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Abstract

The family of snarks – connected bridgeless cubic graphs that cannot be 3-edge-colour-
ed – is well-known as a potential source of counterexamples to several important and
long-standing conjectures in graph theory. These include the cycle double cover conjec-
ture, Tutte’s 5-flow conjecture, Fulkerson’s conjecture, and several others. One way of
approaching these conjectures is through the study of structural properties of snarks and
construction of small examples with given properties. In this paper we deal with the prob-
lem of determining the smallest order of a nontrivial snark (that is, one which is cyclically
4-edge-connected and has girth at least 5) of oddness at least 4. Using a combination of
structural analysis with extensive computations we prove that the smallest order of a snark
with oddness at least 4 and cyclic connectivity 4 is 44. Formerly it was known that such
a snark must have at least 38 vertices and one such snark on 44 vertices was constructed
by Lukot’ka, Máčajová, Mazák and Škoviera in 2015. The proof requires determining all
cyclically 4-edge-connected snarks on 36 vertices, which extends the previously compiled
list of all such snarks up to 34 vertices. As a by-product, we use this new list to test the
validity of several conjectures where snarks can be smallest counterexamples.
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1 Introduction
Snarks are an interesting, important, but somewhat mysterious family of cubic graphs
whose characteristic property is that their edges cannot be properly coloured with three
colours. Very little is known about the nature of snarks because the reasons which cause
the absence of 3-edge-colourability in cubic graphs are not well understood. Snarks are
also difficult to find because almost all cubic graphs are hamiltonian and hence 3-edge-
colourable [44]. On the other hand, deciding whether a cubic graph is 3-edge-colourable
or not is NP-complete [26], implying that the family of snarks is sufficiently rich.

The importance of snarks resides mainly in the fact that many difficult conjectures in
graph theory, such as Tutte’s 5-flow conjecture or the cycle double cover conjecture, would
be proved in general if they could be established for snarks [29, 30]. While most of these
problems are trivial for 3-edge-colourable graphs, and exceedingly difficult for snarks in
general, they often become tractable for snarks that are in a certain sense close to being
3-edge-colourable.

There exist a number of measures of uncolourability of cubic graphs (see [16] for a
recent survey). Among them, the smallest number of odd circuits in a 2-factor of a cubic
graph, known as oddness, has received the widest attention. Note that the oddness of a cubic
graph is an even integer which equals zero precisely when the graph is 3-edge-colourable.
It is known, for example, that the 5-flow conjecture and the Fan-Raspaud conjecture are true
for cubic graphs of oddness at most two [30, 37], while the cycle double cover conjecture
is known to hold for cubic graphs of oddness at most 4 [24, 27]. Snarks with large oddness
thus still remain potential counterexamples to these conjectures and therefore merit further
study.

Figure 1: The smallest known nontrivial snark with oddness ≥ 4.

Several authors have provided constructions of infinite families of snarks with increas-
ing oddness, see, for example, [25, 33, 35, 49]. Most of them focus on snarks with cyclic
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connectivity at least 4 and girth at least 5, because snarks that lack these two properties can
be easily reduced to smaller snarks. We call such snarks nontrivial. All currently available
constructions indicate that snarks of oddness greater than 2 are extremely rare. From [7,
Observation 4.10] it follows that there exist no nontrivial snarks of oddness greater than
2 on up to 36 vertices. The smallest known example of a nontrivial snark with oddness
at least 4 has 44 vertices and its oddness equals 4. It was constructed by Lukot’ka et al.
in [35], superseding an earlier construction of Hägglund [25] on 46 vertices; it is shown in
Figure 1 in a form different from the one displayed in [35]. In [35, Theorem 12] it is also
shown that if we allow trivial snarks, the smallest one with oddness greater than 2 has 28
vertices and oddness 4. As explained in [22, 34], there are exactly three such snarks, one
with cyclic connectivity 3 and two with cyclic connectivity 2. (The latter result rectifies the
false claim made in [35] that there are only two snarks of oddness 4 on 28 vertices.)

The aim of the present paper is to prove the following result.

Theorem 1.1. The smallest number of vertices of a snark with cyclic connectivity 4 and
oddness at least 4 is 44. The girth of each such snark is at least 5.

This theorem bridges the gap between the order 36 up to which all nontrivial snarks
have been generated (and none of oddness greater than 2 was found [7]) and the order 44
where an example of oddness 4 has been constructed [35]. Since generating all nontrivial
snarks beyond 36 vertices seems currently infeasible, it would be hardly possible to find a
smallest nontrivial snark with oddness at least 4 by employing computational force alone.
On the other hand, the current state-of-the-art in the area of snarks, with constructions
significantly prevailing over structural theorems, does not provide sufficient tools for a
purely theoretical proof of our theorem. Our proof is therefore an inevitable combination
of structural analysis of snarks with computations.

The proof consists of two steps. First we prove that every snark with oddness at
least 4, cyclic connectivity 4, and minimum number of vertices can be decomposed into
two smaller cyclically 4-edge-connected snarksG1 andG2 by removing a cycle-separating
4-edge-cut, adding at most two vertices to each of the components, and by restoring 3-
regularity. Conversely, every such snark arises from two smaller cyclically 4-edge-con-
nected snarks G1 and G2 by the reverse process. In the second step of the proof we com-
putationally verify that no combination of G1 and G2 can result in a cyclically 4-edge-
connected snark of oddness at least 4 on fewer than 44 vertices. This requires checking
all suitable pairs of cyclically 4-edge-connected snarks on up to 36 vertices, including
those that contain 4-cycles. Such snarks have been previously generated only up to or-
der 34 [7], which is why we had to additionally generate all cyclically 4-edge-connected
snarks on 36 vertices containing a 4-cycle. This took about 80 CPU years and yielded
exactly 404 899 916 cyclically 4-edge-connected snarks.

It is important to realise that Theorem 1.1 does not yet determine the order of a smallest
nontrivial snark with oddness at least 4. The reason is that it does not exclude the existence
of cyclically 5-connected snarks with oddness at least 4 on fewer than 44 vertices. However,
the smallest currently known cyclically 5-edge-connected snark with oddness at least 4
has 76 vertices (see Steffen [49, Theorem 2.3]), which indicates that a cyclically 5-edge-
connected snark with oddness at least 4 on fewer than 44 vertices either does not exist or
will be very difficult to find.

Our paper is organised as follows. Section 2 provides the necessary background ma-
terial for the proof of Theorem 1.1 and for the results that precede it, in particular for the
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decomposition theorems proved in Section 3. In Section 4 we employ these decomposition
theorems to prove Theorem 1.1. We further discuss this theorem in Section 5 where we
also pose two related problems. In the final section we report about the tests which we
have performed on the set of all cyclically 4-edge-connected snarks of order 36 concerning
the validity of several interesting conjectures in graph theory, such as the dominating cycle
conjecture, the total colouring conjecture, and the Petersen colouring conjecture.

We will continue our investigation of the smallest snarks with oddness at least 4 and
cyclic connectivity 4 in the sequel of this paper [23]. We will display a set of 31 such
snarks, analyse their properties, and prove that they constitute the complete set of snarks
with oddness at least 4 and cyclic connectivity 4 on 44 vertices.

2 Preliminaries
2.1 Graphs and multipoles

All graphs in this paper are finite. For the sake of completeness, we have to permit graphs
containing multiple edges or loops, although these features will in most cases be excluded
by the imposed connectivity or colouring restrictions.

