= imAy
a
CLOUD COMPUTING
DEPLOYMENT
AND

MANAGEMENT

A Collection of
Exercises and
Tasks with
Solutions

Ale§s ZAMUDA

University of Maribor

Faculty of Electrical Engineering
and Computer Science

Cloud Computing Deployment and
Management

A Collection of Exercises and Tasks with Solutions

Author
Ales Zamuda

September 2020

Title
Subtitle

Author

Translator

Original title

Review

Language editing

Technical editors

Computer pagination

Cover designer

Cover graphics

Cloud Computing Deployment and Management
A Collection of Exercises and Tasks with Solutions

Ale§ Zamuda
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Ale§ Zamuda
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Postavitev in upravljanje racunalni§kih oblakov : zbirka vaj in nalog z re§itvami

Matjaz Poto¢nik
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Shelagh Hedges

Ale§ Zamuda
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Jan PerSa
(University of Maribor, University Press)

Ale§ Zamuda
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Jan PerSa
(University of Maribor, University Press)

Author Graphic material Author

Published by

University of Maribor

University Press

Slomskov trg 15, 2000 Maribor, Slovenia
https://press.um.si, zalozba@um.si

Co-published by

University of Maribor

Faculty of Electrical Engineering and Computer Science
Koroska cesta 46, 2000 Maribor, Slovenia
https://www.feri.um.si, feri@um.si

Edition 1st Published at Maribor, September 2020

Publication type E-book Version RI1
NO4-MPI-Cluster-z05.zip, NO1-Linux-VM.zip, NO2-Linux-Cluster-zO1.zip, 02-
Linux-Cluster.zip, NO2-Linux-Cluster-z02.zip, NO2-Linux-Cluster-z03.zip, NO2-
Linux-Cluster-z04.zip, NO2-Linux-Cluster-z05.zip, NO3-MPI-PingPong.zip, NO3-
MPI-PingPong-z01.zip,NO3-MPI-PingPong-z02.zip, NO3-MPI-PingPong-z03.zip,
NO3-MPI-PingPong-z04.zip, NO3-MPI-PingPong-z05.zip, NO3-MPI-PingPong-
z06.zip, NO4-MPI-Cluster.zip), NO4-MPI-Cluster-zO1.zip, NO4-MPI-Cluster-
2z02.zip, NO4-MPI-Cluster-z03.zip, NO4-MPI-Cluster-z04.zip, NO4-MPI-Cluster-
z05.zip, NO4-MPI-Cluster-z06.zip, = NO7-Hadoop-Single.zip, = NO8-Hadoop-
Cluster.zip, NO8-Hadoop-Cluster-z01.zip, NO8-Hadoop-Cluster-z02.zip.

Attachments

System requirements Computer compatible with IBM PC models, operating system Linux, Mac, or

Windows, 8 GB RAM; internet access
Software requirements Internet browser, program Okular or Adobe Reader, Bash, VirtualBox

Dostopno na https://press.um.si/index.php/ump/catalog/book/499

CIP - KataloZni zapis o publikaciji
Univerzitetna knjiZnica Maribor

004(0.034.2)

ZAMUDA, Ales

Cloud computing deployment and management
[Elektronski wvir] a collection of exercises and
tasks with solutions / author Ale§ Zamuda. - 1lst
ed. - E-knjiga. - Maribor Univerzitetna zaloZba

Univerze, 2020

Nac¢in dostopa (URL):
https://press.um.si/index.php/ump/catalog/book/499

ISBN 978-961-286-371-5

doi: doi.org/10.18690/978-961-286-371-5
1. Drugi var. nasl.

COBISS.SI-ID 27208195

ISBN 978-961-286-371-5 (pdf)

Price Free copy

DOI

For publisher

QOO0

© University of Maribor, University Press
/ Univerza v Mariboru, Unvierzitetna zalozba

Text © Zamuda 2020

This work is licensed under the Creative
Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. / To
delo je objavljeno pod licenco Creative Commons
Priznanje avtorstva-Nekomercialno-Brez predelav
4.0 Mednarodna.

https:/ /creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.18690/978-961-286-371-5

prof. dr. Zdravko Kacic,
Rector of University of Maribor

CLouD COMPUTING DEPLOYMENT
AND MANAGEMENT

A COLLECTION OF EXERCISES AND TASKS WITH SOLUTIONS

ALES ZAMUDA

University of Maribor, Faculty of Electrical Engineering and Computer
Science, Maribor, Slovenia. E-mail: ales.zamuda@um.si

Abstract The subject Cloud Computing Deployment
and Management is included in the second-cycle
Bologna Study Programme Computer Science and
Information Technologies as a full-time study unit.
This document presents study material for computer
exercises in this subject. After an introduction, then
individual tasks with solutions to the computer
exercises in the subsequent chapters are provided.
This is followed by a list of archived files containing the
computer format of the provided solutions.

i DOI https://doi.org/10.18690/978-961-286-371-5

TN

g ISBN 978-961-286-371-5

University of Maribar Press

Keywords:
cloud
computing;
virtualization,;
parallel
programming;
distributed
programming;
virtual
computing
environments;
high-
performance
computing

Active Table of Contents

Foreword 1
Introduction — General Information about the Subject, Exercises,

and Tasks 2

Content Overview o v o 3

1 Virtual Environments — Exercise NO1-Linux-VM 5

2 Deploying Instances and Managing Virtual Networks in a
Cluster — Exercise N02-Linux-Cluster 17

3 Deploying a Cloud for a Distributed Service and Messaging
Communication — Exercise N03-MPI-PingPong 29

4 Deploying Cloud Computing by Sharing Resources between
Multiple Distributed Services and Communication by Send-
ing Multiple Types of Messages — Exercise N04-MPI-
Cluster 37

5 Apache Hadoop, MapReduce, and YARN in a Single-node
Virtual Environment: Deploying and Managing a Distributed
System — Exercise N07-Hadoop-Single 50

6 Multiple Nodes with Hadoop — Exercise N08-Hadoop-
Cluster 59

7 Conclusion 69

i

Active Term (Index) Table

Apache Apache Web Server: A program that serves web requests to clients.
46, 54

Apache Hadoop Open source software package for reliable, scalable, and
distributed computing. 8, 46-48, 50, 52, 54, 55, 59, 61

APT Advanced Package Tool. 17
CD-ROM Compact Disc Read-Only Memory. 7

DHCP Dynamic Host Configuration Protocol. 19, 20, 22, 55
DVD Digital Versatile Disc. 7

HDD Hard Disk Drive. 6

HDFS Hadoop Distributed File System. 48, 50

IP Internet Protocol. 18-21, 31, 54, 55

ISO image International Organisation for Standardisation Disk Image. 5,

7
MPI Message Passing Interface. 34
NAT Network Address Translation. 27, 35, 46

OpenMPI A computer tool for deploymnet and management of communi-
cation interface among processes on different computers, using messag-
ing, MPI denotes Message Passing Interface. 26, 28-31, 34, 35, 43

il

OpenSSH A computer tool for deployment and management of secure re-
mote shell logins, denotes OpenBSD Secure Shell, where BSD stands
for Berkeley Software Distribution.. 4, 7, 8, 14, 15, 20, 21, 23, 24, 28,
35, 46, 48, 52, 55

OVA Open Virtualisation Format. 5, 8, 16, 25, 27, 32, 34, 43, 46, 52, 54,
62, 63

PNG Portable Network Graphics. 7
PSSH Parallel SSH. 7, 17-19, 24

RSA Rivest-Shamir-Adleman. 21, 24

SATA Serial Advanced Technology Attachment. 6
SSH Secure Shell. 24

X server X Window System. 7, 16, 17

VDI Virtual Disk Image. 6

VirtualBox A computer tool for deployment and management of virtual
environments of computers. 4, 7, 18, 19

YARN Yet Another Resource Negotiator. 8, 51, 52, 54, 57, 59, 60

v

Active Table of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

2.1
2.2

2.3
2.4

Setting the automatic screen capture button for continuous
capturing of screenshots to a file on demand, in the program

ksystemsettings.o 9
Installing the VirtualBox virtual environment deployment and
management tool (interactive steps 01-1 to 01-3). 10
Installing the VirtualBox virtual environment deployment and
management tool (interactive steps 01-4 to 01-6). 10

Installing the VirtualBox virtual environment deployment and
management tool (interactive step 01-7). The final window is
displayed with the settings of the new virtual environment

NOI-Linux-VM. o o o 11
Creating a new virtual environment in VirtualBox to prepare
for Ubuntu installation (interactive steps 03-1 to 03-3). 11
Installing Ubuntu in a virtual environment (interactive steps
04-1t0 04-3). o o 12
Installing Ubuntu in a virtual environment (interactive steps
04-4 60 04-6). 12
Installing Ubuntu in a virtual environment (interactive steps
04-7t0 04-9). 13
Installing Ubuntu in a virtual environment (interactive steps
04-10 t0 04-12). o 13
Installing Ubuntu in a virtual environment (interactive steps
04-13 t0 04-15).« . o 14
Installing Ubuntu in a virtual environment (interactive steps
04-16 t0 04-18). o o o o 14
Creation of keys for OpenSSH. 15
Interactive login to a cloned system NO2-Linux-Cluster-1. . 19
Updating of the resources in the list of software packages in
exercise NO2-Linux-Cluster-1. 19
Receiving PSSH installation packages in NO2-Linux-Cluster-1. 20
Installation of PSSH packages in N0O2-Linux-Cluster-1. . . . 21

2.5
4.1

5.1

5.2

6.1

6.2

Launch of 10 instances of Ubuntu virtual environments. 25
Final result shown after executing exercise NO3-MPI-PingPong. 48

Screenshot of the web page for the NameNode in exercise

NO7-Hadoop-Single. 95
The YARN website displayed running inside of the Apache
Hadoop installation in exercise NO7-Hadoop-Single. a8
Screenshot from the app information web page YARN with
multiple nodes. oL 66
Screenshot from the information web page on Apache Hadoop
with multiple nodes. 67

vi

Foreword

The subject Cloud Computing Deployment and Management is included in
the second-cycle Bologna Study Programme Computer Science and Informa-
tion Technologies as a full-time study unit. This document presents study
material for computer exercises in this subject. The next page is followed
by an Introduction, then by individual tasks with solutions to the computer
exercises in the subsequent chapters. This is followed by a list of archived
files containing the computer format of the provided solutions.

Thanks

Thanks to the expert reviewer, language reviewer, the e-publishing commis-
sion, and the publisher of this work. In preparing the study materials, I would
also like to thank the Heads of the Laboratories of the Institute of Computer
Science, as well as the students of the Study Programme Computer Science
and Information Technologies, who helped guide the preparation of these
materials.

Special thanks for supporting participation in the action 1C1406: High-
Performance Modelling and Simulation for Big Data Applications (cHiPSet),
which was implemented within European Cooperation in Science & Technol-
ogy (COST). Within this action, we exchanged views, experiences and good
practices in teaching cloud computing from several universities in Europe,
collected by Dave Freenan under the leadership of Joanna Kolodziej, and
available with other materials on the website http://chipset-cost.eu.

https://www.cost.eu/actions/ic1406/
http://chipset-cost.eu

Introduction — General Information about the
Subject, Exercises, and Tasks

The study unit of the course Cloud Computing Deployment and Management
(CCDM) consists of lectures, tutorials, computer exercises, and independent
student work. The list below includes some basic information about the
course, followed by content overview for computer exercises.

Lecturer: Asst. Prof. Dr. Ales Zamuda.
E-mail: ales.zamuda@um.si.

Office hours: https://www.um.si/univerza/imenik-zaposlenih
/Strani/imenik.aspx. Office hours are weekly and it is also possible
to ask for advice regarding matters of this course. To request a time
slot reservation, contact the lecturer via e-mail.

Course description in the UM catalog: published at https://aips
.um.si/PredmetiBP5/UcnaEnotalnfo.asp?UEID=25860&Let0=2020&
Jezik=A.

Lectures: 30 hours (2 hours weekly), might be reduced for English.
Computer exercises: 28 hours (2 hours per week, by groups).
Seminars: 2 hours (initial week, combined).

Schedule: published at https://feri.um.si/studij/urniki/.

Dates for tests: Scheduled dates for tests are published on the web-
site of the Institute of Computer Science: https://cs.feri.um.si/
za-studente/vmesni-izpiti/.

Exam dates: Published at AIPS:
https://aips.um.si/en/IzpitniRokiEN.aspx.

Evaluation rules: The website of the Institute of Computer Science
publishes these as: Ocenjevangje pri predmetih in projektih, https://cs.
feri.um.si/site/assets/files/1037/ocenjevanje_pri_predmetih
_in_projektih-2018-2019.pdf.

http://labraj.feri.um.si/Zamuda
mailto:ales.zamuda@um.si?subject=CCDM
https://www.um.si/univerza/imenik-zaposlenih/Strani/imenik.aspx
https://www.um.si/univerza/imenik-zaposlenih/Strani/imenik.aspx
https://aips.um.si/PredmetiBP5/UcnaEnotaInfo.asp?UEID=25860&Leto=2020&Jezik=A
https://aips.um.si/PredmetiBP5/UcnaEnotaInfo.asp?UEID=25860&Leto=2020&Jezik=A
https://aips.um.si/PredmetiBP5/UcnaEnotaInfo.asp?UEID=25860&Leto=2020&Jezik=A
https://feri.um.si/studij/urniki/
https://cs.feri.um.si/za-studente/vmesni-izpiti/
https://cs.feri.um.si/za-studente/vmesni-izpiti/
https://aips.um.si/en/IzpitniRokiEN.aspx
https://cs.feri.um.si/site/assets/files/1037/ocenjevanje_pri_predmetih_in_projektih-2018-2019.pdf
https://cs.feri.um.si/site/assets/files/1037/ocenjevanje_pri_predmetih_in_projektih-2018-2019.pdf
https://cs.feri.um.si/site/assets/files/1037/ocenjevanje_pri_predmetih_in_projektih-2018-2019.pdf

Content Overview

For computer exercises the content is provided initially at the lectures, for
which slides are also available, i.e., the subject content is first lectured.
Through lab work at seminars with a computer, the content from the lectures
is then mastered in more detail using the practical examples of exercises. Web
links to a computer classroom (e-study), which is accessible to online users,
are also listed.

[Slides from lectures (in English)
https://estudij.um.si/mod/resource/view.php?id=197935

e Example exercise: VirtualBox installation and SSH user accounts in
Linux.
Exercise NO1-Linux-VM
https://estudij.um.si/mod/assign/view.php?id=163010

e Example exercise: Cloning virtual environments, cluster with Virtual-
Box.

Exercise NO2-Linux-Cluster
https://estudij.um.si/mod/assign/view.php?id=162992

e Example exercise: Cluster network settings and parallel configuration
management.

Exercise NO3-MPI-PingPong
https://estudij.um.si/mod/assign/view.php?id=163046

e Example exercise: MPI installation, MPI Send and MPI Receive
code.
Exercise NO4-MPI-Cluster

https://estudij.um.si/mod/assign/view.php?id=163036

e Example exercise: MapReduce with Hadoop and YARN on 1 computer.
Exercise NO7-Hadoop-Single

https://estudij.um.si/mod/assign/view.php?id=139826

e Example exercise: Multiple nodes for MapReduce with Hadoop and

YARN, and use of distributed HDF'S storage with Hadoop in the cloud.

