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Abstract

A graph is called half-arc-transitive if its full automorphism group acts transitively on
vertices and edges, but not on arcs. It is well known that for any prime p there is no half-
arc-transitive graph of order p or p2. In 1992, Xu classified half-arc-transitive graphs of
order p3 and valency 4. In this paper we classify half-arc-transitive graphs of order p3 and
valency 6 or 8. In particular, the first known infinite family of half-arc-transitive Cayley
graphs on non-metacyclic p-groups is constructed.
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1 Introduction
A (di)graph Γ consists of a pair of sets (V (Γ), E(Γ)), where V (Γ) is its vertex set, and
E(Γ) is its edge set. For a graph, E(Γ) is also called undirected edge set and is a subset
of the set {{u, v} | u, v ∈ V (Γ)}, and for a digraph, E(Γ) is also called directed edge
set and is a subset of the set {(u, v) | u, v ∈ V (Γ)}. For an edge {u, v} of a graph
Γ, we call (u, v) an arc of Γ. An automorphism of a (di)graph Γ is a permutation on
V (Γ) preserving the adjacency of Γ, and all automorphisms of Γ form a group under the
composition of permutations, called the full automorphism group of Γ and denoted by
Aut(Γ). A (di)graph Γ is vertex-transitive or edge-transitive if Aut(Γ) acts transitively
on V (Γ) or E(Γ), respectively. A graph Γ is arc-transitive or symmetric if Aut(Γ) is
transitive on the arc set of Γ, and half-arc-transitive provided that it is vertex-transitive,
edge-transitive, but not arc-transitive. Throughout this paper, all (di)graphs Γ are finite and
simple, that is, |V (Γ)| is finite and there are no loops or multiple edges.
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Let G be a permutation group on a set Ω and α ∈ Ω. Denote by Gα the stabilizer of α
in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if
Gα = 1 for every α ∈ Ω and regular if G is transitive and semiregular.

Let G be a finite group and S a subset of G such that 1 /∈ S. The Cayley digraph
Γ = Cay(G,S) on G with respect to S is defined as the digraph with vertex set V (Γ) = G
and directed edge set {(g, sg) | g ∈ G, s ∈ S}. The Cayley digraph Cay(G,S) is connected
if and only if G = 〈S〉, and if S is symmetric, that is, S−1 = {s−1 | s ∈ S} = S,
then Cay(G,S) can be viewed as a graph by identifying the two oppositely directed edges
(g, sg) and (sg, g) as an undirected edge {g, sg}. Thus a Cayley graph can be viewed as a
special case of a Cayley digraph. It is easy to see that Aut(Cay(G,S)) contains the right
regular representation Ĝ = {ĝ | g ∈ G} ofG, where ĝ is the map onG defined by x 7→ xg,
x ∈ G, and Ĝ is regular on the vertex set V (Γ). This implies that a Cayley digraph is
vertex-transitive. Also, it is easy to check that Aut(G,S) = {α ∈ Aut(G) | Sα = S} is a
subgroup of Aut(Cay(G,S))1, the stabilizer of the vertex 1 in Aut(Cay(G,S)). A Cayley
digraph Cay(G,S) is said to be normal if Ĝ is normal in Aut(Cay(G,S)).

In 1966, Tutte [26] initiated an investigation of half-arc-transitive graphs by showing
that a vertex- and edge-transitive graph with odd valency must be arc-transitive. A few
years later, in order to answer Tutte’s question of the existence of half-arc-transitive graphs
of even valency, Bouwer [5] gave a construction of a 2k-valent half-arc-transitive graph
for every k ≥ 2. Following these two classical articles, half-arc-transitive graphs have
been extensively studied from different perspectives over decades by many authors. See,
for example, [3, 13, 15, 18, 20, 23, 25, 33]. One of the standard problems in the study of
half-arc-transitive graphs is to classify such graphs of certain orders. Let p be a prime. It is
well known that there are no half-arc-transitive graphs of order p or p2, and by Cheng and
Oxley [6], there are no half-arc-transitive graphs of order 2p. Alspach and Xu [2] classified
half-arc-transitive graphs of order 3p and Dobson [9] classified half-arc-transitive graphs
of order a product of two distinct primes. Classification of half-arc-transitive graphs of
order 4p had been considered for more than 10 years by many authors, and recently was
solved by Kutnar et al. [16]. Despite all of these efforts, however, further classifications of
half-arc-transitive graphs with general valencies seem to be very difficult.