Besides graphs we also consider graph-like structures, called multipoles, that may con-
tain dangling edges and even isolated edges. Multipoles serve as a convenient tool for
constructing larger graphs from smaller building blocks. They also naturally arise as a re-
sult of severing one or several edges of a graph, in particular edges forming an edge-cut. In
this paper all multipoles will be cubic (3-valent).

Every edge of a multipole has two ends and each end can, but need not, be incident
with a vertex. An edge which has both ends incident with a vertex is called proper. If
one end of an edge is incident with a vertex and the other is not, then the edge is called a
dangling edge and, if neither end of an edge is incident with a vertex, it is called an isolated
edge. An end of an edge that is not incident with a vertex is called a semiedge. A multipole
with k semiedges is called a k-pole. Two semiedges s and t of a multipole can be joined
to produce an edge s ∗ t connecting the end-vertices of the corresponding dangling edges.
Given two k-poles M and N with semiedges s1, . . . , sk and t1, . . . , tk, respectively, we
define their complete junction M ∗N to be the graph obtained by performing the junctions
si ∗ ti for each i ∈ {1, . . . , k}. A partial junction is defined in a similar way except that
a proper subset of semiedges of M is joined to semiedges of N . Partial junctions can be
used to construct larger multipoles from smaller ones. In either case, whenever a junction
of two multipoles is to be performed, we assume that their semiedges are assigned a fixed
order. For a more detailed formal development of concepts related to multipoles we refer
the reader, for example, to [15, 36] or [13].

2.2 Cyclic connectivity

Let G be a connected graph. An edge-cut of a graph G, or just a cut for short, is any set
S of edges of G such that G − S is disconnected. An edge-cut is said to be trivial if it
consists of all edges incident with one vertex, and nontrivial otherwise. An important kind
of an edge-cut is a cocycle, which arises by taking a set of vertices or an induced subgraph
H of G and letting S to be the set δG(H) of all edges with exactly one end in H . We omit
the subscript G whenever G is clear from the context.

An edge-cut is said to be cycle-separating if at least two components of G− S contain
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cycles. We say that a connected graph G is cyclically k-edge-connected if no set of fewer
than k edges is cycle-separating in G. The cyclic connectivity of G, denoted by ζ(G), is
the largest number k ≤ β(G), where β(G) = |E(G)| − |V (G)|+ 1 is the cycle rank of G,
for which G is cyclically k-connected (cf. [41, 43]).

It is not difficult to see that for a cubic graphGwith ζ(G) ≤ 3 the value ζ(G) coincides
with the usual vertex-connectivity or edge-connectivity of G. Thus cyclic connectivity in
cubic graphs is a natural extension of the common versions of connectivity (which unlike
cyclic connectivity are bounded above by 3). Another useful observation is that the value
of cyclic connectivity remains invariant under subdivisions and adjoining new vertices of
degree 1.

The following well-known result [41, 43] relates ζ(G) to the length of a shortest cycle
in G, denoted by g(G) and called the girth of G.

Proposition 2.1. For every connected cubic graph G we have ζ(G) ≤ g(G).

Let us observe that in a connected cubic graph every edge-cut S consisting of inde-
pendent edges is cycle-separating: indeed the minimum valency of G − S is 2, so each
component of G − S contains a cycle. Conversely, a cycle-separating edge-cut of mini-
mum size is easily seen to be independent; moreover, G−S has precisely two components,
called cyclic parts or fragments. A fragment minimal under inclusion will be called an
atom. A nontrivial atom is any atom different from a shortest cycle.

The following two propositions provide useful tools in handling cyclic connectivity.
The first of them follows easily by mathematical induction. For the latter we refer the
reader to [41, Proposition 4 and Theorem 11].

Lemma 2.2. Let H be a connected acyclic subgraph of a cubic graph separated from the
rest by a k-edge-cut. Then H has k − 2 vertices.

Proposition 2.3. Let G be a connected cubic graph. The following statements hold:

(i) Every fragment of G is connected, and every atom is 2-connected. Moreover, if
ζ(G) ≥ 3, then every fragment is 2-connected.

(ii) If A is a nontrivial atom of G, then ζ(A) > ζ(G)/2.

In the present paper we focus on cyclically 4-edge-connected cubic graphs, in particular
on those with cyclic connectivity exactly 4. From the results mentioned earlier it follows
that a cyclically 4-edge-connected cubic graph has no bridges and no 2-edge-cuts. Fur-
thermore, every 3-edge-cut separates a single vertex, and every 4-edge-cut which is not
cycle-separating consists of the four edges adjacent to some edge.

An important method of constructing cyclically 4-edge-connected cubic graphs from
smaller ones applies the following operation which we call an I-extension. In a cubic
graph G take two edges e and f , subdivide each of e and f with a new vertex ve and vf ,
respectively, and by add a new edge between ve and vf . The resulting graph, denoted by
G(e, f) is said to be obtained by an I-extension across e and f . It is not difficult to see that
if G is cyclically 4-edge-connected and e and f are non-adjacent edges of G, then so is
G(e, f).

A well-known theorem of Fontet [19] and Wormald [51] states that all cyclically 4-
edge-connected cubic graphs can be obtained from the complete graphK4 and the cubeQ3

by repeatedly applying I-extensions to pairs of non-adjacent edges. However, I-extensions
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are also useful for constructing cubic graphs in general. For example, in [8] all connected
cubic graphs up to 32 vertices have been generated by using I-extensions as main construc-
tion operation.

For more information on cyclic connectivity the reader may wish to consult [41].

2.3 Edge-colourings

A k-edge-colouring of a graphG is a mapping φ : E(G)→ C where C is a set of k colours.
If all pairs of adjacent edges receive distinct colours, φ is said to be proper; otherwise it
is called improper. Graphs with loops do not admit proper edge-colourings because of the
self-adjacency of loops. Since we are mainly interested in proper colourings, the adjective
“proper” will usually be dropped. For multipoles, edge-colourings are defined similarly;
that is to say, each edge receives a colour irrespectively of the fact whether it is, or it is not,
incident with a vertex.

The result of Shannon [47] implies that every loopless cubic graph, and hence every
loopless cubic multipole, can be properly coloured with four colours, see also [32]. In the
study of snarks it is often convenient to take the set of colours C to be the set Z2 × Z2 =
{(0, 0), (0, 1), (1, 0), (1, 1)} where (0, 0), (0, 1), (1, 0), and (1, 1) are identified with 0, 1,
2, and 3, respectively. We say that a multipole is colourable if it admits a 3-edge-colouring
and uncolourable otherwise. For a 3-edge-colouring of a cubic graph or a cubic multipole
we use the colour-set C = {1, 2, 3} because such a colouring is in fact a nowhere-zero
Z2 × Z2-flow. This means that for every vertex v the sum of colours incident with v, the
outflow at v, equals 0 in Z2 × Z2. The following fundamental result [5, 14] is a direct
consequence of this fact.

Theorem 2.4 (Parity Lemma). LetM be a k-pole endowed with a proper 3-edge-colouring
with colours 1, 2, and 3. If the set of all semi-edges contains ki edges of colour i for
i ∈ {1, 2, 3}, then

k1 ≡ k2 ≡ k3 ≡ k (mod 2).