Exercise NO8-Hadoop-Cluster
https://estudij.um.si/mod/assign/view.php?id=139831

https://estudij.um.si/mod/resource/view.php?id=197935
https://estudij.um.si/mod/assign/view.php?id=163010
https://estudij.um.si/mod/assign/view.php?id=162992
https://estudij.um.si/mod/assign/view.php?id=163046
https://estudij.um.si/mod/assign/view.php?id=163036
https://estudij.um.si/mod/assign/view.php?id=139826
https://estudij.um.si/mod/assign/view.php?id=139831

Chapter 1

Virtual Environments — Exercise
NO1-Linux-VM

Instructions

Create one instance of a virtual environment VirtualBox (https://www.
virtualbox.org/) on one physical host computer.

Then install Linux with an OpenSSH server (https://www.openssh.com/)
and create OpenSSH access keys for one remote user.

Then show that you can connect to this hosted virtual environment using an
OpenSSH client from the host computer.

Submit a report about this exercise that demonstrates execution of the solu-
tion, its implementation, and scripts/code.

FOR HALF POINTS: Without client demonstration for OpenSSH

Material for hints during the explanation of the exercise:
https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://www.virtualbox.org/
https://www.ubuntu.com/download/server
http://ftp.arnes.si/pub/mirrors/ubuntu-cdimage/18.04.2/
ubuntu-18.04.2-1live-server-amd64.iso (without X server)
https://www.alpinelinux.org/about/
http://www.damnsmalllinux.org/

https://www.virtualbox.org/
https://www.virtualbox.org/
https://www.openssh.com/
https://help.ubuntu.com/community/SSH/OpenSSH/Keys
https://www.virtualbox.org/
https://www.ubuntu.com/download/server
http://ftp.arnes.si/pub/mirrors/ubuntu-cdimage/18.04.2/ubuntu-18.04.2-live-server-amd64.iso
http://ftp.arnes.si/pub/mirrors/ubuntu-cdimage/18.04.2/ubuntu-18.04.2-live-server-amd64.iso
https://www.alpinelinux.org/about/
http://www.damnsmalllinux.org/

Solution

When setting up computer systems, it is good to use procedures that can
be upgraded and automated later. One such is the use of a shell language
for commands to an operating system such as Linux, i.e., the Bash Com-
mand Interpreter. Hence, the Bash Command Interpreter is applied in the
continuation of this solution.

Attachment file of the solution: Computer virtual image in Open
Virtualisation Format (OVA)

NO1-Linux-VM.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

First, install the VirtualBox software on the computer, which can be
found on the website https://www.virtualbox.org/. In the continuation
of this solution (here, it is synced with the Slovenian materials edition), we
assume that we use the Linux Ubuntu 18.04.2 LTS distribution as a host
system for VirtualBox equipment, which can be installed on both personal
and server computers. Both VirtualBox and Ubuntu distribution can be used
free of charge.! The implementation steps of this process are provided in the
following.

1. To download the Ubuntu installation image file in the shell, run the
command wget; the result of the command is a downloaded Interna-
tional Organisation for Standardisation Disk Image (ISO image):

$ wget http://old—releases.ubuntu.com/releases
— /18.04.2/ubuntu—18.04.2—1ive—server—amdo64.

— 1SO
——2020—05—12 09:57:23—— http://old—releases.ubuntu.com/releases/18.04.2/ubuntu—18.04.2—1live—
< server—amdé64.iso
Resolving old—releases.ubuntu.com (old—releases.ubuntu.com)... 91.189.88.153, 2001:67c
< :1360:8001::25
Connecting to old—releases.ubuntu.com (old—releases.ubuntu.com)|91.189.88.153]:80... connected.
HTTP request sent, awaiting response... 200 OK

Length: 874512384 (834M) [application/x—iso09660—image]
Saving to: ‘ubuntu—18.04.2—1live—server—amd64.iso’

ubuntu—18.04.2—1live—server—amd64.iso 100%[>]
< 834.00M 32.8MB/s in 29s

2020—05—12 09:57:53 (28.6 MB/s) — ’ubuntu—18.04.2—1live—server—amdé64.iso’ saved
<~ [874512384/874512384]

!The task can also be solved by using another or more recent Linux distribution or
using Unix systems, for example macOS (http://apple.com/macos/) or use one of the
Windows (https://www.microsoft.com/sl-si/windows) — however, in these cases, the
License to use may also require payment.

https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
https://www.virtualbox.org/
http://apple.com/macos/
https://www.microsoft.com/sl-si/windows

. To be able to use the image, install VirtualBox:

$ sudo apt—get install virtualbox virtualbox—
— guest—additions—iso

. Create a new VirtualBox environment and name it NO1-Linux-VM:

$ VBoxManage createvm ——name NOl1—Linux—VM ——
— ostype Ubuntu_64 —-—register

Virtual machine ’"NOl1—Linux—VM’ 1is created and registered.

UUID: ab4bl45d—8f14—4e33—a39f—973d01c8cfl4

Settings file: ’/home/ales/.VirtualBox/Machines/NOl—Linux—VM/NOl—Linux—VM
— .vbox’

. For this new environment NO1-Linux-VM set the memory size to 4GB:

$ VBoxManage modifyvm NO1—-Linux—VM ——memory 4096

. For this new environment NO1-Linux-VM, create a Virtual Disk Image
(VDI) type disk image with a size of 8GB and save it:

$ VBoxManage createhd ——filename ~/.VirtualBox/
— Machines/NOl—Linux—VM/NOl—Linux—VM.vdi ——
~— size 8000 ——format VDI

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

Medium created. UUID: 66102b9d—228e—43cl—b5ab—144d92e8a0dl

. Create a Serial Advanced Technology Attachment (SATA) controller
for virtual environments:

$ VBoxManage storagectl NOl1—Linux—VM ——name '"SATA
— Controller" ——add sata ——controller
<~ IntelAhci

. Attach the SATA controller to the first port of the first device as a disk
type Hard Disk Drive (HDD) and connect the saved VDI disk image
to it:

$ VBoxManage storageattach NOl1—Linux—VM ——
> storagectl "SATA Controller" ——port 0 ——
— device 0 ——type hdd ——medium ~/.VirtualBox/
<~ Machines/NO0l1—-Linux—VM/NOl—Linux—VM.vdi

8.

10.

11.

Add a controller for the CD player — Compact Disc Read-Only Mem-
ory (CD-ROM):

$ VBoxManage storagectl NO1—Linux—VM ——name "IDE
— Controller" ——add ide ——controller PIIX4

Connect the CD controller to the other port of the first device as a
type Digital Versatile Disc (DVD), and insert the downloaded Ubuntu
file into the device, stored as an ISO image:

$ VBoxManage storageattach NOl—-Linux—VM ——
— storagectl "IDE Controller" ——port 1 ——device
— 0 ——type dvddrive ——medium ~/NO0l—Linux—VM
< /ubuntu—18.04.2—1live—server—amd64.iso

Then run the configured image of the virtual environment in VirtualBox
and hence put the Ubuntu installation image in a running state.

$ VBoxManage startvm NOl1—Linux—VM
Waiting for VM "NO1-Linux-VM" to power on...
VM "NO1-Linux-VM" has been successfully started.

An alternative solution for steps 1-10: Here, the exercise can also be
solved interactively with the help of a Window System X server, where
the special use of a mouse input device is required, which can be a
bit slower if we want to learn an automated approach to setting up
and deploying virtual environments. In this case, we use the steps as
indicated in the screenshots seen in Figures 1.2-1.4. We use the default
settings, and change only the memory size and set the image name.

Install the Ubuntu operating system in a newly run virtual environment
state with default settings (Figures 1.6-1.11). Before that, we prepare
the program to capture raster images for the X Window System (X
server), which we will use to produce a report document. We save the
images in a file that is in Portable Network Graphics (PNG) format,
using the command spectacle:

$ spectacle —u —b —o "NO1-Linux-VM-$(date).png"

To make it easier to use the spectacle command immediately while
working in a running virtual environment, connect a keyboard shortcut
Meta+P to the trigger of this command in the program ksystemsettings,
as shown in Figure 1.1.

12. Inside the Ubuntu hosted system, use the key generation process OpenSSH
from https://help.ubuntu.com/community/SSH/0penSSH/Keys (Fig-

ure 1.12):

S chmod 700

$ mkdir ~/.ssh
~/.ssh
$ ssh—keygen —t rsa

13. Save the virtual environment and put it in a saved suspended state:

$ vboxmanage controlvm NOl1—-Linux—VM savestate

14. Export the OVA image for the created environment.

— .0va

$ vboxmanage export NOl1—Linux—VM —o NOl—Linux—VM

Executing this command prints the following result (produced image
OVA is about the size of 0.8 GB):

0%...10%...20%...30%...40%...50%...60%...70%...
Successfully exported 1 machine(s) .

S

.90%...100%

15. Write down an exercise report (for example, in the same manner that

the solution was described here in this material).

Gl
Appearance
EY workspace Theme
@ colors
X Fonts
T Icons
= Application Style
Workspace
B Desktop Behavior
™ Window Management
== Shortcuts

& startup and Shutdown

Custom Shortcuts — System Settings

Configure Input Actions settings

Name Comment | Trigger | Action

>~ B KMenutdit
> B Kretnje za Konqueror
> B
v By Screenshots
Start Screenshot Tool
Take Full Screen Sc.

- W W O W

Take Active Window
spectacle
>-B1 Moje

Edit v Settings

New Group Window Action > | D-Bus Command
Delete Mouse Gesture Action > | Send Keyboard Input
Export Group.

Import.

Command/URL: | spectacle -u -b -0 "screenshot-§(date) png"

00

a b

Figure 1.1: Setting the automatic screen capture button for continuous cap-
turing of screenshots to a file on demand, in the program ksystemsettings.

https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Create Virtual Machine 0
Name and operating system

Please choose a descriptive name for the new virtual machine
and select the type of operating system you intend to install on

it. The name you choose will be used throughout VirtualBox to
identify this machine.

Name: | NOT-Linux-VM| ‘

Type: | Linux v

Version: | Linux 2.6 / 3.x / 4.x (64-bit)

Expert Mode Next > Cancel

(a) Step 01-1.
O Create Virtual Machine (")0

Memory size

Select the amount of memory (RAM) in megabytes to be
allocated to the virtual machine.

The recommended memory size is 1024 MB.

[—r— “‘U%‘ ‘MB
4MB

12288 MB
< Back Next > Cancel
(b) Step 01-2.
Create Virtual Machine (®]i)

Hard disk

If you wish you can add a virtual hard disk to the new machine.
You can either create a new hard disk file or select one from the
list or from another location using the folder icon.

If you need a more complex storage set-up you can skip this step
and make the changes to the machine settings once the machine
is created.

The recommended size of the hard disk is 8.00 GB.

) Do not add a virtual hard disk
(@ Create a virtual hard disk now

) Use an existing virtual hard disk file

<Back Create Cancel

(c) Step 01-3.

Figure 1.2: Installing the Virtu-
alBox virtual environment deploy-
ment and management tool (inter-
active steps 01-1 to 01-3).

10

o

Create Virtual Hard Disk 06

Hard disk file type

Please choose the type of file that you would ke to use for the new virtual
hard disk. If you do not need to use it with other virtualization software you
can leave this setting unchanged
@ VDI (virtualBox Disk Image)

VHD (Virtual Hard Disk)

VMDK Virtual Machine Disk)

Expert Mode Next > Cancel

(a) Step 01-4.

Create Virtual Hard Disk 060
Storage on physical hard disk

Please choose whether the new virtual hard disk file should grow as itis used
(dynamically allocated) or if it should be created at its maximum size (fixed
size).

A dynamically allocated hard disk file will only use space on your physical hard
disk as it ills up (up to a maximum fixed size), although it will not shrink again
automatically when space on itis freed.

Afixed size hard disk file may take longer to create on some systems but is
often faster to use.

® Dynamically allocated

Fixed size

<Back Next > Cancel

(b) Step 01-5.
Create Virtual Hard Disk 060
File location and size

Please type the name of the new virtual hard disk file into the box below or
click on the folder icon to select a different folder to create the file in.

‘ NOT-Linux-vM|

@

Select the size of the virtual hard disk in megabytes. This size is the limit on the
amount of file data that a virtual machine will be able to store on the hard disk.

8.00 GB

2.00TB

<Back Create Cancel

(c) Step 01-6.

Figure 1.3: Installing the Virtu-
alBox virtual environment deploy-
ment and management tool (inter-

active steps 01-4 to 01-6).

em Oradie VM irualgox Manager

(@ s) | &

New.. Settings start L MachineTools Global To

© @ preview

No-Linuxvi
m: Linoe
© Oisplay

Master: [Optical Drive] Empty

NOT-LinuxVi_vel (Normal, .00 GB)

Adapter 1: Intel PRO/1000 MT Desktop (NAT)
& uss
G shared folders

(a) Step 01-7.

Figure 1.4: Installing the Virtu-
alBox virtual environment deploy-
ment and management tool (inter-
active step 01-7). The final win-
dow is displayed with the settings of
the new virtual environment NO1-
Linux-VM.

00

6/3x/ 4x (6451
NOT-Linux-VM
ging, KuM

11

(L)) Please choose a virtual optical disk file 0O

Places < ~Q 5 N |
@t Home

B3 fhome/ales/NO1-Linux-VM/ a-~ v
B3 Root

@ ubuntu-18.04.2-live-server-amdé4.iso
[Trash
B3 MOEA
B3 Downloads

Name: @ubuntur'\8.04.2—\|\/e—ser\/erramd64\so| a-v
Filter: | All virtual optical disk files a-v

B Open || © Cancel

(a) Step 03-1.
select start-up disk 060

Please select a virtual optical disk file or a physical optical
drive containing a disk to start your new virtual machine
from.

The disk should be suitable for starting a computer from and
should contain the operating system you wish to install on
the virtual machine if you want to do that now. The disk will
be ejected from the virtual drive automatically next time you
P switch the virtual machine off, but you can also do this
yourself if needed using the Devices menu

| | a

Start Cancel

(b) Step 03-2.

o NO1-Linux-VM [Running] - Oracle VM VirtualBox 0

File Machine View Input Devices Help

ubuntu®

Install Ubuntu

BE%F L EF T Rght ctr
(¢c) Step 03-3.

Figure 1.5: Creating a new virtual
environment in VirtualBox to pre-
pare for Ubuntu installation (inter-
active steps 03-1 to 03-3).

en not

File Machine View Input Devices Help

ux-VM [Running] - Oracle VM VirtualBox

(e1.)

Amharic
Arabic
Asturianu
Benapycran
BbArapcku
Bergall
Tibetan
Bosanski
Catala
Cestina
Dansk
Deutsch
Dzangkha
EAVLKG

Esperanto

File Machine View Input

HLLikonren! Blenvenu

Please cho

La
Francais

Gaeilge

Galego

Gujarati

Bahasa Indonesia
Islenska
Ttaliano
BAE
Jobmgee
Kkasak

Khmer
EEREEY
E=of
Kurdi.

