
Volume 19, Number 2, Fall/Winter 2020, Pages 173–374

Covered by:
Mathematical Reviews

zbMATH (formerly Zentralblatt MATH)
COBISS
SCOPUS

Science Citation Index-Expanded (SCIE)
Web of Science

ISI Alerting Service
Current Contents/Physical, Chemical & Earth Sciences (CC/PC & ES)

dblp computer science bibliography

The University of Primorska

The Society of Mathematicians, Physicists and Astronomers of Slovenia
The Institute of Mathematics, Physics and Mechanics

The Slovenian Discrete and Applied Mathematics Society

The publication is partially supported by the Slovenian Research Agency from the Call for
co-financing of scientific periodical publications.





ORCID iD
This year we decided to begin using and promoting the ORCID iD (Open Researcher

and Contributor IDentifier) in AMC. The ORCID iD is an alpha-numeric string which
uniquely identifies researchers. It was first introduced to the world in 2009, and a Reg-
istry of ORCID iDs now maintained by a non-profit incorporation that was created in 2012.

For every accepted paper, we check whether each of its authors already has an ORCID
iD assigned, and if not, then our back-office explains to the affected authors how that can
be achieved. This process is completely voluntary: as can be seen from our use of it in
papers from volume 18 (2020) onwards, in some cases the ORCID iDs of all authors are
listed, while in others this happens for none or just some of the authors.

Currently there are over 10 000 000 researchers worldwide with a registered ORCID
iD. For services like zbMATH, knowing an author’s ORCID iD can be very helpful in
distinguishing between different authors with similar or the same names, and in assigning
publications to a rightful author.

In comparison with the DOI (Digital Object Identifier), which we described in the pre-
vious Editorial, the ORCID iD is a decade younger, and is not quite so widely used among
scientific publishers. Nevertheless it is becoming a de facto standard for author identifica-
tion, even in mathematics.

There are also some significant differences between the ORCID iD and other identifiers
assigned to mathematicians, such as the MR and zbMATH Author IDs. The latter IDs are
assigned automatically by MathSciNet or zbMATH, and are limited to authors who have
made contributions in the mathematical publications covered by these services, while on
the other hand, the ORCID iD may be requested by any researcher, regardless of their
discipline.

We are very happy to endorse it.

Nino Bašić
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Abstract

The distinguishing number of a graph G is the smallest k such that G admits a k-
colouring for which the only colour-preserving automorphism of G is the identity. We
determine the distinguishing number of finite 4-valent vertex-transitive graphs. We show
that, apart from one infinite family and finitely many examples, they all have distinguishing
number 2.
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graphs.
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1 Introduction
All graphs in this paper will be finite. A distinguishing colouring of a graph is a colouring
which is not preserved by any non-identity automorphism. The distinguishing number
D(G) of a graph G is the least number of colours needed for a distinguishing colouring of
the vertices of G. These concepts were first introduced by Albertson and Collins [1] and
have since received considerable attention.
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It is an easy observation that a graph has distinguishing number 1 if and only if its
automorphism group is trivial. Hence, by [6] almost all graphs have distinguishing num-
ber 1. This obviously is not true for non-trivial vertex-transitive graphs which always have
non-trivial automorphisms. However, it seems that the vast majority of vertex-transitive
graphs still have the lowest possible distinguishing number, namely 2. Hence let us call a
vertex-transitive graph exceptional if its distinguishing number is not equal to 2.

One of the most interesting results concerning distinguishing numbers of vertex-tran-
sitive graphs is that, apart from the complete and edgeless graphs, there are only finitely
many exceptional vertex-primitive graphs [3, 14]. It is only natural to ask whether some-
thing similar holds for vertex-transitive graphs as well. As a first step, Hüning et al. recently
determined the exceptional 3-valent vertex-transitive graphs and their distinguishing num-
bers.

Theorem 1.1 ([7, Corollary 2.2]). The exceptional connected 3-valent vertex-transitive
graphs are

1. K4 and K3,3, with distinguishing number 4, and

2. Q3
∼= K4 ×K2 and the Petersen graph, with distinguishing number 3.

This result shows that there are only finitely many connected 3-valent vertex-transitive
exceptional graphs. This is not true for 4-valent graphs, as shown by the following family
of graphs. For n ≥ 3, the wreath graph Wn is the lexicographic product Cn[2K1] of a
cycle of length n with an edgeless graph of order 2, see Figure 1.

Figure 1: The wreath graph W10.

It is easy to see that wreath graphs form an infinite family of connected exceptional
4-valent vertex-transitive graphs, thus providing a negative answer to [7, Question 2]. Our
main result shows that this is the only such family, that is, apart from the wreath graphs,
there are only finitely many connected exceptional 4-valent vertex-transitive graphs.

Theorem 1.2. The exceptional connected 4-valent vertex-transitive graphs are

1. K5 and K4,4
∼= W4, with distinguishing number 5, and

2. K3 �K3, K4 �K2, K5 × K2 and Wn for some n ≥ 3, n 6= 4, with distinguishing
number 3.

In particular, there is no example with distinguishing number 4. This leads us to the
following question.
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Question 1.3. For ∆ ≥ 5, is there a connected ∆-valent vertex-transitive graph G with
D(G) = ∆?

More generally, one could ask about “gaps” in the set of distinguishing numbers of
connected ∆-valent vertex-transitive graphs, as a subset of {2, . . . ,∆ + 1}.

Using lexicographic products, it is not hard to construct infinite families of connected
exceptional vertex-transitive graphs with fixed valency.

Example 1.4. Let H1 be a connected vertex-transitive graph of valency ∆1 and let H2

be a vertex-transitive graph of valency ∆2 on n2 vertices. Then the lexicographic product
H1[H2] is connected, has valency ∆1n2 + ∆2 and its distinguishing number is at least
D(H2) + 1. For an infinite family of examples that are not lexicographic products, note
that, for every n ≥ 3 and every d ≥ 2, the graph (Cn[d2K1])�K2 has valency 2d2 + 1
and distinguishing number strictly greater than d.

We hence pose the following (informal) problem.

Problem 1.5. Is there a “natural small family” F of exceptional graphs such that, for every
positive integer k, all but finitely many k-valent connected exceptional vertex-transitive
graphs are contained in F?

2 Definitions and auxiliary results
Throughout this paper, all graphs are assumed to be finite and simple. Graph theoretic
notions that are not explicitly defined will be taken from [5].

An automorphism of a graph is an adjacency preserving permutation of its vertices.
The group of all automorphisms of a graph G is denoted by AutG. We say that a graph is
vertex-transitive if its automorphism group is transitive (that is, for every pair of vertices,
there exists an automorphism mapping the first to the second).

An arc in a graph G is an ordered pair of adjacent vertices, or equivalently, a walk of
length 1 in G. An s-arc is a non-backtracking walk of length s in G, i.e. a sequence of
vertices v0, . . . , vs where vi is adjacent to vi+1 for 0 ≤ i ≤ s − 1, and vi−1 6= vi+1 for
1 ≤ i ≤ s − 1. The automorphism group AutG acts on the set of edges, arcs, and s-arcs
of G in an obvious way. Call a graph edge-transitive, arc-transitive, or s-arc-transitive, if
the action of AutG on edges, arcs, or s-arcs is transitive, respectively. Analogously define
arc-regular and s-arc-regular.

The local group at a vertex v is the permutation group induced by the stabiliser of v
acting on its neighbourhood N(v). Note that, for vertex-transitive graphs, this does not
depend on the choice of v (up to permutation equivalence). We say that a graph is locally
Γ, if the local group is isomorphic to Γ.

A graph G is called k-connected if it remains connected after removing any set of at
most k − 1 vertices and all incident edges, and k-edge connected if it remains connected
after removing any set of k edges. The following result about the connectivity of vertex-
transitive graphs is due to Watkins [16].

Lemma 2.1. A vertex-transitive graph with valency r is at least 2r
3 -connected.

If we impose additional properties on the set of vertices to be removed, then we can
remove much larger sets without disconnecting the graph. The following lemma follows
easily from results in [15].
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Lemma 2.2. If G is a k-valent vertex-transitive graph with k ≥ 4 and girth g ≥ 5, then
there is a g-cycle C in G such that G− C is 2-edge connected.

Proof. By [15, Theorem 4.5], there is a g-cycle C such that the edges with one endpoint in
C and the other endpoint inH := G−C form a minimum (w.r.t. cardinality) cut separating
two cycles in G. Assume that H was not 2-edge connected and let e be a cut-edge of H .
LetA andB be the two components ofH−e. By [15, Lemma 3.3], the minimum degree of
H is 2, soA andB each contain at most one vertex of degree 1, and thus there are cycles in
both components. Now either the cut separatingA∪C fromB, or the cut separatingB∪C
from A contains strictly fewer edges than the cut separating C from H , contradicting the
minimality.

We will also need the notion of distinguishing index D′(G) of a graph G, which is the
least number of colours needed for a distinguishing colouring of the edges of G. Here are a
few results giving upper bounds on D′(G). The first two are Theorems 2.8 and 3.2 in [11].

Theorem 2.3. Let G be a connected graph that is neither a symmetric nor a bisymmetric
tree. If the maximum degree ∆(G) of G is at least 3, then D′(G) ≤ ∆(G)− 1 unless G is
K4 or K3,3.

Theorem 2.4. IfG is a graph of order at least 7 with a Hamiltonian path, thenD′(G) ≤ 2.

Lemma 2.5. If G is a connected graph on 5 or more vertices, then Aut L(G) is permu-
tationally equivalent to AutG with its natural action on E(G). Furthermore, in this case
D′(G) ≤ D(G), unless G is a tree.

Proof. The first part is a variant of Whitney’s theorem due to Jung [8], the second part
follows by applying [10, Theorem 1.3] to a distinguishing colouring with D(G) colours.

In the remainder of this section, we discuss some known results on distinguishing num-
bers and determine the distinguishing numbers of several graphs that will occur in the proof
of Theorem 1.2. The following lemma gives a general bound on distinguishing numbers
and was independently proved in [4] and [9].

Lemma 2.6. If G is a connected graph with maximum degree ∆, then D(G) ≤ ∆ + 1,
with equality if and only if G is either C5, or Kn or Kn,n for some n ≥ 1.

For n ≥ 2, we define a family of graphs Cn,K3,3 as follows. For 1 ≤ i ≤ n, let Hi be
disjoint copies of K3,3 with bipartition V(Hi) = Xi∪Yi. LetCn,K3,3

be the graph obtained
from this collection by adding a matching between Xi and Yi+1 for 1 ≤ i ≤ n − 1, and
between Xn and Y1, see Figure 2.

Lemma 2.7. The following graphs have distinguishing number at most 2:

(1) The line graph of every non-exceptional 3-valent graph;

(2) The line graphs of the following graphs: the Petersen graph, Q3, K3 �K3, K5 × K2,
and Wn for every n ≥ 3;

(3) The bipartite complement of the Heawood graph;

(4) The 4-dimensional hypercube Q4;
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(5) The (4, 6)-cage, and

(6) The graph Cn,K3,3
for n ≥ 2.

Figure 2: Distinguishing colouring of C6,K3,3 .

Proof. Lemma 2.5 immediately implies (1).
For (2), it suffices to observe that all the base graphs have at least 7 vertices and a

Hamiltonian path, and then apply Theorem 2.4 and Lemma 2.5 .
For (3) note that the bipartite complement of the Heawood graph has the same auto-

morphism group as the Heawood graph and thus also the same distinguishing number. By
Theorem 1.1, this distinguishing number is 2.

(4) follows from [2], where distinguishing numbers of all hypercubes were determined.
For the proof of (5) first note that the (4, 6)-cage is bipartite and any two vertices in

each of its parts have exactly one neighbour in common. Let v be any vertex, let vi for
1 ≤ i ≤ 4 be the neighbours of v, and let vij 1 ≤ i ≤ 3 be the neighbours of vi.

Colour v white, for 1 ≤ i ≤ 4 colour vi black, and colour vij black if i < j and white
otherwise. Finally colour the common neighbours of v22 and v32, and v22 and v33 black
and all other vertices at distance 3 from v white, see Figure 3.

v

Figure 3: Colouring of the (4, 6)-cage, all vertices at distance 3 from v not shown in the
picture are coloured white.

Let γ be a colour preserving automorphism. Then γ must fix v, since it is the only white
vertex with 4 black neighbours. Furthermore γ must fix all neighbours of v since they have
a different number of black neighbours. It must also fix the two black vertices at distance
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3 from v for the same reason. Now it is easy to see that γ has to fix all vertices at distance
2 from v and hence it is the identity.

For (6), consider the colouring shown in Figure 2. Note that the automorphism group
has two orbits on edges: those that belong to a copy of K3,3, and those that don’t, which
we call matching edges. There is a unique matching edge both of whose endpoints are
coloured white. Every colour preserving automorphism must fix this edge and the matching
it is contained in. The colours on the remaining edges in this matching make sure that
every colour preserving automorphism must fix this matching pointwise, and thus must fix
every matching between two copies of K3,3 setwise. It is now easy to see that a colour
preserving automorphism fixes all vertices of C6,K3,3

. Finally note that this colouring can
be generalised to a colouring of Cn,K3,3

for any number n ≥ 2.

3 The proof of Theorem 1.2
In this section, we prove our main result. Determining the distinguishing numbers of the
exceptional graphs is straightforward and will be left to the reader.

To show that the remaining graphs have distinguishing number 2, we distinguish cases
according to the local group of A := AutG. Define the type of an edge uv as the size of
the orbit of u under the action of the local group at v. By the orbit-stabiliser lemma, this is
the index of Auv in Av . Since by vertex transitivity |Av| = |Au|, this also shows that the
type is well-defined, i.e. it does not depend on the endpoint of the edge.

Note that since the orbits of the local group at v partition the neighbourhood of v the
types of edges incident to v correspond to a partition of 4. Since G is vertex-transitive, this
partition is the same for every vertex. Since the only partitions of 4 that do not contain a
part of size 1 are (2, 2) and (4), we split up the proof of Theorem 1.2 into the following
three cases:

1. There are edges of type 1. This case is treated in Section 3.1.

2. All edges have type 2. This is treated in Section 3.2.

4. All edges have type 4, and hence G is arc-transitive. For this case, see Section 3.3.

3.1 Graphs with edges of type 1

Let Gt≥2 be the graph obtained from G by removing all edges of type 1. Note that the
components of Gt≥2 form a system of imprimitivity for A. We will need the following
results.

Lemma 3.1. Assume that every vertex of G is incident to a unique type 1-edge, Gt≥2 is
not connected, and any two components of Gt≥2 are connected by at most one type 1-edge.
Then G has a distinguishing 2-colouring.

Proof. Let k be the number of vertices in a component of Gt≥2. Consider the graph H ob-
tained from G by contracting every component of Gt≥2 to a single vertex. By our assump-
tions, H is a k-regular graph and it follows from Lemma 2.6 that its distinguishing number
is at most k + 1. Let c′ be a distinguishing colouring of H with colours {0, 1, . . . , k}.
We now colour G in the following way: in every component of Gt≥2, we colour as many
vertices black as the colour of the corresponding vertex of H suggests.
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Since c′ is distinguishing, any automorphism which preserves the resulting colouring
has to fix all components of Gt≥2 setwise. As every type 1 edge is uniquely identified by
the components it connects, each type 1 edge and hence also every vertex must be fixed by
every colour-preserving automorphism.

Lemma 3.2. Let G be a connected vertex-transitive graph. Assume that Gt≥2 is not con-
nected, let H be a component of Gt≥2 and let v ∈ H . If H admits a 2-colouring c′ such
that the only automorphism of H fixing v and preserving c′ is the identity, then G has a
distinguishing 2-colouring.

Proof. Denote the components of Gt≥2 by H1, . . . ,HR. Note that each Hi is isomorphic
to H . Let v1 ∈ H1. Note that the graph obtained from G by contracting the components
H1, . . . ,HR is connected and vertex-transitive and thus at least 2-connected. HenceG−H1

is connected, and thus (G−H1) + v1 is connected as well.
For i ∈ {2, . . . , R}, pick some shortest path from Hi to v1 in (G−H1) + v1 and let vi

and ei be the first vertex and edge of this path, respectively. Without loss of generality we
may assume that the number of black vertices in c′ is not exactly one—otherwise change the
colour of v to obtain a colouring with this property. Let πi : H → Hi be an isomorphism
which maps v to vi. Such an isomorphism exists because G (and thus also H) is vertex-
transitive. Now define a colouring c of G by

c(x) =


black if x = v1,

white if x ∈ H1 − v1,
c′(π−1i (x)) if x ∈ Hi for i 6= 1.

Let γ be an automorphism of G preserving c. We show that γ fixes every vertex and thus c
is distinguishing.

First, note that γ must fix v1, since v1 is the only black vertex in H1 which in turn is
the only component with a unique black vertex.

Next we show that, for i 6= 1, every Hi must be fixed pointwise by γ. Assume not. Let
Hi be a component such that the distance fromHi to v1 is minimal, among the components
that are not fixed pointwise. The endpoint ui of ei which does not lie in Hi is either v1,
or it lies in some component Hj which is closer to v1. Hence ui is fixed by γ. Since e1
has type 1, γ must also fix vi and thus induce an automorphism of Hi. By hypothesis, this
induced automorphism is trivial and thus γ fixes Hi pointwise.

Finally, let x ∈ H1 − v1. Then x is incident to an edge of type 1 which connects H1

to a different component Hi. Since the other endpoint of this edge is fixed by γ, the same
must be true for x.

Corollary 3.3. Let G be a connected, vertex-transitive graph and let H be a component of
Gt≥2. If H has a distinguishing 2-colouring, then so does G.

Proof. If H is the only component of Gt≥2, then a distinguishing colouring of H is also
distinguishing for G, otherwise apply Lemma 3.2.

Theorem 3.4. Let G be a connected 4-valent vertex-transitive graph containing edges of
type 1. Then D(G) = 2, unless G is K4 �K2.
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Proof. If all edges are of type 1, then Av = 1 and thus colouring one vertex black and all
other vertices white yields a distinguishing colouring.

Next assume that the local group has two orbits of size 1 and one orbit of size 2. In this
case Gt≥2 is a union of cycles. If there is only one such cycle, then it must have length 6
or more, and hence G is 2-distinguishable by Corollary 3.3. If there is more than one, then
the conditions of Lemma 3.2 are satisfied.

Finally consider the case where the local group has one orbit of size 1 and one orbit of
size 3. All components of Gt≥2 are isomorphic to some 3-regular vertex-transitive graph
G′. Also note that the induced action of A on G′ is arc-transitive.

If G′ has distinguishing number 2, then we can apply Corollary 3.3 to obtain a dis-
tinguishing 2-colouring of G. By Theorem 1.1, the only other possibility is that G′ is
isomorphic to one of K4,K3,3,Q3 or the Petersen graph.

If Gt≥2 is connected, then G is obtained from G′ by adding edges of type 1. Since A
is arc-transitive on G′, no edge of type 1 can connect two neighbours (in G′) of the same
vertex. Otherwise any two neighbours of this vertex would have to be connected by an
edge, contradicting the fact that each vertex of G is adjacent to only one edge of type 1.
Hence an edge of type 1 can’t connect vertices at distance at most 2 in G′. This rules out
K4,K3,3 and the Petersen graph as possibilities for G′, since they have diameter at most 2.
The only way to add edges with respect to this constraint in the cube Q3 yields G = K4,4

which does not contain edges of type 1.

Thus we can assume that Gt≥2 is not connected. Both the Petersen graph and Q3 have
colourings satisfying the condition of Lemma 3.2, see Figure 4. Hence ifG′ is one of them,
then G has a distinguishing 2-colouring.

Figure 4: Colourings satisfying the condition of Lemma 3.2, v is the square vertex.

We may thus assume that G′ is either K4 or K3,3. By Lemma 3.1 we may assume
that there is a pair of components of Gt≥2 connected by multiple type 1 edges. Since G is
vertex-transitive and each vertex is incident to a unique edge of type 1, the number of type 1
edges between any pair of adjacent components ofGt≥2 is independent of the choice of the
pair. Furthermore, recall that A acts arc-transitively on G′. Hence if two adjacent vertices
in a component H are both adjacent to the same component H ′ (via type 1 edges), then all
vertices ofH are adjacent toH ′. ForG′ = K4, this is the only possibility, and the resulting
graph is G = K4 �K2. For G′ = K3,3, the above observation tells us that all vertices in
the same bipartite class of a component send their type 1 edges to the same component, and
henceG = Cn,K3,3

(see Figure 2) for some n ≥ 2, which has distinguishing number 2.
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3.2 Graphs with only edges of type 2

In this section, we assume that all edges of G are of type 2. This implies that A has two
orbits on arcs and therefore at most two orbits on edges. We distinguish two subcases
according to whether G is edge-transitive or not.

3.2.1 Edge-transitive case

Theorem 3.5. Let G be a connected 4-valent graph that is vertex- and edge-transitive but
not arc-transitive. Then D(G) = 2.

