorter than the generalized confidence interval. The exact method uses Taylor 

series expansion to find the expectation and variance of the estimator of θ  and uses 

these results for constructing the confidence interval for .θ  The lower and upper 

limits of the confidence interval based on the exact method are difficult to compute 

since they depend on an infinite summation. Therefore, our main aim in this paper 

is to propose an approximate confidence interval for the reciprocal of a normal 

mean with a known coefficient of variation. The computation of the new proposed 

confidence interval is easier than the exact confidence interval proposed by 

Wongkhao et al. (2013). In addition, we also compare the estimated coverage 

probabilities of the new proposed confidence interval and existing confidence 

interval using a Monte Carlo simulation.  

The paper is organized as follows. In Section 2, the theoretical background of 

the existing confidence interval for θ  is discussed. We provide the theorem for 

constructing the approximate confidence interval for θ  in Section 3. In Section 4, 

the performance of the confidence intervals for θ  is investigated through a Monte 

Carlo simulation study. Conclusions are provided in the final section. 

2 Existing Confidence Interval  

In this section, we review the theorem and corollary proposed by Wongkhao et al. 

(2013) and use these to construct the exact confidence interval for .θ  
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Theorem 1. (Wongkhao et al., 2013) Let  1,..., nY Y  be a random sample of size n  
from a normal distribution with mean µ  and variance 2 .σ   The estimator of θ  is 

1ˆ Yθ −=  where  1

1
.

n

j
j

Y n Y−

=

= ∑  The expectation of θ̂  and 2θ̂  when a coefficient of 

variation, στ
µ

=  is known, are respectively 

  
                                  (1) 
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2
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Proof of Theorem 1  See Wongkhao et al. (2013)                 
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Corollary 1.  From Theorem 1, 
2

2ˆvar( ) .
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θθ τ≈  

 
Proof of Corollary 1   See Wongkhao et al. (2013)                 
 
Now we will use the fact that, from the central limit theorem, 
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3 Proposed Confidence Interval  

To find a simple approximate expression for the expectation of ˆ,θ  we use a Taylor 

series expansion of 1
y

 around :µ  

1
y
≈

32
2

2

1 1 1 1 1( ) ( ) ( ) .
2 yy y O y

y y y y y y yµ µ µ

µ µ µ
        ∂ ∂ ∂ + − + − + −        ∂ ∂ ∂        

         (3) 

 
 
Theorem 2. Let  1,..., nY Y  be a random sample of size n  from a normal distribution 

with mean µ  and variance 2 .σ   The estimator of θ  is 1ˆ Yθ −=  where 1

1
.

n

i
i

Y n Y−

=

= ∑  

The approximate expectation and variance of θ̂  when a coefficient of variation, 
στ
µ

=  is known, are respectively 
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         (3) 

and 
2

2ˆvar( ) .
n
θθ τ≈          (4) 

 
Proof of Theorem 2. 

Consider random variable Y  where Y  has support (0, ).∞  Let 1ˆ .Yθ −=  Find 

approximations for ˆ( )E θ  and ˆvar( )θ  using Taylor series expansion of θ̂  around µ  

as in Equation (3). The mean of θ̂  can be found by applying the expectation 

operator to the individual terms (ignoring all terms higher than two), 

ˆ( )E θ  = 1E
Y
 
 
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An approximation of the variance of θ̂  is obtained by using the first-order 

terms of the Taylor series expansion:  

ˆvar( )θ  = 1var
Y
 
 
 
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2

1 1E E
Y Y
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It is clear from Equation (4) that θ̂  is asymptotically unbiased ( )ˆlim ( )
n
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From Equation (5), θ̂  is consistent ( )ˆlim var( ) 0 .
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θ
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=  

We then apply the central limit theorem and Theorem 2, 

2
2

ˆ

(0,1).vZ N

n

θ θ

θ τ

−
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Therefore, it is easily seen that the (1 )100%α−  approximate confidence interval for 

θ  is 

2
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where 
2

1v
n
τ

= +  and 1 / 2z α−  is the 100(1 / 2)α−  percentile of the standard normal 

distribution. 

4 Simulation Study 

A Monte Carlo simulation was conducted using the R statistical software [16] 

version 3.2.1 to compare the estimated coverage probabilities of the new proposed 

confidence interval and the exact confidence interval. Source code is available in 

Appendix. The estimated coverage probability (based on M  replicates) are given by 

1 #( ) / ,L U Mα θ− = ≤ ≤  where #( )L Uθ≤ ≤  denotes the number of simulation runs 

for which the true reciprocal of a normal mean θ  lies within the confidence 

interval. From two previous sections, we found that the lengths of both confidence 

intervals are equal to 2 2
1 / 2

ˆ2 /z nα θ τ−  which the expected lengths are not considered 

in simulation study. The sets of normal data were generated with θ  = 0.1, 0.2, 0.5, 

1, 5 and 10, and the coefficient of variation τ  = 0.05, 0.1, 0.2, 0.33, 0.5 and 0.67. 

The sample sizes were set at n  = 10, 20, 30, 50, 100 and 500. The number of 

simulation runs was 10,000 and the nominal confidence level 1 α−  was fixed at 

0.95.  

The results are demonstrated in Figure 1 and Tables 1-4. Both confidence 

intervals have estimated coverage probabilities close to the nominal confidence 

level for almost situations. However, the estimated coverage probabilities of the 

exact confidence interval are very poor when the coefficient of variation τ  is close 

to 1 and small sample sizes. Additionally, the estimated coverage probabilities of 

the confidence intervals do not increase or decrease according to the values of τ  

and .n  The estimated coverage probabilities of the proposed confidence interval are 

not significantly different from these of the exact confidence interval in any 

situation. However, the approximate confidence interval is very easy to calculate 

compared with the exact confidence interval because the exact confidence interval 

is based on an infinite summation. 

 



Approximate Confidence Interval for the Reciprocal of a Normal Mean 123 
 

0.1 0.2 0.3 0.4 0.5 0.6

0.
94

0
0.

95
0

0.
96

0  0.1



C
ov

er
ag

e 
Pr

ob
ab

ilit
ie

s

Exact
Approx

0.1 0.2 0.3 0.4 0.5 0.6

0.
94

0
0.

95
0

0.
96

0  0.2



C
ov

er
ag

e 
Pr

ob
ab

ilit
ie

s

Exact
Approx

0.1 0.2 0.3 0.4 0.5 0.6

0.
94

0
0.