In view of the fact that 4 is the smallest admissible valency for a half-arc-transitive
graph, special attention has rightly been given to the study of tetravalent half-arc-transitive
graphs. In particular, constructing and classifying tetravalent half-arc-transitive graphs is
currently an active topic in algebraic graph theory (for example, see [10, 11, 22, 28]).
Marušič [20] and Šparl [27] classified tightly attached tetravalent half-arc-transitive graphs
with odd and even radius, respectively. For quite some time, all known examples of tetrava-
lent half-arc-transitive graphs had vertex-stabilizers that are either abelian or dihedral:
For instance, Marušič [21] constructed an infinite family of tetravalent half-arc-transitive
graphs having vertex stabilizers isomorphic to Zm2 for each positive integer m ≥ 1, and
Conder and Marušič [7] constructed a tetravalent half-arc-transitive graph with vertex-
stabilizer isomorphic toD4 of order 8. Recently, a tetravalent half-arc-transitive graph with
vertex-stabilizers that are neither abelian nor dihedral was constructed by Conder et al. [8].

Xu [31] classified tetravalent half-arc-transitive graphs of order p3 for each prime p,
and later this was extended to the case of p4 by Feng et al. [10]. In this paper, we classify
half-arc-transitive graphs of order p3 and valency 6 or 8. In these new constructions, there
is an infinite family of half-arc-transitive Cayley graphs on non-metacyclic p-groups, and
to our best knowledge, this is the first known construction of such graphs.
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Denote by Zn the cyclic group of order n as well as the ring of order n. From elemen-
tary group theory we know that up to isomorphism there are only five groups of order p3,
that is, three abelian groups Zp3 , Zp2 ×Zp and Zp×Zp×Zp, and two non-abelian groups
G1(p) and G2(p) defined as

G1(p) = 〈a, b | ap
2

= 1, bp = 1, b−1ab = a1+p〉

and
G2(p) = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉.

It is easy to check that the center of G1(p) is 〈ap〉 and the center of G2(p) is 〈c〉.
Denote by Z∗n the multiplicative group of the ring Zn consisting of numbers coprime to

n. Let e be an element of order j < p in Z∗p2 . Since Z∗p2 ∼= Zp(p−1), we have j | (p−1). For

each k ∈ Z∗p, let T j,k = {bka, bkae, . . . , bkaej−1

, (bka)−1, (bkae)−1, . . . , (bkae
j−1

)−1} be
a subset of G1(p) and define

Γj,k(p) = Cay(G1(p), T j,k).

By Proposition 2.2, Γj,k(p) does not depend on the choice of the element e of order j.
Suppose 4 | (p − 1) and let λ be an element of order 4 in Z∗p. For each k ∈ Zp with

k 6= 2−1(1 + λ), let S4,k = {a, b, aλbλ−1ck, a−λ−1b−λc1−k, a−1, b−1, (aλbλ−1ck)−1,
(a−λ−1b−λc1−k)−1} be a subset of G2(p) and define

Γ4,k(p) = Cay(G2(p), S4,k).

There are exactly two elements of order 4 in Z∗p, that is, λ and λ−1 = −λ. Let

S4,s = {a, b, a−λb−λ−1cs, aλ−1bλc1−s, a−1, b−1, (a−λb−λ−1cs)−1, (aλ−1bλc1−s)−1},

where s ∈ Zp and s 6= 2−1(1−λ). For each k ∈ Zp and k 6= 2−1(1+λ), the automorphism
of G2(p) induced by a 7→ a, b 7→ aλ−1bλc1−k+λ, c 7→ cλ, maps S4,k to S4,k−λ, and so
Cay(G2(p), S4,k) ∼= Cay(G2(p), S4,k−λ). Since k 6= 2−1(1 + λ), we have k − λ 6=
2−1(1− λ). Thus, Γ4,k(p) does not depend on the choice of λ. The following is the main
result of the paper.

Theorem 1.1. Let Γ be a graph of order p3 for a prime p. Then we have:

(1) If Γ has valency 6 then Γ is half-arc-transitive if and only if 3 | (p − 1) and Γ ∼=
Γ3,k(p). There are exactly (p−1)/2 nonisomorphic half-arc-transitive graphs of the
form Γ3,k(p);

(2) If Γ has valency 8 then Γ is half-arc-transitive if and only if 4 | (p − 1) and Γ ∼=
Γ4,k(p) or Γ4,k(p). There are exactly p−1 nonisomorphic half-arc-transitive graphs
of the forms Γ4,k(p) and Γ4,k(p), with (p− 1)/2 such graphs in each form.

2 Preliminaries
We start by stating some group-theoretical results. For a group G and x, y ∈ G, denote
by [x, y] the commutator x−1y−1xy and by xy the conjugation y−1xy. The following
proposition is a basic property of commutators and its proof is straightforward (also see
[24, Subsection 5.1.5]):
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Proposition 2.1 ([14, Kapitel III, Hilfssätze 1.2 and 1.3]). Let G be a group. Then, for any
x, y, z ∈ G, we have [x, y] = [y, x]−1, [xy, z] = [x, z]y[y, z] and [x, yz] = [x, z][x, y]z .
Furthermore, if [x, y] commutes with x and y then for any integers i and j, [xi, yj ] =

[x, y]ij , and for any positive integer n, (xy)n = xnyn[y, x](
n
2).