Proof. In this case, A has two orbits on arcs and each arc is in a different orbit than its
inverse arc. By removing one of the two orbits, G becomes an arc-transitive directed graph
in which every vertex has in- and out-degree 2. There is some s ≥ 1 such that A acts
regularly on directed s-arcs (see for example [12, Lemma 5.4(v)]).

Let P = (v0, . . . , vs) be a directed s-arc in G. Suppose for a contradiction that there
is an arc from vs to v0. Clearly, in this case s ≥ 2, as G does not contain any 2-cycles.
There is an automorphism fixing (v0, . . . , vs−1) pointwise, but not fixing vs. Therefore,
the second out-neighbour v′s 6= vs of vs−1 must also have v0 as an out-neighbour. By
directed 2-arc-transitivity we conclude that for any vertex vi on P , the out-neighbours of
vi are exactly the in-neighbours of vi+2, so the digraph is a directed wreath graph and G is
arc-transitive, which gives the desired contradiction.

We may thus assume that there is no arc from vs to v0. Colour the vertices of P
black and the remaining vertices white. Note that v0 is the unique black vertex with no
black in-neighbour. Hence v0 and thus all of P must be fixed by any colour-preserving
automorphism. By s-arc-regularity, this implies that the colouring is distinguishing and G
has distinguishing number 2.

3.2.2 Non-edge-transitive case

If G is not edge-transitive, then there must be 2 orbits on edges each of which forms a
disjoint union of cycles. Denote the two subgraphs induced by the edge orbits by G1 and
G2. By transitivity, all cycles in G1 have the same length, the same is true for G2.

We will inductively construct a distinguishing colouring from partial colourings of G.
Let c̃ be a partial colouring of G with domain Ṽ ⊆ V(G), that is, c̃ is a function from Ṽ to
some set C of colours. An extension of c̃ is a colouring c of G such that c and c̃ coincide
on Ṽ .

Lemma 3.6. Let G be a connected 4-valent vertex-transitive but not edge-transitive graph
and assume that all edges have type 2. Let G1 and G2 be the subgraphs induced by the two
edge orbits. Let V ′ be a set of vertices of G and let C be a cycle in G1 which is disjoint
from V ′ and contains a neighbour v of some vertex in V ′. Then there is a cycle D in G1

which is disjoint from V ′ (possibly D = C) and a partial 2-colouring c̃ of G with domain
C ∪D such that

• C and D both contain either 1 or 2 black vertices, and

• if γ ∈ AutG fixes V ′ pointwise and fixes any extension of c̃, then γ fixes V ′ ∪C ∪D
pointwise.
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Proof. Call a vertex u a twin of v if there is an automorphism in the stabiliser of V ′ that
moves u to v. Note that v has at most one twin, since there is an edge in G2 connecting v
to some w in V ′, and w has only one other neighbour in G2.

If v has no twin then every automorphism that fixes V ′ pointwise must fix v. Set
D = C, colour v and one of its neighbours on C black and colour the remaining vertices of
C white. Then every automorphism which fixes V ′ as well as an extension of this colouring
must fix v and its black neighbour and thus also fixes C.

Next assume that v has a twin that lies on C. Again let D = C and colour v and one
of its neighbours in C black, but make sure that the black neighbour of v is not a twin of v.
The same argument as above tells us that this colouring has the desired properties.

Finally assume that v has a twin u that lies outside of C. Let D be the cycle in G1

containing u and observe thatD is also disjoint from V ′. Colour v and one of its neighbours
in C black, colour one of the neighbours of u inD black, and colour the remaining vertices
of C ∪D white. Any automorphism that fixes V ′ as well as an extension of this colouring
must fix u and v and their respective black neighbours, whence we have found the desired
colouring.

Theorem 3.7. LetG be a connected 4-valent vertex-transitive but not edge-transitive graph
and assume that all edges have type 2. Then D(G) = 2.

Proof. Let G1 and G2 be the subgraphs induced by the two edge orbits respectively and
without loss of generality assume that cycles in G1 are at least as long as cycles in G2.

If G1 consists of a single cycle then this cycle must have length at least 6. Hence there
is a distinguishing 2-colouring of G1 which must also be distinguishing 2-colouring of G.
Hence we may assume that G1 consists of more than one cycle.

If cycles in G1 have length at least 4, then let C1 be a cycle in G1 and let v1 be a vertex
on this cycle. Now inductively apply Lemma 3.6. For the first step, let V ′ = {v1}. In each
step, pick a cycle C 6= C1 which contains a G2-neighbour of V ′, colour it according to the
lemma and add the vertices ofC∪D to V ′. The graph obtained fromG by contracting every
cycle in G1 is connected and vertex-transitive. Hence, by Lemma 2.1 it is 2-connected and
remains connected after removing C1. In particular, the above colouring procedure assigns
colours to all vertices except those in C1. Finally colour v1 and its neighbours on C1 black,
and colour the rest of C1 white.

We claim that the resulting colouring is distinguishing. Clearly, every colour-preserving
automorphism must fix v1 since it is the only black vertex both of whose neighbours in
G1 are black (recall that C1 is the only cycle in G1 containing 3 black vertices). Us-
ing Lemma 3.6 inductively, we see that every colour-preserving automorphism must fix
every cycle pointwise, except possibly C1. Hence the colouring is distinguishing unless
the two neighbours of v1 in G1 have the same G2-neighbourhood. In this case, by vertex-
transitivity any two vertices at distance 2 inG1 have the sameG2-neighbourhood. If cycles
in G1 have length 5 or more, this implies that vertices have degree at least 3 in G2 which
is a contradiction. If cycles in G1 have length 4, then so do cycles in G2 and G is a graph
obtained by identifying antipodal points of 4-cycles, i.e., a wreath graph, which contradicts
the assumption that G is not edge transitive.

It remains to deal with the case when both G1 and G2 are disjoint unions of 3-cycles.
Let H be the graph with vertices these 3-cycles, with two such 3-cycles being adjacent in
H if they share a vertex inG. It is easy to see thatH is regular of valency 3 andG = L(H).
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By Theorem 2.3, we have D(G) = D′(H) ≤ 2, unless H is K4 or K3,3. Finally, note that
L(K4) ∼= W3 while L(K3,3) ∼= K3 �K3.

3.3 Arc-transitive graphs

We first prove a few lemmas to show that we can restrict ourselves to graphs with girth 4.

Lemma 3.8. Let G be a connected 4-valent arc-transitive graph. If G has girth 3, then G
is either K5 or W3, or the line graph of a 3-valent arc-transitive graph.

Proof. Follows from [13, Theorem 5.1(1)]).

Lemma 3.9. Let G be a connected graph of minimal valency at least 3 and girth g ≥ 5. If
G is s-arc-transitive, then s ≤ g−3, unlessG is a Moore graph of girth 5, or the incidence
graph of a projective plane.

Proof. Assume for a contradiction thatG is (g−2)-arc-transitive. Let C = (v0, . . . , vg−1)
be a cycle of length g. Note that (v0, . . . , vg−2) is a (g − 2)-arc and that its endpoints
have a common neighbour. By (g − 2)-arc-transitivity, every (g − 2)-arc has this prop-
erty. Let v′g−2 be a neighbour of vg−3 outside of C. Then (v0, . . . , vg−3, v

′
g−2) is a

(g − 2)-arc, whence v′g−2 and v0 have a common neighbour v′g−1. Now the closed walk
(v0, vg−1, vg−2, vg−3, v

′
g−2, v

′
g−1, v0) shows that g ≤ 6.

If g = 5, then the fact that the endpoints of every 3-arc have a common neighbour
implies that G has diameter 2 and is thus a Moore graph.

If g = 6, then an analogous argument as above yields that G has diameter 3. If G was
not bipartite, then for v ∈ V(G) there would be an edge connecting two vertices x and y at
the same distance from v, and since g = 6 we have d(x, v) = d(y, v) = 3. But then there
is a 4-arc from v to x whence by the above argument v and x have a common neighbour,
contradicting d(x, v) = 3.

Hence G is bipartite and every vertex at distance 2 from a given vertex v has a unique
common neighbour with v. It follows that G is the incidence graph of a projective plane.

Lemma 3.10. Let G be a connected 4-valent arc-transitive graph of girth at least 5, then
D(G) = 2.

Proof. Let g be the girth of G and let s be such that G is s-arc-transitive but not (s + 1)-
arc-transitive. Note that there is no 4-valent Moore graph, and that there is a unique 4-
valent graph that is the incidence graph of a projective plane, namely the (4, 6)-cage. By
Lemmas 2.7 and 3.9 we may thus assume that s ≤ g − 3.

By Lemma 2.2, there is a cycle C = (v0, . . . , vg−1) such that G − C is 2-edge con-
nected. Let P = (vs+1, vs, . . . , v1) and let X be its pointwise stabiliser. Note that P is
an s-arc and thus X is not transitive on N(v1) \ {v2} (otherwise G would be (s+ 1)-arc-
transitive). Let v′0 be a neighbour of v1 that is in a different orbit than v0 under X .

Note that the subgraph induced by the vertices {v′0, v0, v1, . . . , vg−2} is a tree since
any additional edge between these vertices would give a cycle of length less than g. Denote
this tree by T and let H be the subgraph obtained from G by removing all vertices of T .
Observe that v′0 has degree at most 3 in G − C. If H is not connected, then there is one
component ofH that is connected to v′0 by a unique edge. Removing that edge fromG−C
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C v0

v1

vg−1

v′0

Figure 5: The tree T in the proof of Lemma 3.10.

would disconnect it, contradicting the fact that G− C is 2-edge connected. It follows that
H is connected.

Colour all vertices of T black and colour vg−1 white. Inductively colour the vertices
of G as follows: Let x be a vertex at minimal distance to vg−1 in H that has not been
coloured yet. If x is fixed by the pointwise stabiliser in A of all previously coloured points,
then colour it white. Otherwise colour it black.

We claim that this colouring is distinguishing. First note that if an automorphism fixes
two neighbours u and w of a vertex v, then it must also fix v, since otherwise the image
of v would also be a common neighbour of u and w contradicting g ≥ 5. Note that this
implies that all vertices in H with a neighbour outside of H are coloured white. Indeed,
at the time such a vertex x is considered for colouring, two of its neighbours are already
coloured: its predecessor on a shortest vg−1-x-path in H and its neighbour outside of H .
Hence by the previous observation, x is coloured white.

Next we show that v1 is the only black vertex with three black neighbours. By the
above observations it is the only such vertex in T . Now let x be a black vertex in H . Then
at most one neighbour of x was coloured before x (otherwise we would have coloured x
white). Furthermore, if P is a shortest vg−1-x-path in H , then P ∪ C contains an s-arc
ending in x. Hence the pointwise stabiliser of x and all vertices coloured before x does
not act transitively on the remaining neighbours of x, whence at most one of them will be
coloured black.

Let γ be a colour preserving automorphism. The above discussion shows that γ must
fix v1. Furthermore all neighbours of T are white, so γ must preserve T setwise. Since
there is no automorphism of G that fixes (v1, . . . , vg−2) and moves v0 to v′0, γ must fix T
pointwise. Finally assume that there is a vertex in H that is not fixed by γ and let x be
the first such vertex that was coloured in the inductive procedure. Clearly, x is coloured
black. Let y be the neighbour of x on a shortest vg−1-x-path P , and let S be an s-arc
contained in C ∪ P . Then S is pointwise stabilised by γ, and since the orbit of x under the
pointwise stabiliser of S is not a singleton, it contains exactly one other element x′. Every
automorphism that fixes x and S also fixes x′ and vice versa. Hence at most one of x and
x′ can be coloured black and thus neither of them can be moved by γ.

Next we give some results for the case whenG has girth exactly 4. Note that in this case,
there must be vertices at distance 2 from each other with 2 or more common neighbours.
The following two lemmas follow from results in [13].

Lemma 3.11. Let G be a connected 4-valent arc-transitive graph. If there are two vertices
at distance 2 with 3 or more common neighbours, then G is isomorphic to either K5 ×K2

or Wn for some n ≥ 4.
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Proof. If there are vertices with 4 common neighbours, then by [13, Lemma 4.3], G is a
wreath graph. Otherwise, Subcase II.A of the proof [13, Theorem 3.3] implies that G ∼=
K5 ×K2.

Lemma 3.12. Let G be a connected 4-valent 2-arc-transitive graph. If G has girth 4 but
no two vertices at distance 2 have more than 2 common neighbours, then G is isomorphic
to either Q4, or the bipartite complement of the Heawood graph.

Proof. By 2-arc-transitivity, every edge is contained in at least three 4-cycles. Subcase II.B
of the proof of [13, Theorem 3.3] then implies thatG is isomorphic to one of the two graphs
as claimed.

The hardest case to deal with is when the graph is locally D4. In this case, we take
advantage of the following structural property. Note that D4 in its natural action on 4
points admits a unique system of imprimitivity with 2 blocks of size 2. We say that a 2-
arc (v0, v1, v2) is straight, if {v0, v2} is a block with respect to the local group at v1, and
crooked otherwise. Note that, of the three 2-arcs starting with a given arc, one is straight
and two are crooked. Further note that fixing a crooked 2-arc fixes all neighbours of its
midpoint. Finally, note that A acts transitively on crooked 2-arcs of G. Call a cycle in G
straight, if all sub-arcs of length 2 are straight.

Theorem 3.13. LetG be a connected 4-valent arc-transitive graph, thenD(G) = 2 unless
G is K5, K3 �K3, K5 ×K2, or Wn for some n ≥ 3.

Proof. By Lemmas 3.8, 3.10, as well as Lemma 2.7, we can assume that G has girth 4. By
Lemma 3.11, we can assume that no two vertices have more than two common neighbours.

SinceG is arc-transitive, the local group must be a transitive subgroup of S4. If the local
group is 2-transitive, then G is 2-arc-transitive and this case is handled with Lemmas 3.12
and 2.7.

If the local group is C4 or V4, then G is arc-regular. One can then colour one vertex
v and three of its neighbours black, and colour the remaining vertices white. Any colour
preserving automorphism must fix the arc from v to its unique white neighbour, thus the
colouring is distinguishing.

The last remaining case is that G is locally D4. Suppose first that G contains a 4-cycle
that is not straight. Let (u, v, w, x) be a 4-cycle of G such that (u, v, w) is a crooked 2-arc.

We claim that any automorphism fixing u and all of its neighbours must be the identity.
By arc-transitivity and connectedness it is enough to show that such an automorphism must
fix all neighbours of v. Since no pair of vertices has more than two common neighbours, u
and w are the only two common neighbours of v and x. In particular, if an automorphism
fixes w and all its neighbours, then it must also fix u. Hence it fixes a crooked 2-arc with
midpoint v, and thus it fixes v and all of its neighbours, thus proving our claim.

Let y be the unique vertex such that (v, w, y) is a straight 2-arc, and let P = (u, v, w, y).
Suppose that y is adjacent to u. Let u′ be the unique vertex other than u such that (u′, v, w)
is crooked. Note that there is an automorphism fixing v and w (and thus y) and mapping u
to u′, and thus y is adjacent to u′, and v and y have at least 3 common neighbours (u, u′,
andw), contradicting an earlier hypothesis. We conclude that y is not adjacent to u and thus
the induced subgraph on P is a path of length 3. Colour P black and colour the remaining
vertices white. Since (u, v, w) is crooked, but (v, w, y) is straight, every colour preserving
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automorphism fixes P pointwise, and thus it fixes v and all its neighbours. Hence, by the
above claim, this colouring is distinguishing.

From now on, we can assume that all 4-cycles of G are straight. Let C be the set of all
4-cycles. Note that every edge is contained in a unique straight 4-cycle, whence C forms
a partition of E(G). Furthermore, any two elements of C intersect in at most one vertex,
since otherwise there would be vertices with 3 or more common neighbours.

Now consider the auxiliary graphG′ with vertex set C and an edge between two vertices
if the 4-cycles have a vertex in common. Note thatG′ is a 4-valent graph on |C| = |E(G)|

4 =
|V(G)|

2 vertices.
Note that A has a natural induced action on G′, and this is easily seen to be locally

D4. Furthermore any distinguishing colouring of L(G′) corresponds to a distinguishing
colouring of G. By Lemma 2.5 and the above observations D(G′) ≥ D(L(G′)) ≥ D(G).
Hence if D(G′) = 2, then D(G) = 2 and we are done. By induction, we may thus assume
that G′ is one of K5, K3 �K3, K5 × K2, or Wn for some n ≥ 3. If G′ 6= K5, then by
Lemma 2.7(2), we have D(L(G′)) = 2 and we are done. Finally note that G′ = K5 is
not possible, since A induces a transitive, locally D4 action on G′, but K5 admits no such
action.
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1 Introduction
Complex holomorphic vector fields with divergence zero represent an important tool for the
description of the groups of volume preserving automorphisms of Cn with n > 1 (we refer
the reader to [1] and [2] for a thorough description of this topic). In this paper we investigate
generalizations of complex holomorphic vector fields in the quaternionic setting, and for
this purpose we restrict our research to mappings represented by convergent quaternionic
power series.

We introduce an alternative definition of partial derivative, namely as a first order ap-
proximation (which is not linear) and using this new notion of partial derivatives we de-
fine the corresponding divergence in the quaternionic setting. We show that quaternionic
vector fields with divergence zero are bidegree full (see Section 2.2 for definition) and
that the divergence zero condition on quaternionic vector fields is equivalent to finding
connected subgraphs of Hamming graphs. The paper is structured as follows: Section 2
contains the description of our setting with basic definitions and notions, such as partial
derivatives and divergence. Moreover, bidegree full functions are introduced together with
some basic facts about Hamming graphs. Section 3 is devoted to vector fields and their
properties, in particular it contains the main result, Theorem 3.4, on quaternionic vector
fields with divergence zero and explains the connection between divergence zero vector
fields and Hamming graphs. In Section 4 we prove the theorem on linear independence of
monomials.

2 Preliminaries
2.1 Convergent quaternionic power series

In this section we introduce the basic concepts and notions to deal with generalizations of
complex holomorphic power series in the quaternionic setting.

We denote by H the algebra of quaternions, H = {z = x0 + x1i+ x2j + x3k, x0, . . . ,
x3 ∈ R}, where i, j, k are imaginary units satisfying i2 = j2 = k2 = −1, ij = k, jk =
i, ki = j. Denote by S the sphere of imaginary unit quaternions, i.e. the set of quaternions
I such that I2 = −1; notice that for a quaternion z we have z2 = x2

0 − x2
1 − x2

2 − x2
3 +

2x0(x1i + x2j + x3k), therefore the condition z2 = −1 implies z = x1i + x2j + x3k
and −x2

1 − x2
2 − x2

3 = −1. Given any nonreal quaternion z, there exist (and are uniquely
determined) an imaginary unit I, and two real numbers x, y (with y > 0) such that z =
x + Iy. With this notation, the conjugate of z will be z̄ := x − Iy. Each imaginary unit
I generates (as a real algebra) a copy of a complex plane denoted by CI . We call such a
complex plane a slice.

A product of nonzero quaternionic coefficients and the variables z, w of degree d is
called a generalized quaternionic monomial of degree d. Let Hd[z, w] denote the set of
all finite sums of generalized quaternionic monomials of degree d, which we call gener-
alized quaternionic homogenous polynomials of degree d. For example, the generalized
quaternionic polynomial a0za1wa2wa3 +b0z

2b1wb3 +c0wc1zc2wc3 belongs to H3[z, w].
Let

H[z, w] :=
⊕

d≥0

Hd[z, w]

be the ring of generalized quaternionic polynomials in the variables z, w over the quater-
nions. We consider polynomials P ∈ H[z, w] as formal (left and right) linear combinations.
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It turns out (see Section 4) that there are several polynomials defining the same polynomial
function. We therefore identify a given polynomial function P with the equivalence class
[P ] of all polynomials defining the same function. The set of all polynomial functions
coincides with real polynomials in 8 variables with quaternionic coefficients (see [3]).

We consider the right–submodule Hrhs[z, w] of H[z, w] which consists of all gener-
alized quaternionic polynomials whose generalized monomials have coefficients on the
right-hand side. To be precise, given the multiindex α = (α1, . . . , αd) ∈ {0, 1}d, called a
word on letters 0, 1, we define the length of α to be |α| := ∑d

l=1 αi. Then we put

(z, w)α := (zα1w1−α1) · · · (zαdw1−αd).