Now letM be a loopless cubic multipole that cannot be properly 3-edge-coloured. Then
M has a proper 4-edge-colouring with colours from the set C = Z2×Z2. Such a colouring
will not be a Z2×Z2-flow anymore since every vertex incident with an edge coloured 0 will
have a non-zero outflow. It is natural to require the colour 0 to be used as little as possible,
that is, to require the set of edges coloured 0 to be the minimum-size colour class. Such
a 4-edge-colouring will be called minimum. In a minimum 4-edge-colouring of M every
edge e coloured 0 must be adjacent to edges of all three non-zero colours; in particular, e
must be a proper edge. It follows that exactly one colour around e appears twice.

By summing the outflows at vertices incident with edges coloured 0 we obtain the
following useful result due to Fouquet [20, Theorem 1] and Steffen [48, Lemma 2.2].

Theorem 2.5. Let φ be a minimum 4-edge-colouring of a loopless cubic multipole M with
m edges coloured 0, and for i ∈ {1, 2, 3} letmi denote the number of those edges coloured
0 that are adjacent to two edges coloured i. Then

m1 ≡ m2 ≡ m3 ≡ m (mod 2).

We finish the discussion of colourings with the definition of the standard recolouring
tool, a Kempe chain. LetM be a cubic multipole whose edges have been properly coloured
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with colours from the set {0, 1, 2, 3} = Z2 × Z2. For any two distinct colours i, j ∈
{1, 2, 3} we define an i-j-Kempe chain P to be a non-extendable walk that alternates the
edges with colours i and j. Clearly, P is either an even circuit, or is a path that ends with
either a semiedge or with a vertex incident with an edge coloured 0. It is easy to see that
switching the colours i and j on P gives rise to a new proper 4-edge-colouring of M .
Furthermore, if the original colouring was a minimum 4-edge-colouring, so is the new one.

2.4 Snarks

A snark is, essentially, a nontrivial cubic graph that has no 3-edge-colouring. Precise def-
initions vary depending on what is to be considered “nontrivial”. In many papers, espe-
cially those dealing with snark constructions, snarks are required to be cyclically 4-edge-
connected and have girth at least 5; see for example [12, 16]. However, in [9, 25] the girth
requirement is dropped, demanding snarks to be cyclically 4-edge-connected but allowing
them to have 4-cycles.

Another group of papers, especially those dealing with the structural analysis of snarks,
adopts the widest possible definition of a snark, permitting all kinds of trivial features such
as triangles, digons and even bridges; see, for example [11, 13, 42]. In this paper, our usage
of the term snark agrees with the latter group: we define a snark to be a connected cubic
graph that cannot be 3-edge-coloured.

This paper deals with snarks that are far from being 3-edge-colourable. Two measures
of uncolourability will be prominent in this paper. The oddness ω(G) of a bridgeless cubic
graph G is the smallest number of odd circuits in a 2-factor of G. The resistance ρ(G) of
a cubic graph G is the smallest number of edges of G which have to be removed in order
to obtain a colourable graph. Obviously, if G is colourable, then ω(G) = ρ(G) = 0. If G
is uncolourable, then both ω(G) ≥ 2 and ρ(G) ≥ 2. Furthermore, ρ(G) ≤ ω(G) for every
bridgeless cubic graph G.

The following lemma is due to Steffen [48].

Lemma 2.6. Let G be a bridgeless cubic graph. Then ρ(G) = 2 if and only if ω(G) = 2.

One of the methods of constructing snarks from smaller ones uses I-extensions (cf.
Subsection 2.2). The following result from [42] tells us when an I-extension of a snark is
again a snark.

Lemma 2.7. Let G be a snark and e and f be distinct edges of G. Then G(e, f) is a snark
if and only if the graph G− {e, f} is uncolourable.

Another method of constructing snarks is based on extending multipoles to cubic graphs,
see [13]. If the multipole in question is uncolourable, it can be extended to a snark simply
by restoring 3-regularity. We are therefore interested in extending colourable multipoles.
For k ≥ 2, we say that a k-pole M extends to a snark if there exists a colourable multipole
N such that M ∗N is a snark. The graph M ∗N is called a snark extension of M .

Given a k-pole M with semiedges e1, e2, . . . , ek, we define its colouring set to be the
following set of k-tuples:

Col(M) = {φ(e1)φ(e2) . . . φ(ek) : φ is a 3-edge-colouring of M} .

Note that the set Col(M) depends on the ordering in which the semiedges are listed. We
therefore implicitly assume that such an ordering is given. As the colourings “inside”
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a multipole can usually be ignored, we define two multipoles M and N to be colour-
equivalent if Col(M) = Col(N).

Any colouring of a colourable multipole can be changed to a different colouring by
permuting the set of colours. The particular colour of a semiedge is therefore not important,
it is only important whether it equals or differs from the colour of any other semiedge.
By saying this we actually define the type of a colouring φ of a multipole M : it is the
lexicographically smallest sequence of colours assigned to the semiedges of M which can
be obtained from φ by permuting the colours.

By the Parity Lemma (Theorem 2.4), each colouring of a 4-pole has one of the follow-
ing types: 1111, 1122, 1212, and 1221. Observe that every colourable 4-pole admits at least
two different types of colourings. Indeed, we can start with any colouring and switch the
colours along an arbitrary Kempe chain to obtain a colouring of another type. Colourable
4-poles thus can have two, three, or four different types of colourings. Those attaining ex-
actly two types are particularly important for the study of snarks; we call them colour-open
4-poles, as opposed to colour-closed multipoles discussed in more detail in [42].

The following result appears in [13].

Proposition 2.8. A colourable 4-pole extends to a snark if and only if it is colour-open.

A 4-pole M will be called isochromatic if its semiedges can be partitioned into two
pairs such that in every colouring ofM the semiedges within each pair are coloured with the
same colour. A 4-poleM will be called heterochromatic of its semiedges can be partitioned
into two pairs such that in every colouring ofM the semiedges within each pair are coloured
with distinct colours. The pairs of semiedges of an isochromatic or a heterochromatic 4-
pole mentioned above will be called couples.

Note that the 4-poleC4 obtained from a 4-cycle by attaching one dangling edge to every
vertex is colour-closed, and hence neither isochromatic nor heterochromatic. Indeed, with
respect to a cyclic ordering of its semiedges it admits colourings of three types, namely
1111, 1122, and 1221 (but not 1212). In particular, if a snark G contains a 4-cycle C, then,
as is well-known, G− V (C) stays uncolourable.

The following two results are proved in [13]:

Proposition 2.9. Every colour-open 4-pole is either isochromatic or heterochromatic, but
not both. Moreover, it is isochromatic if and only if it admits a colouring of type 1111.

Proposition 2.10. Every colour-open 4-pole can be extended to a snark by adding at most
two vertices, and such an extension is unique. A heterochromatic multipole extends by
joining the semiedges within each couple, that is, by adding no new vertex. An isochro-
matic multipole extends by attaching the semiedges of each couple to a new vertex, and by
connecting these two vertices with a new edge.