95
0

0.
96

0  0.5



C
ov

er
ag

e 
Pr

ob
ab

ilit
ie

s

Exact
Approx

0.1 0.2 0.3 0.4 0.5 0.6

0.
94

0
0.

95
0

0.
96

0  1



C
ov

er
ag

e 
Pr

ob
ab

ilit
ie

s

Exact
Approx

0.1 0.2 0.3 0.4 0.5 0.6

0.
94

0
0.

95
0

0.
96

0  5



C
ov

er
ag

e 
Pr

ob
ab

ilit
ie

s

Exact
Approx

0.1 0.2 0.3 0.4 0.5 0.6

0.
94

0
0.

95
0

0.
96

0  10



C
ov

er
ag

e 
Pr

ob
ab

ilit
ie

s

Exact
Approx

 
Figure 1: Estimated coverage probabilities of confidence intervals for the reciprocal of a 
normal mean with a known coefficient of variation when 30n =  (solid line) and 100n =  

(dash line) 
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Table 1: Estimated coverage probabilities of confidence intervals for the reciprocal of a 
normal mean with a known coefficient of variation when 0.1θ =  and 0.2. 

n  τ  0.1θ =  0.2θ =  
Exact Approx. Exact Approx. 

10 0.05 0.9475 0.9475 0.9489 0.9489 
 0.10 0.9471 0.9471 0.9493 0.9493 
 0.20 0.9498 0.9499 0.9500 0.9500 
 0.33 0.9482 0.9483 0.9480 0.9486 
 0.50 0.9325 0.9469 0.9334 0.9502 
 0.67 0.0019 0.9456 0.0030 0.9455 

20 0.05 0.9543 0.9543 0.9489 0.9489 
 0.10 0.9489 0.9489 0.9529 0.9529 
 0.20 0.9519 0.9519 0.9480 0.9479 
 0.33 0.9514 0.9514 0.9492 0.9491 
 0.50 0.9500 0.9505 0.9447 0.9452 
 0.67 0.9475 0.9480 0.9457 0.9459 

30 0.05 0.9481 0.9481 0.9484 0.9484 
 0.10 0.9526 0.9526 0.9476 0.9476 
 0.20 0.9498 0.9498 0.9501 0.9501 
 0.33 0.9474 0.9475 0.9542 0.9541 
 0.50 0.9489 0.9489 0.9479 0.9479 
 0.67 0.9459 0.9464 0.9490 0.9492 

50 0.05 0.9474 0.9474 0.9492 0.9492 
 0.10 0.9485 0.9485 0.9500 0.9500 
 0.20 0.9494 0.9494 0.9496 0.9496 
 0.33 0.9499 0.9499 0.9476 0.9475 
 0.50 0.9514 0.9517 0.9496 0.9497 
 0.67 0.9485 0.9486 0.9476 0.9475 

100 0.05 0.9536 0.9536 0.9495 0.9495 
 0.10 0.9494 0.9494 0.9500 0.9500 
 0.20 0.9509 0.9509 0.9494 0.9494 
 0.33 0.9489 0.9489 0.9486 0.9486 
 0.50 0.9509 0.9509 0.9481 0.9481 
 0.67 0.9511 0.9510 0.9511 0.9511 

500 0.05 0.9479 0.9479 0.9467 0.9467 
 0.10 0.9488 0.9488 0.9511 0.9511 
 0.20 0.9517 0.9517 0.9511 0.9511 
 0.33 0.9519 0.9519 0.9481 0.9481 
 0.50 0.9469 0.9469 0.9476 0.9476 
 0.67 0.9484 0.9484 0.9480 0.9479 
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Table 2: Estimated coverage probabilities of confidence intervals for the reciprocal of a 
normal mean with a known coefficient of variation when 0.5θ =  and 1. 

n  τ  0.5θ =  1θ =  
Exact Approx. Exact Approx. 

10 0.05 0.9489 0.9489 0.9475 0.9475 
 0.10 0.9482 0.9482 0.9471 0.9471 
 0.20 0.9491 0.9491 0.9498 0.9499 
 0.33 0.9462 0.9463 0.9482 0.9483 
 0.50 0.9357 0.9501 0.9325 0.9469 
 0.67 0.0032 0.9471 0.0019 0.9456 

20 0.05 0.9515 0.9515 0.9543 0.9543 
 0.10 0.9482 0.9481 0.9489 0.9489 
 0.20 0.9502 0.9502 0.9519 0.9519 
 0.33 0.9518 0.9520 0.9514 0.9514 
 0.50 0.9515 0.9518 0.9500 0.9505 
 0.67 0.9445 0.9453 0.9475 0.9480 

30 0.05 0.9444 0.9444 0.9481 0.9481 
 0.10 0.9486 0.9486 0.9526 0.9526 
 0.20 0.9517 0.9517 0.9498 0.9498 
 0.33 0.9469 0.9470 0.9474 0.9475 
 0.50 0.9499 0.9505 0.9489 0.9489 
 0.67 0.9500 0.9498 0.9459 0.9464 

50 0.05 0.9474 0.9474 0.9474 0.9474 
 0.10 0.9520 0.9520 0.9485 0.9485 
 0.20 0.9490 0.9490 0.9494 0.9494 
 0.33 0.9485 0.9485 0.9499 0.9499 
 0.50 0.9475 0.9475 0.9514 0.9517 
 0.67 0.9503 0.9502 0.9485 0.9486 

100 0.05 0.9531 0.9531 0.9536 0.9536 
 0.10 0.9496 0.9496 0.9494 0.9494 
 0.20 0.9438 0.9438 0.9509 0.9509 
 0.33 0.9530 0.9530 0.9489 0.9489 
 0.50 0.9510 0.9510 0.9509 0.9509 
 0.67 0.9454 0.9454 0.9511 0.9510 

500 0.05 0.9527 0.9527 0.9515 0.9515 
 0.10 0.9469 0.9469 0.9507 0.9507 
 0.20 0.9520 0.9520 0.9442 0.9442 
 0.33 0.9500 0.9500 0.9495 0.9495 
 0.50 0.9507 0.9507 0.9500 0.9500 
 0.67 0.9507 0.9507 0.9519 0.9519 
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Table 3: Estimated coverage probabilities of confidence intervals for the reciprocal of a 
normal mean with a known coefficient of variation when 5θ =  and 10. 

n  τ  5θ =  10θ =  
Exact Approx. Exact Approx. 