For integers p, q ≥ 0, p + q = d, denote by αp,q a multiindex with |αp,q| = p. There are(
d
p

)
such multiindices. We call the pair (p, q) a bidegree. The (pure) monomials of degree

d can be written in the form
(z, w)α

p,q

and hence define

Hrhs,(p,q)[z, w] := {Pp,q(z, w) =
∑

αp,q,
|αp,q|=p

(z, w)α
p,q

cαp,q ; cαp,q ∈ H},

Hrhs,d[z, w] := {Pp,q(z, w) =
∑

αp,q,
|αp,q|=p

(z, w)α
p,q

cαp,q ; cαp,q ∈ H, p+ q = d}

so that Hrhs[z, w] = ⊕d≥0Hrhs,d[z, w].
Our basic assumption on regularity, for the definition of the class of quaternionic series

we are interested in, is that any such a series f

f(z, w) =
∑

p,q≥0

∑

λ∈Λp,q

fp,q,λ(z, w) (2.1)

converges absolutely on H2. Notice that absolute convergence implies uniform conver-
gence on compact sets of H2. The notation fp,q,λ(z, w) ∈ Hd[z, w] stands for generalized
monomials containing p copies of z and q copies of w with p+ q = d and the sets Λp,q are
supposed finite. The set of all such series f will be denoted byH[z, w]. Putting

fd(z, w) :=

d∑

p=0

∑

λ∈Λp,d−p

fp,d−p,λ(z, w),

any f ∈ H[z, w] also has a homogenous expansion f(z, w) =
∑
d≥0 fd(z, w). Uniform

convergence on compact sets of H2 means that given any ε > 0 and a compact setK ⊂ H2,
there exists a natural number dε,K such that for any generalized polynomial of the form

P (z, w) =

dε,K∑

d=0

fd(z, w) +
∑

d>dε,K

d∑

p=0

∑

λ∈Λ′p,d−p⊂Λp,d−p

fp,d−p,λ(z, w),

the uniform estimate |f(z, w) − P (z, w)|K < ε holds. Let the norm of the term fp,q,λ be
|fp,q,λ(z, w)| = |z|p|w|qcp,q,λ (with cp,q,λ ≥ 0) and define cp,q :=

∑
λ∈Λp,q

cp,q,λ. The
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absolute convergence at the point (z0, w0) in the domain of definition of f means that
∑

p,q≥0

∑

λ∈Λp,q

|fp,q,λ(z0, w0)| =
∑

p,q≥0

|z0|p|w0|qcp,q <∞

and implies uniform convergence on compact sets of B(0, |z0|)×B(0, |w0|).
Any series f ∈ H[z, w] uniquely defines a function of two quaternionic variables, but

as in the case of polynomials, there are many series defining the same function. We say
that two quaternionic series are equivalent if each of them defines the same quaternionic
function. This is an equivalence relation, and so we identify the function f with the cor-
responding equivalence class [f ] of all series in H[z, w] defining the same function. To
avoid too many notations, we will say that a given function belongs to H[z, w] if it has
a series representative in H[z, w]. By abuse of notation, if f ∈ H[z, w], we also denote
by [f ] the set of all series which determine the same function. Since uniqueness of the
power series for a function f is not granted (see next paragraphs and (2.2)), the absolute
convergence of a chosen power series for a given function f ∈ H[z, w] is not a conse-
quence of uniform convergence on compact sets, as in the complex or real case, and has
to be additionally required. In the sequel we focus our attention on the right H-module
Hrhs[z, w] inH[z, w] of (absolutely convergent) power series with coefficients on the right.
We extend all the above definitions also to series of three or more variables. Notice that
in Hrhs,d[z1, z2, . . . , zn] there are nd different (pure) monomials. If we assume only uni-
form convergence of series in Hrhs[z1, z2, . . . , zn], given an uniformly convergent series
f(z1, z2, . . . , zn) =

∑
d≥0 fd(z1, z2, . . . , zn), for R > 0, ε > 0 there is a d0 ∈ N such

that for each d ≥ d0 and p = (p1, . . . , pn) ∈ Nd0 with |p| =
∑n

1 p1 = d, where p de-
notes the multiindex, whose jth element pj is the total degree of zj in the corresponding
monomial, the estimate |fp,λ(z1, z2, . . . , zn)| < ε holds on the ball Bn(0, R) ⊂ Hn. As a
consequence, on the ball Bn(0, R/(n+ 1)), we have the estimate |fp,λ(z1, z2, . . . , zn)| <
ε/(n+ 1)|p| (with |p| = ∑n

1 p1 = d), so that for (z1, z2, . . . , zn) ∈ Bn(0, R/(n+ 1)) we
have

∑

|p|=d

|fp,λ(z1, z2, . . . , zn)| < ε

(
n

n+ 1

)d
,

which implies that the series f(z1, z2, . . . , zn) =
∑
d≥0 fd(z1, z2, . . . , zn) is not just

uniformly but also absolutely convergent. Once more, we observe that, in general, in
H[z1, z2, . . . , zn] one has to assume absolute convergence for a proper definition of series,
since the number of different generalized monomials can grow faster than exponentially;
for example, if the polynomial P is as in (2.2), then the sums

∑m
k=0 P (z, ak), with ak ∈ H,

are identically 0 for any m ∈ N and they contain 6m different generalized monomials. Let
us mention another right-submodule ofHrhs[z, w], namely, the submodule of slice-regular
functions in the sense of Ghiloni-Perotti (see [5]), denoted by HGP[z, w]. It is generated
by (pure) monomials of the form zkwl, k, l ∈ N0, with this precise order, so any element
of HGP[z, w] has a unique power series expansion and uniform convergence on compact
sets in H implies absolute convergence. Slice-regular functions in the sense of Ghiloni-
Perotti can be also seen as the kernel of a suitable partial differential operator. Notice that
HGP[z, w] ⊂ Hrhs[z, w] ⊂ H[z, w].

Unfortunately, also in Hrhs[z, w] there are several power series which define the same
function. In general the monomials of a given bidegree are not (right) linearly independent
as functions. As far as we know, very little is known about this question except for linear
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independence of monomials of bidegrees (p, 1) and (1, q) as proved in [6, Proposition 2.4].
In Section 4 we prove that monomials of bidegrees (p, 0), (p, 1), (1, q), (0, q) and (2, 2)
are linearly independent but monomials of bidegree (3, 2) (and all other bidegrees) are not
necessarily: since the square of the commutator of z and w is real, i.e. [z, w]2 ∈ R, the
polynomial of bidegree (3, 2),

P (z, w) = −z2wzw+z2w2z+zwz2w−zw2z2−wz2wz+wzwz2 = [[z, w]2, z] (2.2)

is identically zero as a function but it is not (formally) equal to the null polynomial. There-
fore, even here there is no one-to-one correspondence between power series and functions.
However, as we will see, this fact does not affect the generality of the problem we are inter-
ested in (see also Remark 3.8 and Example 4.4). We realized that there exists a submodule
HBF[z, w] in Hrhs[z, w] which gives rise to vector fields with nice analytic properties, but
these vector fields could not in general be detected using just analytic tools, due to the
fact that we are not able to describe formal properties of the series defining the zero class
[0]. Nevertheless, it turns out that these vector fields have representatives in their corre-
sponding classes of power series with specific symmetry properties and for them all the
results stated are valid within a given bidegree up to adding a polynomial which defines the
identically-zero function. Example 4.4 is a special case where analytic conditions imply
the existence of this special type of representatives in the classes of power series and these
representatives are unique.

We remark that HGP[z, w] contains, as a particular case, the right submodule of slice-
regular functions in one variable denoted by SR as introduced in [4] (see also the mono-
graph [3]): it is the class Hrhs[z] := Hrhs[z, 1]. Vaguely speaking it is defined to be the
class of functions f : H→ H such that the limit

lim
h→0

h−1(f(z + h)− f(z))

exists if h and z belong to the same slice. These functions turn out to be quaternionic
analytic and their power expansions are unique.

In general, there is no standard way of introducing a notion of (partial) derivative for
quaternionic functions (see for instance [4, 5]). For example, for the slice-regular function
f(z) = z2a the limit of the differential quotient

lim
h→0

h−1(f(z + h)− f(z)) = lim
h→0

(h−1zh+ z + h)a

does not exist unless h and z belong to the same slice.
We introduce new differential operators ∂̂z, ∂̂w : H[z, w] → H[z, w, h], which can be

interpreted as partial derivatives for a convergent power series as in (2.1) with respect to
each of the variables z, w in a given direction h.

Definition 2.1. For a function f ∈ H[z, w] and z0, w0, h0 ∈ H we define the quaternion
∂̂zf(z0, w0)[h0] to be the limit

∂̂zf(z0, w0)[h0] := lim
t→0

1

t
(f(z0 + th0, w0)− f(z0, w0)), t ∈ R,

or equivalently

f(z0 + th0, w0)− f(z0, w0) = t∂̂zf(z0, w0)[h0] + o(|t|);
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similarly

∂̂wf(z0, w0)[h0] := lim
t→0

1

t
(f(z0, w0 + th0)− f(z0, w0)), t ∈ R,

defines ∂̂wf(z0, w0)[h0]. The function ∂̂zf in three variables (z, w, h) is then defined to be

(∂̂zf)(z, w, h) := ∂̂zf(z, w)[h],

and similarly
(∂̂wf)(z, w, h) := ∂̂wf(z, w)[h].

We use the notation ∂̂zf(z, w)[h], ∂̂wf(z, w)[h] also to denote the resulting functions
of three variables in order to emphasize the special role the variable h plays.

Both the operators ∂̂z, ∂̂w are additive and right–H–linear, namely

∂̂z(f(z, w)a+ g(z, w)b)[h] = ∂̂zf(z, w)[h]a+ ∂̂zg(z, w)[h]b,

∂̂w(f(z, w)a+ g(z, w)b)[h] = ∂̂wf(z, w)[h]a+ ∂̂wg(z, w)[h]b.

The resulting functions are additive and real-homogenous in the variable h, but not linear
in h. Furthermore, the Leibniz rule holds. In the language of analysis on manifolds, for a
fixed h, the partial derivative ∂̂zf(z, w)[h] is the Lie derivative of the function f along the
constant vector field X = (h, 0) evaluated at (z, w) and ∂̂wf(z, w)[h] is the Lie derivative
of the function f along the constant vector fieldX = (0, h) evaluated at (z, w). In practice,
for polynomial function represented by a polynomial, each of the operators ∂̂z, ∂̂w acts by
replacing one occurrence of the prescribed variable at a time in each monomial of fd with
h ∈ H as in the following example

∂̂z(zwz
2wa)[h] = (hwz2w + zwhzw + zwzhw)a.

If |fp,q,λ(z, w)| = |z|p|w|qcp,q,λ, then we can estimate

|∂̂zfp,q,λ(z, w)[h]| ≤ p|z|p−1|w|q|h|cp,q,λ

and |∂̂wfp,q,λ(z, w)[h]| ≤ q|z|p|w|q−1|h|cp,q,λ, which, in view of the assumed absolute
convergence of the power series, implies that the power series can be differentiated term
by term. Therefore operators ∂̂z, ∂̂w are well-defined as mappings from quaternionic ana-
lytic functions of two variables to quaternionic analytic functions of three variables. This
motivates the following definition of partial derivatives for series:

Definition 2.2. Given a series f ∈ H[z, w],

f(z, w) =
∑

p,q≥0

∑

λ∈Λp,q

fp,q,λ(z, w)

the series ∂̂zf is defined as

(∂̂zf)(z, w, h) :=
∑

p,q≥0

∑

λ∈Λp,q

∂̂zfp,q,λ(z, w)[h]. (2.3)

The operator ∂̂w is defined similarly. Note that the operators ∂̂z, ∂̂w map series in H[z, w]
to series inH[z, w, h].
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We also use the notation ∂̂zf(z, w)[h] for the series to indicate the special role the
variable h plays.

Linearity of the derivation implies that if a function is represented by two different
series f and g, then also the series ∂̂zf(z, w)[h] and ∂̂zg(z, w)[h] represent the same func-
tion.

The following result motivates the introduction of the differential operators ∂̂z, ∂̂w.

Lemma 2.3. Let f ∈ Hrhs[z, w] be a series. If ∂̂zf(z, w)[h] is the null-series, then f(z, w)
is (formally) independent of z and so is also the corresponding function. An analogous
result holds for w.

Proof. It suffices to prove the first assertion for polynomials P(p,q) of bidegree (p, q) for
each (p, q). We proceed by induction on q. For q = 0 and P(p,0)(z, w) = zpcp we have

∂̂zP(p,0)(z, w)[h] = (hzp−1 + zhzp−2 + · · ·+ zp−1h)cp = 0

formally, so cp = 0.Moreover, by [6, Proposition 2.4] the same holds if ∂̂zP(p,0)(z, w)[h] =
0 as a function. If q > 0 write

P(p,q)(z, w) = zP(p−1,q)(z, w) + wP(p,q−1)(z, w)

and then the formal identity

∂̂zP(p,q)(z, w)[h] = hP(p−1,q)(z, w) + z∂̂zP(p−1,q)(z, w)[h] +w∂̂zP(p,q−1)(z, w)[h] = 0

implies

P(p−1,q)(z, w) = 0, ∂̂zP(p−1,q)(z, w)[h] = 0 and ∂̂zP(p,q−1)(z, w)[h] = 0

formally. By induction hypothesis, ∂̂zP(p,q−1)(z, w)[h] being formally 0 implies
P(p,q−1)(z, w) = wq−1cq−1, so P(p,q) = wqcq−1.

Remark 2.4. In analogy to the one variable case one could also define the (differential)
operator

∂̃zf(z, w) := ∂̂zf(z, w)[1].

In short, the operator ∂̃z replaces one occurrence of the variable z at a time with 1. This
operator is a derivation. Using the notation from the above Lemma, the expression
∂̃zP(p,q)(z, w) is a polynomial of bidegree (p − 1, q) (similarly for w). Furthermore, this
operator coincides with the corresponding (Cullen) derivative, when f is a slice-regular
function (see [4]).

However, a result like the one in Lemma 2.3 does not hold when considering ∂̃z instead
of ∂̂z. Indeed,

∂̃z(zw − wz) = w − w = 0

but the neither the series f(z, w) = zw−wz nor the corresponding function do not depend
on w only.
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2.2 Bidegree full series

For p, q positive integers, consider the series

Sp,q(z, w) :=
∑

αp,q,
|αp,q|=p
p+q=d

(z, w)α
p,q

.

It is clear that Sp,q(z, w) = Sq,p(w, z). We also have this important identity

∂̂zSp+1,q(z, w)[h] = ∂̂wSp,q+1(z, w)[h]. (2.4)

If z and w commute, then Sp,q(z, w) =
(
p+q
p

)
zpwq .

Definition 2.5. We define

HBFd [z, w] :=




∑

p+q=d

Sp,q(z, w)ap,q, ap,q ∈ H





and
HBF [z, w] :=

⊕

d≥0

HBFd [z, w].

We say that HBF [z, w] is the right module of bidegree full (in short BF) polynomials in
the variables z, w. The equivalence class of BF polynomials is called a bidegree polynomial
function. Similarly, we define the right module of bidegree full series to consist of all
converging power series of the form

f(z, w) =

∞∑

d=0

fd(z, w),

with fd(z, w) ∈ HBFd [z, w] and denote it by HBF [z, w]. The equivalence class of a BF
series is called a bidegree full function.

The following result shows that bidegree full polynomials form an interesting class of
polynomials.

Lemma 2.6. For any real number µ and any d ∈ N, the polynomial

(z − µw)d :=

d times︷ ︸︸ ︷
(z − µw) · · · (z − µw)

is bidegree full. If

P (z, w) =

l∑

d=0

∑

p,q≥0,
p+q=d

Sp,q(z, w)ap,q

is a bidegree full polynomial of degree d, then it also has a decomposition

P (z, w) =

l∑

d=0

∑

p+q=d

(
d∑

n=0

(z − µw)drp,d(n)

)
ap,q, with rp,d(n) ∈ R.
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Proof. Indeed, from direct calculations, it follows that

(z − µw)d = (z − µw) · · · (z − µw) =
∑

p,q≥0,
p+q=d

Sp,q(z, w)(−µ)q.

The second statement follows from the fact (proved in [2] by induction on d with an ar-
gument which applies to our setting) that the polynomials {xd, (x − 1)d, . . . , (x − d)d}
form a basis of real polynomials of order less or equal to d and consequently polynomials
zd, (z − w)d, . . . , (z − dw)d form a basis of HBFd [z, w]

The term (z − µw)d is well-defined also for µ ∈ H. But the equality

∂̂w(z − µw)d = −µ∂̂z(z − µw)d (2.5)

holds if and only if µ ∈ R.

Remark 2.7. As a consequence of Lemma 2.6, from any F ∈ SR, in the variable u

F (u) =
∑

d≥0

udad,

one gets a bidegree full series by replacing u with z − µw, µ ∈ R namely

f(z, w) =
∑

d≥0

(z − µw)dad ∈ HBF [z, w].

2.3 Basics on Hamming graphs

Since the monomials we are dealing with are described by words on two letters, the Ham-
ming graphs are natural objects to associate with such monomials.

Definition 2.8. Given d, q ∈ N, the graph (V,E) is a Hamming graph H(d, q) if the set
of vertices V consists of all words of length d on q different letters and there is an edge
e(v1, v2) ∈ E between two vertices v1, v2 if they differ in precisely one letter.

The Hamming graph H(d, q) is, equivalently, the Cartesian product of d complete
graphs Kq . We are interested in Hamming graphs on two letters, 0, 1, i.e. on hypercubes.
A layer Lp, 0 ≤ p ≤ d, is a set of vertices which contain p copies of 1. It is easy to see that
the following result holds:

Lemma 2.9. Any two subsequent layers of the hypercube form a connected subgraph.

Proof. The case d = 1 is trivial since it consists of letters 0 and 1 and an edge connecting
them. Assume that d > 1 and take p ∈ {0, . . . , d−1}. Let Lp+1 and Lp be two subsequent
layers, and let α, α̃ ∈ Lp+1 differ for one transposition of indices 0 and 1 on positions l,m.
Without loss of generality we assume that l = 1 and m = 2. We may also assume that

α = 01α1 and α̃ = 10α1.

Define
β = 00α1.

Since α and β differ in precisely one letter, there is an edge between α and β and of course
also an edge between β and α̃, so there exist a path between any two vertices in Lp+1, since
all other multiindices in Lp+1 are permutations of letters of α. By the same reason there
exist a path connecting any two vertices in Lp which proves the lemma.



198 Ars Math. Contemp. 19 (2020) 189–208

3 Quaternionic vector fields
In this section, using the partial derivatives ∂̂z, ∂̂w, we define an operator divergence for
quaternionic vector fields in two variables. We show that there is a large class of vector
fields with good properties of analyticity.

Definition 3.1. Given the series f, g ∈ H[z, w], then X = (f, g) is called a vector field
in H2, in short we write X ∈ VH. If f, g ∈ Hrhs[z, w], then we write X ∈ VHrhs. In
particular, we say that a vector field X = (f, g) is bidegree full (in short BF) if f, g are
bidegree full and we use the notation X ∈ VHBF . A vector field X = (f, g) defines a
vector mapping [X] := ([f ], [g]) : H2 → H2.

We assume from now on that the vector fields under consideration belong to VHrhs.
Next we introduce the following

Definition 3.2. Given the vector field X = (f, g) ∈ VHrhs, we define the operator Div by

DivX(z, w)[h] := ∂̂zf(z, w)[h] + ∂̂wg(z, w)[h],

where the partial differential operators are used in the sense of (2.3). A vector fieldX(z, w)
has divergence zero if DivX(z, w)[h] is the null series.

Clearly for a vector field, divergence zero implies divergence zero as a function.

Example 3.3. The vector field X(z, w) = (zw + wz,−w2) has divergence zero, since

Div(zw + wz,−w2)[h] = hw + wh− (hw + wh) = 0

and the divergence of the vector field Y (z, w) = X(z, w) + (0, [[z, w]2, z]) = (zw +
wz,−w2 + [[z, w]2, z]) is

Div(zw + wz,−w2 + [[z, w]2, z])[h] = hw + wh− (hw + wh)

+ [[z, h][z, w], z] + [[z, w][z, h], z].

This shows that Div Y is not a null-series, but Div Y , considered as a vector mapping,
vanishes identically.

The vector field (z2w,−zw2) does not have divergence zero:

Div(z2w,−zw2)[h] = (hz + zh)w − z(hw + wh) = hzw − zwh 6= 0

and also [hzw − zwh] 6= 0. By identity (2.5) any vector field (z − µw)d(µ, 1), µ ∈ R
has divergence zero. Such vector fields are called shear vector fields and they generate a
1-parameter family of automorphisms of H2, namely

Φt(z, w) = (z, w) + t(z − µw)d(µ, 1)a, a ∈ H, t ∈ R,

called shears. In the complex analytic case by a famous result due to Andersen (see
[1]) every volume preserving automorphism of C2 (these are holomorphic automorphisms
f : C2 → C2 with determinant detJf(z, w) = 1) is approximable by a finite composition
of shears. In search for analogous results in the quaternionic setting, it is then necessary to
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prove that any polynomial divergence zero vector field is generated by a shear vector field.
Because of identity (2.4), any vector field

Xp,q(z, w) = (Sp+1,q(z, w),−Sp,q+1(z, w)) (3.1)

has divergence zero. It can be shown using Lemma 2.6 that every vector fieldXp,q is a sum
of shear vector fields. The interested reader can find the details in [6]. The next theorem
shows that any divergence zero vector field is generated by such vector fields Xp,q .

Theorem 3.4. Let X = (f, g) be a vector field with divergence zero, then f and g are
bidegree full.