Lao
Lietuviskai
Latyiski

quage
MakeagHeku
Malayalam
Marathi
Burmese
Nepali
Neter Lands
Norsk bokmal
Norsk nunorsk
Punjabi (Gurmukhi;
Polski
Portugués do Brasil
Portugués
Romand
Pycckuii
SEmegillii
2% 090

Slovencina

Tamil
&7eam
Thai
Tagalog
Tiirkee
Uyghur
YKpaiHeska
Tigng Vit

TR)
T (ZEE)

BEWL L @& O © B Right Ctrl

(a) Step 04-1.

Devices Help

NO1-Linux-VM [Running] - Oracle VM Virtualox

el Aubno novanosats! Helkom!

Use UP, DOHN and ENTER ke

BOREyLE@E DB right ctrl

(b) Step 04-2.

Clal

Fle Machine View Input

Ubunty 18.04

P DOKN ar

Devices Help

s favourite
the In

NOT-Linux-VM [Running] - Oracle VM VirtualBox

atform for clouds, cluster
r for Ubuntu on

GOk P LE@E D GG rRight Ctrl

s, and
and

CYa) NOT-Linux VM {Running] - Oracle VM VirtualBox 00

File Machine View Input Devices Help

Ubuntu 18.04

o fo
er for Ubuntu on

[Install Ubuntu
[Install g
all MARS bare-m

1 Back
as1e
DOHN. arrou k

. and ENTER, to navigate ontions

OWF P LI@E D GE right crl

(a) Step 04-4.

NOT-LinuxVM (Running] - Oracle VM VirtualBox 00

]

File Machine View Input Devices Help

Netuark connections

n h

Configure at least ane i thi
and uhich preferably provides sufficient

eth 10.0.2.15/24 (from dhcp) »

[Done
I Bact

a2

nfigure it or select Done to continu

Q% & L@@ B @@ right crrl

(b) Step 04-5.

en NOT-Linux-VM (Running] - Oracle VM VirtualBox 00

File Machine View Input Devices Help

Conf igure Ubuntu archive mirror

Q% &P @@ B @@ right crrl

(c) Step 04-6.

(c) Step 04-3.

Figure 1.7: Installing Ubuntu in
a virtual environment (interactive
steps 04-4 to 04-6).

Figure 1.6: Installing Ubuntu in
a virtual environment (interactive
steps 04-1 to 04-3).

12

on

File Machine View

NO1-Linux-M [Running] - Oracle VM VirtualBox

00
Input Devices Help
configure proxy

to the int

If this sustem
h

[Done
[

BERWF S H@F DG ERight ctrl

(a) Step 04-7.

NO1-Linux-VM [Running] - Oracle VM VirtualBox

Cla) 00

File Machine View Input Devices Help

Filesystem setup

The in: le you through partitioning
directly or using LV, or, Lf you prefer, you c

you will still

1
Up LW]
1
1

guided or manual partitioning

]

(b) Step 04-8.

NO1-Linux-VM [Running] - Oracle VM VirtualBox

®P P @& D @ ERight ctrl

on

File Machine View

00

Input Devices Help

Filesystem setup

_HARDDISK _VB220e0{06-t0eedf 60

®P P @& D@ ERight ctrl

(c) Step 04-9.

Figure 1.8: Installing Ubuntu in
a virtual environment (interactive
steps 04-7 to 04-9).

13

Yo NOT-Linux-VM [Running] - Oracle VM VirtualBox 00
File Machine View

Input Devices Help

Filesysten setup

1 disk *]

AVAILABLE DEV

000G 1 disk >]
000 (0 >

1712

able disks to format and mount

BOWF P @E D G@Right cti

(a) Step 04-10.

en NO1-Linux-VM [Running] - Oracle VM VirtualBox 00

File Machine View Input Devices Help

Filesysten setup

u will
installa

Are you sure you want to

ilable disks to format and mount

BOWF P @E D @@ rRight cti

(b) Step 04-11.

NO1-Linux-VM [Running] - Oracle VM VirtualBox

o 00

File Machine View Input Devices Help

Profile setup

The nane it

uhen it talk r compu

o les

firm your

1/ 12

Install in progress: running 'curtin curthooks'

BONES

(c) Step 04-12.

@ % @ @@ right Ctrl

Figure 1.9: Installing Ubuntu in
a virtual environment (interactive
steps 04-10 to 04-12).

e 00

File Machine View

NO1-Linux-M [Running] - Oracle VM VirtualBox

Input Devices Help

SSH Setup

118 secure remote

[pone
[Back

Install in progress: configuring apt configuring apt

BOWB @@ D @R right ctrl

(a) Step 04-13.

NO1-Linux-VM [Running] - Oracle VM VirtualBox

Cla) 00

File Machine View Input Devices Help

Featured Server Snaps

plug into

mpliant u
t-relat ional

for Linu

[Done
[

ack

Install in progress: installing kernel

BEuBL

(b) Step 04-14.

NO1-Linux-VM [Running] - Oracle VM VirtualBox

@& @ @@ Right Ctrl

00

File Machine View Input Devices Help

‘mount -1 tmp
dir -

ni
curtin command
uting la

[view full log]
[Reboot Now 1

12 /12

Thank you for using Ubuntut

BORP S H@F DG E Right ctrl

(c) Step 04-15.

Figure 1.10: Installing Ubuntu in
a virtual environment (interactive
steps 04-13 to 04-15).

14

on 00

File Machine View

NO1-Linux-VM [Running] - Oracle VM VirtualBox

Input Devices Help
unt unit fi
tuork synchronizat

J unnount ing M
N

BO®P P E@EDGE@Right cti

(a) Step 04-16.

e NO1-Linux-VM [Running] - Oracle VM VirtualBox 00

File Machine View Devices Help

pubuntu

ings speci oud-conf ig.

Starting Execu final scripts..

no_authorl. rprints found for user a
T
-BEGIN SSH HOST KEY FINGERPRIN
SHAZS6 :LHAPNY 1 YGx2!

ot

CAEYUANDS E/B1bC jGég

XNOYTTtbmlZaHAUNTYARY
RVbKdLH ti
AARATKOX F
RARBAQCT eiUvg/iSa
K i TOUL/CoHT
LP4nR/VYocR
KPGS: YSCPAPTENT
modul
|

oubuntu1™18
1ib/cloud,

BOWP P @ED @@ Right cti

(b) Step 04-17.

(L)) NO1-Linux-VM [Running] - Oracle VM VirtualBox 00

File Machine View Input Devices Help

buntu 18 101-Linux-vm tt

4.2 LTS (GNU/Linux

Kage: dater
update: indate

ncluded with the Ubuntu s softuare;
bution term v a ibed in th

OLUTELY NO HARRANTY, to the extent permitted b

administratar (user sudo <command>”
for details

inux-vm:

@ @ L@@ O @@ Right Ctrl

(c) Step 04-18.

Figure 1.11: Installing Ubuntu in
a virtual environment (interactive
steps 04-16 to 04-18).

(2] NO1-Linux-VM [Running] - Oracle VM VirtualBox OO0

File Machine View Input Devices Help

"
|
|
|
|
|
|
|
|
|

by &P @ @& [@ (&) Right Ctrl

Figure 1.12: Creation of keys for OpenSSH.

15

16

Chapter 2

Deploying Instances and
Managing Virtual Networks in a
Cluster — Exercise

NO2-Linux-Cluster

Instructions

Clone the virtual environment from the exercise NO1 to a total of 10 instances
of this environment.

Then edit the network settings for each cloned instance so that it has its own
local Internet Protocol (IP) address number and the communication to the
OpenSSH server is enabled between these instances and to them.

Then show that you can connect to each hosted environment (computer 1)
from the host computer (computer 0), and from this hosted environment
to another hosted environment (computer 2), and then run the ‘hostname
-I' command at the very latest (computer 2).

Show this for all combinations, and since there are 90 combinations of
links, make this printout using a Bash script and command "“parallel-ssh’
(example for a few combinations: ssh compl parallel-ssh -i -H comp2
-H comp3 -H comp4 -H compb -H comp6 -H comp7 -H comp8 -H comp9 -H
compl0 hostname -I).

Material for hints during the explanation of the task:
guest# apt-get update; apt-get install pssh
host$ for comp in comp{l..10}; do echo ssh $comp parallel-ssh
$(echo comp{1l..10} | sed -e ’s/’$comp’//g’); done

17

host$ vboxmanage clonevm Ubuntu
host$ vboxmanage controlvm Linux savestate
host$ vboxmanage startvm Linux -type headless

Submit a report about this exercise that demonstrates execution of the solution,
its implementation, and scripts/code.

FOR HALF POINTS: Without creating a script for all 90 combinations (only 1
complete combination)

Solution

The solution of this exercise builds on the solution of the previous exercise.
As already mentioned, it is good to use procedures that can be upgraded and
later automated when setting up systems, so Linux and the Bash Command
Interpreter are used here again.

Attachment file of the solution: Computer virtual image in OVA

N02-Linux-Cluster.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

Use the host computer which was prepared in the previous exercise NO1-
Linux-VM, where the VirtualBox software is installed. We also have a Linux
distribution Ubuntu 18.04.2 LTS installed, located in the VirtualBox virtual
image environment NO1-Linux-VM.

1. First, we clone the existing virtual environment NO1-Linux-VM once,
give it a new name NO02-Linux-Cluster-1, and register it:

$ vboxmanage clonevm NO1—Linux—VM \
——name NO2—Linux—Cluster—1 ——register

2. The cloned system is then run in interactive mode. Because the network
of the guest system happens to be unresponsive due to the use of cloned
network interfaces, the virtual environment is stopped and restarted.!

'In case you install some other distribution and the network interface is not connecting,
first check that the DHCP server is running on the host and run the dhclient -r in the
guest.

18

https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

$ vboxmanage startvm NO02—Linux—Cluster—1

$ vboxmanage controlvm NO2—Linux—Cluster—1
— poweroff

$ vboxmanage startvm NO02—Linux—Cluster—1

3. In the interactive environment window shown for X server, log in to
the newly started cloned system (password 12345), as seen in Figure
2.1.

Ubuntu 158.04.2 LTS nol-linusx-wm ttyl
nol-linux—vm login: ales
Passward:
Last login: HWed May 22 14:52:14 UTC 2019 on tty2
HWelcome to Ubuntu 18.04.2 LTS (GHNU/Linux 4.15.0-50-generic =<86_64)
Documentation: hitps://shelp.ubuntu.com
* Management : https://landscape.canonical.com
#* Support: https://ubuntu. comsadvantage
system information disabled due to load higher than 1.0

110 packages can be updated.
44 updates are security updates.

To run a command as administrator {user "root'), use "sudo <command:'.
See "man sudo_root" for details.

Figure 2.1: Interactive login to a cloned system NO2-Linux-Cluster-1.

4. We then run the resource update command Advanced Package Tool
(APT) for the software packages it manages:

ales@nO0l—linux—vm:~$ sudo apt—get update

After updating the resources on the X server screen, we see the result
as shown in Figure 2.2.

ales@ndl-linux-vm: ™% sudo apt-get update

[sudo] password for ales:

Hit:1 http:/sarchive.ubuntu.com/ubuntu bionic InRelease

Hit:2 http:s7archive.ubuntu.comsubuntu hionic-updates InRelease

Get:3 http:/sarchive.ubuntu.com/ubuntu hionic-backports InRelease [74.6 kB
Hit:d4 http:s7archive.ubuntu.com/ubuntu bionic-security InRelease

Fetched 74.6 kB in 0s (181 kB/s)

Reading package lists... Done

ales@n0l-Llinux-wm: ™%

Figure 2.2: Updating of the resources in the list of software packages in
exercise NO2-Linux-Cluster-1.

5. After updating the resources, install the software package for Parallel
SSH (PSSH).

19

ales@nO0l—linux—vm:~$ sudo apt—get install pssh

We can see the receipt of the necessary packages in Figure 2.3 and
continuing of the execution of the command by installing these packages
in Figure 2.4. If you leave the computer running during the command
to update the package resources, it may happen that the automatic
installation of security patches starts in the meantime, so we wait for
the completion of this update before installing the package.

ales@n0l-linux-vm: ™% sudo apt-get install pssh
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will he installed:
libputhon-stdlib libpythonz.7-minimal Libpythonz.7-stdlib python python-minimal python2.?
pythonz. 7-minimal
Suggested packages:
python-doc python-tk python?. 7-doc binutils binfmt-support
The following MWEW packages will he installed:
libputhon-stdlib libpython2.7-minimal Llibpython2.7-stdlib pssh python python-minimal puthon2.?
python2. 7-minimal
0 upgraded, 8 newly installed, 0 to remave and 114 not upgraded.
Meed to get 3,394 kB of archives.
After this operation, 16.9 ME of additional disk space will be used.
Do you want to continue? [Y/nl u
Get:1 http:ssarchive.ubuntu.comsubuntu bionic-updatessmain amded4 Libpythonz.7-minimal amded4 2.7.15™r
cl-lubuntuo.1 [334 kB
Get:2 http:srsarchive.ubuntu.comsubuntu bionic-updatessmain amdéd pythonz.7-minimal amdéd 2.7.15%rci-
1ubuntuo. 1 [1,304 kE]
Get:3 http:/sarchive.ubuntu.comsubuntu bionic/main amdfd python-minimal amdad 2.7.15%rc1-1 [PE.1 kB
Get:4 http:/sarchive.ubuntu.comsubuntu bionic-updates/smain amdé4 Llibpythonz.7-stdlib amdéd4 2.7.15%rc
1-1ubuntu.1 [1,912 kE]
Get:5 hitp:srsarchive.ubuntu.comsubuntu bionic-updatessmain amdéd pythonz.7 amded 2.7.15"rci-1lubuntuo
.1 [238 kE]
Get:6 http:s/archive.ubuntu.comsubuntu bionicsmain amdéd libpython-stdlib amd6g 2.7.15%ci-1 [7,620
Bl
Get:7 http:/sarchive.ubuntu.comsubuntu bionic/main amdéd4 puthon amdéd 2.7.157rcl-1 [140 KE]
Get:8 http:s/sarchive.ubuntu.comsubuntu bionicsuniverse amdgd pssh all 2.3.1-1 [29.0 kE]
Fetched 3,994 kB in 23 (2,184 kB/s)

Figure 2.3: Receiving PSSH installation packages in NO2-Linux-Cluster-1.

6. Because we will change the network settings, we stop the virtual envi-
ronment after the successful installation of the new packages:

ales@nO0l—linux—vm:~$ sudo shutdown —h

7. Now let’s prepare the environment VirtualBox for the parallel use of
multiple instances of virtual environments. Because the new virtual
environments will also access each other and allow access from the
host, we will use the network access setting via the host interface
(hostonly). We will connect these virtual environments to the net-
work that uses Internet Protocol (IP) automatically. Hence, first, in
the environment VirtualBox, we create a new network interface that
will be named vboxnetl automatically:

20

selecting previously unselected package libpythonZ.7-minimal:amdad.
(Reading database ... 66922 files and directories currently installed.]
Preparing to unpack ... 0-1ibpythonz.7-minimal_2.7.15%rcl-1ubuntud. 1_amdéd.deb ...
Unpacking libputhon2.7-minimal:amd6d (2.7.15rcl-1ubuntu. 1y ...
[Reading database ... BB9Z2 tiles and directorles currently installed.)
Preparing to unpack ...s0-1ibpythonz.7-minimal_2.7.15%rci-1ubuntud. 1_amdéd . deb ..
Unpacking libputhon2.7-minimal:amd6d (2.7.15rcl-1ubuntu. 1y ...
selecting previously unselected package python2.7-minimal.