10 0.05 0.9489 0.9489 0.9508 0.9508 
 0.10 0.9476 0.9476 0.9473 0.9473 
 0.20 0.9516 0.9515 0.9482 0.9482 
 0.33 0.9500 0.9501 0.9497 0.9497 
 0.50 0.9326 0.9475 0.9335 0.9481 
 0.67 0.0020 0.9457 0.0028 0.9505 

20 0.05 0.9490 0.9490 0.9514 0.9514 
 0.10 0.9490 0.9490 0.9478 0.9478 
 0.20 0.9522 0.9521 0.9440 0.9440 
 0.33 0.9497 0.9497 0.9504 0.9504 
 0.50 0.9474 0.9479 0.9475 0.9479 
 0.67 0.9454 0.9462 0.9472 0.9478 

30 0.05 0.9499 0.9499 0.9469 0.9469 
 0.10 0.9511 0.9511 0.9483 0.9483 
 0.20 0.9495 0.9495 0.9479 0.9479 
 0.33 0.9485 0.9482 0.9486 0.9487 
 0.50 0.9498 0.9498 0.9489 0.9488 
 0.67 0.9494 0.9494 0.9461 0.9465 

50 0.05 0.9516 0.9516 0.9512 0.9512 
 0.10 0.9521 0.9521 0.9496 0.9496 
 0.20 0.9510 0.9510 0.9480 0.9480 
 0.33 0.9496 0.9496 0.9481 0.9481 
 0.50 0.9498 0.9497 0.9506 0.9505 
 0.67 0.9513 0.9512 0.9471 0.9471 

100 0.05 0.9531 0.9531 0.9500 0.9500 
 0.10 0.9473 0.9473 0.9517 0.9517 
 0.20 0.9501 0.9501 0.9483 0.9483 
 0.33 0.9493 0.9493 0.9556 0.9556 
 0.50 0.9509 0.9509 0.9512 0.9512 
 0.67 0.9469 0.9469 0.9475 0.9476 

500 0.05 0.9497 0.9497 0.9516 0.9516 
 0.10 0.9510 0.9510 0.9505 0.9505 
 0.20 0.9502 0.9502 0.9528 0.9528 
 0.33 0.9486 0.9486 0.9521 0.9521 
 0.50 0.9484 0.9484 0.9525 0.9525 
 0.67 0.9518 0.9518 0.9493 0.9493 

5 An Illustrative Example 

To illustrate an example of two confidence interval for the reciprocal of a normal 

mean proposed in the previous section, we used the weights (in kilograms) of 61 

one-month old infants listed as follows: 

4.960 5.130 4.260 5.160 4.050 5.240 4.350 4.360 3.930 4.410  
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4.610 4.550 4.460 2.940 4.160 4.110 4.410 4.800 5.130 3.670  

4.550 4.290 4.950 5.210 3.210 4.030 3.580 4.360 4.360 3.920  

4.050 4.630 3.756 4.586 5.336 2.828 4.172 4.256 4.594 4.866  

4.784 4.520 5.238 4.320 5.330 3.836 5.916 5.010 4.344 3.496  

4.148 4.044 5.192 4.368 4.180 4.102 5.210 4.382 5.070 5.044  

3.530    

The data were taken from the study by Ziegler et al. (2007) (cited in Ledolter 

and Hogg, 2010, p.287). From past experience, we assume that the coefficient of 

variation of the weights of 61 one-month old infants is about 0.14. The histogram, 

density plot, Box-and-Whisker plot and normal quantile-quantile plot are displayed 

in Figure 2. Algorithm 1 shows the result of the Shapiro-Wilk normality test.  
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Figure 2: (a) Histogram, (b) density plot, (c) Box-and-Whisker plot and  
(d) normal quantile-quantile plot of the weight of a one-month old infant 
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Algorithm 1: Shapiro-Wilk test for normality of the weight of a one-month old infant 
 

The 95% exact and approximate confidence intervals for the reciprocal of a 

normal mean are calculated and reported in Table 4. The lower and upper limits of 

the both confidence intervals are not different.  

 
Table 4: The 95% confidence intervals for the reciprocal of a normal mean of the weight 

of a one-month old infant. 

Methods Confidence Intervals Lengths Lower Limit Upper Limit 
Exact 0.2176837 0.2335416 0.0158579 

Approximate 0.2176838 0.2335416 0.0158578 

6 Conclusions 

In this paper, we proposed an approximate confidence interval for the reciprocal of 

a normal population mean with a known coefficient of variation. Normally, this 

arises when the coefficient of variation of the control group is known. The 

approximate confidence interval proposed uses the approximation of the 

expectation and variance of the estimator. The proposed new confidence interval is 

compared with the exact confidence interval constructed by Wongkhao et al. (2013) 

through a Monte Carlo simulation study. The approximate confidence interval 

performs as efficiently as the exact confidence interval in terms of coverage 

probability. Moreover, approximate confidence interval also is easy to compute 

compared with the exact confidence interval. 

 

Appendix: Source R code for all confidence intervals 
 
ci.exact <- function(y,tao,alpha) { 
 n <- length(y) 
 ybar <- mean(y) 
 zeta.hat <- 1/ybar 
 w <- cal.w(tao,n) 

Shapiro-Wilk normality test 
 

data:  weight  

W = 0.978, p-value = 0.3383 
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 z <- qnorm(1-alpha/2) 
 T1 <- (tao^2)/(n*(ybar^2)) 
 lower <- (zeta.hat/w)-z*sqrt(T1) 

upper <- (zeta.hat/w)+z*sqrt(T1) 
 out <- cbind(lower,upper) 
 return(out) 
} 
 
ci.approx <- function(y,tao,alpha) { 
 n <- length(y) 
 ybar <- mean(y) 
 zeta.hat <- 1/ybar 
 v <- 1+(tao^2)/n 
 z <- qnorm(1-alpha/2) 
 T1 <- ((zeta.hat^2)*(tao^2))/n 
 lower <- (zeta.hat/v)-z*sqrt(T1) 

upper <- (zeta.hat/v)+z*sqrt(T1) 
 out <- cbind(lower,upper) 
 return(out) 
 
} 
 
cal.w <- function(tao,n) { 
 temp <- rep(0,50) 
 for (k in 1:50) { 
 temp[k] <- (factorial(2*k)/((2^k)*factorial(k)))*(((tao^2)/n)^k)  

}    
w <- 1+sum(temp) 
return(w) 

} 
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Analysis 
 

Glòria Mateu-Figueras1, Josep Daunis-i-Estadella2, Germà Coenders3, 

Berta Ferrer-Rosell4, Ricard Serlavós5, Joan Manuel Batista-Foguet6 

Abstract 

The aim of this article is to describe a method for relating two compositions which 
combines compositional data analysis and canonical correlation analysis (CCA), 
and to examine its main statistical properties. We use additive log-ratio (alr) 
transformation on both compositions and apply standard CCA to the transformed 
data. We show that canonical variates are themselves log-ratios and log-contrasts. 
The first pair of canonical variates can be interpreted as the log-contrast of a 
composition that has the maximum correlation with a log-contrast of the other 
composition. The second pair can be interpreted as the log-contrast of a 
composition that has the maximum correlation with a log-contrast of the other 
composition, under the restriction that they are uncorrelated with the first pair, and 
so on. 