Remark 3.5. Example 4.4 shows that for any vector fieldX with components of bidegrees
(3, 2) and (2, 3), the condition DivX(z, w)[h] = 0 as a function of three variables implies
that the mapping representing the vector field X has a bidegree full representative.

Corollary 3.6. If X is a vector field with divergence zero, then X is of the form X =∑
Xp,qap,q, ap,q ∈ H with Xp,q as in (3.1).

Before proceeding to the proof, let us show an example with vector fields of the form
X(z, w) = (f(z, w), g(z, w)) = (z2wa1 + zwza2 +wz2a3,−w2zb1−wzwb2− zw2b3).
We first calculate the partial derivatives separately.

∂̂zf(z, w)[h] = (zhw + hzw)a1 + (hwz + zwh)a2 + (whz + wzh)a3,

∂̂wg(z, w)[h] = −(whz + hwz)b1 − (hzw + wzh)b2 − (zwh+ zhw)b3.

The sum of the partial derivatives is zero if and only if monomials of the same type cancel
out, for example we have conditions zhw(a1 − b3) = 0 and hzw(a1 − b2) = 0 which
imply a1 = b3 and a1 = b2 and similarly for other terms. We represent these equalities by
means of a bipartite graph on {a1, a2, a3} ∪ {b1, b2, b3} in which there is an edge between
ai and bj if and only if they are equal. The graph is given in Figure 1.

a3

a2

a1

b3

b2

b1

b

b

b

b

b

b

Figure 1: Bipartite graph

The monomials in the sum̂∂zfp+1,q(z, w)[h] (and similarly∂̂zgp,q+1(z, w)[h]) are of the following

(z, w)α1h(z, w)α2Aα

whereα = α11α2. For any suchα there is exactly oneβ, namely

β = α10α2

such that in the sum̂∂w(z, w)βBβ(h) there is the monomial of the same type (but multiplied by a dif
constant)

−(z, w)α1h(z, w)α2Bβ .

Zero divergence implies thatAα = Bβ for any such pairα, β.
Define a bipartite graph on the verticesV = A∪B. There is an edge between a wordα ∈ A and

β ∈ B iff the wordβ is obtained from the wordα by replacing one of the letters1 by0.So by definition,
this particular case, we are considering a subgraph of the Hamming graphH(d+1, 2), spanned on
from the setA∪B which represent two subsequent layers in the correspondinghypercube,A = Lp

B = Lp. By Lemma2.9 this subgraph is connected. This implies that allAα = A for some constant
and hence the same holds for allBβ so all the coefficients are the same and this means thatfp+1,q,
are bidegree full.

Remark 3.7. We should point out that the analytic condition on a vector field of two quaternionic
ables having divergence zero is equivalent to connectedness of subgraphs of a Hamming graph. We
proceed analogously in higher dimensions. In three variables we would considerH(d, 3), graphs
three letters, whered is the degree, but in this case the divergence zero conditiontranslates into looking
for cycles of order3 of a particular form. Its analysis turns out to be more complicated than the
dimensional case and is not related to connectedness of subgraphs of Hamming graphs. For example
the divergence zero condition for the vector fieldX(z, w, u) = (f(z, w, u), g(z, w, u), h(z, w, u))
case

f(z, w, u) = zwua1 + wzua2 + wuza3 + zuwa4 + uzwa5 + uwza6,

g(z, w, u) = w2ub1 + wuwb2 + uw2b3,

h(z, w, u) = wu2c1 + uwuc2 + u2wc3,

11

Figure 1: Bipartite graph.

Proof of Theorem 3.4. Let f(z, w) =
∑
fp,q(z, w), g(z, w) =

∑
gp,q(z, w) be the de-

compositions of series f and g with respect to the bidegrees. Then X = (f, g) has diver-
gence zero if and only if

∂̂zfp+1,q(z, w)[h] + ∂̂wgp,q+1(z, w)[h] = 0.
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Let A = {α ∈ {0, 1}d+1, |α| = p+ 1} and B = {β ∈ {0, 1}d+1, |β| = p}. Write

fp+1,q(z, w) =
∑

α∈A
(z, w)αAα

gp,q+1(z, w) = −
∑

β∈B

(z, w)βBβ .

The monomials in the sum ∂̂zfp+1,q(z, w)[h] (and similarly ∂̂zgp,q+1(z, w)[h]) are of the
following form:

(z, w)α1h(z, w)α2Aα

where α = α11α2. For any such α there is exactly one β, namely

β = α10α2

such that in the sum ∂̂w(z, w)βBβ(h) there is the monomial of the same type (but multi-
plied by a different constant)

−(z, w)α1h(z, w)α2Bβ .

Zero divergence implies that Aα = Bβ for any such pair α, β.
Define a bipartite graph on the vertices V = A ∪ B. There is an edge between a word

α ∈ A and a word β ∈ B iff the word β is obtained from the word α by replacing one of
the letters 1 by 0. So by definition, in this particular case, we are considering a subgraph of
the Hamming graphH(d+1, 2), spanned on edges from the setA∪B which represent two
subsequent layers in the corresponding hypercube,A = Lp+1 and B = Lp. By Lemma 2.9
this subgraph is connected. This implies that allAα = A for some constantA and hence the
same holds for all Bβ so all the coefficients are the same and this means that fp+1,q, gp,q+1

are bidegree full.

Remark 3.7. We should point out that the analytic condition on a vector field of two quater-
nionic variables having divergence zero is equivalent to connectedness of subgraphs of a
Hamming graph. We could proceed analogously in higher dimensions. In three variables
we would consider H(d, 3), graphs on three letters, where d is the degree, but in this case
the divergence zero condition translates into looking for cycles of order 3 of a particular
form. Its analysis turns out to be more complicated than the two-dimensional case and is
not related to connectedness of subgraphs of Hamming graphs. For example, the diver-
gence zero condition for the vector field X(z, w, u) = (f(z, w, u), g(z, w, u), h(z, w, u))
in the case

f(z, w, u) = zwua1 + wzua2 + wuza3 + zuwa4 + uzwa5 + uwza6,

g(z, w, u) = w2ub1 + wuwb2 + uw2b3,

h(z, w, u) = wu2c1 + uwuc2 + u2wc3,

gives equations a1 + b1 + c2 = 0, a2 + b1 + c1 = 0, . . . and they can be represented as a
2-simplicial complex with 2-cells being triangles with vertices (a1, b2, c2), (a2, b1, c1) and
so forth (see Figure 2).
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Remark 3.8. Notice that if we can write a vector mapping as a vector fieldX = (f1, g1)+
(f2, g2) such that (f1, g1) has divergence zero and such that each of f2 and g2 are not
formally 0 but identically equal to 0 as functions, then the flow of [X] coincides with the
flow of [(f1, g1)]. Furthermore, the flow of [(f2, g2)] exists and is the identity mapping, so
it does not affect the problem of approximating a flow by shears.

4 Linear independence of monomials
In this section we consider the problem of linear independence of monomials in Hrhs(z, w);
in particular we exhibit an algorithm for determining linear independence of monomials
in Hrhs,(p,q)[z, w]. We point out that this approach does not involve the computation of
independent monomials in 8 real variables of degree p in the first 4 variables and of degree
q in the last 4 variables.

We prove the following result.

Theorem 4.1. Given a bidegree (p, q), the set of all distinct monomials in Hrhs,(p,q)[z, w]
is linearly independent if and only if (p, q) equals (p, 0), (0, q), (p, 1), (1, q) or (2, 2).

The proof below gives an explicit algorithm for calculating the basis of the kernel of
the linear mapping

Ap,2 : Hnp+2,2 → Hrhs[z, w], Ap,2(c1, . . . , cnp+2,2
) =

np+2,2∑

1

(z, w)αkck,

where αk ∈ {0, 1}d are all distinct multiindices of length p, |αk| = p, with k = 1, . . . ,
np+2,2 =

(
p+2

2

)
.
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Proof. The cases in bidegrees (p, 0), (0, q) are trivial and the cases in bidegrees (p, 1), (1, q)
were proved in [6, Proposition 2.4]. Assume that z ∈ CI \ R and choose any imaginary
unit J orthogonal to I. Then we can write w ∈ H in the form z0 + z1J, where z0, z1 ∈ CI
are uniquely determined. This choice of coordinates provides us with a frame which de-
termines the identification H = CI × CI . In other words, if w = z0 + z1J ' (z0, z1) ∈
CI × CI , then, since zJ = Jz̄, we have

w2 = z2
0 − |z1|2 + (z̄0z1 + z0z1)J ;

similarly
[z, w] = z1(z − z̄)J and [z, w]2 = −|(z − z̄)z1|2.

We recall that the polynomial introduced in (2.2) is precisely P (z, w) = [[z, w]2, z].
We begin with polynomial w2 ∈ Hrhs,(0,2)[z, w] and develop an algorithm for produc-

ing monomials in Hrhs,(1,2)[z, w] which we describe with respect to the above identification
and then proceed inductively.

First of all, without loss of generality, we (may and will) assume that z is unitary, so
z−1 = z̄. Let A0 = B0 = C0 = {w2}. Define the sets A1 = {zw2}, B1 = {wzw}, C1 =
{w2z}. The monomial inA1 was obtained by adding z to the monomialw2 on the left hand
side, the one in B1 by adding one z after the first w of the monomial w2 and the monomial
in C1 z was obtained by adding a z on the right hand side of the monomial w2.

If w = z0 + z1J (and then w2 = z2
0 − |z1|2 + (z̄0z1 + z0z1)J) we have

A1 3 zw2 = z(z2
0 − |z1|2 + (z̄0z1, z0z1)J)z̄z

= (z2
0 − |z1|2 + (z2z̄0z1 + z2z0z1)J)z = f1(z, z0, z1)z,

B1 3 wzw = (z0 + z1J)z(z0 + z1J)z̄z

= ((z2
0 − z̄2|z1|2 + (z̄0z1 + z2z0z1)J)z = f2(z, z0, z1)z,

C1 3 w2z = (z2
0 − |z1|2 + (z̄0z1, z0z1)J)z = f3(z, z0, z1)z.

We identify w2 with the vector (z2
0 ,−|z1|2, z̄0z1, z0z1) ∈ C4

I and identify the function
f1 with the vector u1 = (z2

0 ,−|z1|2, z2z̄0z1, z
2z0z1) ∈ C4

I , f2 with the vector u2 =
(z2

0 ,−z̄2|z1|2, z̄0z1, z
2z0z1) ∈ C4

I and the function f3 with the vector u3 = (z2
0 , −|z1|2,

z̄0z1, z0z1) ∈ C4
I . We notice that u1 is obtained from u3 by multiplying the first two com-

ponents by 1 and the last two by z2, i.e. u1 = u3∗(1, 1, z2, z2), where ∗ denotes the compo-
nentwise multiplication in C4

I defined as follows: if (a, b, c, d) ∈ C4
I and (x, y, u, v) ∈ C4

I

then
(a, b, c, d) ∗ (x, y, u, v) := (ax, by, cu, dv).

Notice that the componentwise multiplication ∗ in C4
I is commutative, i.e.

(x, y, u, v) ∗ (a, b, c, d) = (a, b, c, d) ∗ (x, y, u, v)

for any (a, b, c, d) ∈ C4
I and (x, y, u, v) ∈ C4

I and has no zero divisors.
Similarly u2 = u3 ∗ (1, z̄2, 1, z2) and u3 = u3 ∗ (1, 1, 1, 1). Consider a quaternionic

(right-hand side) null linear combination of the monomials which generates Hrhs,(1,2)[z, w],
namely zw2a+ wzwb+ w2zc = 0 with a, b, c ∈ H.

In terms of the vectors u1, u2, u3, we can write the same null linear combination as

u3 ∗ (1, 1, z2, z2)za+ u3 ∗ (1, z̄2, 1, z2)zb+ u3 ∗ (1, 1, 1, 1)zc =

= u3 ∗ [(1, 1, z2, z2)za+ (1, z̄2, 1, z2)zb+ (1, 1, 1, 1)zc] = 0.
(4.1)
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If we write a = a0 + a1J, b = b0 + b1J c = c0 + c1J (according to the adopted frame)
and look at the first component in (4.1), since u3 6= 0, we get the equation

z(a0 + a1J) + z(b0 + b0J) + z(c0 + c1J) = z((a0 + a1J + b0 + b0J + c0 + c1J)

= z[(a0 + b0 + c0) + (a1 + b1 + c1)J ] = 0

which implies a0 + b0 + c0 = 0 and a1 + b1 + c1 = 0. From the vanishing of the second
component in (4.1) we get the equation

1 · z(a0 + a1J) + z̄2z(b0 + b0J) + z(c0 + c1J)

= z(a0 + a1J) + zz̄2(b0 + b1J) + z(c0 + c1J)

= z[(a0 + a1J) + z̄2(b0 + b1J) + (c0 + c1J)]

= z[(a0 + z̄2b0 + c0) + (a1 + b1z̄
2 + c1)J ] = 0

which implies a0 + z̄2b0 + c0 = 0 and (a1 + z̄2b1 + c1)J = 0. From the vanishing of the
third component in (4.1) we get the equation

z2Jz(a0 + a1J) + Jz(b0 + b0J) + Jz(c0 + c1J)

= Jz(z̄2(a0 + a1J) + (b0 + b1J) + (c0 + c1J)

= Jz[(z̄2a0 + b0 + c0) + (z̄2a1 + b1 + c1)J) = 0

which implies z̄2a0 + b0 + c0 = 0 and z̄2a1 + b1 + c1 = 0. Here we can replace z̄2 with
z2 since we are allowed to plug in any z ∈ CI , in particular we can plug in z̄ and use the
fact that ¯̄z = z. From the vanishing of the last component in (4.1) we get the equation

z2Jz(a0 + a1J) + z2Jz(b0 + b1J) + Jz(c0 + c1J)

= Jz(z̄2(a0 + a1J) + z̄2(b0 + b1J) + (c0 + c1J)

= Jz[(z̄2a0 + z̄2b0 + c0) + (z̄2a1 + z̄2b1 + c1)J ] = 0

which implies z̄2a0 + z̄2b0 +c0 = 0 and z̄2a1 + z̄2b1 +c1 = 0. Also in these equations, one
can substitute z̄ with z.1 In the vectorial version, we can write the above-given equations
as

(1, 1, z2, z2)a0 + (1, z̄2, 1, z2)b0 + (1, 1, 1, 1)c0 = 0,

(1, 1, z2, z2)a1 + (1, z̄2, 1, z2)b1 + (1, 1, 1, 1)c1 = 0.

Therefore, the linear dependence of the monomials zw2, wzw and w2z (generators of
Hrhs,(1,2)[z, w]) is equivalent to the linear dependence of the vector functions X1(z) =
(1, 1, z2, z2), X2(z) = (1, z̄2, 1, z2) and X3(z) = (1, 1, 1, 1). In this case, the vector func-
tionsX1(z), X2(z) andX3(z) are evidently linearly independent and so are the monomials
zw2, wzw and w2z.

To generalize the formalization of the above ideas we introduce the operator adz and
adopt the identification w2 ' (z2

0 ,−|z1|2, z̄0z1, z0z1) ∈ C4
I . For q ∈ H \ {0}, |q| = 1, let

1In all equations we can plug in the variable z̄ instead of z and we can consider the conjugated equation. Then
the linear independence in question is equivalent to (one of) the above equations with real coefficients.
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adq(w) := qwq̄. This transformation represents a rotation in H which keeps fixed the slice
which contains q. Notice that if z ∈ CI \ R and w = z0 + z1J (with z0, z1 ∈ CI ), then

adz(w) = z0 + z1z
2J

and

zw2 = (adz(w))2z = adz(w
2)z, adz(adz(w)) = adz2(w).

Then

adz(w
2) = zw2z̄ ' (z2

0 ,−|z1|2, z2z̄0z1, z
2z0z1)

= (z2
0 ,−|z1|2, z̄0z1, z0z1) ∗ (1, 1, z2, z2),

w adz(w) = wzwz̄ ' (z2
0 ,−z̄2|z1|2, z̄0z1, z

2z0z1)

= (z2
0 ,−|z1|2, z̄0z1, z0z1) ∗ (1, z̄2, 1, z2),

w2adz(1) = w2 ' (z2
0 ,−|z1|2, z̄0z1, z0z1)

= (z2
0 ,−|z1|2, z̄0z1, z0z1) ∗ (1, 1, 1, 1).

Define the functions ϕz, ψz, idz : C4
I → C4

I by

ϕz[(a, b, c, d)] = (a, b, c, d) ∗X1(z), ψz[(a, b, c, d)] = (a, b, c, d) ∗X2(z),

idz[(a, b, c, d)] = (a, b, c, d) ∗X3(z).

Since ϕz, ψz and idz are linear in C4
I and can be represented by diagonal matrices, we

identify the maps with the diagonals of the corresponding matrices: ϕz ∼= (1, 1, z2, z2) =
X1(z), ψz ∼= (1, z̄2, 1, z2) = X2(z), and idz ∼= (1, 1, 1, 1) = X3(z). In this sense
the functions ϕz, ψz and idz are linearly independent since X1(z), X2(z) and X3(z) are
linearly independent as vectors.

Now one can write the monomial zw2 ∈ A1 as ϕz[(1, 1, 1, 1)] =: v1(z), the monomial
wzw ∈ B1 as ψz[(1, 1, 1, 1)] =: v2(z) and the monomial w2z ∈ C1 as idz[(1, 1, 1, 1)] =:
v3(z). In the sequel the functions like v1,v2,v3 will be called vector functions. With this
identification we have A1 = ϕz(A0), B1 = ψz(B0) and C1 = idz(C0). Notice that one
can also write A0 = A0 ∪B0 ∪ C0 and B0 = B0 ∪ C0.

We proceed by inductive construction and define

Ap = ϕz(Ap−1 ∪Bp−1 ∪ Cp−1), Bp = ψz(Bp−1 ∪ Cp−1) and Cp = idz(Cp−1).

The set Ap contains all monomials, obtained by adding a z on the left hand side to all
bidegree (p− 1, 2) monomials, the set Bp is obtained by adding a z after the first w of the
monomials in Bp−1 and in Cp−1 and the set Cp is obtained by adding a z on the right hand
side to the monomials in Cp−1.

Let us describe the sets Ap, Bp, Cp together with the corresponding vector functions
and compute the kernels of Ap,2 for p = 2, 3. Notice that with the adopted identifications,
it turns out that Cp = {w2zp} for any p ≥ 0 and this implies that the vector function
associated with the unique monomial in Cp is the same, namely (1, 1, 1, 1) for any p ≥ 0.

Here we list the sets Ap Bp and Cp (together with the description of monomials as
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vector functions) for p = 2:

vector function monomial

A2 =





v1(z) = (1, 1, z4, z4)

v2(z) = (1, z̄2, z2, z4)

v3(z) = (1, 1, z2, z2)

' z2w2

' zwzw
' zw2z





B2 =

{
v4(z) = (1, z̄4, 1, z4)

v5(z) = (1, z̄2, 1, z2)

' wz2w
' wzwz

}

C2 =
{
v6(z) = (1, 1, 1, 1) ' w2z2

}
.

Notice that each of the components of the vector functions vk(z) is generated by {1, z̄2, z̄4,
z2, z4}. We look for the functional kernel of the linear mapping A2,2(c1, . . . , c6) =∑6
k=1 vk(z)ck where the vector functions vk(z) are listed above; in other words we are

imposing conditions on ck’s to have
∑6
k=1 vk(z)ck ≡ 0 as a function of z. From the van-

ishing of the first component we only get one equation, from the vanishing of the second,
third and fourth components the (linear) equations are obtained by imposing the vanishing
of coefficients in the basis {1, z̄2, z̄4 z2, z4}. In this way we obtain a homogeneous linear
system whose corresponding matrix is

M2 =




1 1 1 1 1 1
1 0 1 0 0 1
0 1 0 0 1 0
0 0 0 1 0 0
0 0 0 1 1 1
0 1 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 1 0
1 1 0 1 0 0




.

The matrix M2 has trivial kernel and this proves the linear independence of sets of distinct
monomials in Hrhs,(2,2)[z, w]. For p = 3, using the same approach, we get

vector function monomial

A3 =





v1(z) = (1, 1, z6, z6)

v2(z) = (1, z̄2, z4, z6)

v3(z) = (1, 1, z4, z4)

v4(z) = (1, z̄4, z2, z6)

v5(z) = (1, z̄2, z2, z4)

v6(z) = (1, 1, z2, z2)

' z3w2

' z2wzw

' z2w2z

' zwz2w

' zwzwz
' zw2z2





B3 =





v7(z) = (1, z̄6, 1, z6)

v8(z) = (1, z̄4, 1, z4)

v9(z) = (1, z̄2, 1, z2)

' wz3w

' wz2wz

' wzwz2





C3 =
{
v10(z) = (1, 1, 1, 1) ' w2z3

}
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Notice that each of the sets A3, B3, C3 contains only linearly independent monomials.
We look for the functional kernel of the linear mappingA3,2(c1, . . . , c10) =

∑10
k=1 vk(z)ck

where the vector functions vk(z) are listed above; in other words we are imposing condi-
tions on ck’s to have

∑10
k=1 vk(z)ck ≡ 0 as a function of z. We list the equations in the

same order as in the previous case. The homogeneous linear system in this case has as
corresponding matrix

M3 =




1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 1 0
0 0 1 0 1 0 0 1 0 0
1 1 0 1 0 0 1 0 0 0




whose kernel is spanned by the vector (0,−1, 1, 1, 0,−1, 0,−1, 1, 0). The generator of the
kernel represents precisely the polynomial P (z, w) = [[z, w]2, z] in (2.2).

