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Abstract

Let diamy;,(G) denote the minimum diameter of a strong orientation of G and let
G X H denote the strong product of graphs G and H. In this paper we prove that
diamuyin (P, ¥ P,) = diam(P,, X P,,) for m,n > 5, m # n, and diam,;, (P, X P,,) =
diam(P,, ¥ P,) + 1 for m,n > 5, m = n. We also prove that diam,,;, (G X H) <
max {diamyin (G), diammyi, (H)} for any connected bridgeless graphs G and H.
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1 Introduction

Let D = (V(D), A(D)) be a directed graph. If (u,v) € A(D), we write u — v. A
uv-path is a directed path u = ujus . . . u,, = v from a vertex u to a vertex v. The length of
the path u = ujus ... u, = visn — 1. If every vertex in D is reachable from every other
vertex in D, we say that directed graph D is strong (there is a directed uv-path in D for
every u,v € V(D)). The distance from u to v is the length of a shortest directed uv-path
in D, denoted by distp (u,v). The greatest distance among all pairs of vertices in D is the
diameter of D, so

diam (D) = max{distp(u,v) | u,v € V(D)}.

Note that the distance of two vertices u, v in undirected graph G, distg(u, v), is the length
of a shortest undirected uwv-path in G and the greatest distance between any two vertices in
G is the diameter of G, denoted by diam(G).

Let G be an undirected graph. An orientation of G is a digraph D obtained from G
by assigning to each edge in G a direction. Let D(G) denote the family of all strong
orientations of G. In [9] it is proved that every connected bridgeless graph admits a strong
orientation. We define the minimum diameter of a strong orientation of G as

diamp,ip (G) = min{diam(D) | D € D(G)}.

E-mail address: tjasa.paj@um.si (TjaSa Paj Erker)

©@@® This work is licensed under http://creativecommons.org/licenses/by/3.0/



2 Art Discrete Appl. Math. 2 (2019) #P1.04

The parameter diam,,;, (G) was studied by many authors, because it is important from
theoretical and practical points of view, as an application in traffic control problems. Ori-
entations of graphs can be viewed as arrangements of one-way streets, if G is thought of
as the system of two-way streets in a city, and we want to make every street in the city
one-way and still get from every point to every other point (see [9, 10]).

For every bridgeless connected graph G of radius r it was shown, see [I], that
diamyin (G) < 2r% +2r. There were also some determined values of the minimum diame-
ter of a strong orientation of the Cartesian product of graphs. For Cartesian product of two
paths it was proved that diamy;, (P, O P,) = diam(P,,, J P,), form > 3 and n > 6,
see [5]. In [8] it was proved that diam,,;, (C,, O Cy,) = diam(C,,, O C,,) for m,n > 6. In
[7] Koh and Tay proved that diam,;, (771 O T5) = diam(7} O T5) for trees 77 and T with
diameters at least 4. They also studied the diameter of orientations of K, 11 K,,, K,,, O P,,,
P, 0OC, and K,,0C,, (see [4, 5, 6]).

In [3], the upper bound for the strong radius and the strong diameter of Cartesian prod-
uct of graphs are determined.

In this article we consider the minimum diameter of strong orientations of strong prod-
ucts of graphs. The strong product of graphs G and H is the graph, denoted by GX H, with
the vertex set V(G X H) = V(G) x V(H) where two distinct vertices (u,v) and (v, v")
are adjacent in G X H if and only if uv’ € E(G) and v = v/, oru = v/ and vv’ € E(H),
oruu’ € E(G) and vv’ € E(H). Forv € V(H) we define the G-layer G,:

Gy = {(u,v) |u e V(G)}.

Analogously we define H-layers.
In the next section we prove that diam,,;, (P, X P,,) = diam(P,,, X P,), form,n > 5,
m # n and that diam,;, (P, X P,) = diam(P,,, X P,) + 1, form,n > 5, m = n.

2 Orientations of P,,, X P,,

In [7] Koh and Tay proved that diam;, (P, d P,) = diam(P,,OF,), for m > 5 and
n > 5. We use some of their notations. So we will define four sections of V(P,,, K F,,)
and two basic orientations of Ps X P;, where s,t > 3, similarly as it was introduced in [7].
For m,n > 5 we define

(i) Southwest Section SW = {(i,7) |1 <i < [2], 1< < [2]};

(ii) Northwest Section NW = {(i,j) |1 <i < [2],[2H] <j<n};
(iii) Southeast Section SE = { i,7) {—11 <i1<m,1<j5< [g]}
(iv) Northeast Section NE = {(i, ) | [ ] <i <m, [2E] <j <n}.