Using properties from changes of basis, we prove that both canonical 
correlations and canonical variates are invariant to the choice of divisors in alr 
transformation. We show how to implement the analysis and interpret the results 
by means of an illustration from the social sciences field using data from Kolb’s 
Learning Style Inventory and Boyatzis’ Philosophical Orientation Questionnaire, 
which distribute a fixed total score among several learning modes and 
philosophical orientations. 
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1 Introduction 

Compositional data lie in a constrained positive space with a fixed sum and convey 

information on the relative importance of components. Typical examples are chemical and 

geological compositions (adding to 100% in weight or volume), genotype frequencies 

(adding to 1), time use (adding to 24 hours), voting (adding to 100% of votes), or household 

budget allocation (adding to 100% of the budget). The fixed sum is typically normalized to 

one, and a D-term composition (x1, x2,..., xD) is thus constrained as follows:  

 0<xd<1 and 



D

d
dx

1

1 (1.1) 

Serious problems arise when using standard statistical analysis tools on compositional 

data (Aitchison, 1986, 2001; Pawlowsky-Glahn & Buccianti, 2011):  

1. Compositional data have a bounded distribution. This implies at least non-normality 

and heteroscedasticity (lower variance close to the boundary). 

2. One component can only increase if some others decrease. This results in negative 

spurious correlations among the components (Pearson, 1897) and prevents interpreting 

effects of linear models in the usual way “keeping everything else constant”.  

3. The true dimensionality of a set of compositional variables is D1. Analysis of all D 

dimensions leads to perfect collinearity.  

4. Compositional data lie in a (D1)-dimensional Euclidean space called the simplex, 

with different operations and distance from real space (Billheimer et al., 2001; Pawlowsky-

Glahn & Egozcue, 2001). 

The compositional data analysis (CoDa) tradition started with Aitchison’s seminal work 

(1986) on treating chemical and biological compositions. Nowadays, however, it spans 

almost all of the hard sciences and has started to be used in the social sciences, which often 

face similar problems (Batista-Foguet et al., 2015; Coenders et al., 2011; van Eijnatten et al., 

2015; Ferrer-Rosell & Coenders, 2016; Ferrer-Rosell et al., 2015, 2016a, 2016b; Fry, 2011; 

Hlebec et al., 2012; Kogovšek et al., 2013; Vives-Mestres et at., 2016).  

The literature on CoDa has extensively dealt with relating one composition to non-

compositional data (Egozcue et al., 2012; Hron et al., 2012; Martín-Fernández et al., 2015) 

and with analyzing one single composition. As far as the exploratory data analysis of one 
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single composition is concerned (Egozcue & Pawlowsky-Glahn, 2011), available methods 

include the variation array (Aitchison, 1986), principal component analysis (Aitchison, 1983; 

Aitchison & Greenacre, 2012), the CoDa-dendrogram (Pawlowsky-Glahn & Egozcue, 2011), 

and the CoDa-biplot (Aitchison & Greenacre, 2012). As regards exploratory tools to relate 

two compositions, the natural choice is canonical correlation analysis – CCA (Aitchison, 

1986). Typical problems relating two compositions include the relationship between the 

composition of species and the chemical composition of the environment (ter Braak, 1996); 

between the composition of foods and the composition of their energy and nutrients; or 

between the composition of materials and the composition of spectral curves in image 

processing. The use of CCA for compositional data was foreshadowed in Aitchison (1986), 

without much mention of its properties or interpretation. At a later date, van den Boogaart 

and Tolosana-Delgado (2013) devised an advanced procedure for compositional CCA 

requiring software designed for this purpose.  

Drawing from Aitchison (1986), in this article we develop and illustrate a simple 

procedure for carrying out CCA of two compositional vectors and examine its interpretation 

and main statistical properties. Even if specialized techniques for compositional data have 

appeared (van den Boogaart & Tolosana-Delgado, 2013; Pawlowsky-Glahn & Buccianti, 

2011; Pawlowsky Glahn et al., 2015; Thió-Henestrosa & Martín-Fernández, 2005), 

compositional data can also be transformed so that they can be subject to standard and well-

understood statistical techniques carried out using standard software. This is the approach we 

take in this article.  

Given the fact that only information on the relative size of components is available in a 

compositional data context, logarithms of ratios between component values are a meaningful 

way of expressing the data and guaranteeing the principles of CoDa (Aitchison, 2001). A 

logarithm of a ratio is scale invariant, meaning that it does not change if the values involved 

are multiplied by an arbitrary constant. Adding or dropping components from a composition 

does not modify the log-ratios computed from the remaining components. This is related to 

the principles of scale invariance and subcompositional coherence. For full details on CoDa 

principles, see Pawlowsky Glahn et al. (2015). 

Several log-ratio transformations have been suggested in the literature (Egozcue et al., 

2003). Additive log-ratio transformation (alr) is the easiest to compute since it is simply the 

log-ratio between each component and the last:  
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 yd=ln(xd/xD)=ln(xd)ln(xD) with d=1,2,...,D1 (1.2)  

Alr-transformed yd variables recover the full unconstrained real space. It must be noted 

that one dimension is lost. Although alr transformation is used in this article due to its 

simplicity, there are alternatives (see Egozcue et al., 2003 for a general background on the 

transformations and Section 3.3. for a discussion of their applicability to CCA).  