In the same way one can verify that the kernel of the mapping A4,2 in Hrhs,(4,2)[z, w]
is three-dimensional with generators P1(z, w) = zP (z, w) and P2(z, w) = P (z, w)z,
obtained from the polynomial P, and the polynomial

Q(z, w) = [[z, w]z[z, w], z]. (4.2)

The latter is a zero function since [z, w]z[z, w] = −|(z− z̄)z1|2z̄. The polynomialQ is for-
mally linearly independent from the other two generators since it contains the term wz3wz,
which does not appear in P1 or P2. Then the kernel of the mappingA5,2 in Hrhs,(5,2)[z, w]
is six-dimensional, generated by z2P (z, w), zP (z, w)z, P (z, w)z2, zQ(z, w), Q(z, w)z
and [[z2, w], z]. By a similar argument as in bidegree (4, 2), the first five polynomials are
formally linearly independent and the last one contains the term wz4wz, which does not
appear in the first five polynomials.

In fact it is easy to see that in general the first component of the vector functions in
Ap, Bp and Cp is always 1, whereas in the second component terms containing 1, z̄2, . . . ,
z̄2(p) will appear; similarly, in the third and the fourth component only terms containing
1, z2, . . . , z2p will show up.

Let us count the number of equations obtained by imposing the vanishing of coefficients
of Ap,2. There is only one equation coming from the first component (which is redundant)
and the last three components give (22 − 1)(p + 1) equations, whereas we have

(
p+2

2

)
=

(p+ 2)(p+ 1)/2 formally different monomials, so we see that the dimension of the kernel
grows quadratically in the bidegree (p, 2). If p = 2 we have 6 monomials and 9 + 1
equations and if p = 3 there are 10 monomials and 12 + 1 equations. If p = 5 we have
for the first time that the number of equations (which is 19) is smaller than the number of
monomials (which is 21).
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By a similar procedure one would expect (23−1)(p+1) equations for
(
p+3

3

)
monomials

in the submodule Hrhs,(p,3)[z, w] and so forth, but it turns out the for q = 3 there are 7
linearly independent monomials of degree 3 in z0, z1, z̄, z̄1 in the expression of w3, with
the first component giving a redundant equation as before, therefore we get less equations.

The same procedure applied to Hrhs,(p,1)[z, w] is equivalent to looking only at the sets
Ap and Cp and their union, since Bp is empty. Moreover in Hrhs,(p,1)[z, w] the generating
monomials have as corresponding vector functions (1, 1, z2k, z2k), k = 0, . . . , p and they
are obviously linearly independent. This is an alternative proof of Proposition 2.4 in [6].

It is clear that if a set of distinct monomials {mλ(z, w)}λ∈Λ is not linearly independent
in the submodule Hrhs,(p,q)[z, w], so the set {znmλ(z, w)}λ∈Λ is not linearly independent
in Hrhs,(p+n,q)[z, w] for each n ∈ N and because of symmetry the set {mλ(w, z)}λ∈Λ is
not linearly independent in Hrhs,(q,p)[z, w]. Putting this together, we see that a subset of
all distinct monomials in Hrhs,(3+n,2+m)[z, w],m, n ∈ N0 and in Hrhs,(2+n,3+m)[z, w],
m, n ∈ N0 is not linearly independent.

Since P (z, w) = [[z, w]2, z] = 0 as a function and also the polynomial Q of bidegree
(4, 2), Q(z, w) = [[z, w]z[z, w], z] is identically 0 as a function (as explained in the last
section, Equation (4.2)), we conjecture that all zero polynomial functions not formally 0
are obtained from polynomials P and Q after multiplying them by other polynomials and
inserting variables zk or wl.

Remark 4.2. The described procedure can be interpreted as a complex Fourier series anal-
ysis with respect to the complex variables z, z0 and z1. We could have assumed that all
the three variables z, z0 and z1 are unitary complex numbers, since the modulus is not
relevant. In the expansion we considered, there are only 4 generators of the basis of the
Fourier series in variables z0 and z1 and this is reflected in the vector functions having 4
components. With respect to the variable z, the number of the basic vector functions in
question is 2p+ 1 if bidegree is (p, 2).

Remark 4.3. After applying the partial derivative operator ∂̂z to the generators of the ker-
nel of Ap,q in Sp,q(z, w), one obtains polynomials in tridegree (p− 1, q, 1) with respect to
variables z, w, h, e.g. polynomials with p−1 copies z, q copies of w and one h. Analogous
statement holds for ∂̂w.

Example 4.4. Consider a vector field X = (f(z, w), g(z, w)), where f has bidegree
(3, 2) and g has bidegree (2, 3), and let the vector field Y be defined by Y (z, w) =
X(z, w) + (P (z, w)a, P̃ (z, w)b), (with a, b,∈ H), where P is the bidegree (3, 2) poly-
nomial defined in (2.2) and the polynomial P̃ (z, w) = P (w, z) is then a bidegree (2, 3)
polynomial. Obviously we have DivX(z, w)[h] = Div Y (z, w)[h] as a function since P
and P̃ are identically 0 as functions. Within this bidegree, the equivalence relation X ∼ Y
if [X − Y ] = [0] means X − Y = (Pa, P̃ b) for some choice of a, b ∈ H. After a careful
study of linear independence of monomials in tridegree (2, 2, 1), i.e. monomials with two
copies of z-s, two copies of w-s and one copy of h – which, it should be mentioned, boils
down to determining the kernel of a 80 × 30 linear system !!! – it turns out that in this
particular case, DivX(z, w)[h] = 0 as a function if and only if X = X2,2 + (Pa, P̃ b),
which means that the vector mapping has divergence 0 as a function if and only if it has
a bidegree full representative in the sense of the above equivalence relation. Examples of
bidegree full polynomial vector fields are given in (3.1).
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Abstract

Using a technique which is inspired by topology, we construct original examples of 3-
and 4-edge critical graphs. The 3-critical graphs cover all even orders starting from 26; the
4-critical graphs cover all even orders starting from 20 and all the odd orders. In particular,
the 3-critical graphs are not isomorphic to the graphs provided by Goldberg for disproving
the Critical Graph Conjecture. Using the same approach we also revisit the construction of
some fundamental critical graphs, such as Goldberg’s infinite family of 3-critical graphs,
Chetwynd’s 4-critical graph of order 16 and Fiol’s 4-critical graph of order 18.
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Math. Subj. Class. (2020): 05C10, 05C15

1 Introduction
In the present paper, we deal with graphs that are not necessarily simple, so multiple (or
parallel) edges are allowed but loops are excluded. We denote by χ′(G) the chromatic
index of a graph G, namely, the minimum number of colours that are needed for an edge-
colouring of G. Vizing, in [12], proved that ∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G), where
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∆(G) and µ(G) are the maximum degree and the maximum multiplicity (the number of
parallel edges for two fixed vertices) respectively. A simple graph G is said to be class 1
or 2 according to whether χ′(G) is ∆(G) or ∆(G) + 1, respectively. We will restrict our
attention to graphs whose chromatic index is at most ∆ + 1. Edge-critical graphs will be
our main object of study:

Definition 1.1. For a given graph G, let G − e denote the graph obtained by removing an
edge e; G is ∆-(edge)-critical if χ′(G) = ∆ + 1 and χ′(G− e) = ∆ for any edge e.

In the literature, three small critical graphs of considerable importance appeared respec-
tively in [9, 7] and [6]. The first graph (see the left side of Figure 10) was constructed by
Goldberg as the first counterexample related to the “Critical Graph Conjecture” according
to which all critical graphs should have an odd number of vertices (see [6]); such a graph
had the smallest number of vertices (22) in an infinite family of graphs of even order con-
structed by Goldberg. The second graph – see the left side of Figure 1 – was found by Fiol
as an example of critical, simple graph of smaller order, namely 18; the last graph – see the
right side of the figure – is due to Chetwynd; it has order 16 but it is not simple because of
one multiple edge.

u1 u2

u1

u2

(a) (b)

Figure 1: Two remarkable 4-critical graphs.

It is still unknown whether a simple, critical graph of order 16 exists. As to smaller
orders, such a question was settled by a number of contributions over the years. In de-
tails, Jacobsen’s work (see [10]) ruled out all graphs with 4, 6, 8, and 10 vertices; Fiorini
and Wilson (see [8]) added the case 12 to the above list of non-admissible values; Bokal,
Brinkmann, and Grünewald (see [2]) proved that also 14 is non-admissible.

In this paper, we push forward the analogy between non-orientable manifolds and class
2 graphs which was introduced in [11] and describe a new method for constructing critical
graphs. We show the effectiveness of this method by constructing infinite families of critical
simple graphs. The constructions cover all odd and even orders for 4-critical graphs, the
odd order starting from 5, the even orders starting from 20, as well as all even orders
for 3-critical graphs, including the orders of Goldberg’s infinite family starting from 28
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(the orders of Goldberg’s graphs are all those numbers congruent to 8 (mod 16), and the
further value 22). The 3-critical graphs of even order that we construct are not isomorphic
to the graphs of Goldberg’s infinite family; the graphs are simple, except the 4-critical
graph of order 16. According to the literature, our constructions provide in particular the
first example of an infinite family of ∆-critical graphs for degree 4. The present approach
is expected to yield infinite families also for larger degrees, in the next future, because the
key definitions can be easily exported to the general case.

Our method allows to build up critical graphs starting from class 1 graphs with an
elementary and “nice” shape (see for instance Figure 2). This is innovative with respect
to well-know methods that construct ∆-critical graphs starting from critical graphs with
maximum degree not exceeding ∆ – see Theorem 4.6 and 4.9 in [14].

Following the mentioned approach in [11], we also show that the infinite family of
Goldberg’s graphs disproving the “Critical Graph Conjecture” and the other two counterx-
amples constructed by Fiol and Chetwynd can be obtained by a suitable identification of
vertices which is pretty analogous to the topological identification yielding the Möbius strip
from a rectangular strip. Details about the change of language – from topology to graph
theory – can be found in [11].

Some additional terminology is required; in particular, certain distinguished vertices
that play a basic role in the constructions shall be emphasised by suitable adjectives. Leav-
ing details to the next sections, we anticipate that all the constructions will rely on par-
ticular pairs of vertices which are analogous to the extremes of a rectangular strip before
the identification that leads to a Möbius strip. In our setting, any such pair will undergo
a transformation which is similar to the topological identification of the extremes of the
rectangular strip. The change from orientability to non-orientability, caused by the identifi-
cation, is rephrased as the change from class 1 to class 2 as a consequence of the prescribed
transformation.

Many standard definitions in this paper are in accordance with the textbook [3] by
Bondy and Murty. As a further source, we mention the textbook [5] by Bryant. Edges like
{u, v} are simply denoted by uv. We use the term t-colouring if the colour set has size t.
Given a vertex v of a graph G, the palette of v, in symbols Pγ(v) or simply P (v), is the
set of colours that a colouring γ of G assigns to the edges containing v. In some cases, we
will need to write γG so as to specify the graph we are colouring. The complementary set
Pγ(v) or P (v) is the complementary palette of v with respect to the colour set of γ. If a
colour is missing at a vertex v, we say that v lacks that colour. Finally, a vertex of degree h
is an h-vertex.

For our purposes we also recall Vizing’s Adjacency Lemma (VAL), concerning the
structure of critical (simple) graphs, and the quite elementary, still very useful, Parity
Lemma (PL):

Theorem 1.2 (VAL [13]). If uv is an edge of a ∆-critical graph, then u is adjacent to at
least ∆− deg(v) + 1 ∆-vertices (different from v).

Lemma 1.3 (PL [1]). For any colouring of a graph G, the number of vertices that lack a
given colour has the same parity as |V (G)|.

Although there exist several generalisations of VAL to multigraphs, for our purposes it
suffices to consider the simple graph version (see the lines just above Remark 2.8).
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2 Fertile pairs of vertices
As hinted in the Introduction, the constructions of critical graphs that follow can be thought
of as identifications of special pairs of vertices which change the colouring class from 1
to 2. Accordingly, the first step in each construction is the choice of a suitable pair of
vertices which we are going to define as fertile pair. There are three kinds of fertile pairs,
but after a little thought all of them can be related to the same kind – as we will soon
explain. Conversely, given a critical graph, we will show that it is obtained as a suitable
identification of a fertile pair which collapses to a unique vertex. In this reconstruction
process, it is important to note that the identification could be arbitrarily performed on
every vertex, but the choice of a particular vertex is essential both for proving criticality in
a comfortable way, and for generating new critical graphs using a pattern which is readily
suggested by the fertile pair.

Definition 2.1. Let u, v be vertices of a graph G.
Assume that the following conditions hold:

(*) u is not adjacent to v, deg(u) + deg(v) ≤ ∆ and, for every ∆-colouring, P (u) ∩
P (v) 6= ∅.

(**) For any edge e, G− e admits a ∆-colouring such that P (u) ∩ P (v) = ∅.

Then, u and v are said to be conflicting.
Assume, instead, the following:

(*) deg(u) = deg(v) = ∆− 1 and, for every ∆-colouring, P (u) = P (v).

(**) For any edge e which does not contain u nor v, G−e admits a ∆-colouring such that
P (u) 6= P (v).

In this case, u and v are same-lacking.
Finally, assume the following:

(*) deg(u),deg(v) are smaller than ∆ and, for every ∆-colouring, |P (u) ∪ P (v)| = ∆.

(**) For any edge e, G− e admits a ∆-colouring such that |P (u) ∪ P (v)| < ∆.

In this last case, u and v are said to be saturating.
In all of the three cases, we say that (u, v) is a fertile pair of vertices.

Remark 2.2. After the removal of e in the same-lacking case, we equivalently require that
|P (u)∪P (v)| ≥ 2; this is trivial if e contains one or both vertices u, v. Furthermore, notice
that in the saturating case condition |P (u)∪P (v)| = ∆ is equivalent to P (u)∩P (v) = ∅.

The following lemma is the basic link between topology and graph theory in the present
context, and should be considered the starting point for all the next constructions.

Lemma 2.3. Let (u, v) be a fertile pair of a graph G having χ′(G) = ∆ ≥ 2. For each of
the following cases, the corresponding operation yields a ∆-critical graph.

(i) If u and v are non-adjacent and conflicting, identify u and v.

(ii) If u and v are same-lacking, add a new vertex w and edges uw, vw.
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(iii) If u and v are saturating, add the edge uv.

Proof. If we identify a pair of conflicting vertices, we obtain a graph G′ having maximum
degree ∆ and no proper ∆-coloring, since the palettes of two conflicting vertices share at
least one color; hence G′ is class 2. By definition 2.1, if we remove any edge e from G′,
we find at lest one ∆-coloring of G′− e such that the two conflicting vertices have disjoint
palettes with respect to it; therefore, G′ is ∆-critical. The same-lacking and saturating
cases can be managed analogously.

Notice that adding two pendant edges uw, vw′ when u and v are same-lacking yields
conflicting 1-vertices w,w′. Similarly, adding one pendant edge uw when u and v are
saturating yields conflicting vertices w, v. Therefore, the above operations can be regarded
as identifications of conflicting vertices in all cases. These procedures could be rephrased
in terms of atlases and orientability, as explained in [11]; the prototype of this analogy
is given by the odd cycle C2n+1 of any fixed length. Such a graph is the result of the
identification of two conflicting vertices, namely, the extremes of the path P2n+2 having
the same number of edges. The path is “orientable” (i.e. 2-colourable) but the identification
of conflicting vertices increases the chromatic index and compromises orientability. More
precisely, the orientation of P2n+2 starts from a “local chart” (a colouring of the 2-star
containing a non-extremal vertex v), and the local chart is subsequently extended so as to
cover as many edges as possible. In the case of the path, we succeed in covering all the
graph (so we have a “global atlas”, that is, a global 2-colouring) whereas the cycle does
not allow for a global 2-colouring because one edge must be excluded (the atlas cannot be
extended to the whole graph). Notice that the hypothesis (**) for conflicting vertices is
crucial to prove criticality.

Remark 2.4. The 4-critical graphs in Figure 1 can be obtained in the way described in
Lemma 2.3, by considering the graphs G17, G19 in Figure 8(b), 9(a), respectively, and
identifying the vertices v, v′. Such vertices are conflicting, as we will show in Section 3.

Here follow some examples as a first step towards the main theorems.

Example 2.5. Let us show that the graph G5 in Figure 2(a) has saturating vertices ui, uj ,
with 1 ≤ i < j ≤ 4. For every 4-colouring the number of vertices that lack a fixed
colour is odd, according to PL, whence every 3-vertex lacks a different colour; on the other
hand, one can easily verify that the removal of any edge allows for a 4-colouring such that
|P (ui) ∪ P (uj)| = 3 for any pair of 3-vertices.

Example 2.6. The graphs G7 and G9 in Figure 2(c) – (d) have saturating vertices u1, u2,
because PL implies that these vertices have disjoint palettes for any 4-colouring, and it
remains to make routine checks after the removal of any arbitrary edge.

Example 2.7. The graph G6 in Figure 2(b) has same-lacking vertices v1, v2, because PL
forces the palettes to be equal and this is no longer true if we remove any edge not contain-
ing one or both vertices v1, v2.

Notice that graphs with same-lacking vertices can be replicated so as to form a chain
along which a color is “transmitted”. Such a transmission of colour is a fundamental con-
cept in this paper and will be described more thoroughly in the next section.

In the following remark, we consider critical graphs having at least three vertices of
maximum degree. VAL implies that this property holds for every simple graph, but in the
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v5 v6

v3v4

v1 v2

u3 u2

u1 u4

u5

(a) (b)

u1 u2

(c)

u1 u2

(d)

G5 G6

G7
G9

Figure 2: Fertile pairs of vertices: u1 and u2 are saturating, v1 and v2 are same-lacking.

presence of multiple edges the number of vertices of maximum degree might be smaller
than 3. For instance, the complete graphK3 with ∆−1 parallel edges connecting two fixed
vertices is ∆-critical and has only two vertices of maximum degree.

Remark 2.8. LetG be a ∆-critical graph having at least three vertices of maximum degree.
Let u, v be adjacent vertices that are connected by h parallel edges (possibly h = 1). After
deleting one of the parallel edges, u and v become saturating and the degree remains equal
to ∆.

According to the above remark, Chetwynd’s 4-critical graph can also be obtained by
inserting an additional edge between the saturating vertices u1, u2.

3 Construction of graphs with fertile pairs
Graphs with fertile pairs of vertices can be obtained in several ways from smaller graphs
with the same property. The methods we present here will be applied to prove the main
theorems.

Lemma 3.1. Let H1 and H2 be vertex-disjoint graphs of degree ∆ ≥ 2 and such that
χ′(H1) = χ′(H2) = ∆. Assume that v1, v2 are same-lacking in H1 and u1, u2 are same-
lacking (resp. saturating) in H2. The graph H obtained from H1 and H2 by adding the
edge u2v2 has again maximum degree ∆, chromatic index ∆, and has same-lacking (resp.
saturating) vertices u1, v1.

Proof. Let us analyse the same-lacking case. A colouring of H can be obtained by assum-
ing that u2 and v2 lack the same colour in two given ∆-colourings of H1 and H2; by the
hypothesis, u1 and v1 lack that colour. If we now remove any edge, say in H1, u2v2 can
be coloured with a colour which is present at u1. Such a colour is instead missing at v1. A
similar argument applies to the saturating case.
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Example 3.2. We consider two copies of G6 – see Figure 2(b) – as the graphs H1 and
H2. We can actually iterate the gluing process m times, m ≥ 1, so as to obtain a graph of
order 6m, of maximum degree 4, whose 3-vertices are still fertile (same-lacking). Let us
denote this graph by Gm6 – see Figure 3. This graph will play a basic role in the proofs of
Theorem 5.1 and 5.2.

v1 v2

G
m
6

Figure 3: The graph Gm6 in Example 3.2 is a concatenation of graphs with same-lacking
pairs.

The purpose of the next couple of definitions is twofold. On one hand, they allow to
recover Chetwynd and Fiol’s counterexamples in the light of our approach via transmission
of colours along the edges of a graph. On the other hand, they play an important role in
the construction of critical graphs of even order that will follow in the next pages. These
definitions involve graphs with maximum degree 4, although they can be extended to graphs
with ∆ > 4.