We define two basic orientations of Py X P;, where s,t > 3: if s < t, we define the
orientation F of P, X P; as:
() For1<i<s—land2<j<t (i,j) = (i+1,5—1);
(i) Forl1<i<s—land1 <j<t—1,(i+1,j+1)— (4,5)ifj—i>t— sand
(i,j) = G+ 1,j+)ifj—i<t—s;
(iii) Forl1 <i<s—1land2<j <t (i,7) = (4,5 — 1);
(iv) For1 <j<t—1,(s,5) = (s,7+1);
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V) Forl<i<s—landl1<j<t—1,(i,5) = (i+1,j);
(vi) For2 <i<s, (i,t) = (i — 1,¢);

and if s > ¢, we define the orientation F5 of P, X P; as:

(i) For2<i<sand1<j<t—1,(i,5) = (i—1,j+1)

(i) Forl1 <i<sandl < j <t (G+1,j+1) — (i,j)ifi —j > s—tand
(G,j)—=(+1j+Difi—j<s—t

(i) For1 <i<s—land1<j<t—1,(i,j) = (i,j +1);

(iv) For2 < j <t,(s,5) = (8,5 —1);

(V) For2<i<sandl1<j<t-—1,(i7) — (i—1,5);

(vi) For1 <i<s—1,(i,t) = (i+1,0).

The orientation F; of P3 X Py and the orientation F5 of P, X Pj5 is shown in Figure 1.

(s,1)

Fy

Figure 1: Orientations F and F5.

Observation 2.1. If s < t, for any (i,7) € V(Fy), distg, ((4, ), (s,t — 1)) <t — 2.
Proof. Let (i,j) € V(Fy). We shall consider four cases.

(i) Ifj#tandj >i+t—s—1,then (i,j) = (i+1,j) = - = (J—(t—9)+1,j) —
(j—(t—s)+2,j+1)— -+ = (s,t—1)isapath of length at most s — 1 < ¢ — 2.

(i) Ifj Atand j <i+t—s—1,then (i,5) — (i+1,7+1) = - = (s,j+s—1) =
(s,j+s—i+1)—=---— (s,t —1)is apath of length at most ¢t — 2.

(iii) If j =tand i # s, then (4,¢) = (i + 1L, t —1) = (i +2,t —1) = - — (s,t — 1)
is a path of length at most s — 1 <t — 2.

(iv) If j = tand i = s, then (s,t) — (s — 1,t — 1) — (s, — 1) is a path of length
two. O

Observation 2.2. If s < t, for any (i,j) € V(Fy), distr, ((4,7), (s,t)) <t —1.
Proof. Since (s,t — 1) — (s,t), the claim follows by Observation 2.1:
distp, ((4,7), (s,t)) = distg, ((5,7), (s, t — 1)) +1<s—1+1<t—1. O

Observation 2.3. If s < t, forany (i,7) € V(Fy), distg, ((s — 1,¢), (¢,7)) <t — 1.
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Proof. Let (i,j) € V(Fy). We shall consider four cases.
() fi#sandj>i+t—s,then(s—1,t) = (s—2,t) = - = i+ (t—j),t) —
(t+({t—j)—1,t—=1) = -+ = (4,7) is a path of length at most s —2 < ¢t — 2.

(i) Ifi #sand j <i4+t—s,then (s—1,t) = (s—1,t—1) = (s—2,t—2) > --- =
(i,i+t—s)— (i,i+t—s—1) —---— (4,7) is a path of length at most ¢ — 1.

(i) Ifi = sandj £t (s—1,t) = (s— Lt —1) = (s — 1,t —2) — -+ —
(s—1,74+1) = (s,j) is a path of length at most ¢ — 1.

(iv) Ifi = sand j = ¢, then (s — 1,t) — (s,t — 1) — (s, 1) is a path of length two. [
Observation 2.4. If s < t, for any (i,j) € V(Fy), distp, ((s,t), (i,7)) <t — 1.