Since the decision on which component to leave in last place and serve as a reference in 

the alr transformation is often arbitrary, there is concern regarding whether the results of a 

statistical analysis are invariant to this arbitrary choice. Of course, different log-ratios 

constitute different variables and the raw results will never be invariant. However, it is 

considered desirable that overall goodness of fit measures be invariant to this choice. Once 

results are reexpressed as a function of the log components ln(xd), they should ideally also be 

invariant.  

The structure of the article is as follows. First, we review the basics of CCA. We then 

come to the particular case in which CCA is applied to compositions that have been subjected 

to alr transformation, showing how to interpret the key results, proving that they are invariant 

to the choice of reference component, and discussing alternative transformations. Following 

this, we present an illustration from the field of education using data from Kolb’s Learning 

Style Inventory (Batista-Foguet et al., 2015; Kolb, 1984, 1999) and Boyatzis’ Philosophical 

Orientation Questionnaire (Boyatzis et al., 2000). The final section discusses the strengths 

and weaknesses of the method.  

 

2 Canonical Correlation Analysis 

Canonical correlation analysis (CCA) is a multivariate analysis technique which studies the 

relationships between two sets of variables Ya=(ya1, ya2, ..., yap) and Yb=(yb1, yb2, ..., ybq) 

usually defined in the real space. The method was first introduced in Hotelling (1936) and a 

non-technical description can be found in Hair et al. (2009).  

CCA builds pairs of linear combinations of each set of variables called canonical variates. 

The first canonical variate cva1 for set Ya is derived so that it is maximally correlated with the 

first canonical variate cvb1 for set Yb. The second canonical variate cva2 for set Ya is derived 

so that it is maximally correlated with the second canonical variate cvb2 for set Yb under the 

restriction that both new canonical variates are uncorrelated with cva1 and cvb1. The following 
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pairs are extracted in a similar manner and have the maximum mutual correlation, while 

being uncorrelated with the previous pairs. The process may be continued up to min{p,q} 

times.  

The raw canonical coefficients waij and wbij are the weights used to compute the i-th pair of 

canonical variates from the j-th original variables:  

 cva1=wa11ya1+ wa12 ya2+···+ wa1p yap 

 cvb1=wb11yb1+ wb12 yb2+···+ wb1q ybq 

 cva2=wa21ya1+ wa22 ya2+···+ wa2p yap (2.1) 

 cvb2=wb21yb1+ wb22 yb2+···+ wb2q ybq 

  ......  

In practice, the canonical coefficients are computed from three covariance matrices: the 

square matrix Saa contains covariances in the first variable set, the square matrix Sbb 

covariances in the second set, and the rectangular matrix Sab covariances between variables of 

one set and the other. Canonical variates are obtained from an eigenvalue analysis of matrix:  

 babbabaa SSSS 11   (2.2) 

The correlation between cva1 and cvb1 is the first canonical correlation 1̂ , the correlation 

between cva2 and cvb2 is the second canonical correlation 2̂ , and so on. These canonical 

correlations are obtained as the square root of the eigenvalues of the matrix in Equation (2.2).  

The maximum number of canonical variates that can be extracted is the smallest 

dimension of the two sets of variables. For instance, if p=5 and q=8, then a maximum of 5 

pairs of variates can be obtained. As with many other multivariate analysis techniques, the 

researcher is interested in a parsimonious solution and in interpreting only the most relevant 

variates. The relevance of a pair of canonical variates can be assessed by the sheer size of the 

canonical correlation, the interpretability of the canonical variates from the canonical 

weights, or the statistical significance of the canonical correlations according to Wilks’  

tests, which are also a function of the eigenvalues. Since, 1̂ > 2̂ >…> },min{ˆ qp , a common 

strategy is to sequentially test the following hypotheses:  
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 H01: 1=2=3=···=min{p,q}=0 

 H02: 2=3=···=min{p,q}=0 

 .....  (2.3) 

 H0min{p,q}1: min{p,q}1=min{p,q}=0 

 H0min{p,q}: min{p,q}=0  

The rejection of H01 to H0i and the failure to reject H0i+1 to H0min{p,q} shows the first i 

canonical correlations to be statistically significant.  

Other common results of a CCA which provide a useful aid to interpreting the canonical 

variates require standardization in some form or other (Hair et al., 2009) and are:  

1. Standardized canonical coefficients (coefficients used to compute canonical variates 

from standardized y variables).  

2. Canonical loadings (correlations between the canonical variates and the y variables they 

are computed from).  

3. Canonical cross-loadings (correlations between canonical variates and the other set of y 

variables).  

4. Redundancy analysis (percentages of variance for the y variables explained by their 

own canonical variates and from the canonical variates computed from the other set of y 

variables).  

 

3 Canonical Correlation Analysis of Compositional Data 
Transformed by Means of alr 

3.1 Interpretation 

Given two compositions with Da and Db components, Xa=(xa1,xa2,…,xaDa) and 

Xb=(xb1,xb2,…,xbDb), following Aitchison (1986) we first apply alr transformation with 

the last component in the denominator. The results are the following two real vectors 

with p=Da1 and q=Db1 elements:  
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We can rewrite Equation (3.1) as:  

 

            aDaapaDaaaDaaa xxxxxx lnln,,lnln,lnln 21  Y  

 

            bDbbqbDbbbDbbb xxxxxx lnln,,lnln,lnln 21  Y  (3.2)  

Ya and Yb are two sets of real variables to which we can apply the standard CCA 

procedure from the covariance matrices of each set of transformed variables and the 

covariance matrix between the transformed variables of one set and the other in Equation 

(2.2).  

The first pair of canonical variates in Equation (2.1), when expressed in terms of 

logarithms of components, becomes:  

 cva1=wa11ln(xa1)+ wa12 ln(xa2)+ ···+ wa1p ln(xap)( wa11+ wa12+···+ wa1p) ln(xaDa)  

 cvb1=wb11ln(xb1)+ wb12 ln(xb2)+ ···+ wb1q ln(xbq)( wb11+ wb12+···+ wb1q) ln(xbDb)  (3.3) 

Since the raw canonical coefficients are applied from ln(xa1) to ln(xap) and again to 

ln(xaDa) with reversed signs, the weights of all Da logarithms add up to zero, and the same 

occurs with the weights of the Db logarithms of the xb variables. This would also hold for the 

remaining canonical variates.  