Before providing the definitions, some further observations are in order. What we re-
fer to as transmitting vertices should be regarded as terminal nodes which lend themselves
to being connected to other graphs so as to yield a global graph with conflicting vertices
and, eventually, a critical graph. The fundamental property of 2- or 3-colour transmitting
vertices concerns the complementary palettes, that is, the colours actually missing at each
vertex. For, the missing colours can be seen as the admissible colours of any edge which
is added to the graph and contains that vertex. In the two definitions, it is the interplay be-
tween the colours missing at each distinguished vertex to ensure that the connecting edges,
when added, will transmit some prescribed colour across the whole graph, and will even-
tually increase the chromatic index. Indeed, the vertices we are going to introduce are the
first step towards the construction of graphs with conflicting vertices (see Propositions 3.8
and 3.12).

Let S 	 T denote the symmetric difference between the sets S and T .

Definition 3.3. Let G be a graph having χ′(G) = ∆ = 4, and u, v, u1, u2 be distinct
vertices of G, where deg(u) = deg(v) = 2, deg(u1) = deg(u2) = 3. We say that G is
3-colour transmitting with respect to u, v, u1, u2 if the following conditions hold:

(1) there exists a 4-colouring such that u1 and u2 lack distinct colours A and B, exactly
one colour is missing simultaneously in u, v and this colour is either A or B;

(2) for every 4-colouring such that u1 and u2 lack distinct colours A and B, |{A,B} ∪
(P (u) 	 P (v))| 6= 3 (in particular, in the colouring in (1) the two other colours
missing at u and v are different from A and B);

(3) for every edge e there exists a 4-colouring ofG−ewith coloursA,B,C,D satisfying
A ∈ P (u1), B ∈ P (u2), C ∈ P (u) ∩ P (v) and the set {A,D} or {B,D} is
contained in P (u)	 P (v).
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If we slightly alter the above definition by setting u1 = u2 and deg(u1) = 2, the
resulting graph is said 3-colour transmitting with respect to u, v, u1. In this case, the first
requirement in (1) and (2) clearly becomes “u1 lacks coloursA andB”, in symbolsA,B ∈
P (u1).

Definition 3.4. LetG be a graph of maximum degree ∆ = 4 and χ′(G) = 4. Letw,w1, w2

be distinct vertices of G, where deg(w) = 2, deg(w1) = deg(w2) = 3. We say that G is
2-colour transmitting with respect to w,w1, w2, if the following conditions hold:

(1) for every 4-colouring ofG the set |P (w1)∪P (w2)| contains exactly two colours and
coincides with P (w);

(2) for every edge e there exists a 4-colouring of G − e with colours A,B,C such that
A ∈ P (w1), B ∈ P (w2) and P (w) contains {A,C} or {B,C}.

Similarly as above, if the vertices w1, w2 coincide and deg(w1) = 2, we say that
the graph is 2-colour transmitting with respect to w,w1; the requirement in condition (2)
becomes “w1 lacks colours A and B”.

Example 3.5. The graph G12 in Figure 4(a) is 3-colour transmitting with respect to u, v,
u1, u2, as we are going to explain by testing the conditions of Definition 3.3. Condition (1)
holds as shown in Figure 4(a). Condition (3) can be checked by setting: P (u) ⊆ {2, 3},
P (v) ⊆ {2, 4}, and P (z1) ⊆ {1, 4}. In the graph G12 − e, the palettes of the vertices
u1, u2 take the following values: P (u1) ⊆ {1, 2, 3} and P (u2) ⊆ {1, 3, 4}; P (u1) ⊆
{2, 3, 4} and P (u2) ⊆ {1, 2, 3}; P (u1) ⊆ {2, 3, 4} and P (u2) ⊆ {1, 2, 4}. Notice that
P (u) ⊆ {2, 3}, P (v) ⊆ {2, 4} mean that 1 ∈ P (u) ∩ P (v) and {3, 4} ⊆ P (u) 	 P (v),
that is, colour 1 corresponds to colour C in Condition (3) and {3, 4} corresponds to one
of the sets {A,D} or {B,D}, where A ∈ P (u1), B ∈ P (u2). Thus, for instance, if
P (u1) ⊆ {1, 2, 3} and P (u2) ⊆ {1, 3, 4}, then A = 4, B = 2 and D = 3.

It remains to prove Condition (2). By PL, the number of vertices that lack a given
colour is even, and there are 6 vertices of degree smaller than 4. However, a color missing
in all these vertices would make the two palettes of degree 3 equal, which is not allowed
by assumption. Now let us partition the 2 · 3 + 4 · 2 colours on the above 6 vertices either
as 2 + 2 + 4 + 6 or as 2 + 4 + 4 + 4, where each part counts the occurrences of a fixed
colour (0 is missing, by the above discussion). Up to permutations of colours there are two
colourings of the first type and three of the second type (in the table, palettes of size 4 are
not present and we assume that palettes of size 3 are the same in all cases):

{1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3}
{1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4} {1, 2, 4}
{1, 2} {1, 3} {1, 2} {1, 4} {1, 3}
{1, 2} {1, 3} {1, 4} {1, 4} {1, 4}
{1, 3} {1, 3} {2, 4} {2, 3} {3, 4}
{1, 4} {1, 4} {3, 4} {2, 4} {3, 4}

Whatever the assignments of palettes to the 2-vertices, column 2 and column 4 satisfy
(2). For the colouring γ1 in the 1st column, condition |P (u1)∪P (u2)∪ (P (u)	P (v))| 6=
3 is not satisfied if we choose {P (u), P (v)} = {{1, 2}, {1, 3}} or {P (u), P (v)} =
{{1, 2}, {1, 4}}. The permutation of colours 3 and 4 leaves γ1 invariant and switches
the sets {{1, 2}, {1, 3}}, {{1, 2}, {1, 4}}. Therefore, in order to show that Condition (2)
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is satisfied for the colouring γ1, it suffices to show that the graph G12 cannot be coloured
according to γ1 by setting {P (u), P (v)} = {{1, 2}, {1, 3}}.

Suppose, on the contrary, that G12 can be coloured according to γ1 by setting {P (u),
P (v)} = {{1, 2}, {1, 3}}. The set of palettes of γ1 shows that colour 1 induces a perfect
matching of the graph G12. As shown in Figure 5, there are exactly four perfect matchings
ofG12. By the symmetry of the graph and by the fact that the sets {{1, 2}, {1, 3}}, {{1, 2},
{1, 4}} can be obtained one from the other by a permutation of colours 3 and 4, we can
consider the first two perfect matchings of Figure 5. The set of palettes of γ1 also shows
that colour 2 induces a matching of cardinality 5, where exactly one of the vertices u, v (re-
spectively, z1, z2) is unmatched since we are supposing {P (u), P (v)} = {{1, 2}, {1, 3}}
and {P (z1), P (z2)} = {{1, 2}, {1, 4}}. Figure 6 shows how to colour the edges of G12

with 1 and 2. In each of the four cases represented in Figure 6, one can see that is not pos-
sible to colour to edges of G12 according to the colouring γ1 by setting {P (u), P (v)} =
{{1, 2}, {1, 3}}. Therefore, if G12 can be coloured by γ1, then γ1 satisfies Condition (2).
The same can be repeated for the remaining colourings in the 3rd and 5th column. It is thus
proved that every 4-colouring of G12 with |P (u1)	 P (u2)| = 2 satisfies Condition (2).
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Figure 4: (a): A 4-colouring of the graph G12 in Example 3.5 that satisfies Conditions (1)
and (2) of Definition 3.3. (b): A 4-colouring of the graph H6 in Example 3.7.
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Figure 5: Perfect matchings of the graph G12 that are considered in Example 3.5.

There are several methods for obtaining a 3-colour transmitting graph starting from a
smaller one. For instance, in the graphG12 of Figure 4(a), we can delete the edge u1u2 and
connect the remaining graph to the graph Gm6 in Figure 3 by adding the edges u1v1, u2v2.
The resulting graph is 3-colour transmitting with respect to u, v, u1, u2. In the next exam-
ple, we show a more elaborate method for obtaining a 3-colour transmitting graph starting
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Figure 6: The edges of the graph G12 are coloured according to the palettes
{1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 2}, {1, 2}, {1, 3}, {1, 4} by setting {P (u), P (v)} =
{{1, 2}, {1, 3}} and {P (z1), P (z2)} = {{1, 2}, {1, 4}}; colour 1 induces a perfect match-
ing, colour 2 induces a matching of cardinality 5, where exactly one of the vertices u, v
(respectively, z1, z2) is unmatched (see Example 3.5).

from a smaller one. This method allows to find a graph that will be used to construct Fiol’s
4-critical graph of order 18.

Example 3.6. Consider the graph N in Figure 7(a). Notice that P (w) = P (w1)	 P (w2)
for every 4-colouring of the graph N , as a straightforward consequence of PL. We denote
by L the graph obtained from G12 in Figure 4 by deleting the edge u1u2. Let G16 be the
graph resulting from the identification of the vertices w1 ∈ V (N) with u1 ∈ V (L) and
of w2 ∈ V (N) with u2 ∈ V (L). We have that χ′(L) = ∆ = 4 (see the colouring in
Figure 7(b)).

Let us show that G16 is 3-colour transmitting with respect to u, v, w by testing Defini-
tion 3.3 with u1 = u2. Condition (1) follows from the colouring in Figure 7(b).

Condition (2) is satisfied if every 4-coloring of G16 satisfies the relation |P (w) ∪
(P (u)	 P (v))| 6= 3. Suppose that there exists a 4-colouring γ of G16 such that |Pγ(w) ∪
(Pγ(u) 	 Pγ(v))| = 3, that is, Pγ(w) = {A,B}, Pγ(u) 	 Pγ(v) = {A,C} or {B,C}.
The colouring γ induces a colouring γ′ of G12 such that Pγ′(u1) 	 Pγ′(u2) = {A,B}
and Pγ′(u) 	 Pγ′(v) = {A,C} or {B,C}, that is, γ′ does not satisfies Condition (2) of
Definition 3.3. That yields a contradiction, since G12 is 3-colour transmitting with respect
to u, v, u1, u2.

Condition (3) holds if for every edge e ∈ E(G16) there exists a 4-colouring of G16− e
such that {A,B} ⊆ P (w), C ∈ P (u)∩ P (v) and {A,D} ⊆ P (u)	 P (v) where A,B,D
are distinct. Assume e ∈ E(G12). Since G12 is 3-colour transmitting with respect to
u, v, u1, u2, there exists a suitable colouring which can be easily extended to the whole
graph G16.

If e ∈ E(N), we colour the edges of G16 belonging to G12 by the 4-colouring in
Figure 4(a), so that P (u) = {2, 3} and P (v) = {2, 4}. One can verify that the edges
of N − e can be coloured in such a way that P (w) ⊆ {2, 4}. Therefore, {1, 3} ⊆ P (w),
1 ∈ P (u)∩P (v) and {3, 4} ⊆ P (u)	P (v), that is, Condition (3) is satisfied if e ∈ E(N).

Example 3.7. The graph H6 in Figure 4(b) is 2-colour transmitting with respect to w,w1,
w2. The conditions of Definition 3.4 are satisfied: Condition (1) follows from Parity
Lemma; Condition (2) can be verified by coluring the edges with A,B,C,D and setting
P (w1) ⊆ {B,C,D}, P (w2) ⊆ {A,C,D}, P (w) ⊆ {A,D}.
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Figure 7: (a): The graph N . (b): A 4-colouring of the graph G16 that satisfies Condi-
tions (1) and (2) of Definition 3.3; as proved in Example 3.6, the graph G16 is 3-colour
transmitting with respect to u, v, w.

Definitions 3.3 and 3.4 are used to construct graphs having fertile vertices. The next
result is a construction of graphs having fertile vertices and whose maximum degree ∆ is
4. The construction can be extended to graphs whose maximum degree is larger than 4 and
having multiple edges. In this context, we limit ourselves to consider ∆ = 4.

We recall that a bowtie is the graph obtained by identifying two vertices belonging to
two distinct 3-cycles, thus obtaining a centre of degree 4 and four 2-vertices. If the 3-cycle
are (x, y1, y2) and (x′, y′1, y

′
2), then we denote by B(x, y1, y2, y

′
1, y
′
2) the bowtie resulting

from the identification of the vertices x and x′.

Proposition 3.8. Let B = B(x, u′, v′, w, y) be a bowtie with centre x and 2-vertices u′,
v′, w, y. Let K and M be graphs of maximum degree 4 and χ′(K) = χ′(M) = 4, with the
following features. The graphK is 3-colour transmitting with respect to u, v, u1, u2, where
degK(u) = degK(v) = 2,degK(u1) = degK(u2) = 3; either M is 2-colour transmitting
with respect to w,w1, w2, where degM (w) = 2,degM (w1) = degM (w2) = 3, or M is
2-colour transmitting with respect to w,w1, where degM (w) = degM (w1) = 2.

Let H be the graph obtained from B,K and M by identifying the vertices u′ with u,
w′ with w and by adding the edges u1w1, u2w2 or u1w1, u2w1 according to whether M is
2-colour transmitting with respect to w,w1, w2 or with respect to w,w1, respectively. The
graph H has maximum degree 4, χ′(H) = 4 and the vertices v, v′ are conflicting.

Proof. We identify the edge u2w2 with the edge u2w1 if w1 = w2, that is, if M is 2-
colour transmitting with respect to w,w1. Since the identification of the vertices u, u′ and
w,w′ does not increase the maximum degree of K,M and of the bowtie, the maximum
degree of H is still 4. We show that χ′(H) = 4. By Condition (1) of Definition 3.4, there
exists a 4-colouring γ∗M such that w1, w2 lack distinct colours A,B and these colours are
missing in w (if w1 = w2, then w1 lacks both colours A,B). By Condition (1) and (2) of
Definition 3.3, there exists a 4-colouring γ∗K such that u1, u2 lack distinct coloursA,B and
exactly one of these two colours, sayA, is missing simultaneously in u and v; the other two
missing colours are different from B, that is, Pγ∗K (u) = {A,C} Pγ∗K (v) = {A,D}. We
define a 4-colouring γ∗ ofH such that the restriction of γ∗ to the edges of M (respectively,
of K) coincides with γ∗M (respectively, with γ∗K); the edges of the bowtie and u1w1, u2w2

are coloured as follows: {γ∗(u1w1), γ∗(u2w2)} = {A,B}; γ∗(wx) = A; γ∗(wy) = B;
γ∗(ux) = C; γ∗(uv′) = A; γ(v′x) = B; and γ∗(xy) = D. In conclusion χ′(H) = 4.
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We prove that the vertices v, v′ ∈ V (H) are conflicting. Firstly, we show that for ev-
ery 4-colouring of H , the palettes of v and v′ share at least one colour. Suppose, on the
contrary, that there exists a 4-colouring γ1 of H such that v and v′ have disjoint palettes.
The restriction of γ1 to the edges of K (respectively, of M ) is a 4-colouring γK (respec-
tively, γM ). The following relations hold: PγK (u1) = PγM (w1) = γ1(u1w1) = A;
PγK (u2) = PγM (w2) = γ1(u2w2) = B (if w1 = w2 then A 6= B and PγM (w1) =

{A,B}). Moreover, PγK (v) = Pγ1(v) = Pγ1(v′) = {γ1(uv′), γ1(v′x)} since we are
supposing that v and v′ have disjoint palettes with respect to γ1. Therefore PγK (u) 	
PγK (v) = {γ1(uv′), γ1(ux)} 	 {γ1(uv′), γ1(v′x)} = {γ1(ux), γ1(v′x)}. By Condi-
tion (1) of Definition 3.4, the colours A,B are distinct and PγM (w) = {A,B}. It fol-
lows that {γ1(wx), γ1(wy)} = {A,B} and γ1(xy) 6= A,B, γ1(ux), γ1(v′x). There-
fore, exactly one of the colours γ1(ux), γ1(v′x) is in {A,B}. Consequently, the set
PγK (u) 	 PγK (v) = {γ1(ux), γ1(v′x)} contains exactly one of the colours A,B. It fol-
lows that |PγK (u1) ∪ PγK (u2) ∪ (PγK (u) 	 PγK (v))| = 3, a contradiction since K is
3-colour transmitting with respect to u, v, u1, v1. Hence, for every 4-colouring of H the
palettes of the vertices v, v′ share at least one colour.

We show that for every edge e ∈ E(H) there exists a 4-colouring γ′ of H − e such
that v and v′ have disjoint palettes. We distinguish the cases: e ∈ E(K); e ∈ E(M);
e ∈ E(B); and e ∈ {u1w1, u2w2}.

Case e ∈ E(K).
By Condition (3) of Definition 3.3, there exists a 4-colouring γ̃ of K − e such that

A ∈ Pγ̃(u1), B ∈ Pγ̃(u2), C ∈ Pγ̃(u)∩Pγ̃(v), and the set {A,D} or {B,D} is contained
in Pγ̃(u) 	 Pγ̃(v), where A,B,D are distinct. Without loss of generality, we can assume
{A,D} ⊆ Pγ̃(u) 	 Pγ̃(v). Now {A,D} can be contained in exactly one of the comple-
mentary palettes Pγ̃(u), Pγ̃(v) or in neither of them. The first case occurs only if e contains
exactly one of the vertices u, v, and in this case {Pγ̃(u), Pγ̃(v)} = {{A,D,C}, {B,C}}.
If, instead, e does not contain u, v, then {Pγ̃(u), Pγ̃(v)} = {{A,C}, {D,C}}.

We colour the edges of M according to an arbitrary 4-colouring γM of the graph
M . By a permutation of the colours and by Condition (1) of Definition 3.4, we can
assume that the colours A,B are missing in w and w1, w2 lack A,B, respectively (if
w1 = w2, then w1 lacks both colours A,B). We define a 4-colouring γ′ of H − e such
that the restriction of γ′ to K − e (respectively, to M ) corresponds to the colouring γ̃
(respectively, γM ) and γ′(u1w1) = A; γ′(u2w2) = B; γ′(uv′) = C; γ′(xy) = C.
The colouring of the edges ux, v′x, wx, wy depends on the set {Pγ′(u), Pγ′(v)}. If
{Pγ′(u), Pγ′(v)} = {{A,C}, {D,C}}, then we set γ′(wx) = B, γ′(wy) = A and the
edges ux, v′x are coloured by A,D or D,A, respectively, according to whether Pγ′(u) =

{A,C} or Pγ′(u) = {D,C}, respectively. If {Pγ′(u), Pγ′(v)} = {{A,D,C}, {B,C}},
then we set γ′(wx) = A, γ′(wy) = B and the edges ux, v′x are coloured byD,B orB,D,
respectively, according to whether Pγ′(u) = {A,D,C} or Pγ′(u) = {B,C}, respectively.
Notice that Pγ′(v′) ⊆ Pγ′(v), hence v, v′ have disjoint palettes with respect to γ′.

Case e ∈ E(M).
We define a 4-colouring γ′ of H − e such that the edges of K are coloured according

to the 4-colouring γ∗K of K defined at the beginning of the proof. We have that Pγ′(u) =

Pγ∗K (u) = {A,C}, Pγ′(v) = Pγ∗K (v) = {A,D}. Since u1, u2 lack distinct colours A,B
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with respect to γ∗K , we can assume that u1 lacks A and u2 lacks B.
By Condition (2) of Definition 3.4, we can colour the edges of M − e according to

the 4-colouring γ′M of M such that the vertices w1, w2 lack distinct colours, say A,B,
and the colours A,C are missing in w, where A,B,C are distinct (if w1 = w2, then
w1 lacks both colours A,B). The remaining edges of H − e are coloured as follows:
γ′(u1w1) = A; γ′(u2w2) = B; γ′(uv′) = A; γ′(ux) = C; γ′(v′x) = D; γ′(wx) = A;
γ′(wy) = C; and γ′(xy) = B. The vertices v, v′ have disjoint palettes with respect to γ′,
since Pγ′(v′) = Pγ′(v) = {A,D}.

Case e ∈ E(B).
We define a 4-colouring γ′ of H − e that corresponds to the 4-colouring γ∗ of H de-

fined at the beginning of the proof, except on the remaining edges of B − e. The edges
of B − e are coloured in such a way that Pγ′(v′) ⊆ {A,D}, Pγ′(u) ⊆ {A,C} and
{γ′(wx), γ′(wy)} ⊆ {A,B}. The vertices v, v′ have disjoint palettes with respect to γ′,
since Pγ′(v′) ⊆ Pγ′(v) = {A,D}.

Case e ∈ {u1w1, u2w2}.
We define a 4-colouring γ′ of H − e which coincides with γ∗K on the subgraph K. So

we have that Pγ′(u) = Pγ∗K (u) = {A,C}, Pγ′(v) = Pγ∗K (v) = {A,D} and {γ∗K(u1w1),
γ∗K(u2w2)} = {A,B}. Without loss of generality, we can assume that the edge e that
has been removed is coloured with A. By Condition (1) of Definition 3.4, we can colour
the edges of M in such a way that w1, w2 lack two distinct colurs, say B,C, and these
two colours are missing in w. The edges of B are coloured as follows: γ′(uv′) = A;
γ′(ux) = C; γ′(v′x) = D; γ′(wx) = B; γ′(wy) = C; and γ′(xy) = A. The vertices
v, v′ have disjoint palettes with respect to γ′, since Pγ′(v′) = Pγ′(v) = {A,D}.