Colour-open 4-poles can be combined to form larger 4-poles from smaller ones by
employing partial junctions: we take two 4-poles M and N , choose two semiedges in
each of them, and perform the individual junctions. In general, such a junction need not
respect the structure of the couples of the 4-poles participating in the operation. In this
manner it may happen that, for example, a partial junction of two heterochromatic 4-poles
results in an isochromatic dipole or in a heterochromatic dipole. In Theorem 3.5, one of our
decomposition theorems, partial junctions of 4-poles will occur in the reverse direction.
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3 Decomposition theorems
The aim of this section is to show that every snark with oddness at least 4, cyclic connec-
tivity 4, and minimum number of vertices can be decomposed into two smaller cyclically
4-edge-connected snarks G1 and G2 by removing a cycle-separating 4-edge-cut, adding at
most two vertices to each of the components, and by restoring 3-regularity. This will be
proved in two steps – Theorem 3.3 and Theorem 3.5.

Theorem 3.3 is a decomposition theorem for cyclically 4-edge-connected cubic graphs
proved in 1988 by Andersen et al. [2, Lemma 7]. Roughly speaking, it states that every
cubic graph G whose cyclic connectivity equals 4 can be decomposed into two smaller
cyclically 4-edge-connected cubic graphs G1 and G2 by removing a cycle-separating 4-
edge-cut, adding two vertices to each of the components, and by restoring 3-regularity.
Our proof is different from the one in [2] and provides useful insights into the problem.
For instance, it offers the possibility to determine conditions under which it is feasible to
extend a 4-pole to a cyclically 4-edge-connected cubic graph by adding two isolated edges
rather than by adding two new vertices.

Theorem 3.5 deals with a particular situation where the cyclically 4-edge-connected
cubic graph G in question is a snark. As explained in the previous section, every snark
containing a cycle-separating 4-edge-cut that leaves a colour-open component can be de-
composed into two smaller snarks G1 and G2 by removing the cut, adding at most two
vertices to each of the components, and by restoring 3-regularity. Unfortunately, G1 or G2

are not guaranteed to be cyclically 4-edge-connected because snark extensions forced by
the colourings need not coincide with those forced by the cyclic connectivity (see Exam-
ple 3.1 below). Moreover, Proposition 2.10 suggests that restoring 3-regularity by adding
no new vertices, that is, by joining pairs of the four 2-valent vertices to each other in one of
the components, may be necessary in order for G1 or G2 to be a snark. If this is the case,
Theorem 3.3 cannot be applied. Nevertheless, Theorem 3.5 shows that if G is a smallest
nontrivial snark with oddness at least 4, then we can form G1 and G2 in such a way that
they indeed will be cyclically 4-edge-connected snarks.

Example 3.1. We give an example of a cyclically 4-edge-connected snark in which a de-
composition along a given cycle-separating 4-edge-cut forces one of the resulting smaller
snarks to have cyclic connectivity smaller than 4. To construct such a snark take the Pe-
tersen graph and form a 4-pole H of order 10 by severing two non-adjacent edges and a
4-pole I of order 8 by removing two adjacent vertices. It is easy to see thatH is heterochro-
matic with couples being formed by the semiedges obtained from the same edge, and I is
isochromatic with couples formed by the semiedges formerly incident with the same ver-
tex. Let us create a cubic graph G by arranging two copies of H and one copy of I into
a cycle, and by performing junctions that respect the structure of the couples. The partial
junction of two copies of H contained in G, denoted by H2, is again a heterochromatic
4-pole, so G is a junction of an isochromatic 4-pole I with a heterochromatic 4-pole, and
therefore a snark. Furthermore, the cyclic connectivity of G equals 4. Let us decompose
G by removing from G the 4-edge-cut S separating I from H2 and by completing each of
the components to a snark. Proposition 2.10 implies that I can be completed to a copy G′

of the Petersen graph while H2 extends to a snark G′′ of order 20 by joining the semiedges
within each couple, that is, by adding no new vertex. The same Proposition states that
the decomposition of G into G′ and G′′ is uniquely determined by S. However, G′′ has a
cycle-separating 2-edge-cut connecting the two copies of H contained in it. Therefore the
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low connectivity of G′′ is unavoidable.

We proceed to Theorem 3.3. It requires one auxiliary result about comparable cuts. Let
S and T be two edge-cuts in a graph G. Let us denote the two components of G − S by
H1 and H2 and those of G− T by K1 and K2. The cuts S and T are called comparable if
Hi ⊆ Kj or Kj ⊆ Hi for some i, j ∈ {1, 2}.

Lemma 3.2. LetG be a cyclically 4-edge-connected cubic graph and letK be a component
arising from the removal of a cycle-separating 4-edge-cut from G. Then any two nontrivial
2-edge-cuts in K are comparable, or K is a 4-cycle.

Proof. Let S be the cycle-separating 4-edge-cut that separates K from the rest of G, and
let A = {a1, a2, a3, a4} be the set of the vertices of K incident with an edge from S. Since
S is independent, the vertices of A are pairwise distinct. Proposition 2.3 (i) implies that
K is 2-connected. It follows that for every nontrivial 2-edge-cut Q in K the graph K −Q
consists of two components, each containing exactly two vertices of A.

Let R and T be two nontrivial 2-edge-cuts in K. Denote the components of K −R by
X1 and X2, and those of K − T by Y1 and Y2. Observe that the subgraphs Xi ∩ Yj for
i, j ∈ {1, 2} need not all be non-empty. Let a be the number of edges between X1 ∩ Y1
and X1 ∩ Y2, b the number of edges between X1 ∩ Y1 and X2 ∩ Y2, c the number of edges
between X1 ∩Y1 and X2 ∩Y1, d the number of edges between X1 ∩Y2 and X2 ∩Y1, e the
number of edges between X2 ∩ Y1 to X2 ∩ Y2, and finally f the number of edges between
X1 ∩ Y2 and X2 ∩ Y2; see Figure 2.

Y2

X2

X1

a

b

c

e

f R

T

d

Y1

Figure 2: Crossing edge-cuts R and T .

If at least one of the sets X1 ∩ Y1, X1 ∩ Y2, X2 ∩ Y1, and X2 ∩ Y2 is empty, then
the definition of comparable cuts directly implies that the cuts R and T are comparable, as
required. Thus we can assume that all the subgraphs Xi ∩ Yj are nonempty. Our aim is
to show that in this case K is a 4-cycle. We start by showing that each of the subgraphs
X1 ∩ Y1, X1 ∩ Y2, X2 ∩ Y1, and X2 ∩ Y2 contains exactly one element of A. Suppose
that one of them, say X1 ∩ Y1, contains no vertex from A. Since both R and T separate
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the vertices from A in such a way that both components contain two vertices from A, we
deduce that both X1 ∩ Y2 and X2 ∩ Y1 contain two vertices from A each, while X2 ∩ Y2
contains no vertex from A. Now |δK(X1 ∩ Y1)| = a + b + c ≥ 3, because G has no
bridges and no 2-edge-cuts. Further, since X1 ∩ Y2 contains two vertices from A and G is
cyclically 4-edge-connected, we see that |δK(X1 ∩Y2)| = a+ d+ f ≥ 2. However, R is a
2-cut, so b+ c+ d+ f = 2. Therefore 2a ≥ 3 and hence a ≥ 2. Similarly, e ≥ 2. But then
|T | ≥ a+ e ≥ 4, which contradicts the fact that T is a 2-edge-cut. Thus all the subgraphs
Xi ∩ Yj contain an element of A, which in turn implies that each Xi ∩Xj contains exactly
one vertex from A.