This is the same as saying that the canonical variates are log ratios of the product of 

components with a positive weight raised to a power equal to that weight, over the product of 

components with a negative weight raised to a power equal to the absolute weight. Let us 

show an example of the former for a canonical variate of a 5-dimensional composition with:  

 cva1=1ya1+1.5ya2+ 0.5ya3 0.5 ya4 (3.4)  

The reexpression of this canonical variate as a log-ratio is:  

 cva1=1ln(xa1)+ 1.5ln(xa2)+ 0.5ln(xa3) 0.5 ln(xa4)2.5ln(xa5)= 







5.2

5
5.0
4

5.0
3

5.1
21ln

aa

aaa

xx

xxx
  (3.5)  
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The 1acv  log-ratio in this example is high mainly when xa1 and xa2 are high and xa5 is low. 

Since the sum of positive exponents equals the sum of negative exponents, the log-ratio is 

also a log-contrast, that is, a log-linear combination where the sum of the coefficients is 0 

(Aitchison, 1986: 84).  

The first pair of canonical variates can thus be interpreted as the log-contrast of one of the 

compositions that has the maximum correlation with a log-contrast of the other composition. 

The second pair can be interpreted as the log-contrast of one of the compositions that has the 

maximum correlation with a log-contrast of the other composition, under the restriction that 

they are uncorrelated with the first pair of canonical variates. A similar interpretation would 

hold for the third pair, subject to zero correlation with the first two pairs, and so on.  

3.2 Invariance of the Results to the Choice of Reference Component 
in alr 

Although the last component in each composition was chosen as the common divisor in our 

alr transformation, this could equally have been any other component. Consequently, for any 

analysis involving alr vectors, it is important to check the invariance of the key results to 

component permutations, or in other words, their invariance with respect to the choice of 

divisor in alr transformation. In this section we show specifically that Wilks’  tests, 

canonical correlations, and canonical variates as functions of log components Equation 

(3.3) are invariant to this choice.  

It is easy to see how two alr-transformed vectors using different components as a divisor 

are related using a change-of-basis matrix. Following Mateu-Figueras et al. (2011), the 

elements of an alr vector are the coefficients of the original composition with respect to a 

particular non-orthonormal basis on the simplex, the sample space of compositional data. The 

effect of changing the common divisor is to obtain the coefficients with respect to another 

particular basis, which is analogous to performing an oblique rotation of the data.  

Let Ya and Yb be the alr transformed vectors using the last components as common 

divisors and let Ya
* and Yb

* be the alr-transformed vectors using other components as 

denominators. Then, Ya
*=QYa and Yb

*=PYb. We can obtain the exact expression of 

matrices Q and P (see Aitchison, 1986: 94), but the important point here is that matrices 

Q and P are change-of-basis matrices. From the usual properties of covariance matrices 

we know that:  
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 'QQSS aa
*
aa   (3.6)  

 '* PPSS bbbb   (3.7)  

 '* PQSS abab   and '* QPSS baba    (3.8)  

When using different common divisors in alr transformation, the analyzed matrix in 

Equation (2.2) becomes:  

     *
ba

*
bb

*
ab

*
aa SSSS

11 
 (3.9)  

By using the relationships in Equations (3.6)(3.8), Equation (3.9) becomes:  

  
          
  ''

''''
111

1111

QSSSSQ

QPSPPSPQSQQSSSSS

babbabaa

babbabaa
*
ba

*
bb

*
ab

*
aa






 (3.10)  

From linear algebra properties, we know that the eigenvalues of a matrix are 

invariant under changes of basis. Consequently, both the canonical correlations and 

Wilks’  tests are invariant under change of common divisor in alr transformation.  

It is easy to see how the normalized eigenvectors of matrices in Equations (3.9) and 

(2.2), denoted as *
aiw  and wai respectively, must be related by aiai wwQ *'  or 

  aiai wQw 1* '  . Then we obtain the invariance of the corresponding canonical variates 

as:  

      aiaaiaaiaaiaaiai cvcv   YwQYQwQYwQYw 1 '''1*'** '  (3.11)  

Conversely, all results that imply standardization, like standardized canonical coefficients, 

canonical loadings/cross-loadings and redundancy analysis, are not invariant to the choice of 

reference component in alr transformation. In the case of CoDa, however, given the facts that 

canonical variates can be readily interpreted as log-ratios and log-contrasts on their own, and 

that standardization is extremely uncommon for log-contrasts, standardized information is not 

needed to enhance interpretation and is not considered in this article.  
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3.3 Appropriateness of Alternative Log-ratio Transformations for 
Canonical Correlation Analysis 

One key issue when working with CoDa is the choice of the log-ratio transformation, since 

different possibilities are available. Additive log-ratio (alr) and centered log-ratio (clr) 

transformations were introduced in Aitchison (1986), while isometric log-ratio transformation 

(ilr) was introduced in Egozcue et al. (2003).  

Aitchison’s (1986) proposal for compositional CCA involved alr transformation. 

Although alr transformation is simple and easy to interpret, it is asymmetric in its parts. By 

changing the part in the denominator, a different alr-transformed vector is obtained. For this 

reason, when alr transformation is used, it is important to check the invariance of the results 

with respect to the choice of common denominator, as we have done in Section 3.2. 

However, as Egozcue et al. (2003) noted, the main drawback of alr transformation is that it is 

not an isometric transformation from the simplex to the real space. It was later shown that an 

alr vector can be viewed as the coefficients of a composition with respect to a non-

orthonormal basis on the simplex (Mateu-Figueras et al., 2011). Consequently, it is not 

suitable for statistical techniques that use distances or angles between alr vectors, such as 

cluster analysis. Note that these problems do not occur when using CCA because eigenvalues 

and eigenvectors of a product of covariance matrices are involved. Due to the non-

orthonormality of the basis, the equality aiai wwQ *'  is only true if the vector product *' aiwQ  

is normalized, although this does not affect the analyses considered in this article.  

Clr transformation is defined as the logarithm of the ratio of each part over the geometric 

mean. It is a symmetric transformation with respect to the compositional parts and also an 

isometric transformation. Nevertheless, clr transformation has the disadvantage that the clr 

covariance matrix is singular. In our case, clr transformation would not be a good choice 

because CCA uses covariance matrices and their inverses. Conversely, it would be a good 

choice for cluster analysis or other statistical techniques in which distances are crucial and 

covariances do not need to be inverted.  

Ilr transformation is isometric and consequently makes it possible to associate distances in 

the simplex with distances in the transformed space. Additionally, an ilr vector can be viewed 

as the coordinates of a composition with respect to an orthonormal basis on the simplex. 