Remark 3.9. The argument of the above proof is still valid if we assume thatK is 3-colour
transmitting with respect to u, v, u1, where u, v, u1 have degree 2 in K.

Example 3.10. We apply Proposition 3.8 to the graphs K = G12 and M = H6 in Fig-
ure 4. As remarked in Example 3.5, the graph G12 is 3-colour transmitting with respect to
u, v, u1, u2. Similarly, in Example 3.7 we have seen that H6 is 2-colour transmitting with
respect tow,w1, w2. By Proposition 3.8, we obtain the graphG21 in Figure 8(a). The graph
G21 has order 21, maximum degree 4, and χ′(G21) = 4. The vertices v, v′ ∈ V (G21) are
conflicting. Following the proof of Proposition 3.8 we can colour the edges of G21 accord-
ing to the 4-colourings γ∗K and γ∗M in Figure 4 by setting a = 1, b = 2, c = 3 and d = 4
(or c = 4 and d = 3). This graph will be used in the proof of Theorem 5.2.

Example 3.11 (Chetwynd’s counterexample). We can apply Proposition 3.8 to the graph
K = G12 in Figure 4(a) and to the dipole M = D2 with two parallel edges even thought
the dipoleD2 is not 2-colour transmitting with respect to its vertices. More precisely, as re-
marked in Example 3.5, the graph G12 is 3-colour transmitting with respect to u, v, u1, u2.
It is easy to see that every 4-colouring of the graph D2 satisfies conditions (1) and (2) of
Definition 3.4 with w1 = w2. Therefore, we can repeat the proof of Proposition 3.8 and
obtain the graph G17 in Figure 8(b) having order 17, maximum degree 4 and χ′(G17) = 4.
The vertices v, v′ ∈ V (G17) are conflicting. By Lemma 2.3, the identification of the ver-
tices v, v′ yields a 4-critical graph, namely, Chetwynd’s 4-critical graph in Figure 1(b).
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Figure 8: (a): The graphG21 constructed in Example 3.10. (b): The graphG17 constructed
in Example 3.11.

Proposition 3.12. Let B = B(x, u′, v′, w, y) be a bowtie with centre x and 2-vertices
u′, v′, w, y. Let K and M be graphs of maximum degree 4 and χ′(K) = χ′(M) = 4 with
the following features. The graph K is 3-colour transmitting with respect to u, v, u1 where
degK(u) = degK(v) = degK(u1) = 2. The 2-vertices w,w1 ∈ V (M) are saturating and
for every e ∈ E(M) not containing w nor w1 there exists a 4-colouring of M − e such that
w,w1 lack exactly one colour simultaneously.

Let H be the graph obtained from B,K and M by identifying the vertices u′ with u; w′

with w; and u1 with w1. The graph H has maximum degree 4, χ′(H) = 4 and the vertices
v, v′ are conflicting.

Proof. The argument is the same as in the proof of Proposition 3.8. It is different in the
case e ∈ E(M). We show that if we remove an edge e ∈ E(M), then there exists a
4-colouring γ′ of H − e such that v, v′ have disjoint palettes with respect to it. As in the
proof of Proposition 3.8, the restriction of γ′ to the edges ofK corresponds to a 4-colouring
γ∗K of K such that Pγ∗K (u1) = {A,B}, Pγ∗K (u) = {A,C}, Pγ∗K (v) = {A,D}. We set
γ′(uv′) = A, γ′(ux) = C, γ′(v′x) = D. The restriction of γ′ to the edges of M − e
corresponds to a 4-colouring γ′M of M − e. Since u1 and w1 are identified, the palette of
w1 with respect to γ′M is contained in {A,B}. We define γ′M on the other edges of M − e
as follows.

If e ∈ E(M) does not contain w nor w1, then Pγ′M (w1) = {A,B}. By the assump-
tions, there exists a 4-colouring of M − e such that w,w1 lack exactly one colour simulta-
neously. By a permutation of the colours, we can set Pγ′M (w) = {A,C}. We can colour
the remaining edges of H − e as follow: γ′(wx) = B, γ′(wy) = D, γ′(xy) = A. The
colouring γ′ ofH−e is thus defined and v, v′ have disjoint palettes with respect to it, since
Pγ′(v

′) = Pγ′(v) = {A,D}. We can repeat similar arguments if the edge e ∈ E(M)
contains w but not w1.

If e ∈ E(M) contains w1, then we can assume that Pγ′M (w1) = {A}. We can permute
the colours in M − e so that Pγ′M (w) ⊆ {B,C} or Pγ′M (w) ⊆ {B,D}. The remaining
edges of H − e are coloured as follows: γ′(wx) = A, γ′(xy) = B and γ′(wy) = D
or C according to whether Pγ′M (w) ⊆ {B,C} or Pγ′M (w) ⊆ {B,D}, respectively. The



S. Bonvicini and A. Vietri: A Möbius-type gluing technique for obtaining edge-critical graphs 223

colouring γ′ ofH−e is thus defined and v, v′ have disjoint palettes with respect to it, since
Pγ′(v

′) = Pγ′(v) = {A,D}.

Example 3.13. The graph G25 in Figure 9(b) has order 25, maximum degree 4 and
χ′(G25) = 4. The vertices v, v′ are conflicting. It is obtained by applying Proposition 3.12
to the graphs K = G16 in Figure 7(b) and M = G7 in Figure 2(c). The vertices u1, w1

are identified. As remarked in Example 3.6, the graph G16 is 3-colour transmitting with
respect to u, v, u1. As remarked in Example 2.6, the 2-vertices w,w1 ∈ V (G16) are sat-
urating. Moreover, for every e ∈ G7 not containing w nor w1 there exists a colouring of
G7 − e such that P (w1) ⊆ {A,B} and P (w) ⊆ {A,C}, that is, the assumption in Propo-
sition 3.12 is satisfied. By Lemma 2.3, the identification of the conflicting vertices v, v′

yields a 4-critical graph of order 24.

Example 3.14 (Fiol’s counterexample). Proposition 3.12 is still true if we assume thatM
consists of exactly one vertex. For instance, consider the graphG19 in Figure 9(a) obtained
from the graph G16 in Figure 7(b) and M consisting of exactly one vertex. The vertices
u1 and w1 are identified. The vertices v, v′ ∈ V (G19) are conflicting (we can repeat the
proof of Proposition 3.8 without considering the case e ∈ E(M)). By Lemma 2.3, the
identification of the vertices v, v′ yields a 4-critical graph, namely, Fiol’s 4-critical graph
in Figure 1(a).
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Figure 9: u1 and w1 should be identified in both graphs. (a): The graph G19 has order 19,
maximum degree 4 and χ′(G19) = 4. (b): The graph G25 has order 25, maximum degree
4 and χ′(G25) = 4. As shown in Example 3.14, the vertices v, v′ are conflicting.

4 Counterexamples to the Critical Graph Conjecture
In 1971, Jacobsen showed that there are no 3-critical graphs of order≤ 10 and no 3-critical
multigraphs of order ≤ 8. This led him to formulate the Critical Graph Conjecture. As
we already mentioned, the first counterexamples to the conjecture were constructed by
Goldberg [9], and afterwards by Chetwynd [6] and Fiol [7]. In this section we show that
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also Goldberg’s counterexample can be obtained by a Möbius-type technique. Furthermore,
combining our technique with Goldberg’s construction we show that for every even value
value of n, n ≥ 22, there exists a 3-critical graph of order n.

Goldberg was the first to disprove the Critical Graph Conjecture by constructing an
infinite family of 3-critical graphs of even order, the smallest of which has order 22 [9].
The graph of order 22 is represented in Figure 10(a). A 3-critical graph of the infinite
family can be obtained from the 3-critical graph of order 22 in Figure 10(a) by adding in
pairs the graph H7 of order 7 in Figure 10(b). The result is the graph in Figure 11(a). A
3-critical graph of the infinite family has order n ≡ 8 (mod 16), n ≥ 24.

(a) (b)

x1 x2

x3x4

x0

H7

Figure 10: (a): The 3-critical graph of order 22 constructed by Goldberg. (b): The graph
H7 which is used to construct 3-critical graphs of order n ≡ 8 (mod 16), n ≥ 24.
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Figure 11: (a): The infinite family of 3-critical graphs of order 8m, m ≥ 3, m odd,
constructed by Goldberg. (b): The graph H23 that yields the 3-critical graph of order 22
constructed by Goldberg by identifying the conflicting vertices u, v.

In what follows, we show that the 3-critical graphs constructed by Goldberg can be
obtained by a Möbius type technique, namely, by identifying a pair of conflicting vertices
in the case of the graph in Figure 10(a), or by connecting a pair of saturating vertices in
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the case of the graph in Figure 11(a). In Lemma 4.2, we will show that the vertices u, v
of the graph H23 in Figure 11(b) are conflicting. We give a proof of the fact that u, v are
conflicting showing that the structure of the graph H7 forces to colour the edges of the
graph in Figure 10(a) in a prescribed way, thus determining which vertex has to be split
into two conflicting vertices. Analogously, for the proof of Lemma 4.3. The proofs of
Lemmas 4.2 and 4.3 are based on the following result.

Lemma 4.1. Every 3-colouring of the graph H7 in Figure 10(b) satisfies the following
condition:

|P (x0) ∪ P (xi) ∪ P (xi+2)| = 3 and P (xi+1) = P (xi+3) = P (xr)

where i = 1 or i = 2, r ∈ {0, i, i+ 2} and the subscripts are (mod 4).

Proof. Since the colour set has cardinality 3 and PL holds, exactly three vertices of H7

lack the same colour A and the remaining 2-vertices of H7 lack distinct colours B,C, both
different from A. A direct inspection on the graph shows that the vertices lacking the same
colours are xi+1, xi+3 and xr, where i = 1 or i = 2 and r ∈ {0, i, i+ 2}.

Lemma 4.2. The graph H23 in Figure 11(b) is class 1 and the vertices u, v ∈ V (H23) are
conflicting.

The 3-critical graph of order 22 in Figure 10(a) constructed by Goldberg can be ob-
tained from the graph H23 by identifying the conflicting vertices u, v ∈ V (H23).

Proof. It is easy to see that H23 is class 1. We show that the vertices u, v ∈ V (H23)
are conflicting. Firstly, we prove that P (u) ∩ P (v) 6= ∅ for every 3-colouring of the the
graph H23.

Let γ be a 3-colouring of H23. Since γ induces a 3-colouring of the subgraphs of H23

that are isomorphic toH7 and Lemma 4.1 holds, it is either |{γ(x1y2), γ(x3y4), γ(x0v)}| =
3 or |{γ(x2z1), γ(x4z3), γ(x0v)}| = 3. If |{γ(x1y2), γ(x3y4), γ(x0v)}| = 3, then
γ(x0v) = γ(y0v), by virtue of Lemma 4.1 on the subgraph of H23 which is isomor-
phic to H7 and contains the vertices yi, 0 ≤ i ≤ 4. That yields a contradiction, hence
|{γ(x2z1), γ(x4z3), γ(x0v)}| = 3. Since Lemma 4.1 holds on the subgraph of H23 which
is isomorphic to H7 and contains the vertices zi, 0 ≤ i ≤ 4, we have γ(x0v) = γ(z0u). It
is thus proved that P (u) ∩ P (v) 6= ∅ for every 3-colouring of H23.

It remains to prove that for every edge e ∈ E(H23) there exists a 3-colouring γ′ of
H23 − e such that the vertices u, v have disjoint palettes with respect to it. The existence
is straightforward if e is incident to u, since u has degree 1. Let {1, 2, 3} be the colour
set of γ′. To define γ′, it suffices to define γ′ on the edges in {x0v, y0v, z0u, xiyi+1,
xi+1zi : i = 1, 3} and colour the remaining edges according to Lemma 4.1. For in-
stance, if e is incident to the vertices in {xi, yi : 0 ≤ i ≤ 4}, e 6∈ {x0v, y0v, z0u, xiyi+1,
xi+1zi : i = 1, 3}, then we set γ′(x1y2) = γ′(z0u) = 1; γ′(x3y4) = γ′(x0v) = 2;
γ′(y0v) = 3; γ′(x2z1) = γ′(x4z3) = a ∈ {1, 2}. The remaining cases can be managed
in a similar way. It is thus proved that u, v are conflicting. Now the assertion follows from
Lemma 2.3 by identifying the vertices u, v.

Lemma 4.3. Let H8m, m ≥ 3, m odd, be the graph obtained from the graph in Fig-
ure 11(a) by deleting the edge u1um. The graph is class 1 and the vertices u1, um are
saturating. The 3-critical graphs of the infinite family constructed by Goldberg can be
obtained by connecting a pair of saturating vertices.
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Proof. One can easily verify that the graph H8m is class 1. We prove that u1, um are
saturating. Firstly, we show that |P (u1) ∪ P (um)| = 3 for every 3-colouring of the graph
H8m. For 1 ≤ j ≤ m, let Hj be the subgraph of H8m which is isomorphic to the graph
H7 in Figure 10(b) and contains the vertices xji , 0 ≤ i ≤ 4. Every 3-colouring γ of H8m

induces a 3-colouring γ′ of the graph H7, that is, Lemma 4.1 holds. By the symmetry of
the graph, we can assume that |Pγ′(x10)∪Pγ′(x12)∪Pγ′(x14)| = 3 and Pγ′(x11) = Pγ′(x

1
3).

Consequently, Pγ′(x22) = Pγ′(x
2
4) and |Pγ′(x20) ∪ Pγ′(x21) ∪ Pγ′(x23)| = 3. From this

we deduce that |Pγ′(xj0) ∪ Pγ′(xj2) ∪ Pγ′(xj4)| = 3 and Pγ′(x
j
1) = Pγ′(x

j
3) if j is odd,

1 ≤ j ≤ m; |Pγ′(xj0) ∪ Pγ′(xj1) ∪ Pγ′(xj3)| = 3 and Pγ′(x
j
2) = Pγ′(x

j
4) if j is even,

1 ≤ j ≤ m. It follows that γ(xj0uj) = γ(xj+1
0 uj+1) for every 2 ≤ j ≤ m − 1, j

even. We colour the edges of H8m by {1, 2, 3} and set γ(x20u2) = γ(x30u3) = 3. Without
loss of generality we can set γ(u2u3) = 1, whence γ(u1u2) = 2. One can see that
{γ(xj0uj), γ(ujuj+1)} = {γ(xj0uj+1), γ(ujuj+1)} = {1, 3} for every 2 ≤ j ≤ m − 1, j
even. As a consequence, P (um) = {1, 3}. It is thus proved that |P (u1) ∪ P (um)| = 3 for
every 3-colouring of H8m, since 2 ∈ P (u1).

We omit the routine proof that for every e ∈ E(H8m) there exists a colouring of H8m

such that |P (u1)∪P (um)| < 3. It is thus proved that u1, um are saturating and the assertion
follows from Lemma 2.3.

It is known that the 3-critical graph of order 22 constructed by Goldberg is the smallest
3-critical graph [4]. Combining our construction with that one of Goldberg, we can prove
the following result.

Theorem 4.4. For every even value of n, n ≥ 22, there exists a 3-critical graph of order n.

Proof. A critical graph of the infinite family constructed by Goldberg has order n ≡ 8
(mod 16), n ≥ 24. We construct a 3-critical graph of order n ≡ 2 (mod 4), n ≥ 26; and
n ≡ 0 (mod 4), n ≥ 28. We define the auxiliary graphs H ′,K ′ and H ′′ that will be used
in the construction. The graph H ′ is defined as follows. Consider m ≥ 1 copies of the
complete graph K4 − e; the 2-vertices of K4 − e are same-lacking. For 1 ≤ i ≤ m − 1,
connect the ith copy ofK4−e to the (i+1)th by adding exactly one edge joining a 2-vertex
in the ith copy to a 2-vertex in the (i+1)th copy. The resulting graphH ′ has exactly two 2-
vertices, say v1, v2. By Lemma 3.1, the graph H ′ has maximum degree 3, χ′(H ′) = 3 and
the vertices v1, v2 are same-lacking. Let K ′ be the graph of order 6 that can be obtained
from the graph G6 in Figure 2(b) by deleting the edges v1v2, v3v5, v4v6. The graph K ′

has maximum degree 3, χ′(K ′) = 3 and the vertices v1, v2 are same-lacking. The graph
H ′′ is obtained from the graphs H ′ and K ′ by connecting the vertex v2 ∈ V (K ′) to the
vertex v1 ∈ V (H ′). By Lemma 3.1, the graph H ′′ has maximum degree 3, χ′(H ′′) = 3
and the vertices v1, v2 are same-lacking. Let H be the graph obtained from the graph
H23 in Figure 11(b) and the graph Γ, where Γ ∈ {H ′,K ′, H ′′}, by deleting the edge
z0u ∈ E(H23) and adding the edges z0v1, uv2. As remarked in Example 2.7, a graph
with same-lacking vertices is able to transmit a color, therefore the graph H has maximum
degree 3, χ′(H) = 3 and the vertices u, v ∈ V (H) are conflicting. Notice the following:
|V (H)| = 23 + 4m ≥ 27 if Γ = H ′; |V (H)| = 29 if Γ = K ′; |V (H)| = 29 + 4m ≥ 33 if
Γ = H ′′. By Lemma 2.3, the identification of the conflicting vertices u, v ∈ V (H) yields
a 3-critical graph of order |V (H)| − 1. Hence, the assertion follows.
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The 3-critical graphs of order n ≡ 0 (mod 4), n ≥ 28, that are constructed in the proof
of Theorem 4.4, include the orders of Goldberg’s infinte family but are not isomorphic to
them. In fact, Goldberg’s graphs have girth larger than 3; the 3-critical graphs in the proof
of Theorem 4.4 have girth 3 as K ′ contains a 3-cycle.

5 From graphs with fertile vertices to 4-critical graphs
We show that it is possible to obtain 4-critical graphs of order n, for every n ≥ 5, start-
ing from the four graphs in Figure 2, the two graphs in Figure 1 and the graph G21 in
Figure 8(a); these graphs have a pair of fertile vertices.

Theorem 5.1. For every odd integer n ≥ 5 there exists a 4-critical simple graph of order n.

Proof. For every odd integer n ≥ 5, we exhibit a graphH of maximum degree 4, χ′(H) =
4 and order n having a pair of saturating vertices u1, v1. The assertion follows from
Lemma 2.3 by adding the edge u1v1.

The graphH is obtained from Lemma 3.1 as follows. We take the graphGm6 in Figure 3
as the graph H1 in Lemma 3.1, where m ≥ 1. As remarked in Example 3.2, it has order
6m ≥ 6, maximum degree 4 and the vertices v1, v2 ∈ V (Gm6 ) are same-lacking. We
define the graph H2 in Lemma 3.1 as follows: if n ≡ 1 (mod 6), then H2 is the graph
G7 in Figure 2(c); if n ≡ 3 (mod 6), then H2 is the graph G9 in Figure 2(d); if n ≡ 5
(mod 6), then H2 is the graph G5 in Figure 2(a). By the remarks in Examples 2.5 and 2.6,
the vertices u1, u2 ∈ V (H2) are saturating. By Lemma 3.1, the graph H obtained from
H1 = Gm6 and H2 by adding the edge u2v2 has maximum degree 4, χ′(H) = 4 and
the vertices u1, v1 ∈ V (H) are saturating. Notice that |V (H)| = 6m + |V (H2)| ≥ 11,
where m ≥ 1 and |V (H2)| ∈ {5, 7, 9}. The graph G obtained from H by adding the edge
u1v1 is 4-critical, since Lemma 2.3 holds. By construction, the graph G is simple. Since
|V (G)| = |V (H)|, for every odd integer n ≥ 11 there exists a 4-critical simple graph of
order n. For n = 5, 7, 9, the assertion follows from Lemma 2.3 by settingH = G5, G7, G9,
respectively, and by adding the edge u1u2.

Theorem 5.2. For every even integer n ≥ 16 there exists a 4-critical graph of order n.
The graph is simple unless n is equal to 16.

Proof. For n = 16, 18, we resort to the well known graphs in Figure 1. For n = 20
we consider the graph G21 in Figure 8(a). As remarked in Example 3.10, the vertices
v, v′ ∈ G21 are conflicting. The existence of a 4-critical graph of order 20 follows from
Lemma 2.3 by identifying the vertices v and v′. Notice that the graph is simple.

For every even integer n ≥ 22, we exhibit a graphH of maximum degree 4, χ′(H) = 4
and order n having a pair of saturating vertices u1, v1. The assertion follows from Lem-
ma 2.3 by adding the edge u1v1. The graph H is obtained from Lemma 3.1 as follows. We
take Gm6 in Figure 3 as the graph H1 in Lemma 3.1, where m ≥ 1. The graph H2 in Lem-
ma 3.1 has even order and its definition depends on the congruence class of n modulo 6.