Preparing to unpack ...s1-python2.7-minimal_2.7.15%rci-1lubuntud.1_amdéd.deb ...
Unpacking puthonz.?-minimal (2.7.15%rci-lubuntud.1) ...

selecting previously unselected package python-minimal.

Preparing to unpack ...s2-python-minimal_2.7.15%rcil-1_amdéd.deb ...
Unpacking puthon-minimal (2.7.15%rci-1) ...

selecting previously unselected package libpythonz.7-stdlib:amded.
Preparing to unpack ...s3-1ibpythonz.7-stdlib_2.7.15"rci-1ubuntud.1_amdad.deb ...
Unpacking libputhon2.7-stdlib:amded (2.7.15%rcl-lubuntud.1) ...
selecting previously unselected package pythonz.?7.

Preparing to unpack ... 4-python2.7_2.7.15%rci-1ubuntud. 1_amdéd.deb ...
Unpacking python2.7 (2.7.15%rcl-1ubuntud.1) ...

selecting previously unselected package libpython-stdlib:amdad.
Preparing to unpack .../5-1ibpython-stdlib_2.7.15%rc1-1_amdad.deb ...
Unpacking libpythaon-stdlib:amded (2.7.15%rcl-1) ...

setting up libputhonz. 7-minimal:amded (2.7.15%rcl-1ubuntud. 1) ...
Setting up python?. ?-minimal (2.7.15%rci-1ubuntud. 1) ...

Linking and hyte-compiling packages for runtime python2.?7...

setting up python-minimal (2.7.15%rci-1) ...

Selecting previously unselected package puthon.

(Reading database ... 67669 files and directories currently installed.]
Preparing to unpack ... python_2.7.15%rcl-1_amdad.deb ...

Unpacking puthon (2.7.15%rci-1) ...

selecting previously unselected package pssh.

Preparing to unpack ...-sarchivesspssh_2.3.1-1_all.deb ...

Unpacking pssh (2.3.1-1) ...

FProcessing trigeers for mime-support (3.60ubuntul) ...

Frocessing triggers for man-db (2.5.3-Zubuntud.1) ...

Setting up libpythonZ,7-stdlib:amded (2.7.15%rcl-lubuntus. 1y ...
setting up pythonz. ¥ (2.7.15%rcl-lubuntud. 1) ...

Setting up libputhon-stdlib:amdéd (2.7.15%rci-1) ...

Setting up puthon (2.7.15%rcl-1) ...

setting up pssh (2.3.1-1) ...

ales@n0l-linux-wm:™%

Figure 2.4: Installation of PSSH packages in NO2-Linux-Cluster-1.

$ vboxmanage hostonlyif create

8. The new network on the interface vboxnet1 shall assign the IP numbers
automatically and use Dynamic Host Configuration Protocol (DHCP)

to do this. The server for DHCP is added in VirtualBox with the
following command:

$ vboxmanage dhcpserver add ——ifname vboxnetl \
——1ip 192.168.57.2 ——netmask 255.255.255.0 \
——lowerip 192.168.57.3 \
——upperip 192.168.57.254 \
——enable

That way, it will be that the first I[P number, assigned by the DHCP
server, will match 192.168.57.3, and the remaining extra numbers
will follow each other as 192.168.57.4, 192.168.57.5, 192.168.57.6
etc., possibly all the way to the number 254 in the last part of the

21

IP address. Network mask 255.255.255.0 specifies that, for the net-
work accessed with addresses outside the IP range 192.168.57.0 —
192.168.57.255, network traffic will be directed outwards? via the
host interface vboxnet1 for the host and any virtual environments that
use this same interface vboxnet1.

9. We now define new network settings for the stopped virtual environ-
ment. We configure network access via the host interface (hostonly):

$ vboxmanage modifyvm NO2—Linux—Cluster—1 \
——nicl hostonly

$ vboxmanage modifyvm NO2—Linux—Cluster—1 \
——hostonlyadapterl vboxnetl

10. For later simultaneous execution of instances of this virtual environ-
ment, the memory capacity of the virtual machine is reduced to 1GB:

$ vboxmanage modifyvm NO2—Linux—Cluster—1 \
——memory 1024

11. The virtual environment is then started in screenless (headless) mode,
and we test if the prepared access works through its OpenSSH server.

$ vboxmanage startvm NO2—Linux—Cluster—1 \
——type headless;

12. We wait for the system boot to be completed successfully in the virtual
environment and OpenSSH is loaded, then test connect to the server
and accept the public key from OpenSSH, located at the first [P address
in the network space from the DHCP server, which is 192.168.57.3:

$ ssh 192.168.57.3

2If we have more than one host computer with VirtualBox, we can also create a real
physically separate cluster in this way, by forwarding network traffic to the IPs of these
computers, which can be divided into different physical locations.

22

13.

14.

15.

The authenticity of host 7192.168.57.3 (192.168.57.3)’ can’t be established.
ECDSA key fingerprint is SHA256:7CMIDNfnvIST7GWQNfA90bsUZIcHTzVaEOki518YXog.
Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’192.168.57.3" (ECDSA) to the list of known hosts.
ales@192.168.57.3"s password:

Welcome to Ubuntu 18.04.2 LTS (GNU/Linux 4.15.0—50—generic x86_64)

% Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
% Support: https://ubuntu.com/advantage

System information as of Thu May 23 07:25:27 UTC 2019

System load: 0.17 Processes: 89

Usage of /: 25.2% of 7.81GB Users logged in: 0
Memory usage: 13% IP address for enp0Os3: 192.168.57.3
Swap usage: 0%

74 packages can be updated.
0 updates are security updates.

Last login: Thu May 23 07:08:00 2019
ales@nO0l—1linux—vm:~$

Login to the virtual environment via the server OpenSSH at IP address
192.168.57.3 in the network vboxnet1 has succeeded. Therefore, to
facilitate future logins to this system, we copy the public key Rivest-
Shamir-Adleman (RSA) from the host computer to the virtual environ-
ment NO2-Linux-Cluster-1 at the network IP address 192.168.57.3
to the user’s folder ~/.ssh/:

$ cat ~/.ssh/id_rsa.pub | ssh 192.168.57.3 \
"cat >> 7/.ssh/authorized_keys"

We stop the environment again to be ready for re-cloning:

ales@nO0l—linux—vm:~$ sudo shutdown —h

Shutdown scheduled for Thu 2019—05—23 07:29:48 UTC, use ’shutdown —c’ to
— cancel.

Then, we clone the virtual environment NO2-Linux-Cluster-1 nine
times, and assign a new name to each clone:

S for i in {2..10}; do
vboxmanage clonevm NO2—Linux—Cluster—1 \
——name N02—Linux—Cluster—$i ——register;
done

23

16.

17.

The procedure takes about 10 minutes, depending on the speed of the
hardware. In the shell we see a printout of the progress of this process:

0%...10%...20%...
Machine has been
0%...10%...20%...
Machine has been
0%...10%...20%..
Machine has been
0%...10%...20%..
Machine has been
0%...10%...20%..
Machine has been
0%...10%...20%..
Machine has been
0%...10%...20%..
Machine has been
0%...10%...20%..
Machine has been
0%...10%...20%..
Machine has been
0%...10%...20%..
Machine has been

30%...40%...50%...60%..

successfully cloned as
30%...40%...50%...60%.
successfully cloned as

.30%...40%...50%...60%..

successfully cloned as

.30%...40%...50%...60%..

successfully cloned as

.30%...40%...50%...60%.

successfully cloned as

.30%...40%...50%...60%.

successfully cloned as

.30%...40%...50%...60%..

successfully cloned as

.30%...40%...50%...60%..

successfully cloned as

.30%...40%...50%...60%.

successfully cloned as

.30%...40%...50%...60%..

successfully cloned as

.70%...80%...90%...100%
"NO2-Linux-Cluster-1"

..70%...80%...90%...100%
"NO2-Linux-Cluster-2"
.70%...80%...90%...100%
"NO2-Linux-Cluster-3"
.70%...80%...90%...100%
"NO2-Linux-Cluster-4"

..70%...80%...90%...100%
"NO2-Linux-Cluster-5"

..70%...80%...90%...100%
"NO2-Linux-Cluster-6"
.70%...80%...90%...100%
"NO2-Linux-Cluster-7"
.70%...80%...90%...100%
"NO2-Linux-Cluster-8"

..70%...80%...90%...100%

"NO2-Linux-Cluster-9"
.70%...80%...90%...100%
"NO2-Linux-Cluster-10"

We now explore each of these virtual environments in screenless mode

(headless type).

S for i in {

vboxmanage startvm NO2—Linux—Cluster—$i \

——type
done

1..10}; do

headless;

Waiting for VM "NO2-Linux-Cluster-1" to power on...
VM "NO2-Linux-Cluster-1" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-2" to power on...
VM "NO2-Linux-Cluster-2" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-3" to power on...
VM "NO2-Linux-Cluster-3" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-4" to power on...
VM "NO2-Linux-Cluster-4" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-5" to power on...
VM "NO2-Linux-Cluster-5" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-6" to power on...
VM "NO2-Linux-Cluster-6" has been successfully started.
Waiting for VM "N02-Linux-Cluster-7" to power on...
VM "NO2-Linux-Cluster-7" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-8" to power on...
VM "NO2-Linux-Cluster-8" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-9" to power on...
VM "NO2-Linux-Cluster-9" has been successfully started.
Waiting for VM "NO2-Linux-Cluster-10" to power on...
VM "NO2-Linux-Cluster-10" has been successfully started.

During the execution of virtual environments starting up in the back-
ground (Figure 2.5), we can observe their progress in the main window

of the VirtualBox application, or in the shell:

24

om

File Machine Help

* @ P 9.

New.. Settings.. Discard Start
[ca}

@l

FTY No2-Linux-Cluster-2
IQRunmng

NO2-Linux-Cluster-3
@ Running

Y No2-Linux-Cluster-4

& @ Running

NO2-Linux-Cluster-5
@ Running

FTY No2-Linux-Cluster-6

& @ Running

NO2-Linux-Cluster-7
@ Running

FTY No2-Linux-Cluster-8

& @ Running

Oracle VM VirtualBox Manager 00

= e

~ Machine Tools Global Tools

= General = Preview

Name: NO2-Linux-Cluster-1
Operating System: Linux 2.6 / 3.x / 4.x (64-bit)

[E system

Base Memory: 1024 MB

Boot Order: Floppy, Optical, Hard Disk

Acceleration: VT-x/AMD-V, Nested Paging, KVM
Paravirtualization

Display

Video Memory: 16 MB
Remote Desktop Server: Disabled
Video Capture: Disabled
@ storage

Controller: IDE
IDE Secondary Master: [Optical Drive] Empty
Controller: SATA

NO2-Linux-Cluster-9
@ Running

a NO2-Linux-Cluster-10 :
@ Running iz Audio

Host Driver: PulseAudio
Controller: ICH AC97

=P Network

Adapter 1: Intel PRO/1000 MT Desktop (Bridged Adapter, enp4s0f1)
& UsB

[Shared folders

None

SATA Port 0: NO2-Linux-Cluster-1.vdi (Normal, 8.00 GB)

@ Description

None

Figure 2.5: Launch of 10 instances of Ubuntu virtual environments.

$ vboxmanage controlvm NO2—Linux—Cluster—10 \
screenshotpng screenshot—10.png
$ display screenshot—10.png

18. We wait for the successful completion of booting and connection of
Ubuntu hosted systems in virtual environments with the network via
the previously added DHCP server, e.g. cca. 5 minutes. If we may have
forgotten to perform any of the above steps for any reason, we need to
repeat the process again: Remove current network changes and cloned
virtual environments (note — this step is not performed if we performed
the above steps correctly, it is only listed as possible troubleshooting):

25

S for rac in rac{l..10}; do
vboxmanage unregistervm NO2—Linux—Cluster—1
— ——delete;
done
$ vboxmanage dhcpserver remove ——ifname vboxnetl

19. On the host computer, after running virtual environments with OpenSSH
servers successfully, we then receive fingerprints of keys from the OpenSSH
servers on all virtual environments:

$ for i in {3..12}; do
ssh—keyscan —H 192.168.57.%1 >> ~/.ssh/
— known_hosts;
done

20. The same receipt of fingerprints is also done in the virtual environments:

$ for i in {3..12}; do
ssh 192.168.57.%1 \

"for j in {3..12}; do \
ssh—keyscan —H 192.168.57.%$7 \
>> ~/.ssh/known_hosts; \

done’ ;

done

21. We share the RSA generated public key from the virtual environments
from each to each other, to be able to log in to their OpenSSH servers:

$ for i in {3..12}; do
for j in {3..12}; do
ssh 192.168.57.%1 cat .ssh/id_rsa.pub \
| ssh 192.168.57.573 \
"cat >> 7/.ssh/authorized_keys";
done
echo —n ".'";
done

22. Because the package Parallel SSH (PSSH) enables that the Secure Shell
(SSH) is run in parallel on multiple computers with the same com-
mands, we can now run multiple commands in parallel. On the host
computer, we execute a script for the parallel execution of commands:

26

23.

24.

$ for i in {3..12}; do
ssh 192.168.57.%1 \
parallel—ssh —i \
$S(echo "-H "192.168.57.{3..12} \
| sed —e 's/—H 192.168.57.7$i"//g")
hostname —1I;
done

The command prints the next result, starting as:

[1] 09:30:48 [SUCCESS] 192.168.57.5
192.168.57.5
[2] 09:30:48 [SUCCESS] 192.168.57.9
192.168.57.9
[3] 09:30:48 [SUCCESS] 192.168.57.10
192.168.57.10
[4] 09:30:48 [SUCCESS] 192.168.57.4
192.168.57.4
[5] 09:30:48 [SUCCESS] 192.168.57.7
192.168.57.7
[6] 09:30:48 [SUCCESS] 192.168.57.6
192.168.57.6
[7] 09:30:48 [SUCCESS] 192.168.57.12
192.168.57.12
[8] 09:30:48 [SUCCESS] 192.168.57.8
192.168.57.8
[9] 09:30:48 [SUCCESS] 192.168.57.11
192.168.57.11
[1] 09:30:51 [SUCCESS] 192.168.57.5
192.168.57.5

and (after 154 lines of printout omitted here), completes as

[7] 09:31:17 [SUCCESS] 192.168.57.8
192.168.57.8
[8] 09:31:17 [SUCCESS] 192.168.57.6
192.168.57.6
[9] 09:31:17 [SUCCESS] 192.168.57.10
192.168.57.10

Properly functioning virtual environments are then stored and put to

sleep:

S for i in {1..10}; do

vboxmanage controlvm NO2—Linux—Cluster—3$i \

savestate;
done

We export the OVA image for the created environments. The process
takes some time because of the writing of a large file, e.g. approximately

27

fifteen minutes. The exported file size is approximately 13 GB. During
this time we see the progress of the process:

$ vboxmanage export NO2—Linux—Cluster—{1..10} \
—0 NOZ—Linux—Cluster.ova

0%...10%...20%...30
80%...90%...100%
Successfully exported 10 machine(s).

o\

.40%...50%...60%...70%...