Finally, covariance matrices can be inverted. It can thus be used in virtually all statistical 

analyses. The expression of the ilr using a particular orthonormal basis is given in Egozcue et 
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al. (2003). Nevertheless, in inner product spaces, an orthonormal basis is not uniquely 

determined and in some cases it is not straightforward to determine which basis is the most 

appropriate to solve a specific problem and how it can be interpreted. Faced with the problem 

of interpreting CCA on ilr transformation, van den Boogaart and Tolosana-Delgado (2013) 

devise a graphical back-transformation of the canonical coefficients. In any case, the 

invariance of the ilr results with respect to the choice of the orthonormal basis also holds.  

In this article, although alr transformation was used due to its simplicity, ilr 

transformation could also have been used, and we actually did rerun the illustration analysis 

with ilr transformation. The final canonical variates expressed in terms of the log components 

and as log-contrasts are invariant, because alr and ilr vectors are also related through a 

change-of-basis matrix.  

 

4 Illustration 

4.1 Background 

In this illustration of compositional CCA, our aim is to relate students’ learning styles to their 

philosophical orientations. Philosophical orientation is a good means of understanding the 

relationship between people’s values and beliefs, and their behavior and approach to learning 

(Boyatzis et al., 2000). Since a person’s behavior is related to his or her values and beliefs, 

philosophy is important for comprehending and predicting behavior, with the added 

advantage that a person’s philosophy goes beyond social context. Philosophical orientation is 

useful for answering questions such as how individuals ‘act across various social settings’ or 

‘think about establishing the value of things, activities and others’ (Boyatzis et al., 2000: 50). 

Three major clusters of philosophical systems have traditionally been proposed. These 

clusters define the extent to which a person is pragmatic (PR), intellectual (IN) or humanistic 

(HU).  

A person with a predominantly PR philosophical orientation will make decisions based on 

the benefits of the action, measured in terms of utility or comparing input and output. If the 

objectives to be achieved are not clear or measuring utility is difficult, then an activity will be 

less valuable to a person with this orientation.  
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Someone with a predominantly IN philosophical orientation will be rational, logical and 

focus on comprehending everything. The central concern underlying this philosophical 

orientation is analytical.  

Someone with a predominantly HU orientation is thought to be committed to human 

values. This kind of person will tend to determine whether an activity is worthy in terms of its 

impact on other people and the quality of the relationship with these people. The central issue 

underlying HU orientation is a concern for close and personal relationships.  

According to Experiential Learning Theory, learning is a process whereby knowledge is 

created through the transformation of experience (Kolb, 1984). Learning requires abilities to 

grasp and transform knowledge that are polar opposites. In grasping knowledge, some people 

perceive new information through experiencing the concrete, tangible, and felt qualities of the 

world, which is referred to as concrete experience (CE), while others tend to take hold of new 

information through symbolic representation or abstract conceptualization (AC). In 

transforming knowledge, some people tend to carefully watch others who are involved in the 

experience and reflect on what happens (reflective observation – RO), while others choose to 

start doing things (active experimentation - AE). Learning can also be conceived as a four-

stage cycle, where each stage is represented by a learning mode.  

At the CE stage, one tends to rely more on intuition than on a systematic focus. Moreover, 

in this stage, a learner relies on the ability to be open, receptive and adaptive to changes. At 

the RO stage, one comprehends situations by taking into account different perspectives. In 

this stage, a learner relies on patience and objectivity, as well as thoughts and feelings. At the 

AC stage, logic and ideas are needed to understand a problem, rather than feelings. A learner 

in this stage relies on systematic planning and the theoretical development of ideas. Finally, 

at the AE stage, one learns by experimenting with changing situations. In this stage, a learner 

will find it more useful to put ideas into practice and see what really works than to simply 

observe.  

4.2 Data and Measures 

Multidimensional forced-choice questionnaires to measure philosophical orientations and 

learning modes were designed in Boyatzis et al. (2000) and Kolb (1999). In these 

questionnaires, each question consists of a set of D statements, and each statement is an 

indicator of a different dimension, in our case, of a philosophical orientation (D=3) or a 
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learning mode (D=4). Respondents are instructed to rank these statements. In this article, we 

assume that ranks are coded as D1 for the most preferred statement, D2 to the second most 

preferred, down to 0 for the least preferred. The Philosophical Orientation Questionnaire 

consists of k=20 questions designed as in this example:  

“I think of my value, or worth, in terms of:  

 (a) My relationships (e.g. family, friends).  

 (b) My ideas or ability to invent new concepts or ability to analyse things.  

 (c) My financial net worth or income.”  

Statement (a) reflects the HU orientation, (b) the IN orientation, and (c) the PR 

orientation.  

The Learning Style Inventory includes k=12 questions designed as in this example:  

“When I am learning:  

 (a) I like to experience sensations.  

 (b) I like to observe and listen.  

 (c) I like to think about ideas.  

 (d) I like to do things.”  

Statement (a) reflects the CE mode, (b) the RO mode, (c) the AC mode, and (d) the AE 

mode.  

The ranks of each dimension are summed across the k questions to produce D global 

scores, one for each dimension. These D scores have a fixed sum for all respondents, equal to 

kD(D1)/2. Once the global scores have been computed, forced-choice instruments can be 

understood as compositions, in which the kD(D1)/2 total is allocated to the D dimensions 

(components), so that data only convey information about the relative importance of 

dimensions (learning modes and philosophical orientations) for a given individual. Under this 

coding scheme, the dimension score is the number of times the dimension has been preferred 

over other dimensions in all possible pair-wise comparisons over the k questions. For 

instance, if a component is always ranked as the lowest, it has never been preferred to any 

other mode and receives a 0 score. If a component is always ranked as the highest, it is 

preferred k times to the other D1 modes and receives a k(D1) score. Scores can thus be 

understood as having ratio scale properties: a component with a score of 6 has been preferred 
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to other components twice as many times across the k items than a mode with score of 3 

(Batista-Foguet et al., 2015). Alternative ways of coding these questionnaires are discussed in 

de Vries and van der Ark (2008).  

In this illustration, we use the same data as those used by Batista-Foguet et al. (2015), 

which cover 7 consecutive years (2006-2013) of candidates on an international MBA 

program at a leading European business school. The sample size was 1,194 full time 

participants from 86 countries, of which the most common were Spain (15.9%), the US 

(13.7%), India (9.6%), and Germany (5.6%). 69.7% were male and 30.3% female. Average 

age was 31.4 years (SD 2.8 years). Previous student background was heterogeneous, 

including not only economics (11%) and management studies (32%), but also engineering 

(36.4%), social sciences (9.3%), arts (5.7%) and hard sciences (5.5%). 