To finish the proof we show that a = c = e = f = 1 and b = d = 0. Suppose that
a = 2. Since T is a 2-edge-cut, we have that b = d = e = 0. Now c + d + e ≥ 2
and b + e + f ≥ 2 because G is 3-edge-connected, so c ≥ 2 and f ≥ 2, and hence
|R| ≥ c+ f ≥ 4, a contradiction. Thus a ≤ 1. Similarly, we can derive that c ≤ 1, e ≤ 1,
and f ≤ 1. If b = 2, then a = c = d = e = f = 0 implying that G has a bridge, which is
absurd. Hence b ≤ 1 and similarly d ≤ 1. Suppose that a = 0. As G is 3-edge-connected,
we have 2 ≤ a+ b+ c = b+ c ≤ 2 and similarly 2 ≤ a+ d+ f = d+ f ≤ 2. It follows
that that b = c = d = f = 1 and hence |R| = b + c + d + f = 4, which contradicts the
fact that R is a 2-cut. Therefore a = 1 and similarly c = e = f = 1, which also implies
that b = d = 0. Finally, every subgraph Xi ∩ Yj has |δG(Xi ∩ Yj)| = 3, so Xi ∩ Yj is
acyclic and therefore, by Lemma 2.2, a single vertex. In other words, K is a 4-cycle. This
completes the proof.

We are ready to prove the decomposition theorem of Andresen et al. [2].

Theorem 3.3. LetG be a cyclically 4-edge-connected cubic graph with a cycle-separating
4-edge-cut whose removal leaves components G1 and G2. Then each of G1 and G2 can
be extended to a cyclically 4-edge-connected cubic graph by adding two adjacent vertices
and restoring 3-regularity.

Proof. It suffices to prove the statement for G1. If G1 is a 4-cycle, we can easily extend it
to the complete bipartite graph K3,3 which is cyclically 4-edge-connected, as required. We
therefore assume that G1 is not a 4-cycle. Let A = {a1, a2, a3, a4} be the set of vertices of
G1 incident with an edge of δG(G1). By Lemma 3.2, every 2-edge-cut in G1 separates the
vertices of A into the same two 2-element sets, say {a1, a2} from {a3, a4}. We extend G1

to a cyclically 4-edge-connected cubic graph G̃1 as follows. Let us take two new vertices
x1 and x2 and construct G̃1 from G1 by adding to G1 the edges x1x2, x1a1, x1a3, x2a2,

...

x2

a1 a3a2 a4

x1

Figure 3: Extending G1 to G̃1.
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and x2a4, see Figure 3. We now verify that G̃1 is indeed cyclically 4-edge-connected.
Suppose to the contrary that G̃1 is not cyclically 4-edge-connected. Then G̃1 has a

minimum-size cycle-separating edge-cut F such that |F | < 4. Let H1 and H2 be the
components of G1 − F . The cut F cannot consist entirely of edges of G1 ∪ δG(G1) for
otherwise F would be a cycle-separating edge-cut of G of size smaller than 4. Therefore
the edge x1x2 is contained in F . Since F is an independent cut, the edges x1a1, x1a3,
x2a2, and x2a4 do not belong to F . This in turn implies that a1 and a3 belong to one
component of G̃1 − F while a2 and a4 belong to the other component of G̃1 − F ; without
loss of generality, let a1 and a3 belong to H1. Since G1 contains no bridge, there exist
edges e1 and e2 in G1 such that F = {x1x2, e1, e2}. But then {e1, e2} is a 2-edge cut in
G1 that separates the set {a1, a3} from {a2, a4}, which is a contradiction. This completes
the proof.

Before proving the second main result of this section we need the following fact.

Proposition 3.4. LetG be a cubic graph with a cycle-separating 4-edge-cut whose removal
leaves components G1 and G2. If both G1 and G2 are 3-edge-colourable, then ω(G) ≤ 2.

Proof. Assume that bothG1 andG2 are 3-edge-colourable. IfG is 3-edge-colourable, then
ω(G) = 0. Therefore we may assume that G is not 3-edge-colourable. In this situation G1

admits two types of colourings and G2 admits the other two types of colourings. One of
them, say G1 has a colouring φ1 of the type 1111; by Proposition 2.9, G1 is isochromatic
andG2 is heterochromatic. Parity Lemma (Theorem 2.4) implies that if we take an arbitrary
3-edge-colouring φ2 of G2, then exactly two colours occur on the dangling edges of G2.
Let e and f be any two of the dangling edges that receive the same colour. Then, after
permuting the colours in G1, if necessary, φ1 and φ2 can be easily combined to a 3-edge-
colouring of G− {e, f}. This shows that ρ(G) = 2 and therefore ω(G) = 2.

Now we are in position to prove our second decomposition theorem.

Theorem 3.5. Let G be a snark with oddness at least 4, cyclic connectivity 4, and mini-
mum number of vertices. Then G contains a cycle-separating 4-edge-cut S such that both
components of G− S can be extended to a cyclically 4-edge-connected snark by adding at
most two vertices.

In fact, we prove the following stronger and more detailed result which will also be
needed in our next paper [23].

Theorem 3.6. LetG be a snark with oddness at least 4, cyclic connectivity 4, and minimum
number of vertices. Let S be a cycle-separating 4-edge-cut in G whose removal leaves
components G1 and G2. Then, up to permutation of the index set {1, 2}, exactly one of the
following occurs.

(i) Both G1 and G2 are uncolourable, in which case each of them can be extended to a
cyclically 4-edge-connected snark by adding two vertices.

(ii) G1 is uncolourable and G2 is heterochromatic, in which case G1 can be extended to
a cyclically 4-edge-connected snark by adding two vertices, and G2 can be extended
to a cyclically 4-edge-connected snark by adding two isolated edges.
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(iii) G1 is uncolourable and G2 is isochromatic, in which case G1 can be extended to
a cyclically 4-edge-connected snark by adding two vertices, and G2 can be ex-
tended to a cyclically 4-edge-connected snark by adding two vertices, except possibly
ζ(G2) = 2. In the latter case, G2 is a partial junction of two colour-open 4-poles,
which may be isochromatic or heterochromatic in any combination.

Proof. LetG be a snark with ω(G) ≥ 4, ζ(G) = 4, and with minimum number of vertices.
Let S = {s1, s2, s3, s4} be an arbitrary fixed cycle-separating 4-edge-cut in G, and let G1

and G2 be the components of G − S. According to Proposition 3.4, at least one of G1

and G2 is uncolourable. If both G1 and G2 are uncolourable, we can extend each of them
to a cyclically 4-edge-connected snark by applying Theorem 3.3, establishing (i). For the
rest of the proof we may therefore assume that G2 is colourable and G1 is not. Again,
G1 can be extended to a cyclically 4-edge-connected snark by Theorem 3.3. Let G̃1 be
an extension of G1 to a cyclically 4-edge-connected snark by adding two adjacent vertices
y1 and y2 according to Theorem 3.3. Without loss of generality we may assume that the
vertex y1 is incident with the edges s1 and s2 while y2 is incident with s3 and s4.

As regards G2, we prove that either (ii) or (iii) holds. Our first step in this direction is
showing that G2 can be extended to a snark. In view of Proposition 2.8, this amounts to
verifying that G2 is colour-open.

Claim 1. The 4-pole G2 is colour-open.