25. We write down an exercise report (for example, in the same manner
that the solution was described here in this material).

28

Chapter 3

Deploying a Cloud for a
Distributed Service and

Messaging Communication —
Exercise N03-MPI-PingPong

Exercise: N03-MPI-PingPong
Install OpenMPI in virtual environments of NO2.

Then write a PingPong program that sends one floating point number (ran-
dom number between 0.00 ... 180.00) to each client (rank 1 ... rank 9) in
OpenMPIT from the master node (rank 0).

Then, each client sends the number back to the master node (rank 0) that
adds the received number to a sum by modulo with 360.

Execute the ping-pong until the sum of numbers on the arc is an angle in the
interval between 270.505 and 270.515 (the sum of remainders after modulo
with 360).

In the end, the master rank prints a number of ping-pong message pairs on
the terminal and in file RESULT . TXT. Submit a report about this exercise that
demonstrates execution of the solution, its implementation, scripts/code, and
the file RESULT.TXT.

29

Solution

The solution of this exercise builds on the solution of the previous exercise,
NO2-Linux-Cluster. As already mentioned, it is good to use procedures that
can be upgraded and later automated when setting up systems, so Linux and
the Bash Command Interpreter are used here again.

Attachment file of the solution: Computer virtual image in OVA

N03-MPI-PingPong.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

We use the host computer again, which we have already prepared in the
assignment NO1-Linux-VM, where we have VirtualBox software installed. We
also reuse the prepared virtual environments from the exercise N0O2-Linux-
Cluster.

1. First, we copy all the virtual environments from the exercise N02-Linux-
Cluster:

$ for i in {1..10}; do
vboxmanage clonevm NO2—Linux—Cluster—3$i \
——name NO03—-MPI—-PingPong—$i ——register;
done

2. We then run the newly cloned virtual environments:

$ for i in {1..10}; do
vboxmanage startvm NO3—MPI—PingPong—S$i \
——type headless;
done

3. For this task, we will need to install additional software packages that
we will download from the Internet. Therefore, we will change the
network connection settings in the virtual environments. The settings
could be changed graphically in interactive mode, but the process of
changing the settings for 10 virtual environments may be somewhat
impractical time-wise or, at an even larger number of environments
(e.g. a few thousand), this might also become quite less controllable
and less error prone. So, we reuse the shell and programme the iteration
process for all virtual environments. Hence, we first change the network
setting from the host interface (hostonly) to the setting for Network
Address Translation (NAT):

30

https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

$ for i in {1..10}; do
vboxmanage controlvm NO3—MPI—PingPong—S$i \
nicl nat
done

4. Then we add the port forwarding for the OpenSSH server from the host
ports 2000+ (hence, values 2001, 2002, ..., 2010) to a guest’s port 22,
where the server at i-th virtual environment is listening:

$ for i in {1..10}; do
vboxmanage controlvm NO3—MPI—PingPong—S$i \
natpfl "OpenSSH,tcp,,2008%i,,22"
done

5. In this way, we will be able to access an individual OpenSSH server,
but, due to the newly changed network access for the server, we need
to retake the OpenSSH key fingerprint in the file known_hosts on the
guest computer:

$ for 1 in {1..10}; do
ssh—keyscan —p 200$i —H 127.0.0.1 >> ~/.ssh/
— known_hosts;
done

6. We can now install object libraries on all of these virtual environments
that implement an OpenMPT communication interface. These libraries
and their software development support are included in the packages
openmpi-bin and mpi-default-dev. Next to the libraries, we install
the package g++, which contains a compiler so we can translate the
code for these versions of libraries. Let’s use the program apt-get and
install the mentioned packages in the virtual environments:

$ stty —echo; echo '"Password: "; read pass; stty echo
7
$ for i in {1..10}; do \
echo $pass | ssh —p 200$i 127.0.0.1 \
sudo —S apt—get install —y \
libopenmpi—dev openmpi—bin g++;
done

31

Here, the parameter -S with command sudo reads the entered pass-
word so that we do not have to re-enter it for each server separately.
Installation on all virtual environments can take approximately one
hour, depending on the speed of the hardware.® Therefore, during this
time, we implement our own code for NO3-MPI-PingPong.c, as written
in the next step.

. In a text editor (e.g.vim) we write a computer program for OpenMPI
in the language C* and save it as a file NO3-MPI-PingPong. c:

#include <mpi.h>
#include <stdlib.h>
#include <stdio.h>

void rank0() {
MPI_Status status;

int nPingPongs = 0;
float sum = O;

while (1) {
for (int i = 1; i < 10; i++) {
float pongReceive, pingSend = rand()%18000 / 100.0;

MPI_Send(&pingSend, 1, MPI_FLOAT, i, 42,
<5 MPI_COMM_WORLD) ;
MPI_Recv(&pongReceive, 1, MPI_FLOAT, i, 42,
<% MPI_COMM_WORLD, &status);
nPingPongs++;

sum += pongReceive;
if (sum > 360) sum -= 360;

if (sum >= 270.505 && sum <= 270.515) {
printf ("Number of Ping-Pongs: %d\n", nPingPongs) ;

pingSend = -42;

31f necessary, the operation could be speeded up by first installing the software in a
single virtual environment and then cloning that environment. However, in this case, one
should repeat the key exchange after cloning OpenSSH from the previous exercise.

4We can also use other languages. For example, if we use the Python language, we
need to install a software package python-mpi4py on the virtual environments.

32

for (int i = 1; i < 10; i++)
MPI_Send(&pingSend, 1, MPI_FLOAT, i, 42,
<5 MPI_COMM_WORLD) ;
return;
+
}
}
}

void rankN(int N) {
MPI_Status status;

while (1) {
float pingpong42;

MPI_Recv(&pingpong42, 1, MPI_FLOAT, 0, 42,
— MPI_COMM_WORLD, &status);

if (pingpong42 == -42) return;

MPI_Send(&pingpong42, 1, MPI_FLOAT, 0, 42,
— MPI_COMM_WORLD) ;

int main(int argc, char* argv[]) {
int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (!rank) rank0(); else rankN(rank);

MPI_Finalize();
}

8. Once we have prepared the code for OpenMPI and also installed pack-
ages for OpenMPI in virtual environments successfully, we restore the
network settings so that the nodes will communicate with each other,
as in the previous exercise, via the network vboxnet1:

33

10.

11.

$ for 1 in {1..10}; do
vboxmanage controlvm NO3—MPI—PingPong—S$i \
nicl hostonly vboxnetl;
done

. We copy the file NO3-MPI-PingPong.c to all virtual environments with

a command:

$ for 1 in {3..12}; do
scp NO3—MPI—PingPong.c 192.168.57.51i:;
done

Then we translate the code with OpenMPT in the file main. c using the
command:

$ parallel—ssh —i \
$(echo "-H "192.168.57.{3..12}) \
mpicc NO3—MPI—PingPong.c \
—o0 NO03—MPI—-PingPong

Then we execute the programs with OpenMPI on all nodes by entering
their names in the run command:

$ time ssh 192.168.57.3 \
mpiexec —n 10 \
S(echo "-H "192.168.57.{3..12}) \
——mca btl_base_warn_component_unused 0 \
NO3—MPI—-PingPong

After execution, the following result is displayed:

Number of Ping—Pongs: 7592

real 1ml6,476s
user Om0O, 039s
sys OmO, 018s

34

12.

13.

During the execution of the parallel program, we check whether the
program actually runs over different virtual machines and is run exactly
once on each:

$ parallel—ssh —i \
$(echo "-H "192.168.57.{3..12}) \
" (echo —n MACHINE=; hostname —I;) \
| xargs; ps aux’ \
| grep —e MACHINE=192.168.57. \
—e NO3—-MPI—-PingPong

Which prints mpiexec program startup for the first virtual environ-
ment and, in addition, the program runs on all virtual environments
NO3-MPI-PingPong, as seen separately for each IP address:

MACHINE=192.168.57.3

ales 23027 0.1 1.8 467736 18972 ? Ssl 16:18 0:00 mpiexec —n 10 —H
<~ 192.168.57.3 —H 192.168.57.4 —H 192.168.57.5 —H 192.168.57.6 —H
~ 192.168.57.7 —H 192.168.57.8 —H 192.168.57.9 —H 192.168.57.10 —H
«— 192.168.57.11 —H 192.168.57.12 ——mca btl_base_warn_component_unused
~ 0 NO03—MPI-PingPong

ales 23043 92.4 1.1 325420 12024 ? R1 16:18 0:33 NO3—MPI—PingPong

MACHINE=192.168.57.12

ales 18068 89.8 1.1 325164 11548 ? R1 16:18 0:33 NO3—MPI—PingPong

MACHINE=192.168.57.10

ales 15684 93.2 1.1 325164 11600 ? R1 16:18 0:34 NO3—MPI—PingPong

MACHINE=192.168.57.6

ales 15472 93.4 1.1 325164 11564 ? Rl 16:18 0:34 NO3—MPI—PingPong

MACHINE=192.168.57.9

ales 15586 90.5 1.1 325160 11496 ? Rl 16:18 0:34 NO3—MPI—PingPong

MACHINE=192.168.57.5

ales 15689 88.2 1.1 325160 11516 ? Rl 16:18 0:34 NO3—MPI—PingPong

MACHINE=192.168.57.8

ales 15705 88.0 1.1 325160 11416 ? R1 16:18 0:34 NO3—MPI—PingPong

MACHINE=192.168.57.11

ales 16635 90.4 1.1 325164 11472 ? R1 16:18 0:34 NO3—MPI—PingPong

MACHINE=192.168.57.4

ales 16357 87.9 1.1 325160 11528 ? R1 16:18 0:34 NO3—MPI—PingPong

MACHINE=192.168.57.7

ales 15520 88.7 1.1 325160 11884 ? Rl 16:18 0:34 NO3—MPI—PingPong

Save the properly functioning virtual environments and put them in a
saved suspended state:

$ for 1 in {1..10}; do
vboxmanage controlvm NO3—MPI—PingPong—S$i \
savestate;
done

35

14. Export the OVA image for the created environments. The process takes

15.

some time because of the writing of a large file, e.g. approximately
fifteen minutes. The exported file size is approximately 13 GB. During
this time we see the progress of the process:

$ vboxmanage export NO3—MPI—PingPong—{1..10} \
—o NO3—MPI—-PingPong.ova

0%...10%...20%...30%...40%...50%...60%...70%
...80%...90%...100%
Successfully exported 10 machine(s).

Write down an exercise report (for example, in the same manner that
the solution was described here in this material).

36

Chapter 4

Deploying Cloud Computing by
Sharing Resources between
Multiple Distributed Services and
Communication by Sending
Multiple Types of Messages —
Exercise N04-MPI-Cluster

Exercise: N04-MPI-Cluster

In the environment from task N02, implement a multiplayer Battleship
game (https://en.wikipedia.org/wiki/Battleship_(game)).

Implement the Graphical User Interface of the game online (for example
HTML) by accessing one of your hosted computers (for example, computer
1) on the web browser from the host computer (computer 0), which rep-
resents the web server for the external viewers of the game. Display the
game field as boxes that are filled or not filled, for individual ships, and also
indicate the success of the players and the boats hit.

37

https://en.wikipedia.org/wiki/Battleship_(game)

The players play the game through steps as virtual players within com-
puter virtual environments (e.g., computer 2 ... computer 10), and are
controlled by the main computer (computer 1) as a referee. In other words
of parallel programming, in the game, one computer is leading (master, com-
puter 1), others are following (clients, slaves).

Players play by the moves so that the player computer 2 starts, then con-
tinues to the player computer 3, etc., all the way to the player computer
10, then it is again the turn of computer 2. One move takes 1 second. In
each single move, a player first receives the state of the game from the ref-
eree, then replies to the referee about his game play move (field coordinate),
and then receives feedback from the referee regarding the continuation of the
game. The host computer (computer 0) and master computer (referee —
computer 1) do not play the game and, hence, do not have their own ships.

The state of the Battleship game is a 2D playing field (for example, an
array with size of 20x20 units) on which ships of different lengths are installed:
5 units, 4 units, 3 units, 2 units, and 1 unit (e.g. two ships for each length
type). In the game state, also keep the moves (coordinates) played, and their
success (which ships are already hit and which player has hit which ship).

Use Message Passing Interface (MPT) to connect between virtual players. The
MPI master node first sends the status to the player (MPI_Send), and this
player receives the status (MPI_Recv). With subsequent calls MPI_Send /
MPI_Recv then the referee and the player exchange the sent-in move and
success. Then the next player is on the move. The game ends when all the
ships are sunk. The player with most hits wins.

Submit a report about this exercise that demonstrates execution of the solu-
tion, its implementation, and scripts/code.

FOR HALF POINTS: Only 2 players

HINT — use the refresh method:
https://www.w3schools.com/tags/att_meta_http_equiv.asp

38

https://www.w3schools.com/tags/att_meta_http_equiv.asp

Solution

The solution of this exercise builds on the solution of the previous exercise,
N03-MPI-PingPong®. As already mentioned, it is good to use procedures that
can be upgraded and later automated when setting up systems, so Linux and
the Bash Command Interpreter are used here again. We will also use a web
server already located in the Ubuntu distribution.

Attachment file of the solution: Computer virtual image in OVA

N04-MPI-Cluster.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

We use the host computer again, which we have already prepared in the
assignment NO1-Linux-VM, where we have installed VirtualBox software. We
also reuse the prepared virtual environments from the exercise N0O2-Linux-
Cluster. As in the exercise N03-MPI-PingPong we already installed Open-
MPI, we start by upgrading its virtual environments.

1. First, we copy all the virtual environments from the exercise N03-MPI-
PingPong:

S for i in {1..10}; do
vboxmanage clonevm NO3—MPI—PingPong—S$i \
——name NO04—-MPI—-Cluster—$i ——register;
done

2. We then start up the first cloned virtual environment:

$ vboxmanage startvm NO4—MPI—Cluster—1 \
——type headless;

3. Since we will be accessing the web folder on the first virtual environ-
ment through a server that will run in that environment, we will first
install the web server in that environment. Let’s switch to internet con-
nection mode NAT, connect to the first virtual environment through
an OpenSSH connection through redirection on port 2001, and install
software package apache2:

5As an option, this exercise can also be done by merely upgrading the task N02-Linux-
Cluster, such that in the step of installing additional packages, we add packages for Open-
MPI.