We remark that it is easy to see that the equality (xy)n = xnyn[y, x](
n
2) holds also

for negative integers n if we define
(
n
2

)
= n(n−1)

2 . By Li and Sim [18, Theorem 1.1 and
Lemma 2.6], we have the following proposition.

Proposition 2.2. Let Γ be a Cayley graph on G1(p) of valency 2j with 1 < j < p. Then
Γ is half-arc-transitive if and only if j

∣∣(p − 1) and Γ ∼= Γj,k(p) for 1 ≤ k ≤ p − 1, and

Γj,k(p) ∼= Γj
′
,k
′

(p) if and only if j = j
′

and k = k
′

(mod p). Furthermore, for each
j
∣∣(p− 1) there exist exactly (p− 1)/2 nonisomorphic such graphs of the form Γj,k(p).

Since a transitive permutation group of prime degree p has a regular Sylow p-subgroup,
every vertex-transitive digraph of order a prime must be a Cayley digraph. Together with
the results given by Marušič [19], we have the following proposition.

Proposition 2.3. Any vertex-transitive digraph of order pk with 1 ≤ k ≤ 3 is a Cayley
digraph on a group of order pk.

For any abelian group H , the map h 7→ h−1, h ∈ H is an automorphism of H . By [10,
Proposition 2.10], we have the following proposition.

Proposition 2.4. Let G be a finite group and Cay(G,S) a connected half-arc-transitive
Cayley graph. Then, S does not contain an involution and for any s ∈ S, there is no
α ∈ Aut(G,S) satisfying sα = s−1. Furthermore, every edge-transitive Cayley graph on
an abelian group is also arc-transitive.

The following proposition is about isomorphisms between Cayley graphs on p-groups.

Proposition 2.5 ([17, Theorem 1.1 (3)]). Let Cay(G,S) and Cay(G,T ) be two connected
Cayley graphs on a p-group G with respect to subsets S and T , and let |S| = |T | < 2p.
Then Cay(G,S) and Cay(G,T ) are isomorphic if and only if there is an automorphism α
of G such that Sα = T .

Let Γ=Cay(G,S) be a Cayley digraph on a finite groupG. By Godsil [12, Lemma 2.2]
(also see [32, Proposition 1.5]), we have NAutΓ(Ĝ) = Ĝo Aut(G,S).

Proposition 2.6. A Cayley digraph Γ = Cay(G,S) is normal if and only if Aut(Γ)1 =
Aut(G,S).

A finite group G is called 2-genetic if each normal subgroup of G can be generated by
two elements. For a prime p, denote by Op(G) the largest normal p-subgroup of G, and by
Φ(G) the Frattini subgroup of G, that is, the intersection of all maximal subgroups of G.
We call G a p′-group if the order of G is not divisible by p. The following proposition is
about automorphism groups of Cayley digraphs on 2-genetic groups.

Proposition 2.7 ([30, Theorem 1.1]). Let G be a nonabelian 2-genetic group of order pn

for an odd prime p and a positive integer n, and let Γ = Cay(G,S) be a connected Cayley
digraph. Assume that Aut(G,S) is a p′-group and Γ is non-normal. Then p ∈ {3, 5, 7, 11}
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and ASL(2, p) ≤ Aut(Γ)/Φ(Op(A)) ≤ AGL(2, p). Furthermore, the kernel of A :=
Aut(Γ) acting on the quotient digraph ΓΦ(Op(A)) is Φ(Op(A)), and one of the following
happens:

(1) p = 3, n ≥ 5, and ΓΦ(Op(A)) has out-valency at least 8;

(2) p = 5, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 24;

(3) p = 7, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 48;

(4) p = 11, n ≥ 3 and ΓΦ(Op(A)) has out-valency at least 120.

In Proposition 2.7, the quotient digraph ΓΦ(Op(A)) has the orbits of Φ(Op(A)) on V (Γ)
as vertices, and for two orbits O1 and O2, (O1, O2) is a directed edge in ΓΦ(Op(A)) if and
only if (u, v) is a directed edge in Γ for some u ∈ O1 and v ∈ O2.