Proof. Since (s,t) — (s—1,t) and (s,t) — (s—1,t—1), the proof is similar as the proof
of Observation 2.3. U

Observation 2.5. If s = t, for any (i,j) € V(Fy), distg, ((7,7), (s, 8)) < s.
Proof. Let (i,j) € V(Fy). We shall consider three cases.
() Ifj#tandj >i—1,then (i,5) = (i+1,5) = - = (G+1,5) = (+2,j+1) —
- — (s,s — 1) — (s, s) is a path of length at most s.

() Ifj #tand j < i—1,then (¢,j) = (i+1,7+1) = - = (s, +s—1i) =
(s,j+s—i+1)—---— (s,s)is apath of length at most s — 1.

(i) Ifj = sandi # s, then (4,5) = (i+1,5—1) = (i+2,s—=1) = -+ = (s,s—1) —
(s, s) is a path of length at most s. O
Observation 2.6. If s = t, for any (i,j) € V(F), distp, ((s,s), (¢,7)) < s —1.
Proof. Let (i,j) € V(Fy). We shall consider three cases.
() Ifi # sand j > i, then (s,8) — (s —1,5) = - = (i + (s — j),8) —
(t+(s—j)—1,t—=1) = ... = (4,7) is a path of length at most s — 1.

(i) Ifi # sand j < i, then (s,8) — (s — 1,5 — 1) — -+ — (3,d) — (i,i — 1) —
— (4, 7) is a path of length at most s — 1.

(i) Ifi = sand j # s—1,(s,8) > (s—1,s—1) > (s—1,s—2) > -+ —
(s—1,74+1) = (s,j) is a path of length at most s — 1.

(iv) Ifi =sand j = s — 1, then (s,s) = (s — 1,5 — 1) — (s,s — 1) is a path of length
two. O

Similarly as above, we can prove next Observations 2.7-2.10.
Observation 2.7. If s > t, for any (i,j) € V(Fz), distg, ((s,t — 1), (4,7)) < s — 1.
Observation 2.8. If s > t, for any (i,j) € V(F3), distp,((s, 1), (¢,7)) < s—1.
Observation 2.9. If s > t, for any (i,j) € V(F2), distg, ((4,7), (s — 1,t)) < s —2.

Observation 2.10. If s > t, for any (i,j) € V(F2), distg, ((4,7), (s,t)) < s — 1.
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In [7], Koh and Tay also introduced a key-vertex v € V(F') of digraph F'. Let F' €
D(P; K P,). We say that a vertex v € V(F) is a key-vertex of F if
distp(u,v) < max{t,s} and distp(v,u) < max{t,s}

for all u € V(F). Note that (s, t) is a key-vertex of F; and of Fb.
Analogously as F and F5, we define 6 other isomorphic orientations Fj;, 3 < i < 8 of
P, X P, as shown in Figures 2 and 3.

F4 FS

F1 F5

Figure 2: Orientations Fi, Fy, F5 and Fg.

Obviously vertices denoted by black dots in Figures 2 and 3 are key-vertices of F; for
1 =1,...,8 (similar arguments as in Observations 2.1-2.6).

Lemma 2.11. Let m,n > 5 m # nand m,n =1 (mod 2). Then
diamyin (P, X P,) <max{m —1,n—1}.
Proof. Let m < n. We define the orientation D of P,, X P, by F}, Fy, F5 and Fg:

(a) orient the section NW as FJ;

(b) orient the section NE as Fy;

(c) orient the section SW as F7;

(d) orient the section SE as F5.
As an illustration, the orientation of P; X P; is shown in Figure 4. The vertex z =
(mtl ndl) s the key-vertex of each Fj, for i = 1,4, 5, 8. For any u,v € V(D),

distp(u,v) < distp(u, z) + distp(z, v).
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3 Iy

£ s

Figure 3: Orientations Fb, F3, Fg and Fr.

Since distp(u,z) < 5% and distp(z,v) < 25t (similarly as in Observation 2.2 and
Observation 2.4), we have

n—1 n-—1
2 2

=n-—1.

distp (u,v) <

If m > n we define the orientation D of P,,, X P, by F5, F3, Fg and Fr. Similarly as
above, we have

—1 —1
distp(u,v) < distp(u, z) + distp(z,v) < m2 mT =m-1
(see Observation 2.10 and Observation 2.8). O
Lemma 2.12. Let m,n > 6, m #nand m,n =0 (mod 2). Then
diampin (P, ¥ P,) < max{m — 1,n —1}.
Proof. Let m < n. Denote 2y = (%,%5), z4 = (5,5 +1), 25 = (F +1,%) and