39

https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

$ vboxmanage controlvm N04—MPI—Cluster—S$i \
nicl nat
$ ssh —p 2001 127.0.0.1 \
"sudo —S apt update; sudo apt install —y apache2’

4. We reset the network settings for the host interface as (hostonly):

$ vboxmanage controlvm N04—MPI—Cluster—1 \
nicl hostonly vboxnetl

5. We allow the user to write to a file that will be served via a web server:

S ssh 192.168.57.3 sudo —S chown ales.ales /var/
— www/html/index.html

6. In a programming development environment (e.g. QtCreator or vim)
we write a game program and save it to a file NO4-MPI-Cluster.c
The program is divided into two parts: First the code for the main
node (function void rank0()) and then the code for the remaining
nodes (function void rankN(int N)). Both functions are called from
the main program, depending on the type of current node executing it:

#include <mpi.h>

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

void rankN(int N);
void rankO();

int main(int argc, charx argv[]) {
int rank;

MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (!rank) rankO(); else rankN(rank);

MPI_Finalize();
}

Data that will be exchanged between the main node (referee) and other
nodes (players) are defined as arrays. The vessels’ playing field to be

40

exchanged will contain a value of -1 for each element if no player has
attempted to play a move on that field. This value will be 0 if any of the
players have already tried to play on this field and the result was a miss
(no vessel). Otherwise, the value will be set to the serial number of the
player who played on this field and hit part of the vessel. In addition
to the playing field, we also define the size of the array, horizontally
20 (areaSizeX) and vertically 20 (areaSizeY), which then determine
a one-dimensional array:

#define areaSizeX 20

#define areaSizeY 20

#define NUM_PLAYERS 9

int sharedMapOfHits[areaSizeY*areaSizeX];
(ﬁ

int gameMove[2];

The player code contains one call to MPI_Recv and one call to MPI_Send,
which are repeated in a loop until the end of the game. The logic of
the player is simple — sets its seed to a random number generator with
a function call srand (), and plays a random move that was not played
by other players:

void rankN(int N) {
MPI_Status status;

srand (N) ;

while (1) {
MPI_Recv(sharedMapOfHits, areaSizeY*areaSizeX, MPI_INT,
— 0, 42, MPI_COMM_WORLD, &status);
if (sharedMapOfHits[0] == -42)
return;

do {
gameMove [0] = rand() % areaSizeY;
gameMove[1] = rand() % areaSizeX;

} while (sharedMapOfHits[gameMove[0]*areaSizeX +
— gameMove[1]] != -1);

MPI_Send(gameMove, 2, MPI_INT, 0, 42, MPI_COMM_WORLD);

41

We store more detailed information about the game on the main node,
on the basis of which we will be informing the players about the state
of the game. In addition to hits, we also keep ship locations here:

int shipsMaplareaSizeY] [areaSizeX];
int privateMapOfHitsAndAttacks[areaSizeY] [areaSizeX];

The code of the main node is divided further into 3 more additional
functions for the sake of clarity, and these are called from the master
node code (function void rank0()) that follows below. All three of
these functions also use the data stored by the main node (judge). In
the basic function of the main node, we merely loop the game moves for
scenarios generated in void generateNewBattleshipGameScenario()
function, and then, in this loop, every second (call to sleep(1), for
which we included the library unistd.h at the beginning of the pro-
gram) we ask the players for moves (call MPI_Recv and MPI_Send). Dur-
ing the game, we collect and print the statistics of the game state via
the call to the function int applyGameMoveAndCheckGameOver (int
x, int y, int player) and check whether the game is over:

void generateNewBattleshipGameScenario();
int applyGameMoveAndCheckGameQOver(int x, int y, int player);
void publishGameAsHTML(int isGameQver);

void rank0() {
MPI_Status status;

generateNewBattleshipGameScenario();

while (1)
for (int player = O; player < NUM_PLAYERS; player++) {

MPI_Send(sharedMapOfHits, areaSizeY*areaSizeX,
< MPI_INT, 1 + player, 42, MPI_COMM_WORLD);

MPI_Recv(gameMove, 2, MPI_INT, 1 + player, 42,
<~ MPI_COMM_WORLD, &status);

if (applyGameMoveAndCheckGameOver (gameMove[1],
— gameMove[0], player)) {
for (int player = O; player < NUM_PLAYERS; player
— ++) {

42

sharedMapOfHits[0] = -42;
—

MPI_Send(sharedMapOfHits, areaSizeY*areaSizeX
— , MPI_INT, 1 + player, 42,
— MPI_COMM_WORLD) ;

}

return;
+
sleep(1);

The function for generating the game scenario arranges vessels in ran-
dom locations in such a way that that they do not intersect and touch.
Vessel data are stored in the variable shipsMap, for which an element
of the array is set at value -1 if there is no vessel at a certain location,
otherwise it is set to the value of the vessel type:

#define NUM_SHIP_TYPES 5 // Carrier, Battleship, Cruiser,
< Submarine, Destroyer

const int shipsCountPerType [NUM_SHIP_TYPES]

const int shipsSizesPerType [NUM_SHIP_TYPES]

{1, 2, 3, 4, 5};
{5’ 4’ 3’ 3’ 2};

void generateNewBattleshipGameScenario() {
for (int y = 0; y < areaSizeY; y++)
>
for (int x = 0; x < areaSizeX; x++) {
sharedMapOfHits[y*areaSizeX + x] = -1;
shipsMaplyl [x] = -1;
privateMapOfHitsAndAttacks[y] [x] = -1;

for (int t = 0; t < NUM_SHIP_TYPES; t++)
for (int s = 0; s < shipsCountPerTypel[t]; s++)

while (1) {
int randX = rand() % areaSizeX;
int randY = rand() % areaSizeV;

int direction = rand() % 2;

int checkArealIsEmptyOK = 1;
for (int border = -1; border <= 1; border++) {

43

for (int i = -1; i < shipsSizesPerTypelt] +
— 1; i++) {
int iIdxX = !direction ? randX + i : randX
<~ + border;
int iIdxY = direction ? randY + i : randV
— + border;

if (iIdxY < O || iIdxY >= areaSizeY ||
iIdxX < O || iIdxX >= areaSizeX ||
shipsMap[iIdxY] [iIdxX] > 0) {
checkArealsEmptyOK = O;
border=2; break;

}
+
}
if (checkAreaIsEmpty0K) {
SN
for (int i = 0; i < shipsSizesPerTypel[t]; i
— ++) {
int iIdxX = !direction ? randX + i : randX
—
int iIdxY = direction ? randY + i : randy;

shipsMap[iIdxY] [iIdxX] = 1 + t;
}

break;

The game status control, and monitoring if it is finished, works as
follows:

int applyGameMoveAndCheckGameOver(int x, int y, int player) {
if (privateMapOfHitsAndAttacksl[y] [x] == -1)
(%
privateMapOfHitsAndAttacks[y][x] = 1 + player;

if (sharedMapOfHits[y * areaSizeX + x] == -1)
—>

44

sharedMapOfHits [y * areaSizeX + x] = shipsMaply]l[x] > O
— ? 1 + player : 0;

int isGameOver = 1;
for (int y = 0; y < areaSizeY; y++)
for (int x = 0; x < areaSizeX; x++)
if (shipsMaplyl[x] > O && privateMapOfHitsAndAttacks
— [yllx] == -1)
isGameQOver = 0;

publishGameAsHTML (isGameQver) ;

return isGameQOver;

At the end of the program is a printout of statistics. We display the
statistics of each player’s points and the state of the game map, where
we mark the played moves:

void publishGameAsHTML(int isGameOver) {

// save leaderboard and check if game is over

int scoresForPlayers[NUM_PLAYERS];

for (int p = 0; p < NUM_PLAYERS; p++) scoresForPlayers[p] =
— 0;

for (int y = 0; y < areaSizeY; y++)
for (int x = 0; x < areaSizeX; x++)
if (shipsMaply]l[x] > O && privateMapOfHitsAndAttacks
— [yl[x] > 0)
scoresForPlayers[privateMapOfHitsAndAttacks [y] [x]
— - 1]++;

FILE *fout;
fout = fopen("/var/www/public_html/index.html", "w');

static int numMoves = O;
fprintf (fout, "<!DOCTYPE html><html><head><style>"
".table{display:table;font-size:20px;font-color
< :blue;}"
".row{display:table-row;}"
".cell{display:table-cell; text-align:center;
< border:1px solid black; width:30px;
— height: 30px; }</style>"
"<meta http-equiv=\"refresh\" content=\"1\"></

45

< head><body>"
"<h1>NO4-MPI-Cluster</hi>\n"
"<div>Move #Jd. Player scores: \n'", numMoves++)
3

int scoreMax = 1;
for (int p = 0; p < NUM_PLAYERS; p++) {
fprintf(fout, "PJ%d: }d ", p, scoresForPlayers[p])
—
if (scoresForPlayers([p] > scoreMax) scoreMax =
— scoresForPlayers[p];

fprintf(fout, "</div><div class=\"table\">\n");
for (int y = 0; y < areaSizeY; y++) {
fprintf(fout, "<div class=\"row\">\n");
for (int x = 0; x < areaSizeX; x++) {
fprintf(fout, "<div class=\"cell\"");

if (shipsMaplyl[x] == -1) {
if (privateMapOfHitsAndAttacks[y][x] == -1)
— fprintf(fout, ">");
else fprintf(fout, "style=\"background-color: rgb
— (0,%d,0);\">%d", 100+156/NUM_PLAYERS*
— privateMapOfHitsAndAttacks[y] [x],
< privateMapOfHitsAndAttacks[y] [x]);
} else {
if (privateMapOfHitsAndAttacks[y][x] == -1)
— fprintf(fout, " style=\"background-color:
— lightblue;\">");
else fprintf(fout, " style=\"background-color:
— red;\">%d", privateMapOfHitsAndAttacks[y][

— x1);

fprintf(fout, "</div>\n");
}
fprintf (fout, "</div>\n");

+
fprintf (fout, "</div>");

if (isGameOver) {
fprintf (fout, "<h2>WINNER:");

46

10.

for (int p = 0; p < NUM_PLAYERS; p++)
if (scoresForPlayers[p] == scoreMax) fprintf(fout, "
— Pkd ", p);
fprintf(fout, "with %d points.", scoreMax);
fprintf (fout, "</h2>");
+

fprintf (fout, "</body></html>\n");
fclose(fout);

. We then run all the remaining cloned virtual environments:

$ for 1 in {2..10}; do
vboxmanage startvm N04—MPI—Cluster—S$i \
——type headless;
done

. We copy the file N0O4-MPI-Cluster.c to all virtual environments with

the command:

S for 1 in {3..12}; do
scp NO4—MPI—Cluster.c 192.168.57.%1:;
done

. Then the code with OpenMPT in the file main.c is translated with the

command:

$ parallel—ssh —i \
$(echo "-H "192.168.57.{3..12}) \
mpicc N0O4—MPI—Cluster.c \
—o0 NO04—MPI—Cluster

Finally, we run the programs with OpenMPI on all nodes by entering
their names at startup:

$ time ssh 192.168.57.3 \
mpiexec —n 10 \
S(echo "-H "192.168.57.{3..12}) \
——mca btl_base_warn_component_unused 0 \
NO4—MPI—-Cluster

47

During operation, the main node (rank=0) refreshes a file gamestate.html
written to the web folder every second. If, at the end of the game, we
open the web address for serving this file in a web browser via the web
server, we get a rendering as shown in Figure 4.1.

NO0O4-MPI-Cluster

Move #399. Player scores: P0: 5 P1: 6 P2: 4 P3: 6 P4: 5 P5: 3 P6: 3 P7: 7P8: 5

WINNER: P7 with 7 points.

Figure 4.1: Final result shown after executing exercise NO3-MPI-PingPong.

11. Save the properly functioning virtual environments and put them in a
saved suspended state:

$ for 1 in {1..10}; do
vboxmanage controlvm NO4—MPI—Cluster—S$i \
savestate;
done

48

12. Export the OVA image for the created environments. The process takes

13.

some time because of the writing of a large file, e.g. approximately
fifteen minutes. The exported file size is approximately 13 GB. During
this time we see the progress of the process:

$ vboxmanage export N04—MPI—Cluster—{1..10} \
—o NO4—MPI—Cluster.ova

0%...10%...20%...30%...40%...50%...60%...70%
...80%...90%...100%
Successfully exported 10 machine(s).

Write down an exercise report (for example, in the same manner that
the solution was described here in this material).

49

Chapter 5

Apache Hadoop, MapReduce, and
YARN in a Single-node Virtual
Environment: Deploying and
Managing a Distributed System
— Exercise NO7-Hadoop-Single

Exercise: N07-Hadoop-Single

For a computer cloud, create the following system image (only 1 computer /
VM virtual system) using VirtualBox.

In the created system image, a Hadoop cluster is deployed with a single node
that demonstrates the working of the MapReduce method (run "hadoop-
mapreduce-examples"). Along with Hadoop, install YARN. To implement
this exercise, use Apache single node instructions (https://hadoop.apac
he.org/docs/stable/hadoop-project-dist/hadoop-common/SingleClus
ter.html, PDF: tutorial-Hadoop-single.pdf).

Submit a report about this exercise that demonstrates execution of the solu-
tion, its implementation, and scripts/code.

FOR HALF POINTS: MapReduce (without YARN)

tutorial-Hadoop-single.pdf (required login to e-study)

' https://estudij.um.si/pluginfile.php/368910/mod_
assign/introattachment/0/tutorial-Hadoop-single.pdf?
forcedownload=1

20

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html
https://estudij.um.si/pluginfile.php/368910/mod_assign/introattachment/0/tutorial-Hadoop-single.pdf?forcedownload=1
https://estudij.um.si/pluginfile.php/368910/mod_assign/introattachment/0/tutorial-Hadoop-single.pdf?forcedownload=1
https://estudij.um.si/pluginfile.php/368910/mod_assign/introattachment/0/tutorial-Hadoop-single.pdf?forcedownload=1
https://estudij.um.si/pluginfile.php/368910/mod_assign/introattachment/0/tutorial-Hadoop-single.pdf?forcedownload=1

Solution

We reuse the host computer again, which we have already prepared in the
NO1-Linux-VM exercise, where we have installed the VirtualBox software.
We can also reuse the prepared virtual environment from the exercise N02-
Linux-Cluster or, since we have already installed the multi-node web server
Apache in the exercise N04-MPI-Cluster, we can start by upgrading the
virtual environment NO4-MPI-Cluster-1. As already mentioned, it is good
to use procedures that can be upgraded and automated later when setting up
systems, so Linux and the Bash Command Interpreter are used here again.
We will also use a web server already located in the Ubuntu distribution. We
will also use the server Apache Hadoop, which we will download from the
web using the official Apache Hadoop website.

Attachment file of the solution: Computer virtual image in OVA

N07-Hadoop-Single.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

1. Since we will only need one virtual environment in this task, we first
clone the first virtual environment from the exercise N04-MPI-Cluster:

$ vboxmanage clonevm N04—MPI—Cluster—1 \
——name NO7—Hadoop—Single—1 ——register

2. We then start the cloned virtual environment:

$ vboxmanage startvm NO7—Hadoop—Single—1 \
——type headless

3. Since we will need to access the web from the virtual environment to

install the software, we will first switch to the Internet connection mode
NAT:

$ vboxmanage controlvm NO7—Hadoop—Single—1 \
nicl nat

o1

https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

4. Since we will be using Apache Hadoop, we will download the software
package Apache Hadoop from the Apache Hadoop official website into
a virtual environment for it. We login to the first virtual environment
via the OpenSSH connection redirected to port 2001 and download the
software package with the wget command; in this solution the version
Apache Hadoop 2.9.2 is used:

$ ssh —p 2001 127.0.0.1 \
"wget https://www.apache.si/hadoop/common/
— hadoop—2.9.2/hadoop—2.9.2.tar.gz’

5. Version Apache Hadoop 2.9.2 supports Java 7 and 8, therefore, we
install the runtime environment for Java 8 in the software package
openjdk-8-jre-headless:

$ ssh —p 2001 127.0.0.1 sudo —S \
apt install openjdk—8—jre—headless

6. We reset the network setting to the host interface (hostonly):

$ vboxmanage controlvm NO7—Hadoop—Single—1 \
nicl hostonly vboxnetl

7. We unpack the downloaded software package for Apache Hadoop to the
home folder:

$ ssh 192.168.57.3 tar xvf hadoop—2.9.2.tar.gz

8. Let’s set the environment variable JAVA_HOME, which for locally running
Apache Hadoop, determines where to find the Java environment. This
way, we will not have to set the variable over and over again after shell
login. We also store the setting in the file hadoop-env.sh:

$ ssh 192.168.57.3 "echo -e export JAVA_HOME=/usr/lib/
— jvm/java-8-openjdk-amdé4 >> ~/.bashrc"

$ ssh 192.168.57.3 "sed -i ’sl|export JAVA_HOME=\${
— JAVA_HOME} |export JAVA_HOME=/usr/lib/jvm/java-8-
— openjdk-amd64|g’ hadoop-2.9.2/etc/hadoop/hadoop-env.
— sh"

52

9. We now set the layout for pseudo-distributed Apache Hadoop execution

10.