3 Proof of Theorem 1.1
Let Γ be a half-arc-transitive graph and A = Aut(Γ). Let (u, v) be an arc of Γ and set
(u, v)A = {(ua, va) | a ∈ A}. Define digraphs Γ1 and Γ2 having vertex set V (Γ) and
directed edge sets (u, v)A and (v, u)A, respectively. Since Γ is half-arc-transitive, for every
edge {x, y} ∈ E(Γ), each of Γ1 and Γ2 contains exactly one of the directed edges (x, y)
and (y, x), and Γ is connected if and only if Γi is connected for each i = 1, 2. Furthermore,
A = Aut(Γi) and Γi is A-edge-transitive. In what follows we denote by

−→
Γ one of the

digraphs Γ1 and Γ2.
Let Γ be a half-arc-transitive graph of order p3 for a prime p. Since there exists no

half-arc-transitive graph of order less than 27 (see [1]), we have p ≥ 3. By Proposition 2.3,
Γ = Cay(G,S) and

−→
Γ = Cay(G,R). Since a group of order p or p2 is abelian and there is

no half-arc-transitive Cayley graph on an abelian group by Proposition 2.4, Γ is connected,
and so G = 〈R〉 and S = R ∪R−1. Furthermore, G = G1(p) or G2(p), where

G1(p) = 〈a, b | ap
2

= 1, bp = 1, b−1ab = a1+p〉,
G2(p) = 〈a, b, c | ap = bp = cp = 1, [a, b] = c, [a, c] = [b, c] = 1〉.

Since G = 〈R〉 is non-abelian, R contains two elements x and y such that xy 6= yx,
and since |G| = p3, we have 〈x, y〉 = G. For G = G2(p), x and y have the same relations
as do a and b, which implies that we may assume that a, b ∈ R. Similarly, for G = G1(p)
we may assume that a ∈ R. Thus we have the following observation:

Observation 3.1. Let Γ be a half-arc-transitive graph of order p3 for a prime p. Then
Γ = Cay(G,S) and

−→
Γ = Cay(G,R), where G = G1(p) or G2(p) with p ≥ 3, G = 〈R〉

and S = R ∪R−1. Furthermore,

(1) if G = G1(p) then a ∈ R;

(2) if G = G2(p) then a, b ∈ R.

Let us begin by considering normal half-arc-transitive Cayley graphs on G2(p) of
valency 8. Since G2(p) has center 〈c〉, Proposition 2.1 implies bjai = aibjc−ij and
(aibj)k = akibkjc−2−1k(k−1)ij for i, j, k ∈ Zp. Our proofs will constantly be relying
on these facts.
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Lemma 3.2. Let Γ = Cay(G2(p), S) be a Cayley graph of valency 8. Then Γ is normal
and half-arc-transitive if and only if 4

∣∣(p− 1) and Γ ∼= Γ4,k(p) for some k.

Proof. Let Γ = Cay(G2(p), S) be normal and half-arc-transitive. Set A = Aut(Γ). By
Observation 3.1, we have

−→
Γ = Cay(G2(p), R) with p ≥ 3, G2(p) = 〈R〉 and S =

R∪R−1. We may further assume a, b, aibjck ∈ R. Since Γ has valency 8, we have |S| = 8
and |R| = 4. Since Γ is normal, Proposition 2.6 implies that A1 = Aut(G2(p), S) =
Aut(G2(p), R), which is transitive on R. Since |R| = 4, Aut(G2(p), R) ≤ S4. Thus,
Aut(G2(p), R) has a regular subgroup M on R such that M ∼= Z2 × Z2 or Z4.

Case 1: M ∼= Z2 × Z2. Let α1, α2 ∈ Aut(G2(p), R) and M = 〈α1〉 × 〈α2〉 ∼=
Z2 × Z2. Without loss of generality, we may assume that aα1 = b and bα1 = a, and so
cα1 = c−1. This yields that R = {a, b, aibjck, (aibjck)α1} = {a, b, aibjck, ajbic−ij−k}.
Since 〈α1, α2〉 ∼= Z2 × Z2, we may assume that aα2 = aibjck and (aibjck)α2 = a. Then
bα2 = ajbic−ij−k and so cα2 = ci

2−j2 . By Proposition 2.1,

a = (aibjck)α2 = (aibjck)i(ajbic−ij−k)j(ci
2−j2)k = (aibj)i(ajbi)jck(i2−j2+i−j)−ij2

= ai
2

bijc−2−1i2j(i−1)aj
2

bijc−2−1ij2(j−1)ck(i2−j2+i−j)−ij2

= ai
2+j2b2ijc−ij

3+k(i2−j2+i−j)−ij2−2−1i2j(i−1)−2−1ij2(j−1),

implying the following equations:

i2 + j2 = 1; (3.1)
2ij = 0; (3.2)

−ij3 + k(i2 − j2 + i− j)− ij2 − 2−1i2j(i− 1)− 2−1ij2(j − 1) = 0. (3.3)

As above, in what follows all equations are considered in Zp, unless otherwise stated.
Since α1 interchanges a and b, we can assume i = 0 by Eq. (3.2), and so j = ±1 by
Eq. (3.1). If j = −1 then S = {a, b, a−1c−k, b−1ck} ∪ {a−1, b−1, ack, bc−k}, and the
automorphism of G2(p) induced by a 7→ a−1, b 7→ bc−k, c 7→ c−1, fixes S setwise,
contrary to Proposition 2.4. If j = 1 then k = 0 by Eq. (3.3), implying that aibjck = b, a
contradiction.