Proof of Claim 1. Suppose to the contrary that G2 is not colour-open. This means that it
has at least three types of colourings. Since G is a smallest cyclically 4-edge-connected
snark with oddness at least 4 and G̃1 is a cyclically 4-edge-connected snark with fewer
vertices than G, we infer that ω(G̃1) = 2. By Lemma 2.6, there exist two nonadjacent
edges e1 and e2 in G̃1 such that G̃1 − {e1, e2} is colourable. Equivalently, by Lemma 2.7,
the cubic graph G̃1(e1, e2) is colourable.

We claim that the edge y1y2 is one of e1 and e2. Suppose not. Then both e1 and e2 have
at least one end-vertex inG1. As mentioned, G̃1(e1, e2) is a colourable cubic graph. Hence
G1(e1, e2) is a colourable 4-pole, and therefore it has at least two types of colourings.
Since G2 has at least three of the four types, both G1(e1, e2) and G2 admit colourings of
the same type. These colourings can be combined into a colouring of G(e1, e2), implying
that G − {e1, e2} is also colourable. However, from Lemma 2.6 we get that ω(G) = 2,
which is a contradiction proving that one of e1 and e2 coincides with y1y2.

Assuming that y1y2 = e1, let us consider a minimum 4-edge-colouring φ1 of G̃1 where
e1 and e2 are the only edges of G̃1 coloured 0. Theorem 2.5 implies that there exist a
unique non-zero colour that is repeated at both e1 and e2. Without loss of generality we
may assume that the repeated colour is 1 and that φ1(s1) = φ1(s3) = 1, φ1(s2) = 2,
and φ1(s4) = 3. In this situation, G2 cannot have a colouring of type 1212 for otherwise
we could combine this colouring with φ1 to produce a 3-edge-colouring of G − {e2, s4},
which is impossible since ω(G) ≥ 4. Therefore G2 has colourings of all the remaining
three types 1111, 1122, and 1221.

Consider the 1-2-Kempe chain P in G̃1 with respect to the colouring φ1 beginning at
the vertex y2. Clearly, the other end of P must be the end-vertex of e2 incident with edges
of colours 1, 3, and 0. If P does not pass through the vertex y1, we switch the colours
on P producing a 4-edge-colouring φ′1 of G̃1 where φ′1(s1) = 1, φ′1(s2) = φ′1(s3) = 2,
and φ′1(s4) = 3. However, φ′1 can be combined with a colouring of G2 of type 1221
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to obtain a 3-edge-colouring of G − {e2, s4}, which is impossible since ω(G) ≥ 4. If
P passes through y1, we switch the colours only on the segment P0 between y2 and y1,
producing an improper colouring φ′′1 of G̃1 with y1 being its only faulty vertex. Depending
on whether P0 ends with an edge coloured 1 or 2 we get φ′′1(s1) = φ′′1(s2) = φ′′1(s3) = 2
and φ′′1(s4) = 3, or φ′′1(s1) = φ′′1(s2) = 1, φ′′1(s3) = 2, and φ′′1(s4) = 3. In the latter case
we can combine φ′′1 with a colouring of G2 of type 1122, producing a 3-edge-colouring
of G − {e2, s4}. In the former case we first interchange the colours 1 and 2 on G1 and
then combine the resulting colouring with a colouring of G2 of type 1111, again producing
a 3-edge-colouring of G − {e2, s4}. Since ω(G) ≥ 4, in both cases we have reached a
contradiction. This establishes Claim 1.

Proposition 2.10 now implies that G2 can be extended to a snark Ḡ2 by adding at most
two vertices. Recall that such an extension is unique up to isomorphism and depends only
on whether G2 is isochromatic or heterochromatic. We discuss these two cases separately.

Case 1. G2 is isochromatic. First note that in this case Ḡ2 arises from G2 by adding two
new vertices x1 and x2 joined by an edge and by attaching each of the new vertices to
the semiedges in the same couple. From Proposition 2.3 (i) we get that ζ(G2) ≥ 2. If
ζ(G2) ≥ 4, then the same obviously holds for Ḡ2. Assume that ζ(G2) = 3, and let A
denote the set of end-vertices in G2 of the edges of the edge-cut S. Note that |A| = 4
because S is independent. Since ζ(G) = 4, every cycle separating 3-edge-cut R in G2

has the property that each component of G2 −R contains at least one vertex from A. This
readily implies that ζ(Ḡ2) ≥ 4 and establishes the statement (iii) whenever ζ(G2) ≥ 3.
It remains to consider the case where ζ(G2) = 2. Let U be a cycle-separating 2-edge-cut
in G2 and let Q1 and Q2 be the components of G2 − U . Since G is cyclically 4-edge-
connected, each Qi contains exactly two vertices from A and thus both Q1 and Q2 are
4-poles. Each Qi is colourable because any 3-edge-colouring of G2 provides one for Qi.
Furthermore, each Qi is colour-open, because G2 and hence also Qi has an extension to
Ḡ2. Thus G2 is a partial junction of two colour-open 4-poles. It is not difficult to show that
an isochromatic 4-pole can arise from a partial junction of any combination of isochromatic
and heterochromatic 4-poles, as claimed.

Case 2. G2 is heterochromatic. In this case G2 arises from a snark by severing two inde-
pendent edges. Suppose to the contrary that Ḡ2 is not cyclically 4-edge-connected. Then
G2 has at least twelve vertices, because there is only one 2-edge-connected snark of order
less than twelve – the Petersen graph – and its cyclic connectivity equals 5. Let us take a
heterochromatic 4-pole H of order 10 obtained from the Petersen graph and substitute G2

in G with H , creating a new cubic graph G′. Clearly, G′ is a snark of order smaller than
G. To derive a final contradiction with the minimality of G we show that G′ is cyclically
4-edge-connected and has oddness at least 4.

Claim 2. ω(G′) ≥ 4.

Proof of Claim 2. Suppose to the contrary that ω(G′) < 4. Since G1 is uncolourable and
G1 ⊆ G′, we infer that ω(G′) = 2 which in turn implies that ρ(G′) = 2. Therefore there
exist edges e1 and e2 in G′ such that G′ − {e1, e2} is colourable. In other words, G′ has a
minimum 4-edge-colouring ψ where e1 and e2 are the only edges of G′ coloured 0.

Since G1 is uncolourable, at least one of e1 and e2 must have both end-vertices in G1.
Without loss of generality assume that at e1 has both end-vertices in G1. If e2 had at least
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one end-vertex in G1, we could take a 3-edge-colouring of G′ − {e1, e2}, remove H and
reinstateG2 coloured in such a way that the edges in S−{e2} receive the same colours from
G2 as they did from H; this is possible since G2 and H are colour-equivalent. However, in
this way we would produce a 3-edge-colouring of G−{e1, e2}, contrary to the assumption
that ω(G) = 4. Therefore e2 has both ends in H .

Since H is heterochromatic, the edges of S can be partitioned into couples such that
for every 3-edge-colouring of H the colours of both edges within a couple are always
different. Let {si, sj} and {sk, sl} be the couples of H . Further, since ψ is a minimum
4-edge-colouring of G′, all three non-zero colours are present on the edges adjacent to
each of ei, one of the colours being represented twice. By Theorem 2.5, the same colour
occurs twice at both e1 and e2, say colour 1. If we regard ψ as a Z2 × Z2-valuation
and sum the outflows from vertices of G1 we see that the flow through S equals ψ(s1) +
ψ(s2) + ψ(s3) + ψ(s4) = 1. Hence, the distribution of colours in the couples of S, the set
{{ψ(si), ψ(sj)}, {ψ(sk), ψ(sl)}}, must have one of the following four forms:

D1 = {{1, 1}, {2, 3}},
D2 = {{1, 2}, {1, 3}},
D3 = {{2, 2}, {2, 3}},
D4 = {{2, 3}, {3, 3}}.