11.

12.

on one node. We write the files core-site.xml and hdfs-site.xml:

$ ssh 192.168.57.3 ’'cat > hadoop—2.9.2/etc/hadoop/
— core—site.xml <<EOF
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
EQOF’
$ ssh 192.168.57.3 ’'cat > hadoop—2.9.2/etc/hadoop/
— hdfs—site.xml <<EOF
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
</configuration>
EOF’

We format the file system for Apache Hadoop, Hadoop Distributed File
System (HDFS).

$ ssh 192.168.57.3 ’"bash —ic "hadoop-2.9.2/bin/hdfs
<~ namenode -format"’

For running Apache Hadoop locally we add a local key OpenSSH among
trustworthy:

$ ssh 192.168.57.3 ssh—keyscan —H 127.0.0.1

We can now test the locally running Apache Hadoop, and in a Bash
command use the switch -i, which reads the above setting for JAVA_HOME.
Let’s run the server for the NameNode and the DataNode:

$ ssh 192.168.57.3 hadoop—2.9.2/sbin/start—dfs.sh

23

13.

14.

15.

16.

The command starts the servers and prints the following response:

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/ales/
— hadoop—2.9.2/1logs/hadoop—ales—namenode—n01—
— linux—vm.out

localhost: starting datanode, logging to /home/ales/
— hadoop—2.9.2/logs/hadoop—ales—datanode—n01—
— linux—vm.out

Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /home/
— ales/hadoop—2.9.2/logs/hadoop—ales—
— secondarynamenode—n0l—1linux—vm.out

Let’s test the operation of the web interface. This can be done by
tunnelling the network traffic between the virtual environment and the
host computer, and then visiting the web address http://localhost:
50070/, and we get a rendering of the web page as seen in Figure 5.1
on the next page.

$ ssh 192.168.57.3 —L50070:1ocalhost:50070

We create new directories to start MapReduce loads:

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hdfs dfs —
— mkdir /user

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hdfs dfs —
— mkdir /user/ales

We copy the input files into a distributed file system:

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hdfs dfs —put
— hadoop—2.9.2/etc/hadoop input

We can now run an example with MapReduce, as required in this ex-
ercise:

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hadoop jar
— hadoop—2.9.2/share/hadoop/mapreduce/hadoop—
— mapreduce—examples—2.9.2.jar grep input
— output ’'dfs[a—z.]+’

54

http://localhost:50070/
http://localhost:50070/

Snapsho

atanode Volume Failu Startup Progr

Overview ocalhost:2000" (active)

Started: Fri May 24 23:31:03 +0200 2019

Version: 2.9.2, r826afbeae31ca687bc2f8471dc841b66ed2c6704
Compiled: Tue Nov 13 13:42:00 +0100 2018 by ajisaka from branch-2.9.2
Cluster ID: CID-88ab9972-45ea-49fd-a698-5fbf43325676

Block Pool ID: BP-508694743-192.168.57.3-1558720565305

Summary

Security is off.
safemode is off.

1 files and directories, 0 blocks = 1 total filesystem object(s).

Heap Memory used 36.56 MB of 46.4 MB Heap Memory. Max Heap Memory is 966.69 MB.

Non Heap Memory used 41.67 MB of 42.63 MB Commited Non Heap Memory: Max Non Heap Memory is <unbounded=.

Figure

Configured Capacif 7.81 GB
DFS Used: 28 KB (0%)
Non DFS Used: 3.53GB

DFS Remaining:

Block Pool Used:

Live Nodes

Dead Nodes

Decommissioning Nodes

Entering Maintenance Nodes

Total Datanode Volume Failures
Number of Under-Replicated Blocks
Number of Blocks Pending Deletion
Block Deletion Start Time

Last Checkpoint Time

3.86 GB (49.47%)
28 KB (0%)

0.00% / 0.00% / 0.00% / 0.00%

1 (Decommissioned: 0, In Maintenance: 0)

0 (Decommissioned: 0, In Maintenance: 0)

Fri May 24 23:31:03 +0200 2019

Fri May 24 23:32:17 +0200 2019

NameNode Journal Status

Current transaction ID: 6

Journal Manager

/name)

NameNode Storage

Storage Directory

/tmp/hadoop-ales/dfsiname

DFS Storage Types

Storage Type Configured Capacity

DISK. 7.81GB

Hadoop, 2018.

5.1:

NO7-Hadoop-Single.

Capacity Used

28 KB (0%)

Screenshot of the web page for

State

EditLogFileO
Jedits_inprogress_0000000000000000006)

urrent

Type

IMAGE_AND_EDITS

Capacity Remaining Block Pool Used

3.86 GB (49.47%) 28 KB

95

the NameNode in exercise

The command is executed and a longer printout is displayed, ending
with the following lines:

File System Counters
FILE: Number of bytes read=1339410
FILE: Number of bytes written=3084996
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=177604
HDFS: Number of bytes written=1196
HDFS: Number of read operations=151
HDFS: Number of large read operations=0
HDFS: Number of write operations=16
Map—Reduce Framework
Map input records=13
Map output records=13
Map output bytes=298
Map output materialized bytes=330
Input split bytes=129
Combine input records=0
Combine output records=0
Reduce input groups=5
Reduce shuffle bytes=330
Reduce input records=13
Reduce output records=13
Spilled Records=26
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=22
Total committed heap usage (bytes)=271884288
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=488
File Output Format Counters
Bytes Written=220

17. The printout can be copied from HDFS at Apache Hadoop to the local
file system on a virtual environment, into the folder output®:

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hdfs dfs —get
— output output
$ ssh 192.168.57.3 cat output/=*

6We see the same printout if we run the command hadoop-2.9.2/bin/hdfs dfs -cat
output/* on the distributed file system itself.

o6

18.

19.

Which prints the following result to the shell:

dfs.audit.logger
dfs.class

dfs.logger
dfs.server.namenode.
dfs.audit.log.maxbackupindex
dfs.period
dfs.audit.log.maxfilesize
dfs.log

dfs.file

dfs.servers

dfsadmin

dfsmetrics.log
dfs.replication

P PP REPEREPREPEDNDNDDDNDWWSO

Since we want to add YARN, we first configure the file settings for it
in mapred-site.xml and yarn-site.xml:

$ ssh 192.168.57.3 ’'cat > hadoop—2.9.2/etc/hadoop/
<~ mapred—site.xml <<EOF
<configuration>
<property>
<name>mapreduce. framework.name</name>
<value>yarn</value>
</property>
</configuration>
EQOF'
$ ssh 192.168.57.3 ’'cat > hadoop—2.9.2/etc/hadoop/yarn
— —site.xml <<EOF
<configuration>
<property>
<name>yarn.nodemanager.aux—services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>
EQOF'

We run Yet Another Resource Negotiator (YARN), with the following
command:

$ ssh 192.168.57.3 hadoop—2.9.2/sbin/start—yarn.
— sh

57

Running the command in the shell displays the following response:

starting yarn daemons

starting resourcemanager, logging to /home/ales/hadoop
— —2.9.2/logs/yarn—ales—resourcemanager—n0l—linux
— —vm.out

localhost: starting nodemanager, logging to /home/ales
— /hadoop—2.9.2/1logs/yarn—ales—nodemanager—n0l—
— linux—vm.out

20. In order to access the website through the web interface of the YARN
tool (as seen in Figure 5.2), we use the OpenSSH tunnel again:

S ssh 192.168.57.3 —L8088:1localhost:8088

Cluster Metrics
Apps Submitted | Apps Pendiny

@hadﬂ@p All Applications A

o o
Cluster Nodes Metrics

Active Nodes

1 o

Scheduler Metrics
Scheduler Type Scheduling Resource Type Minimum Allocation

Capacity Scheduler (MEMORY] <memory:1024, vCores:1>

Show 20

Tools ID | User Name Application Queue Application StartTime FinishTime State = Finalstat
- e 6 Type © 5 Priority B 5 B

Showing 0 to 0 of 0 entries

Figure 5.2: The YARN website displayed running inside of the Apache
Hadoop installation in exercise NO7-Hadoop-Single.

21. Save the properly functioning virtual environment NO7-Hadoop-Single-1
and put it in a saved suspended state:

$ vboxmanage controlvm NO7—Hadoop—Single—1 \
savestate

22. Export the OVA image for the created environment. The exported file
is approximately 2 GB. During this time we see the progress of the
process:

$ vboxmanage export NO7—Hadoop—Single—1 \
—o NO7—Hadoop—Single.ova

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
Successfully exported 1 machine(s) .

23. Write down an exercise report (for example, in the same manner that
the solution was described here in this material).

o8

Chapter 6

Multiple Nodes with Hadoop —
Exercise NO8-Hadoop-Cluster

Exercise: N0O8-Hadoop-Cluster

For a computer cloud, create the following system image (only 1 computer /
VM virtual system) using VirtualBox.

In the system image, a Hadoop cluster is deployed to support multiple
nodes, that demonstrates the execution of the MapReduce method (run
"hadoop-mapreduce-examples"). Along with Hadoop, install YARN. To im-
plement this task, use Apache instructions for running multiple nodes:
https://
hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common
/ClusterSetup.html. Use the tutorial, until the heading " Configuring the
Data Nodes", at "tutorial-Hadoop-multi.pdf" (PDF printed from https://dw
bi.org/etl/bigdata/183-setup-hadoop-cluster).

Submit a report about this exercise that demonstrates execution of the solu-
tion, its implementation, and scripts/code.

FOR HALF POINTS: MapReduce (without YARN)

tutorial-Hadoop-multi.pdf (required login to e-study)
https://estudij.um.si/pluginfile.php/368920/mod_assign/
introattachment/0/tutorial.pdf?forcedownload=1

29

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/ClusterSetup.html
https://estudij.um.si/pluginfile.php/368920/mod_assign/introattachment/0/tutorial.pdf?forcedownload=1
https://dwbi.org/etl/bigdata/183-setup-hadoop-cluster
https://dwbi.org/etl/bigdata/183-setup-hadoop-cluster
https://estudij.um.si/pluginfile.php/368920/mod_assign/introattachment/0/tutorial.pdf?forcedownload=1
https://estudij.um.si/pluginfile.php/368920/mod_assign/introattachment/0/tutorial.pdf?forcedownload=1

Solution

We reuse the host computer again, which we have already prepared in the
NO1-Linux-VM exercise, where we have the VirtualBox software installed.
We can also reuse the prepared virtual environment after the exercise N02-
Linux-Cluster, already installed as a multi-node web server Apache in the
exercise N04-MPI-Cluster, where we installed Apache web server and mul-
tiple nodes. Since we have already set up Apache Hadoop and YARN with
a single node in the NO7-Hadoop-Single exercise, we will design the solution
by upgrading the NO7-Hadoop-Single-1 virtual environment. As already
mentioned, it is good to use procedures that can be upgraded and later auto-
mated when setting up systems, so Linux and the Bash Command Interpreter
are used here again.

Attachment file of the solution: Computer virtual image in OVA

File: NO7-Hadoop-Single.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

1. Since, in this exercise, we will be upgrading the first virtual environ-
ment from exercise NO7-Hadoop-Single, we will first clone the first vir-
tual environment from the exercise NO7-Hadoop-Single:

$ vboxmanage clonevm NO7—Hadoop—Single—1 \
——name NO08—Hadoop—Cluster—1 ——register

2. Then we start the cloned virtual environment:

$ vboxmanage startvm NO8—Hadoop—Cluster—1 \
——type headless

3. The Apache Hadoop with a single node configuration and YARN server
are currently running in a virtual environment. As we are going to
change the settings, we first stop both of these:

$ ssh 192.168.57.3 hadoop—2.9.2/sbin/stop—dfs.sh
$ ssh 192.168.57.3 hadoop—2.9.2/sbin/stop—yarn.sh

4. We will now prepare this node for deployment for true distributed im-
plementation of Apache Hadoop on multiple nodes. Each node will
be contained in its own virtual environment. As already mentioned

60

https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

in the NO2-Linux-Cluster task, virtual nodes could also be hosted at
different physical host computers, which could also be hosted on dif-
ferent physical locations (connected via an IP network). However, in
this solution, we assume that we will host virtual environments on only
one host, who will virtualise the network and provide for the environ-
ment the host network vboxnet1 (addresses IP 192.168.57.0/24). Any
VirtualBox virtual environment as a node for Apache Hadoop service
will, hence, in the network vboxnet1, have, as in previous exercises, its
own leashed TP, assigned via the DHCP server for network vboxnet1
in VirtualBox. These addresses are assigned sequentially, as already
shown in previous tasks.