Case 2: M ∼= Z4. Let α ∈ Aut(G2(p), R) and M = 〈α〉 ∼= Z4. Then R =

{a, aα, aα2

, aα
3}, and since G2(p) = 〈R〉, we have 〈a, aα〉 = G2(p) and so a 7→ a,

b 7→ aα induces an automorphism ofG2(p). We thus assume that aα = b, and α is induced
by a 7→ b, b 7→ aibjck, c 7→ c−i. It follows that

R = {a, b, aibjck, aijbi+j
2

c−i
2j+k(j−i)−2−1ij2(j−1)}.

Since

a = aα
4

= ai(i+j
2)bj(2i+j

2)ci
3j+(k−i2j)(i+j2)−ik(j−i)+2−1i2j2(j−1)−2−1ij(i+j2)(i+j2−1)

= ai(i+j
2)bj(2i+j

2)ck(i2+j2+i−ij)−i2j3+2−1ij[ij2−ij−(i+j2)(i+j2−1)],

we have the following equations:

i(i+ j2) = 1; (3.4)

j(2i+ j2) = 0; (3.5)

k(i2 + j2 + i− ij)− i2j3 + 2−1ij[ij2 − ij − (i+ j2)(i+ j2 − 1)] = 0. (3.6)
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By Eq. (3.5), either j = 0 or 2i+ j2 = 0.
Case 2.1: j = 0. By Eq. (3.4), i = ±1. If i = 1 then k = 0 by Eq. (3.6),

and hence aibjck = a, a contradiction. If i = −1 then S = {a, b, a−1ck, b−1ck} ∪
{a−1, b−1, ac−k, bc−k}, and the automorphism of G2(p) induced by a 7→ a−1, b 7→ bc−k,
c 7→ c−1, fixes S setwise, contrary to Proposition 2.4.

Case 2.2: 2i + j2 = 0. Clearly, i + j2 = −i. By Eq. (3.4), i2 = −1 and so ij2 =
1− i2 = 2. Since j2 = −2i, Eq. (3.6) implies 2k(1 + i+ ij) = −ij(1 + i+ ij), and hence
2ki(1 + i+ ij) = j(1 + i+ ij), implying 2ki− j = 0 or 1 + i+ ij = 0.

Suppose 2ki− j = 0. Then ij = −2k and k = −2−1ij. Since ij2 = 2, we have k =
−j−1 and k(j−i)+1 = −k(j+i)−1. It follows that S = {a, b, aibjck, a−2kb−ick(j−i)+1}
∪ {a−1, b−1, a−ib−jck, a2kbic−k(j+i)−1}. The automorphism of G2(p) induced by a 7→
a−1, b 7→ b−1, c 7→ c, fixes S setwise, contrary to Proposition 2.4.

Thus, 1 + i + ij = 0 and so j = i − 1. Then S = {a, b, aibi−1ck, a−i−1b−ic1−k} ∪
{a−1, b−1, a−ib1−ic−k+1+i, ai+1bick−i}. If k = 2−1(1 + i), then k = −k + 1 + i and
1 − k = k − i, and hence the automorphism of G2(p) induced by a 7→ a−1, b 7→ b−1,
c 7→ c, fixes S setwise, contrary to Proposition 2.4. Hence k 6= 2−1(1 + i). Note that
i2 = −1 implies that 4

∣∣ (p− 1) and i = λ is an element of order 4 in Z∗p. Then j = λ− 1
and k 6= 2−1(1 + λ). By the definition of Γ4,k(p) before Theorem 1.1, Γ ∼= Γ4,k(p).

To finish the proof, we only need to show that Γ4,k(p) = Cay(G2(p), S4,k) is normal
and half-arc-transitive. Note that S4,k = {a, a−1, b, b−1, aλbλ−1ck, a−λb1−λc−k+λ+1,
a−λ−1b−λc1−k, aλ+1bλck−λ}, λ is an element of order 4 in Z∗p, and k 6= 2−1(1 + λ). Let
A = Aut(Γ4,k(p)) and set R4,k = {a, b, aλbλ−1ck, a−λ−1b−λc1−k}. Then S4,k = R4,k ∪
R−1

4,k. Let α be the automorphism of G2(p) induced by a 7→ b, b 7→ aλbλ−1ck, c 7→ c−λ.
By Proposition 2.1, (aλbλ−1ck)α = a−λ−1b−λc1−k and (a−λ−1b−λc1−k)α = a. Thus,
α ∈ Aut(G2(p), S4,k) has order 4 and permutes the elements of R4,k cyclically, implying
that Ĝ2(p)o 〈α〉 is half-arc-transitive on Γ4,k(p). To prove the normality and the half-arc-
transitivity of Γ4,k(p), it suffices to show that A = Ĝ2(p) o 〈α〉.