28 = (% + 1, § + 1). We define the orientation D of P,,, ¥ P, by F, Fy, F5 and Fg as
follows:

(a) orient the section NW as Fj;

(b) orient the section NE as Fg;

(c) orient the section SW as Fi;

(d) orient the section SE as F5;

(e) Orientz; — (5 —1,5+1),(F+1,5-1) = 21,24 — (5 —1,%)
za,25 = (5 +2,5+1), (5,5 1) = z5,28 = (5 +2,5
and orient all other edges arbitrarily.
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n

Ey Iy

nt1

I Fs
1 — )

Figure 4: The orientation D of P; X P;.

n
Fy Fyg
n
s T1 24 28
n 21 25
2
F1 F5
1 m m
1 7 3t m

Figure 5: The orientation D of Ps X Ps.
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The orientation D is shown in Figure 5. Note that vertices z1, z4, 25 and zg are key-vertices
of F;,fori =1,4,5,8.
Let u,v € V(D). We claim that dist p (u, v) < n — 1. There are four cases.

(i) If w and v are in the same section, then we have

1+2 1=n—2

distp(u,v) < distp(u, z;) + dist p(z;,v) < % 5

as in Observation 2.2 and Observation 2.4.
(i) If u € NW and v € SW, then (see Observation 2.2 and Observation 2.3):

distp (u, v) < distp(u, z4) + distp (24, (% — 1, %)) +distp (B —1,%2),v)

n n
<—-——14+1+=-—-1=n-1.
=35 + -|-2 n

The argument is similar if u € SW andv € NW, oru € NE and v € SE, oru € SE
and v € NE.

(iii) Ifu € SW and v € SE, then the claim follows from Observation 2.1 and Observation
2.4, similarly as above. Also, if u € SE and v € SW, or u € NW and v € NE, or
u € NE and v € NW, then the argument is analogous.

(iv) If u € SW and v € NE, then (see Observation 2.1 and Observation 2.3) we have
distp (u,v) < distp (u, (2, % — 1)) +distp (%, 2 —1),25) +
+distp( (B 42,3 41)) +distp (3 +2,%+1),0)
n_ n

The argument is similar for v € NE and v € SW, or u € NW and v € SE, or
u € SEandv € NW,

Analogously if m > n, we have distp(u, v) < m — 1 for any u,v € V(D). O
Lemma 2.13. Letm > 5,n > 6, m =1 (mod 2) andn =0 (mod 2). Then

diampin (P, ® P,) < max{m —1,n —1}. 2.1

Proof. Let m < n. Denote z; = (21, 2) and 24 = (™, 2 + 1). We define the

orientation D of P,, X P, by F}, Fy, F5 and Fy as follows:
(a) orient the section NW as Fy;
(b) orient the section NE as Fg;
(c) orient the section SW as Fi;
(d) orient the section SE as F5;

(e) orient zy — (L —1,2), 21 — 24, 24 — (2L + 1, 2), and orient all other edges

arbitrarily.

The orientation D is shown in Figure 6. Note that vertex z; is a key-vertex of F} and Fj5
and that vertex z,4 is a key-vertex of F}; and F5.
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Fy Iy

1 5 m
Figure 6: The orientation D of P5 X Ps.

Let u,v € V(D). There are three cases.

(1) Ifu ¢ NW UNE and v € NW U NE, then we have
distp (u,v) < distp(u, 24) + distp(z4,v) < g -1+ g —1=n-2

(see Observation 2.2 and Observation 2.4). The case that {u,v} C SW U SE is
similar.
(ii) If u € SWUSE and v € NW UNE, then (see Observation 2.2 and Observation 2.4):
distp (u,v) < distp(u, 21) + distp (21, 24) + distp (24, v)

n n
<—-——-14+1+=-1=n-1.
=5 + +2 n

(iii) If v € NW U NE and v € SW, then from Observation 2.2 and Observation 2.3:
distp(u, v) < distp(u, 24) + distp (z4, (mT'H -1, %)) +
Fistp (52 - 1,3) )
n n
<—-——-1414—--1=n-1.
=5 + 1+ 5 n
The case that w € NW U NE and v € SE is similar.