We now concentrate on the restriction of ψ to G1 and show that it can be modified to a
4-edge-colouring λ of G1 with distribution either D2 or D3. If the colouring ψ of G′

has distribution D4, we can simply interchange the colours 2 and 3 to obtain the distri-
bution D3. Assume that ψ has distribution D1. Let us consider the unique end-vertex u
of e1 in G1 such that the edges incident with u receive colours 1, 3, and 0 from ψ. The
1-2-Kempe chain P starting at u ends with a vertex incident with e2, which means that P
traverses S. Let s be the first edge of S that belongs to P . If ψ(s) = 1, then the desired
4-edge-colouring λ ofG1 with distributionD2 can be obtained by the Kempe switch on the
segment of P that ends with s and by a subsequent permutation of colours interchanging
1 and 2. If ψ(s) = 2, then a 4-edge-colouring of G1 with distribution D3 can be obtained
similarly. In both cases, e1 is the only edge coloured 0 under λ.

If λ has distribution D2, then λ and a 3-edge-colouring of H of type 1212 can be com-
bined to a 3-edge-colouring of G′ − {e1, sl}. However, as observed earlier, by removing
H and reinstating G2 we could produce a 3-edge-colouring of G − {e1, sl}, which is im-
possible because ω(G) ≥ 4. If λ has distribution D3, we can similarly combine λ with
a 3-edge-colouring of H of type 1221 to a 3-edge-colouring of G′ − {e1, si} which is
impossible for the same reason. This contradiction completes the proof of Claim 2.

Claim 3. ζ(G′) = 4.

Proof of Claim 3. Suppose to the contrary that ζ(G′) < 4. Let S′ be a minimum size cycle-
separating edge-cut in G′. If all the edges of S′ had at least one end vertex in G1, then S′

would be a cycle-separating cut also in G, which is impossible. Therefore at least one edge
of S′ has both ends in H , which means that S′ intersects H . Since H is connected, we
conclude that S′

H = S′ ∩ E(H) is an edge-cut of H . Note that S′
H is an independent

set of edges, so S′
H must be a cycle-separating edge-cut in H . Recall, however, that H

arises from the Petersen graph by severing two independent edges e and f . It follows that
S′
H∪{e, f} is a cycle-separating edge-cut in the Petersen graph. Hence, |S′

H∪{e, f}| ≥ 5,
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and consequently 3 ≤ |S′
H | ≤ |S′| ≤ 3. This shows that S′

H = S′ and therefore S′ is
completely contained in H; in particular S′ ∩ S = ∅. Because S′ is an edge-cut of the
entire G′, all the edges of S must join G1 to the same component of H − S′. On the other
hand, the Petersen graph is cyclically 5-edge-connected, therefore both e and f have end-
vertices in different components of H −S′. The way how G′ was constructed from G now
implies that the set of end-vertices of S in H coincides with the set of end-vertices of e and
f . Therefore S has an end-vertex in each component of H −S′, contradicting the previous
observation. This contradiction establishes Claim 3.

Claim 2 and Claim 3 combined provide a final contradiction with the choice of G,
which concludes the proof.

We proceed to proving our second decomposition theorem.

Proof of Theorem 3.5. Let G be a snark with oddness at least 4, cyclic connectivity 4, and
minimum number of vertices. If G contains a cycle-separating 4-edge-cut whose removal
leaves either two uncolourable components or one uncolourable component and one hete-
rochromatic component, then the conclusion follows directly from Theorem 3.6 (i) or (ii),
respectively. Otherwise one of the components is uncolourable and the other one, denoted
by G2, is isochromatic. In this case, G2 contains a subgraph K which is an atom, possibly
K = G2. Clearly, K is colourable and δG(K) is a cycle-separating 4-edge-cut. If K is
heterochromatic, then the conclusion again follows from Theorem 3.6 (ii). Therefore we
may assume that K is isochromatic. Since 4 = ζ(G) < 5 ≤ g(G), we see that K is a non-
trivial atom and from Proposition 2.3 (ii) we infer that ζ(K) ≥ 3. Applying statement (iii)
of Theorem 3.6 with S = δG(K) we finally get the desired result.

4 Main result
We are now ready to prove our main result.

Theorem 1.1. The smallest number of vertices of a snark with cyclic connectivity 4 and
oddness at least 4 is 44. The girth of each such snark is at least 5.

Proof. Let G be a snark with oddness at least 4, cyclic connectivity 4, and minimum order.
We first prove that G has girth at least 5. By Proposition 2.1, the girth of G is at least 4.
Suppose to the contrary that G contains a 4-cycle C, and let S be the edge-cut separating
C from the rest of G. Since S is cycle-separating, it has to satisfy one of the statements
(i) – (iii) of Theorem 3.6. In the notation of Theorem 3.6, C necessarily plays the role of
G2, because it is colourable. In particular, S does not satisfy (i). However, S satisfies
neither (ii) because G2 is not heterochromatic, nor (iii) since G2 is not isochromatic. Thus
we have reached a contradiction proving that the girth of G is at least 5.

In Figure 1 we have displayed a snark with oddness at least 4, cyclic connectivity 4 on
44 vertices. It remains to show that there are no snarks of oddness at least 4 and cyclic
connectivity 4 with fewer than 44 vertices.

Our main tool is Theorem 3.5. It implies that every snark with oddness at least 4,
cyclic connectivity 4, and minimum number of vertices can be obtained from two smaller
cyclically 4-edge-connected snarks G1 and G2 by the following process:

• Form a 4-pole Hi from each Gi by either removing two adjacent vertices or two
nonadjacent edges and by retaining the dangling edges.
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• Construct a cubic graph G by identifying the dangling edges of H1 with those of H2

after possibly applying a permutation to the dangling edges of H1 or H2.

Any graph G obtained in this manner will be called a 4-join of G1 and G2. Note that the
well-known operation of a dot product of snarks [1, 28] is a special case of a 4-join.

We proceed to proving that every snark with cyclic connectivity 4 on at most 42 vertices
has oddness 2. If G is a snark with cyclic connectivity 4 on at most 42 vertices, then by
Theorem 3.5 it contains a cycle-separating 4-edge-cut S such that both components K1

and K2 of G − S can be extended to snarks G1 and G2, respectively, by adding at most
two vertices; in other words, G is a 4-join of G1 and G2. Clearly, |V (K1)| + |V (K2)| =
|V (G)| ≤ 42. Assuming that |V (K1)| ≤ |V (K2)| we see that |V (K1)| ≥ 8, because
the smallest cyclically 4-edge-connected snark has 10 vertices, and hence |V (K2)| ≤ 34.
Therefore both G1 and G2 have order at least 10 and at most 36.

Let Sn denote the set of all pairwise non-isomorphic cyclically 4-edge-connected snarks
of order not exceeding n. To finish the proof it remains to show that every 4-join of two
snarks from S36 with at most 42 vertices has oddness 2. Unfortunately, verification of this
statement in a purely theoretical way is far beyond currently available methods. The final
step of our proof has been therefore performed by a computer.