Write L = Aut(G2(p), S4,k). Then L acts on S4,k faithfully. Set Ω1 = {a, a−1}, Ω2 =
{b, b−1}, Ω3 = {aλbλ−1ck, a−λb1−λc−k+λ+1}, Ω4 = {a−λ−1b−λc1−k, aλ+1bλck−λ}.
Since L ≤ Aut(G2(p)), {Ω1,Ω2,Ω3,Ω4} is a complete imprimitive block system of L on
S4,k. Let Ω = {Ω1,Ω2,Ω3,Ω4}. Since α ∈ L, L is transitive on Ω.

Claim: La = 1 and Lx = 1 for any x ∈ S4,k. Let β ∈ La. Then aβ = a and Ωβ1 = Ω1.
Thus, (Ω2 ∪ Ω3 ∪ Ω4)β = Ω2 ∪ Ω3 ∪ Ω4, and so bβ ∈ Ω2 ∪ Ω3 ∪ Ω4, that is, bβ = b,
b−1, aλbλ−1ck, a−λb1−λc−k+λ+1, a−λ−1b−λc1−k or aλ+1bλck−λ. As λ is an element of
order 4 in Z∗p, we have λ 6= 0, ±1. If bβ = b−1 ∈ Ω2 then cβ = c−1 and Ωβ2 = Ω2. It
follows that (Ω3∪Ω4)β = Ω3∪Ω4, implying that (aλbλ−1ck)β = aλb1−λc−k ∈ Ω3∪Ω4,
which is impossible. If bβ = aλbλ−1ck ∈ Ω3 then cβ = cλ−1 and Ωβ2 = Ω3. Thus,
Ωβ3 ⊆ Ω2 ∪ Ω4, but (aλbλ−1ck)β = a−1b−2λc−λ+2+2k(λ−1) 6∈ Ω2 ∪ Ω4, a contradiction.
If bβ = a−λb1−λc−k+λ+1 ∈ Ω3, then cβ = c1−λ and Ωβ2 = Ω3. Thus, Ωβ3 ⊆ Ω2 ∪ Ω4

and (aλbλ−1ck)β = a2λ+1b2λc−λ−2k(λ−1) implies that (aλbλ−1ck)β = b−1. It fol-
lows that Ωβ3 = Ω2 and so Ωβ4 = Ω4, which is impossible because (aλ+1bλck−λ)β =
aλ+2bλ+1c−2kλ+k−λ−2 6∈ Ω4. If bβ = a−λ−1b−λc1−k ∈ Ω4, then cβ = c−λ and
Ωβ2 = Ω4. Thus, Ωβ3 ⊆ Ω2 ∪ Ω3 and (aλbλ−1ck)β = aλ+2bλ+1c−2kλ+k−λ−2 implies
that (aλbλ−1ck)β = b−1 and λ = −2. It follows that Ωβ3 = Ω2 and so Ωβ4 = Ω3. This
forces λ = 2 as (aλ+1bλck−λ)β = a2bc−2kλ+λ−2 ∈ Ω3, and hence λ = 2 = −2, a con-
tradiction. If bβ = aλ+1bλck−λ ∈ Ω4 then cβ = cλ and Ωβ2 = Ω4. Thus, Ωβ3 ⊆ Ω2 ∪ Ω3
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and so (aλbλ−1ck)β = aλ−2b−λ−1c2kλ−k−λ ∈ Ω2 ∪ Ω3, which is impossible. The above
arguments mean that bβ = b, implying β = 1. Thus, La = 1, and since Ω1 is a block of L,
we have La−1 ≤ La = 1. The transitivity of 〈α〉 on Ω implies Lx = 1 for any x ∈ S4,k, as
claimed.

Let K be the kernel of L on Ω. Then K fixes each Ωi setwise, and by Claim, |K| =
|Ka||aK | ≤ 2. Suppose |K| = 2. Then the unique involution, say γ, in K interchanges the
two elements in each Ωi because Lx = 1. In particular, γ is induced by aγ = a−1, bγ =
b−1 and cγ = c. It follows that (aλbλ−1ck)γ = a−λb1−λck, and since (aλbλ−1ck)γ ∈ Ω3,
we have a−λb1−λck = a−λb1−λc−k+λ+1, forcing that k = 2−1(1 + λ), a contradiction.
Thus, K = 1 and L ≤ S4, the symmetric group of degree 4.