Let m > n. Denote 2o = (“5, 2) and z3 = (4L, 2 + 1). We define the orientation

D of P,, X P, by F5, F3, Fs and F7 as follows:

(a) orient the section NW as Fj;
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(b) orient the section NE as Fx;
(c) orient the section SW as Fb;

(d) orient the section SE as Fg;

(e) orient (™ —1,%) — 23, 23 — 22, (251 +1, %) — 23 and all other edges oriented
arbitrarily.
The rest of the proof is analogously as above. O

Note that if m > 5andn > 6, m = 0 (mod 2) and n = 1 (mod 2), we also
have (2.1).

Lemma 2.14. Letm > 5, m =1 (mod 2). Then
diampin (P, X Py,) < m.

Proof. Denote z = (T'H, mT'H) We define the orientation D of P,, X P, by F}, Fy, F5
and Fy as follows:

(a) orient the section NW as Fj;

(b) orient the section NE as Fg;

(c) orient the section SW as F1;

(d) orient the section SE as Fj.
Note that z is a key-vertex of F;, fori = 1,4, 5, 8. For any u,v € D we have

m+1 m-—1
—=m

2 2

distp(u, v) < distp(u, z) + distp(z,v) <
as in Observation 2.5 and Observation 2.6. O
Lemma 2.15. Letm > 6, m =0 (mod 2). Then
diampin (P, X Py,) < m.

Proof. The proof is similarly as the proof of Lemma 2.12 (it follows from Observations 2.1,
2.3,2.5 and 2.6). O

In [2], it is proved that if (u,v) and (v, v") are vertices of a strong product G X H, then
distemm ((v,v), (u',v")) = max{distg (u, u'), dist g (v, v")}.

Since diam(P,,,) = m — 1, we get diam(P,, ¥ P,) = max{m — 1,n — 1}. Since
diam(P,, K P,,) = distp_xp, ((1,1), (m,m)) = m — 1 and there is only one path from

(1,1) to (m,m) in P, X P, possessing the length m — 1, it follows that
distp((1,1), (m,m)) >m —1 or distp ((m,m),(1,1)) >m —1

forany D € D(P,, X P,). To combine these two observations with Lemmas 2.11-2.15,
we obtain the following theorem:
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Theorem 2.16. If m,n > 5, then

di P,XP,), ) ;
diamyin (P B P,) = 4 8m( ) ifm 7 n
diam(P,, ¥ P,) + 1, ifm=n.
At the end of this section, we give the bounds of diam;, (P, X P,,) for m < 5.
From Figure 7, we see that n — 1 < diampin(P, ¥ P2) = nforn > 2, n—1 <
diampyin (P, X P3) =nforn > 3and n — 1 < diamyi, (P, X Py) =n + 1 forn > 4.

Py

Py
Ps

P,
Py

P,

Figure 7: Orientations of P, X P, P, X Ps and P,, X Py.

3 Strong orientation of graphs

In this section we shall prove the next theorem.

Theorem 3.1. Let G and H be connected bridgeless graphs. Then
diamp,in (G ¥ H) < max{diamy,(G), diammyi, (H)}.

Proof. Let D¢ be a strong orientation of G such that diam(D¢) = diamp;,(G) = d; and
let D be a strong orientation of H such that diam(Dy) = diam,i, (H) = d2. We define
the orientation Doy of G X H as:

(a) Every edge with endvertices in layers G, v € V(H) gets the orientation Dg;.

(b) Every edge with endvertices in layers H,,, u € V() gets the orientation Dy .

(¢) Ifu — v in G and v — v’ in H, then (u,v) — (v/,v’), all other edges are oriented
arbitrarily.
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We have to prove that for every pair of vertices (u,v), (v/,v’) in G K H there is a
directed path P from (u,v) to (u/,v’) in Dgmpy, such that the length of P is at most
max {dl s dg}

If (u,v) and (v, v) are vertices in the same G-layer or if (u,v) and (u, v’) are vertices
in the same H -layer, then there is a directed path from (u, v) to (u’,v) in Dgr g of length
at most d; or a directed path from (u, v) to (u, v’) of length at most ds.

Now let (u,v) and (u/, v') be arbitrary vertices in Dggg. There is a directed path u =
UUs - . - Uy = v’ in G of length at most d; and there is a directed path v = vyvs ... v, = v’
in H of length at most d>. Without loss of generality we can assume m > n. We have

(u,v) = (ug,v2) = (uz,v3) = -+ = (Up,vy) —

(Unt1,0n) = = = (Um,vn) = (U, 0)
is a path of length at most d; . O

Since diamyi, (Cs) = 2 and diam,y,;, (Cs B C3) = 2, the bound is tight.
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