We have written a program which applies a 4-join in all possible ways to two given
input graphs and have applied this program to the complete list of snarks from the set
S36. More specifically, given an arbitrary pair of input graphs, the program removes in
all possible ways either two adjacent vertices or two nonadjacent edges from each of the
graphs (retaining the dangling edges) and then identifies the dangling edges from the first
graph in the pair with the dangling edges of the second graph, again in all possible (i.e.,
4! = 24) ways. We also use the nauty library [39, 40] to determine the orbits of edges
and edge pairs in the input graphs, so the program only removes two adjacent vertices
or two nonadjacent edges once from every orbit of edges or edge pairs, respectively. The
resulting graphs can still contain isomorphic copies, therefore we also use nauty to compute
a canonical labelling of the graphs and remove the isomorphic copies.

Until now, only the set S34 has been known; it was determined by Brinkmann, Häg-
glund, Markström, and the first author [7] in 2013 and was shown to contain exactly
27 205 766 snarks. Using the program snarkhunter [7, 8] we have been able to generate all
cyclically 4-edge-connected snarks on 36 vertices, thereby completing the determination
of S36. This took about 80 CPU years and yielded exactly 404 899 916 such graphs. The
size of S36 thus totals to 432 105 682 graphs. (The new list of snarks can be downloaded
from the House of Graphs [6] at http://hog.grinvin.org/Snarks.)

Finally, we have performed all possible 4-joins of two snarks from S36 that produce a
snark with at most 42 vertices and checked their oddness. This computation required ap-
proximately 75 CPU days. We have used two independent programs to compute the odd-
ness of the resulting graphs (the source code of these programs can be obtained from [21])
and in each case the results of both programs were in complete agreement. No snark of odd-
ness greater than 2 among them was found, which completes the proof of Theorem 1.1.

5 Remarks and open problems
We have applied the 4-join operation to all valid pairs of snarks from S36 to construct cycli-
cally 4-edge-connected snarks on 44 vertices and checked their oddness. In this manner we
have produced 31 cyclically 4-edge-connected snarks of oddness 4, including the one from
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Figure 1, all of them having girth 5. The most symmetric of them is shown in Figure 4.
We will describe and analyse these 31 snarks in the sequel of this paper [23], where we
also prove that they constitute a complete list of all snarks with oddness at least 4, cyclic
connectivity 4, and minimum number of vertices.

Figure 4: The most symmetric nontrivial snark of oddness 4 on 44 vertices.

As we have already mentioned in Introduction (Section 1), Theorem 1.1 does not yet
determine the smallest order of a nontrivial snark with oddness 4, because there might exist
snarks with oddness at least 4 of order 38, 40, or 42 with cyclic connectivity greater than 4.
Furthermore, it is not immediately clear why a snarkGwith ω(G) ≥ m and minimum order
should have oddness exactlym. This situation suggests two natural problems which require
the following definition: Given integers ω ≥ 2 and k ≥ 2, letm(ω, k) denote the minimum
order of a cyclically k-edge-connected snark with oddness at least ω. For example, one has
m(2, 2) = m(2, 3) = m(2, 4) = m(2, 5) = 10 as exemplified by the Petersen graph, and
m(2, 6) = 28 as exemplified by the Isaacs flower snark J7. The values m(2, k) for k ≥ 7
are not known, however the well-known conjecture of Jaeger and Swart [31] that there are
no cyclically 7-edge-connected snarks would imply that these values are not defined. For
ω = 4, Lukot’ka et al. [35, Theorem 12] showed that m(4, 2) = m(4, 3) = 28. The value
m(4, 4) remains unknown although our Theorem 1.1 seems to suggest that m(4, 4) = 44.

Problem 5.1. Determine the value m(4, 4).

Our second problem asks whether the function m(ω, k) is monotonous in both coordi-
nates.

Problem 5.2. Is it true that m(ω+ 1, k) ≥ m(ω, k) and m(ω, k+ 1) ≥ m(ω, k) whenever
the involved values are defined?
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6 Testing conjectures
After having generated all snarks from the set S34 and those from S36 that have girth at
least 5, Brinkmann et al. [7] tested the validity of several important conjectures whose min-
imal counterexamples, provided that they exist, must be snarks. For most of the considered
conjectures the potential minimal counterexamples are proven to be nontrivial snarks, that
is, those with cyclic connectivity at least 4 and girth at least 5. Nevertheless, in some cases
the girth condition has not been established. Therefore it appears reasonable to check the
validity of such conjectures on the set S36 \ S34 of all cyclically 4-edge-connected snarks
of order 36. We have performed these tests and arrived at the conclusions discussed below;
for more details on the conjectures we refer the reader to [7].

A dominating circuit in a graph G is a circuit C such that every edge of G has an
end-vertex on C. Fleischner [17] made the following conjecture on dominating cycles.

Conjecture 6.1 (Dominating circuit conjecture). Every cyclically 4-edge-connected snark
has a dominating circuit.

The dominating circuit conjecture exists in several different forms (see, for example,
[3, 18]) and is equivalent to a number of other seemingly unrelated conjectures such as the
Matthews-Sumner conjecture about the hamiltonicity of claw-free graphs [38]. For more
information on these conjectures see [10].

Our tests have resulted in the following claim.

Claim 6.2. Conjecture 6.1 has no counterexample on 36 or fewer vertices.

The total chromatic number of a graph G is the minimum number of colours required
to colour the vertices and the edges of G in such a way that adjacent vertices and edges
have different colours and no vertex has the same colour as its incident edges. The total
colouring conjecture [4, 50] suggests that the total chromatic number of every graph with
maximum degree ∆ is either ∆ + 1 or ∆ + 2. For cubic graphs this conjecture is known to
be true by a result of Rosenfeld [45], therefore the total chromatic number of a cubic graph
is either 4 or 5. Cavicchioli et al. [12, Problem 5.1] asked for a smallest nontrivial snark
with total chromatic number 5. Brinkmann et al. [7] showed that such a snark must have
at least 38 vertices. Sasaki et al. [46] displayed examples of snarks with connectivity 2 or
3 whose total chromatic number is 5 and asked [46, Question 2] for the order of a smallest
cyclically 4-edge-connected snark with total chromatic number 5. Brinkmann et al. [9]
constructed cyclically 4-edge-connected snarks with girth 4 and total chromatic number 5
for each even order greater than or equal to 40. Our next claim shows that the value asked
for by Sasaki et al. is either 38 or 40.

Claim 6.3. All cyclically 4-edge-connected snarks with at most 36 vertices have total chro-
matic number 4.

The following conjecture was made by Jaeger [30] and is known as the Petersen co-
louring conjecture. If true, this conjecture would imply several other profound conjectures,
in particular, the 5-cycle double cover conjecture and the Fulkerson conjecture.

Conjecture 6.4 (Petersen colouring conjecture). Every bridgeless cubic graph G admits a
colouring of its edges using the edges of the Petersen graph as colours in such a way that
any three mutually adjacent edges of G are coloured with three mutually adjacent edges of
the Petersen graph.
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It is easy to see that the smallest counterexample to this conjecture must be a cyclically
4-edge-connected snark. Brinkmann et al. [7] showed that the smallest counterexample to
the Petersen colouring conjecture must have order at least 36. Here we improve the latter
value to 38.

Claim 6.5. Conjecture 6.4 has no counterexamples on 36 or fewer vertices.
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