Since Lx = 1 for any x ∈ S4,k, L is semiregular on S4,k, and so |L| is a divisor of
8. Since α ∈ L, we have |L| = 4 or 8. Suppose |L| = 8. Since L ≤ S4, L is the
dihedral group of order 8, and so α2 ∈ Z(L). Note that α2 interchanges Ω1 and Ω3, and
Ω2 and Ω4. Then LΩ1 = Lα

2

Ω1
= LΩ3 . Since L is transitive on Ω, |LΩ1 | = 2. Let δ be

the unique involution in LΩ1 . Then Ωδ1 = Ω1 and Ωδ3 = Ω3. Since La = 1, we have
aδ = a−1, and since K = 1, we have Ωδ2 = Ω4. On the other hand, 〈α〉 E L and so R4,k

is an imprimitive block of L, yielding Rδ4,k = R−1
4,k. It follows that bδ ∈ Ωδ2 ∩ Rδ4,k =

Ω4 ∩ R−1
4,k, that is, bδ = aλ+1bλck−λ. Thus, cδ = c−λ, and since δ is an involution,

b = (aλ+1bλck−λ)δ = a−2b−1c−1, which is impossible. Thus, |L| = 4 and L = 〈α〉.
Clearly, p - |L| = |Aut(G2(p), S4,k)|. By Proposition 2.7, Γ4,k(p) is a normal Cayley
graph, and by Proposition 2.6, A = Ĝ2(p) o 〈α〉.

Remark 3.3. The above proof implies Aut(Γ4,k(p)) = Ĝ2(p)o 〈α〉 and Aut(Γ4,k(p))1 =
Aut(G2(p), S4,k) = 〈α〉, where α is the automorphism ofG2(p) of order 4 induced by a 7→
b and b 7→ aλbλ−1ck. Moreover, the automorphism α cyclically permutes the elements in
{a, b, aλbλ−1ck, a−λ−1b−λc1−k}.

Lemma 3.4. There are exactly (p− 1)/2 nonisomorphic graphs of the form Γ4,k(p).

Proof. By definition, S4,k = {a, a−1, b, b−1, aλbλ−1ck, a−λb1−λcλ−k+1, a−λ−1b−λc1−k,
aλ+1bλck−λ} and Γ4,k(p) = Cay(G2(p), S4,k), where λ is an element of order 4 in Z∗p,
k ∈ Zp with k 6= 2−1(1 + λ). Thus, 4

∣∣ (p − 1). Since Γ4,k(p) does not depend on the
choice of λ (see the paragraph before Theorem 1.1), there are at most p− 1 nonisomorphic
half-arc-transitive graphs of the form Γ4,k(p) (k 6= 2−1(1 + λ)). To finish the proof, it
suffices to show that Γ4,k(p) ∼= Γ4,l(p) (k, l 6= 2−1(1 + λ)) if and only if l = k or
l = 1 + λ− k.

Let l = 1 + λ − k. One may easily show that the automorphism of G2(p) induced by
a 7→ a−1, b 7→ b−1, c 7→ c, maps S4,k to S4,1+λ−k = S4,l, and so Γ4,k(p) ∼= Γ4,l(p).

Let Γ4,k(p) ∼= Γ4,l(p) (k, l 6= 2−1(1 + λ)). Set

R4,i = {a, b, aλbλ−1ci, a−λ−1b−λc1−i}.

Then S4,k = R4,k ∪ R−1
4,k and S4,l = R4,l ∪ R−1

4,l . Since 4
∣∣ (p − 1), we have p ≥

5, and by Proposition 2.5, there exists σ ∈ Aut(G2(p)) such that Sσ4,k = S4,l. This
implies that σ maps the stabilizer Aut(Γ4,k(p))1 to the stabilizer Aut(Γ4,l(p))1. It fol-
lows Aut(G2(p), S4,k)σ = Aut(G2(p), S4,l) because Aut(Γ4,k(p))1 = Aut(G2(p), S4,k)
and Aut(Γ4,l(p))1 = Aut(G2(p), S4,l) by Remark 3.3. Moreover, Aut(G2(p), S4,k) is
regular on both R4,k and R−1

4,k, and Aut(G2(p), S4,l) is regular on both R4,l and R−1
4,l .
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Thus, Rσ4,k = R4,l or R−1
4,l , and replacing σ by a multiplication of σ and an element

in Aut(G2(p), S4,l), we may assume that aσ = a if Rσ4,k = R4,l, and aσ = a−1 if
Rσ4,k = R−1

4,l .
Assume Rσ4,k = R4,l with aσ = a. Then bσ ∈ R4,l and bσ = b, aλbλ−1cl or

a−λ−1b−λc1−l. If bσ = aλbλ−1cl then cσ = cλ−1. By Proposition 2.1, (aλbλ−1ck)σ =
a−1b−2λc−λ+2+(k+l)(λ−1) ∈ R4,l, which is impossible. If bσ = a−λ−1b−λc1−l then
cσ = c−λ, and hence (aλbλ−1ck)σ = aλ+2bλ+1c−λ−2−l(λ−1)−kλ ∈ R4,l, which is impos-
sible. If bσ = b then cσ = c, and hence (aλbλ−1ck)σ = aλbλ−1ck ∈ R4,l, implying that
l = k.