The philosophical orientation components were labeled xp1=pragmatic (PR), 

xp2=intellectual (IN), and xp3=humanistic (HU); while the learning mode components were 

labeled xl1=abstract conceptualization (AC), xl2=concrete experience (CE), xl3=active 

experimentation (AE), and xl4=reflective observation (RO). The final two components, HU 

and RO, were used as a reference for the alr transformation:  
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4.3 Results 

After submitting the sets (yp1, yp2) and (yl1, yl2, yl3) to a CCA using SPSS v.23, the resulting 

canonical correlations are 1̂ =0.246 and 2̂ =0.163. Their significance tests are in Table 1. 

The raw (unstandardized) canonical coefficients are in Table 2.  

Table 1: Significance Tests for the Canonical Correlations 

H0 Wilk's  2 DF p-value 
1=2=0 0.914 93.854 6 0.000 
2=0 0.973 28.295 2 0.000 

 

Table 2: Raw Canonical Coefficients as a Function of the Log-ratios 

  Variate 1 Variate 2 
Philosophical orientations   
 yp1 (log-ratio of PR over HU) -0.524 1.730 
 yp2 (log-ratio of IN over HU) 2.085 -0.274 
Learning modes   
 yl1 (log-ratio of AC over RO) 1.720 -0.177 
 yl2 (log-ratio of CE over RO) -0.447 -1.347 
 yl3 (log-ratio of AE over RO) -1.032 1.311 

 

The original canonical variates are functions of the log ratios and are easily re-expressed 

by hand as a function of the log-components as in Equation (3.3). For instance, in the 

philosophical orientation composition the first canonical variate is:  
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 (4.2)  

Table 3: Raw Canonical Coefficients as a Function of the Log-components 

  Variate 1 Variate 2 
Philosophical orientations 
 ln(xp1) (PR) -0.524 1.730 
 ln(xp2) (IN) 2.085 -0.274 
 ln(xp3) (HU) -1.561 -1.456 
Learning modes 
 ln(xl1) (AC) 1.720 -0.177 
 ln(xl2) (CE) -0.447 -1.347 
 ln(xl3) (AE) -1.032 1.311 
 ln(xl4) (RO) -0.241 0.213 
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Canonical variates as a function of log components are shown in Table 3. As in Equation 

(4.2), the coefficients in Table 2 apply to all rows in Table 3 but the last one of each 

composition, which receives their sum with reversed sign.  

The canonical variates in Table 3 correspond to the following log-contrasts:  
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The first pair of canonical variates can therefore be interpreted as follows: when the IN 

(xp2) orientation is high and the HU (xp3) orientation is low, then the AC (xl1) mode is high 

and the AE (xl3) mode is low. The second pair of canonical variates can be interpreted as 

follows: when the PR (xp1) orientation is high and the HU (xp3) orientation is low, then the AE 

(xl3) mode is high and the CE (xl2) is low. Our results are similar to those of Boyatzis et al. 

(2000), who reported the PR orientation as correlating positively with AE and negatively with 

CE; and the IN orientation as correlating positively with AC and negatively with AE.   

 

5 Discussion 

The increasing awareness of CoDa leads to an increasing interest in problems involving more 

than one composition. Standard statistical analysis includes many tools for relating two sets 

of variables, and one of the most popular in multivariate exploratory analysis is CCA. Within 

CoDa, tools for relating several compositions are still underdeveloped. In this article we have 

shown how to adapt CCA to compositional data in order to explore the relationship between 

two compositions. In our illustration we have found learning styles to be related to 

philosophical orientations in an interpretable manner in accordance with the literature, which 

supports the practical usefulness of the method as an exploratory tool.  

The appeal of the CoDa log-ratio approach for applied researchers lies in the fact that 

once the data have been transformed using appropriate log-ratios, standard and well-

understood statistical techniques such as CCA can be used. Once log-ratios have been 

computed, a compositional CCA is no more complicated than a standard CCA and standard 

statistical software dealing with CCA can be used. In order to be used with compositional 
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data, software must be able to derive the canonical variates from the covariance product in 

Equation (2.2) and include raw canonical coefficients as a part of the output. We recommend 

either SPSS, the cca function in the yacca R library (setting xscale=FALSE, yscale=FALSE), 

or the cc function in the CCA R library. It must be taken into account that some software for 

CCA either analyzes correlation matrices rather than covariance matrices (like the canocor 

function in the R library of the same name) or reports only standardized coefficients (like the 

CCorA function in the vegan R library). For the computation of canonical correlations and 

their significance tests, standardization or the use of correlations are irrelevant.  

In some cases, the interpretation of the results of a statistical method on compositional 

data differs to some extent from its interpretation on unconstrained data. In the case of CCA, 

standardized results are neither usable nor needed, because unstandardized canonical variates 

can be interpreted as log-contrasts in a straightforward manner. This way of interpreting the 

results as log-contrasts fits well with the CoDa way of thinking and increases the 

attractiveness of the approach within an exploratory CoDa. CCA can also be applied to relate 

one composition to a set of numeric variables defined in the real space. In this case, the 

canonical variates are log-contrasts in the composition and linear combinations of the set of 

numeric variables with maximum mutual correlation.  

The CoDa approach focuses on relative rather than absolute differences in the data. 

Treating compositional data directly without the log-ratio transformation implies assuming 

that the difference between scores 1 and 2 is the same as the difference between scores 10 

and 11, while in the former case they differ by 100% and in the second by only 10%. A 

commonly mentioned limitation of the CoDa approach is the presence of zeros in the xd 

variables, which prevents the analyst from computing log-ratios. Details on methods 

available for treating zeros prior to analysis, which perform well if the percentage of cases 

with zeros is not large, can be found in Martín-Fernández et al. (2011).  

Further research could include adapting other multivariate techniques that relate sets of 

variables to compositional data, such as redundancy analysis, in order to derive a specified 

number of new latent variables from a composition that explains as much variance as possible 

from the other compositions. Related methods in the statistical modeling arena include 

simultaneous regression systems in which both explanatory and dependent variables are 

compositional (Tolosana-Delgado and van den Boogaart, 2013) and compositional partial 

least squares (Kalivodová et al., 2015).  
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