NameNodes for Apache Hadoop, which we link to the assigned TP ad-
dresses on the network vboxnet1, we merely enter in the file /etc/hosts:

$ ssh 192.168.57.3 ’"sudo —S bash —c "(
echo 192.168.57.3 NameNode;
echo 192.168.57.4 DatalNodel
echo 192.168.57.5 DataNode2) >> /etc/hosts"’

. For new NameNodes, we add the option for login among nodes via the
OpenSSH keys:

S for H in NameNode DataNodel DataNode2; do
for i in {3..5}; do
ssh 192.168.57.$1 '"ssh-keyscan $H >> 7/.ssh/
<~ known_hosts";
done; domne

. Now we configure the layout for the real distributed execution of Apache
Hadoop on several nodes. First, we write the file core-site.xml:

$ ssh 192.168.57.3 'cat > hadoop—2.9.2/etc/hadoop/core—site.xml <<EOF
<?xml version="1.0"7?>

<!—— core—site.xml ——>
<configuration>

<property>

<name>fs.defaultFS</name>
<value>hdfs://NameNode:8020/</value>
</property>

<property>
<name>io.file.buffer.size</name>
<value>131072</value>

</property>

</configuration>

EOF’

61

We also write the file hdfs-site.xml:

$ ssh 192.168.57.3 ’'cat > hadoop—2.9.2/etc/hadoop/
— hdfs—site.xml <<EOF

<?xml version="1.0"7?>

<!—— hdfs—site.xml ——>

<configuration>

<property>

<name>dfs.namenode.name.dir</name>

<value>file:/home/ales/hdfs/namenode</value>

</property>

<property>

<name>dfs.datanode.data.dir</name>

<value>file:/home/ales/hdfs/datanode</value>

</property>

<property>

<name>dfs.namenode.checkpoint.dir</name>

<value>file:/home/ales/hdfs/namesecondary</value>

</property>

<property>

<name>dfs.replication</name>

<value>2</value>

</property>

<property>

<name>dfs.block.size</name>

<value>134217728</value>

</property>

</configuration>

EOF’

62

. Enter the MapReduce settings in the file mapred-site.xml:

$ ssh 192.168.57.3 ’'cat > hadoop—2.9.2/etc/hadoop/
— mapred—site.xml <<EOF
<?xml version="1.0"?>

<!—— mapred—site.xml ——>
<configuration>
<property>

<name>mapreduce. framework.name</name>

<value>yarn</value>

</property>

<property>

<name>mapreduce. jobhistory.address</name>

<value>NameNode:10020</value>

</property>

<property>

<name>mapreduce. jobhistory.webapp.address</name>

<value>NameNode:19888</value>

</property>

<property>

<name>yarn.app.mapreduce.am.staging—dir</name>

<value>/user/app</value>

</property>

<property>

<name>mapred.child. java.opts</name>

<value>—Djava.security.egd=file:/dev/../dev/
— urandom</value>

</property>

</configuration>

EQF”

63

Enter the settings for YARN to a file yarn-site.xml:

$ ssh 192.168.57.3 'cat > hadoop—2.9.2/etc/hadoop/yarn—site.xml <<EOF
<?xml version="1.0"?>

<!—— vyarn—site.xml ——>

<configuration>

<property>
<name>yarn.resourcemanager.hostname</name>
<value>NameNode</value>

</property>

<property>
<name>yarn.resourcemanager.bind—host</name>
<value>0.0.0.0</value>

</property>

<property>

<name>yarn.nodemanager.bind—host</name>
<value>0.0.0.0</value>

</property>

<property>
<name>yarn.nodemanager.aux—services</name>
<value>mapreduce_shuffle</value>

</property>

<property>
<name>yarn.nodemanager.aux—services.mapreduce_shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

<property>

<name>yarn.log—aggregation—enable</name>
<value>true</value>

</property>

<property>

<name>yarn.nodemanager.local—dirs</name>
<value>file:/usr/local/hadoop_work/yarn/local</value>
</property>

<property>

<name>yarn.nodemanager.log—dirs</name>
<value>file:/usr/local/hadoop_work/yarn/log</value>
</property>

<property>
<name>yarn.nodemanager.remote—app—log—dir</name>
<value>hdfs://NameNode:8020/var/log/hadoop—yarn/apps</value>
</property>

</configuration>

EOF’

Configure the division of the main (NameNode) and other (DataNode)
nodes:

$ ssh 192.168.57.3 ’echo NameNode > hadoop—2.9.2/
— etc/hadoop/masters’

$ ssh 192.168.57.3 "echo —e DataNodel\\nDataNode2
— > hadoop—2.9.2/etc/hadoop/slaves’

64

10.

11.

12.

13.

The prepared virtual environment is cloned twice so that we get the
two slave DataNodes (DataNodel and DataNode2). For this purpose,
we use the first created virtual environment, which we put to sleep
mode and then wake up:

$ vboxmanage controlvm NO08—Hadoop—Cluster—1\

savestate
$ vboxmanage clonevm NO8—Hadoop—Cluster—1 \
——name NO8—Hadoop—Cluster—2 ——register
$ vboxmanage clonevm NO8—Hadoop—Cluster—1 \
——name NO08—Hadoop—Cluster—3 ——register

$ for i in {1..3}; do vboxmanage \
startvm NO8—Hadoop—Cluster—3$i \
——type headless; done

Let’s start Apache Hadoop and YARN, configured for multiple nodes.

$ ssh 192.168.57.3 hadoop—2.9.2/sbin/start—dfs.sh
$ ssh 192.168.57.3 hadoop—2.9.sbin/start—yarn.sh

Command printouts:

$ Starting namenodes on [NameNode]

NameNode: starting namenode, logging to /home/ales/hadoop—2.9.2/logs/hadoop—ales—namenode—n0l—
< linux—vm.out

DataNodel: starting datanode, logging to /home/ales/hadoop—2.9.2/logs/hadoop—ales—datanode—n0l—
< linux—vm.out

DataNode2: starting datanode, logging to /home/ales/hadoop—2.9.2/logs/hadoop—ales—datanode—n0l—
< linux—vm.out

Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /home/ales/hadoop—2.9.2/logs/hadoop—ales—
< secondarynamenode—n0Ol—1linux—vm.out

We format the file system for Apache Hadoop, Hadoop Distributed File
System (HDFS).

$ ssh 192.168.57.3 "sudo —S bash —ic "hadoop-2.9.2/
< bin/hdfs namenode -format"’

The command prints a longer text, within which we can trace the
following lines:

19/05/31 08:31:07 INFO common.Storage: Storage directory /home/ales/hdfs/namenode has been
<~ successfully formatted.

19/05/31 08:31:07 INFO namenode.FSImageFormatProtobuf: Saving image file /home/ales/hdfs/namenode/
< current/fsimage.ckpt_0000000000000000000 using no compression

19/05/31 08:31:07 INFO namenode.FSImageFormatProtobuf: Image file /home/ales/hdfs/namenode/current/
— fsimage.ckpt_0000000000000000000 of size 323 bytes saved in 0 seconds .

To start MapReduce loads, we create new directories:

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hdfs dfs —mkdir /user
$ ssh 192.168.57.3 hadoop—2.9.2/bin/hdfs dfs —mkdir /user/ales

65

14. We copy the input files to the distributed file system:

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hdfs dfs —put
— hadoop—2.9.2/etc/hadoop input

15. We can now run the MapReduce example as required in this exercise:

$ ssh 192.168.57.3 hadoop—2.9.2/bin/hadoop jar
— hadoop—2.9.2/share/hadoop/mapreduce/hadoop—
— mapreduce—examples—2.9.2.jar grep input
— output ’'dfsl[a—z.]+’

The command is executed, and a longer printout is displayed, ending
with the following lines:

19/05/31 08:38:16 INFO client.RMProxy: Connecting to ResourceManager at NameNode/192.168.57.3:8032
19/05/31 08:38:17 INFO input.FileInputFormat: Total input files to process : 31
19/05/31 08:38:18 INFO mapreduce.JobSubmitter: number of splits:31
19/05/31 08:38:18 INFO Configuration.deprecation: yarn.resourcemanager.system—metrics—publisher.
< enabled is deprecated. Instead, use yarn.system—metrics—publisher.enabled
19/05/31 08:38:19 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1559291846694_0002
19/05/31 08:38:19 INFO impl.YarnClientImpl: Submitted application application_1559291846694_0002
19/05/31 08:38:19 INFO mapreduce.Job: The url to track the job: http://NameNode:8088/proxy/
<~ application_1559291846694_0002/
19/05/31 08:38:19 INFO mapreduce.Job: Running job: job_1559291846694_0002

16. We open the web address http://192.168.57.3:8088/cluster in the
local web browser (Figure 6.1), where we can see the running applica-
tions. At the web address http://192.168.57.3:50070 (Figure 6.2)
we see additional statistics for the deployed cloud.

CHIEEEED All Applications

Cluster Metrics
Apps Submitted

- Cluster

2 2
Cluster Nodes Metrics
Active Nodes Dect

)
Scheduler Metrics

default 0 Fivay 31 WA ACCEPTED UNDEFINED 0
103819

default 0 Fii May 31 NA ACCEPTED UNDEFINED 0 o o o o 00 00
38

Showing 1t0 2 of 2 entries

Figure 6.1: Screenshot from the app information web page YARN with mul-
tiple nodes.

66

http://192.168.57.3:8088/cluster
http://192.168.57.3:50070

QOverview nNameNode:8020" (active)

Started: Fri May 31 10:30:14 +0200 2019

Version: 2.9.2, r826afbeae31cab87bc2f8471dc841b66ed2c6704
Compiled: Tue Nov 13 13:42:00 +0100 2018 by ajisaka from branch-2.9.2
Cluster ID: CID-918bblal-835d-4e1c-8bb2-a5177b5d95d8

Block Pool ID: BP-1947742689-192.168.57.3-1559291396003

Summary

Security is off.
Safemode is off.

48 files and directories, 39 blocks = 87 total filesystem object(s).

Heap Memory used 39.04 MB of 47.4 MB Heap Memory. Max Heap Memory is 966.69 MB.

Non Heap Memory used 44.45 MB of 45.31 MB Commited Non Heap Memory. Max Non Heap Memory is <unbounded>.

Configured Capacity:
DFS Used:

Non DFS Used:

15.62 GB

2.56 MB (0.02%)

7.06 GB

DFS Remaining: 7.73 GB (49.46%)

Block Pool Used: 2.56 MB (0.02%)

D il i dev): 0.02%/ 0.02% / 0.02% / 0.00%

Live Nodes 2 (D issi 0, In Mail 0)
Dead Nodes 0 (Decommissioned: 0, In Maintenance: 0)
Decommissioning Nodes 0

Entering Maintenance Nodes 0

Total Datanode Volume Failures 0(0B)

Number of Under-Replicated Blocks 4

Number of Blocks Pending Deletion o]

Block Deletion Start Time Fri May 31 10:30:14 +0200 2019

Last Checkpoint Time Fri May 31 10:29:56 +0200 2019

NameNode Journal Status

Current transaction ID: 271

Journal Manager State
Filejour (r EditLogFileO urrent
/namenode) Jedits_inprogress_0000000000000000271)

NameNode Storage

Storage Directory Type State

/homerales/hdfs/namenode IMAGE_AND_EDITS Failed

DFS Storage Types

Storage Type Configured Capacity Capacity Used Capacity Remaining Block Pool Used Nodes In Service

DIsK 15.62 GB 2.56 MB (0.02%) 7.73 GB (49.46%) 2.56 MB 2

Hadoop, 2018.

Figure 6.2: Screenshot from the information web page on Apache Hadoop
with multiple nodes.

67

17.

18.

19.

Save the properly functioning virtual environments and put them in a
saved suspended state:

$ for i in {1..3}; do vboxmanage \
controlvm NO8—Hadoop—Cluster—$i \
savestate; done

Export the OVA image for the created environment. The exported file
size is approximately 6 GB. During this time we see the progress of the
process:

$ vboxmanage export NO8—Hadoop—Cluster—{1..3} \
—o0 NO8—Hadoop—Cluster.ova

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%
Successfully exported 3 machine(s) .

Write down an exercise report (for example, in the same manner that
the solution was described here in this material).

68

Chapter 7

Conclusion

An overview of collected study materials was provided through the chapters
of this document, intended for computer exercises in the subject Cloud Com-
puting Deployment and Management, included in the second-cycle Bologna
Study Programme Computer Science and Information Technologies as a full-
time study unit. In the continuation of the work within the preparation
of study materials, an extended collection of additional exercises and study
materials is especially planned for this subject in the form of a textbook.

The next page provides the attachments in which the solutions to the
exercises are given in computerised form. Due to limitations, some files are
divided into several smaller files. After unpacking, from these OVA images
are obtained.

69

List of e-material linked
attachments at DKUM

These attachments were archived in the Slovenian version, links are below.

File: NO1-Linux-VM.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
ZIP: NO1-Linux-VM.zip

File: N02-Linux-Cluster.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

ZIP: N0O2-Linux-Cluster.zip, N02-Linux-Cluster.z01, N02-Linux-Cluster.z02,
N02-Linux-Cluster.z03, N02-Linux-Cluster.z04, N02-Linux-Cluster.z05

File: N03-MPI-PingPong.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

ZIP: N03-MPI-PingPong.zip, N03-MPI-PingPong.z01, N03-MPI-PingPong.z02,
N03-MPI-PingPong.z03, N03-MPI-PingPong.z04, N03-MPI-PingPong.z05,
N03-MPI-PingPong.z06

File: N04-MPI-Cluster.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng

ZIP: N04-MPI-Cluster.zip, N04-MPI-Cluster.z01, N04-MPI-Cluster.z02,
N04-MPI-Cluster.z03, N04-MPI-Cluster.z04, N04-MPI-Cluster.z05,
N04-MPI-Cluster.z06

File: NO7-Hadoop-Single.ova (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
ZIP: N07-Hadoop-Single.zip

File: N08-Hadoop-Cluster (password for sudo: 12345)
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
ZIP: N08-Hadoop-Cluster.zip, N08-Hadoop-Cluster.z01, N08-Hadoop-Cluster.z02

70

https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
https://dk.um.si/Dokument.php?id=134391&lang=eng
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
https://dk.um.si/Dokument.php?id=134392&lang=eng
https://dk.um.si/Dokument.php?id=134394&lang=eng
https://dk.um.si/Dokument.php?id=134395&lang=eng
https://dk.um.si/Dokument.php?id=134396&lang=eng
https://dk.um.si/Dokument.php?id=134399&lang=eng
https://dk.um.si/Dokument.php?id=134400&lang=eng
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
https://dk.um.si/Dokument.php?id=134401&lang=eng
https://dk.um.si/Dokument.php?id=134402&lang=eng
https://dk.um.si/Dokument.php?id=134403&lang=eng
https://dk.um.si/Dokument.php?id=134404&lang=eng
https://dk.um.si/Dokument.php?id=134405&lang=eng
https://dk.um.si/Dokument.php?id=134406&lang=eng
https://dk.um.si/Dokument.php?id=134407&lang=eng
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
https://dk.um.si/Dokument.php?id=134408&lang=eng
https://dk.um.si/Dokument.php?id=134409&lang=eng
https://dk.um.si/Dokument.php?id=134410&lang=eng
https://dk.um.si/Dokument.php?id=134411&lang=eng
https://dk.um.si/Dokument.php?id=134412&lang=eng
https://dk.um.si/Dokument.php?id=134415&lang=eng
https://dk.um.si/Dokument.php?id=134416&lang=eng
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
https://dk.um.si/Dokument.php?id=134416&lang=eng
https://dk.um.si/IzpisGradiva.php?id=77676&lang=eng
https://dk.um.si/Dokument.php?id=134418&lang=eng
https://dk.um.si/Dokument.php?id=134419&lang=eng
https://dk.um.si/Dokument.php?id=134420&lang=eng

University of Maribor

Faculty of Electrical Engineering
and Computer Science

	Foreword
	Introduction — General Information about the Subject, Exercises, and Tasks
	Content Overview

	Virtual Environments — Exercise N01-Linux-VM
	Instructions
	Solution

	Deploying Instances and Managing Virtual Networks in a Cluster — Exercise N02-Linux-Cluster
	Instructions
	Solution

	Deploying a Cloud for a Distributed Service and Messaging Communication — Exercise N03-MPI-PingPong
	Exercise: N03-MPI-PingPong
	Solution

	Deploying Cloud Computing by Sharing Resources between Multiple Distributed Services and Communication by Sending Multiple Types of Messages — Exercise N04-MPI-Cluster
	Exercise: N04-MPI-Cluster
	Solution

	Apache Hadoop, MapReduce, and YARN in a Single-node Virtual Environment: Deploying and Managing a Distributed System — Exercise N07-Hadoop-Single
	Exercise: N07-Hadoop-Single
	Solution

	Multiple Nodes with Hadoop — Exercise N08-Hadoop-Cluster
	Exercise: N08-Hadoop-Cluster
	Solution

	Conclusion
	Blank Page
	Blank Page
	Blank Page