AssumeRσ4,k = R−1
4,l with aσ = a−1. Then bσ∈R−1

4,l , and bσ = b−1, a−λb1−λc−l+λ+1

or aλ+1bλcl−λ. If bσ = a−λb1−λc−l+λ+1 then cσ = cλ−1. By Proposition 2.1, we have
(aλbλ−1ck)σ = ab2λc−λ+(k−l)(λ−1) ∈ R−1

4,l , which is impossible. If bσ = aλ+1bλcl−λ

then cσ = c−λ and hence (aλbλ−1ck)σ = a−λ−2b−λ−1c−λ−kλ+l(λ−1) ∈ R−1
4,l , which is

impossible. If bσ = b−1 then we have cσ = c and (aλbλ−1ck)σ = a−λb1−λck ∈ R−1
4,l ,

implying that l = 1 + λ− k.

By Magma [4], a brute force computer search can be performed to verify the following
lemma, but we have also verified the correctness of the lemma theoretically. Since the proof
is rather long, we will not present it in the paper but are willing to provide it upon request
(also see [29]).

Lemma 3.5. There is no half-arc-transitive graph of order 27 and valency 6 or 8.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let Γ be a half-arc-transitive graph of order p3 and valency 6 or
8, and let A = Aut(Γ). By Observation 3.1, Γ = Cay(G,S) and

−→
Γ = Cay(G,R) for

some group G = G1(p) or G2(p) with p ≥ 3, where G = 〈R〉 and S = R ∪ R−1.
By Lemma 3.5, p ≥ 5, and by the half-arc-transitivity of Γ, A = Aut(

−→
Γ ) and A1 is

transitive on R. Since G = 〈R〉, Aut(G,R) acts faithfully on R, and since |R| < 5,
Aut(G,R) is a p′-group. Since G is a non-abelian group of order p3, G is 2-genetic, that
is, each normal subgroup of G can be generated by two elements. By Proposition 2.7,

−→
Γ is

normal, and by Proposition 2.6, A1 = Aut(G,R). Since A = Aut(Γ) = Aut(
−→
Γ ), we have

A1 = Aut(G,S), and so Γ is normal.
The theorem is true for G = G1(p) by Proposition 2.2. Now assume G = G2(p). If

Γ has valency 8, the theorem is also true by Lemma 3.2. We may thus assume that Γ has
valency 6, that is, |R| = 3. We prove that this is not possible.

By Observation 3.1, R = {a, b, aibjck}, where i, j, k ∈ Zp. Since Aut(G,R) is
transitive on R, there exists α ∈ Aut(G2(p)) of order 3 permuting the elements in R
cyclically. If necessary, replace α by α2, and then we may assume that α is induced by
a 7→ b, b 7→ aibjck, and then c 7→ c−i by Proposition 2.1. Thus, a = (aibjck)α =

aijbi+j
2

c−i
2j−2−1ij2(j−1)+k(j−i), and so we have:

ij = 1; (3.7)

i+ j2 = 0; (3.8)

−i2j + k(j − i)− 2−1ij2(j − 1) = 0. (3.9)
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By Eqs. (3.7) and (3.8), j3 + 1 = 0, implying (j + 1)(j2 − j + 1) = 0. Thus, either
j + 1 = 0 or j2 − j + 1 = 0. If j + 1 = 0 then j = −1. By Eq. (3.8), i = −1
and so S = {a, b, a−1b−1ck} ∪ {a−1, b−1, abc−1−k}, but the automorphism of G induced
by a 7→ a−1, b 7→ abc−1−k, c 7→ c−1, fixes S setwise, contrary to Proposition 2.4. If
j2 − j + 1 = 0 then by Eq. (3.8), i = 1 − j, and since ij = 1, Eq. (3.9) implies that
−i + k(j − i) − 2−1j(j − 1) = j − 1 + k(j + j − 1) + 2−1 = (2j − 1)(k + 2−1) = 0.
It follows that either 2j − 1 = 0 or k + 2−1 = 0. For 2j − 1 = 0, we have j = 2−1

and i = 1 − j = 1 − 2−1 = 2−1, but then Eq. (3.7) implies 4 = 1 in Zp, contradicting
p 6= 3. For k + 2−1 = 0, we have S = {a, b, a1−jbjc−2−1} ∪ {a−1, b−1, aj−1b−jc−2−1},
and the automorphism of G induced by a 7→ a−1, b 7→ b−1, c 7→ c, fixes S setwise, a
contradiction.
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