Case n ≡ 0 (mod 6), n > 18.
The graph H2 is obtained from the 4-critical graph of order 18 in Figure 1(a) by the

deletion of the edge u1u2. Alternatively, we can consider the 4-critical graph arising from
the graph G25 in Figure 9(b) by identifying the vertices v, v′ (see Example 3.13); H2 can
be obtained by deleting one of the two edges containing u1.
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Case n ≡ 2 (mod 6), n > 20.
Consider the 4-critical graph G20 of order 20 obtained from the graph G21 in Fig-

ure 8(a) by identifying the vertices v, v′. LetH2 be the graph obtained fromG20 by deleting
the edge u1u2.

Case n ≡ 4 (mod 6), n > 16.
The graph H2 is obtained from the 4-critical graph of order 16 in Figure 1(b) by the

deletion of one parallel edge connecting the vertices u1, u2. For each congruence class of
n, the vertices u1, u2 ∈ V (H2) are saturating, since Remark 2.8 holds. Moreover, H2 is
a simple graph of maximum degree 4, χ′(H2) = 4 and |V (H2)| = 18, 20, 16 according
to whether n ≡ 0, 2, 4 (mod 6), respectively. By Lemma 3.1, the graph H obtained from
H1 = Gm6 and H2 by adding the edge u2v2 has maximum degree 4, χ′(H) = 4 and the
vertices u1, v1 ∈ V (H) are saturating. Notice that |V (H)| = 6m+ |V (H2)| ≥ 22, where
m ≥ 1 and |V (H2)| ∈ {16, 18, 20}. By Lemma 2.3, the graph G obtained from H by
adding the edge u1v1 is 4-critical. Since |V (G)| = |V (H)|, for every even integer n ≥ 22
there exists a 4-critical graph of order n. Notice that these graphs are simple. Combining
this result with the remarks on the existence of 4-critical graphs of order 16, 18 and 20, the
assertion follows.

There are alternative methods for constructing 4-critical graphs. For instance, consider
the 4-critical graphG of order 20 obtained from the graphG21 in Figure 8(a) by identifying
the vertices v, v′. Delete the edge u1u2 ∈ E(G) and connect the remaining graph to the
graph Gm6 in Figure 3. For every m ≥ 1 we obtain a 4-critical graph of order 6m+ 20.

6 A concluding remark
We are confident that the present work will provide suggestions and tools for constructing
infinite families of critical graphs even beyond degree 4. The next step should be inevitably
the degree 5. The key definitions are compatible with the general case, and we believe that
the method is versatile enough. With some effort and further investigation, new infinite
families are expected to be found in the near future.
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1 Introduction
For a simple, connected, finite graph Γ = (V,E) and x, y ∈ V let d(x, y) denote the length
of a shortest path joining x and y.

Definition 1.1. Let Γ = (V,E) be a finite, connected, simple graph. Two vertices v1, v2 ∈
V are divided by S = {s1, s2, . . . , sr} ⊂ V if there exists si ∈ S so that d(v1, si) 6=
d(v2, si). A vertex v ∈ V is resolved by S if the ordered sequence (d(v, s1), d(v, s2), . . . ,
d(v, sr)) is unique. S is a resolving set in Γ if it resolves all the elements of V . The metric
dimension of Γ, denoted by µ(Γ), is the size of the smallest example of resolving set in it.

The study of metric dimension is an interesting problem in its own right and it is also
motivated by the connection with the base size of the corresponding graph. The base size of
a permutation group is the smallest number of points whose stabilizer is the identity. The
base size of Γ, denoted by b(Γ), is the base size of its automorphism group Aut(Γ). The
study of base size dates back more than 50 years, see [18]. A resolving set in Γ is obviously
a base for Aut(Γ), so the metric dimension of a graph gives an upper bound on its base
size. The difference µ(Γ) − b(Γ) is called the dimension jump of Γ. Distance-transitive
graphs whose dimension jump is large with respect to the number of vertices are rare, and
hence interesting objects. For more information about general results on metric dimension
and base size we refer the reader to the survey paper of Bailey and Cameron [2].

Resolving sets for incidence graphs of some linear spaces were investigated by several
authors [4, 9, 10, 12]. In these cases much better bounds than the general ones are known.
Estimates on the size of blocking sets can be used to prove lower bounds on the metric
dimension, and the knowledge of geometric properties is useful for constructions and upper
bounds. It was shown by Héger and Takáts [12] that the metric dimension of the point-line
incidence graph of a projective plane of order q is 4q−4 if q ≥ 23. In a recent paper Héger
et al. [11] extended this result for small values of q, too.

There are two natural generalizations of this planar result in higher dimensional spaces:
one can consider either the point-hyperplane incidence graph, or the point-line incidence
graph of PG(n, q). In the former case resolving sets are connected with lines in a higgledy-
piggledy arrangement which were investigated by Fancsali and Sziklai [9]. Their results
were recently improved by the authors of this paper [5]. The latter case is studied in the
present paper. We assume that the reader is familiar with finite projective geometries. For
a detailed description of these spaces we refer to [14, 16].

Let Γn,q denote the point-line incidence graph of the finite projective space PG(n, q).
The two sets of vertices of this bipartite graph correspond to points and lines of PG(n, q),
respectively, and there is an edge between two vertices if and only if the corresponding
point is incident with the corresponding line. In Γn,q the distance of two different lines is
2 if they intersect each other and 4 if they are skew. The distance of a point P and a line `
is 1 if P is on `, and it is 3 if P is not on `. Finally, the distance of two different points is
always 2. Hence, points cannot be resolved by other points. Considering these properties,
the following definitions are natural.

Definition 1.2. A set S of points and lines of PG(n, q) is a semi-resolving set for points
(lines) in Γn,q if it resolves all the vertices of Γn,q corresponding to points (lines).

Definition 1.3. Let S be a (semi-)resolving set in Γn,q . A point or a line is called inner
(outer) if it is (not) in S. An outer point is called t-covered if it is incident with exactly t
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lines of S.A point or a line is called uncovered if it has empty intersection with all elements
of S.

The paper is organized as follows. First, in Section 2 we provide a pure combinatorial
proof of a lower bound for resolving sets in Γn,q . In the second part of the section inter-
esting constructions are presented for n ≥ 3 which yield examples asymptotically close to
the lower bound. These resolving sets are related with regular spreads of lines in projec-
tive spaces. We prove that the metric dimension of Γn,q is asymptotically 2qn−1 and its
dimension jump is roughly 2

√
v where v denotes the number of its vertices. In Section 3

algebraic curves and blocking sets are applied. We consider a different type of line spread
in PG(3, q) and we obtain examples of resolving sets in Γn,q of smaller size when q = ph,
p prime and h > 1. Finally, in Section 4 computer aided results for small values of q are
given.

2 General bounds
In this section we present lower and upper bounds on µ(Γn,q) for all q and n ≥ 3. Particular
attention is paid to the case n = 3, since general upper bounds in any dimension depend
on the 3-dimensional upper bound, see Proposition 2.15 and Theorem 2.11.

Theorem 2.1. The size of any semi-resolving set for points in Γn,q is at least

2
qn+1 − q
q2 + q − 2

.

Proof. Let S be a semi-resolving set for points in Γn,q which consists of k lines and m
points.

Count in two different ways the number of incident point-line pairs (P, `) with ` ∈ S.
On the one hand, this number is exactly k(q + 1). On the other hand, there is at most one
uncovered point, the number of 1-covered points is at most k and any other outer point
must be covered by at least two lines of S. Hence

k(q + 1) ≥ k + 2

(
qn+1 − 1

q − 1
− 1− k −m

)
,

so

k +m ≥ 2(qn+1 − q)
(q − 1)(q + 2)

+
qm

q + 2
.

This gives the required inequality at once.

Corollary 2.2. The size of any resolving set in Γ3,q is at least 2
(
q2 − q + 3− 6

q+2

)
.

Corollary 2.3. The metric dimension of Γ3,q is at least 2(q2 − q + 3) for q > 10.

From now on we focus on upper bounds which will be given by constructions. For our
examples we need the notion of spreads, in particular line spreads.

Definition 2.4. A k-spread Sk of PG(n, q) is a set of k-dimensional subspaces with the
property that each point of PG(n, q) is incident with exactly one element of Sk.
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By definition, a k-spread of PG(n, q) consists of qn+1−1
qk+1−1 elements. The following

theorem about the existence of spreads was proved independently by several authors, see
[1, 7, 17].

Theorem 2.5. The projective space PG(n, q) has a k-spread if and only if (k+1) | (n+1).

Hence there exists a line spread in any odd dimensional projective space. Two line
spreads are said to be disjoint, if they do not share any common line. Our first construction
for a semi-resolving set for points in Γn,q is based on disjoint line spreads. We use the
following theorem of Etzion [8] about the existence of disjoint line spreads.

Theorem 2.6 (Etzion). If n ≥ 3 is odd, then there exist at least two disjoint line spreads in
PG(n, q).

Theorem 2.7. If n ≥ 3 is odd, then there exists a semi-resolving set for points in Γn,q of
size

rP(n, q) = 2q2
qn−1 − 1

q2 − 1
. (2.1)

Proof. Let L1 and L2 be two disjoint line spreads in PG(n, q), and `i ∈ Li be arbitrary
lines. We claim that S = L1 ∪ L2 \ {`1, `2} is a semi-resolving set for points in Γn,q.

Each point not in `i is contained in a unique pair of lines (r1, r2) ∈ L1 × L2. Each
point of `1 \ `2 is contained in a unique line of L1 ∪L2 \ {`1, `2} and each point of `2 \ `1
is contained in a unique line of L1 ∪ L2 \ {`1, `2}. The (possible) unique point `1 ∩ `2 is
the only point of PG(n, q) not contained in any line of L1 ∪L2 \ {`1, `2}. The size of S is
2 q

n+1−1
q2−1 − 2, hence the statement follows.

Proposition 2.8. Let Σ be a hyperplane and L be a line spread in PG(n, q), n ≥ 3 odd.
Then Σ contains exactly qn−1−1

q2−1 elements of L.

Proof. Any element of L is either fully contained in Σ, or intersects it in exactly 1 point.
The elements of L partition the set of points of Σ. Hence, if x denotes the number of fully
contained lines, then

qn − 1

q − 1
= (q + 1)x+

(
qn+1 − 1

q2 − 1
− x
)
.

The claim follows from this equation at once.

Theorem 2.9. Let L1 be a line spread in PG(3, q). Then there exists another line spread
L2 in PG(3, q) such that L1 and L2 do not share any common line.

Proof. Let f(X,Y ) be an irreducible homogeneous quadratic polynomial and H′i denote
the hyperbolic quadric in PG(3, q) with equation

f(X0, X1) + if(X2, X3) = 0

for i = 1, 2, . . . , q − 1. Apply a suitable linear transformation so that the images `1 and `2
of the lines `′1 : X0 = X1 = 0 and `′2 : X2 = X3 = 0 do not belong to L1. Let Hi denote
the image of H′i, and let Ei and Fi denote the two reguli of lines on Hi. Then for each i
at most one of Ei and Fi contains some elements of L1, because any line of Ei intersects
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any line of Fi and no two elements of L1 intersect each other. Hence we can choose the
notation so that Ei does not contain any element of L1 for all i. This implies that the spread

L2 =

q−1⋃
i=1

Ei ∪ {`1, `2}

does not share any common line with L1.

The next proposition gives a useful recursive construction method.

Proposition 2.10. Let S be a semi-resolving set for points in Γd,q of size k. Suppose that
m elements of S are contained in a hyperplane Σd−1 of PG(d, q), and Σd−1 also contains
the (at most one) uncovered point. Then Γd+1,q has a semi-resolving set for points of size
(q + 1)k − qm.

Moreover, if S is a resolving set in Γd,q and Σd−1 also contains the (at most one)
uncovered line, then Γd+1,q admits a resolving set of size (q + 1)k − qm+ qd−1−1

q−1 .

Proof. Embed Σd−1 ⊂ PG(d, q) into PG(d+1, q), and consider in PG(d+1, q) the pencil
of hyperplanes with carrier Σd−1. These hyperplanes, Σ1

d,Σ
2
d, . . . ,Σ

q+1
d , are isomorphic

to PG(d, q). Take a copy of S in Σid and denote it by Si for i = 1, 2, . . . , q+ 1. Finally, let

S =

q+1⋃
i=1

Si.

We claim that S is a semi-resolving set for points in Γn+1,q. Inner points are resolved
by definition. If two outer points, P1 and P2, are in the same Σid, then they are already
divided by Si. If P1 is in Si and P2 is in Sj with i 6= j, then, as none of P1 and P2 is
uncovered and none of them is in Σd−1, there exist distinct lines `i ∈ Si through P1 and
`j ∈ Sj through P2. Hence `i does not contain P2, so d(P1, `

i) 6= d(P1, `
i). Since the size

of S is m+ (q + 1)(k −m), the first part of the statement is proved.
Now suppose that S is a resolving set in Γd,q. Then the elements of any point-line pair

are obviously divided by S. Let `1 and `2 be two lines. If at least one of them is an element
of S, then they are divided by definition. From now on we assume that none of the two
lines is an element of S. We distinguish three main cases and some subcases.

1. If both of them are entirely contained in the same Σid, then they are divided by Si.
2. If there is no Σid that contains both `1 and `2, but each of the lines is entirely con-

tained in some Σid, say `1 ⊂ Σi1d and `2 ⊂ Σi2d , then none of the lines is in Σd−1.
Let Pj denote the unique point `j ∩ Σd−1 for j = 1, 2.

• If P1 = P2, then let P3 6= P1 be a point on `1. Since Si1 is a semi-resolving
set for points in Σi1d and P3 is not an uncovered point, either P3 ∈ Si1 or
there exists at least one line ` ∈ Si1 which contains P3 but does not contain
P1. In the former case d(`1, P3) = 1 6= 3 = d(`2, P3). In the latter case
d(`1, `) = 2 6= 4 = d(`2, `), so we are done.

• If P1 6= P2, then we may assume that P1 is not an uncovered point, because
there is at most one uncovered point. Again, either P1 ∈ Si1 or there exists at
least one line ` ∈ Si1 which contains P1 but does not contain P2. In the former
case d(`1, P1) = 1 6= 3 = d(`2, P1), while in the latter case d(`1, `) = 2 6=
4 = d(`2, `), so `1 and `2 are divided by Si1 .
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3. If `1 is not contained in any Σid, then it cannot meet Σd−1, so there exists a unique
point P i1 = `1 ∩ Σid for all i = 1, 2, . . . , q + 1.

• If `2 is not contained in any Σid, then it cannot meet Σd−1, so there exists a
unique point P i2 = `2 ∩ Σid for all i = 1, 2, . . . , q + 1. The two lines have at
most one point of intersection, hence there exist at least q superscripts so that
P i1 6= P i2. Since Si is a semi-resolving set for points in Σid, there exists at least
one element s ∈ Si so that d(P i1, s) 6= d(P i2, s). Hence

d(`1, s) = d(P i1, s) + 1 6= d(P i2, s) + 1 = d(`2, s),

so the lines are divided by Si.
• If `2 is contained in a unique Σid, then it is not contained in Σd−1, so there exists

a unique point P2 = `2 ∩ Σd−1. Let j 6= i and consider Σjd, which contains
both P j1 and P2. Since Sj is a semi-resolving set for points in Σjd, there exists
at least one element s ∈ Sj so that d(P j1 , s) 6= d(P2, s). Hence

d(`1, s) = d(P j1 , s) + 1 6= d(P2, s) + 1 = d(`2, s),

the claim is proved.
• Finally, suppose that `2 is contained in Σd−1. Then `1 and `2 are not necessarily

divided by S. Suppose that S consists of lines only. Then `2 and P i1 are divided
by Si, but it could happen that a line of Si intersects `2 if and only if it contains
P i1. If it holds for all i, then `1 and `2 have the same distance sequence with
respect to S. We can handle this problem by extending S with all the qd−1−1

q−1
points of a hyperplane in Σd−1. Then `2 contains at least one of these points
and `1 does not contain any of them. Hence the two lines are divided.

The size of the constructed resolving set is (q + 1)k − qm + qd−1−1
q−1 , the statement is

proved.

Theorem 2.11. If n ≥ 4 is even, then there exists a semi-resolving set for points in Γn,q of
size

rP(n, q) = 2qn−1 + 2qn−2 + 2(qn−4 + qn−6 + · · ·+ q2). (2.2)

Proof. We apply Proposition 2.10 for d = n−1. Let S be the semi-resolving set for points
in Γn−1,q which was constructed in Theorem 2.7. Its size is

k = 2
qn − q2

q2 − 1
.

By Proposition 2.8, we can choose the hyperplane Σn−2 so that it contains

m = 2

(
qn−2 − 1

q2 − 1
− 1

)
= 2

qn−2 − q2

q2 − 1

elements of S. Thus we get from Proposition 2.10 that there exists a semi-resolving set for
points in Γn,q of size

rP(n, q) = 2(q + 1)
qn − q2

q2 − 1
− 2q

qn−2 − q2

q2 − 1

= 2qn−1 + 2qn−2 + 2(qn−4 + qn−6 + · · ·+ q2).
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Now we turn to semi-resolving sets for lines. Let us start with a simple, but very useful
observation.

Lemma 2.12. Let Σ be a hyperplane in PG(n, q), S be a semi-resolving set for points in Σ
and `1 and `2 be two distinct lines in PG(n, q). Suppose that none of the lines is contained
in Σ and the points P1 = Σ∩ `1 and P2 = Σ∩ `2 are distinct. Then the lines `1 and `2 are
divided by S in Γn,q.

Proof. Since S is a semi-resolving set for points in Σ, there exists at least one element
s ∈ S so that d(P 1

1 , s) 6= d(P 1
2 , s). Hence

d(`1, s) = d(P 1
1 , s) + 1 6= d(P 1

2 , s) + 1 = d(`2, s),

the statement follows.

Theorem 2.13. For all n > 3 and q ≥ 2n− 1 there exists a semi-resolving set for lines in
Γn,q of size rL(n, q) = 2nrP(n − 1, q), where rP follows (2.1) or (2.2) depending on the
parity of n− 1.

Proof. Let H = {Σ1,Σ2, . . . ,Σ2n} be a subset of 2n hyperplanes of the (q + 1)-element
set formed by the dual hyperplanes of points on a normal rational curve. Then these hy-
perplanes are in general position, no n + 1 of them have a point in common. Let Si be a
semi-resolving set for points in Σi. We claim that S =

⋃2n
i=1 Si is a semi-resolving set for

lines in Γn,q.

Let `1 and `2 be two distinct lines in PG(n, q). We may assume that `j is contained
in the intersection of mj elements of H for j = 1, 2, and m1 ≥ m2. The elements of
H are in general position, so n − 1 ≥ mj , hence 2n − m1 − m2 ≥ 2. We may assume
without loss of generality that `j intersects Σi in a single point, denoted by P ij , for i =

1, 2, . . . , 2n −m1 −m2 and j = 1, 2. It could happen, that P i11 = P i21 = · · · = P ik1 for
some indices, but k ≤ n −m2, otherwise the point would be a common point of at least
m1 + (n−m2 + 1) > n elements ofH. So we may assume that P 1

1 6= P 2
1 . As `2 contains

at most one point of `1, we may also assume that P 1
1 is not on `2. Then, by Lemma 2.12,

`1 and `2 are divided by S1.
By Theorems 2.7 and 2.11, the size of S is at most 2nrP(n− 1, q) for n > 3, thus the

theorem is proved.

The union of a semi-resolving set for points and a semi-resolving set for lines is a
resolving set. Thus Theorems 2.7, 2.11 and 2.13 give our first general upper bound.

Corollary 2.14. For all n > 3 and q ≥ 2n− 1 there exists a resolving set in Γn,q of size

r(n, q) = 2qn−1 + (4n+ 1 + (−1)n)qn−2 + gn(q),

where gn is a polynomial of degree n− 3 whose coefficients depend only on n.

In this bound the coefficient of the second highest degree term depends on the dimen-
sion. In the next part, by a more sophisticated construction, we prove an upper bound in
which the coefficient of the second highest degree term is a constant.
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Proposition 2.15. Let q = ph, p prime. Suppose that there exists a resolving set S3 in Γ3,q

of size 2q2 + aq + g3(p), where a ∈ R, g3 is a polynomial of degree s ≤ h − 1, and S3
contains the 2q2 + 2 elements of two disjoint line spreads. Then there exists a resolving set
S4m+3 in Γ4m+3,q of size

2qn−1 + aqn−2 + g4m+3(p)

where g4m+3 is a polynomial of degree at most (n− 3)h+ s.

Proof. As (4m+3)+1 is divisible by 3+1, there exists a 3-spread in PG(4m+3, q). This
3-spread contains t = q4(m+1)−1

q4−1 elements, say Σ1
3,Σ

2
3, . . . ,Σ

t
3, each of them is isomorphic

to PG(3, q). By the assumption of the theorem, in each Σi3 there exists a resolving set Si3
of size 2q2 + aq + g3(p). We claim that

S =

t⋃
i=1

Si3

is a resolving set in Γ4m+3,q. The elements of any pair of points and any point-line pair are
obviously divided by S. Let `1 and `2 be two lines. If at least one of them is contained in
a Σi3, then they are divided by Si3. If none of them is contained in any Σi3, then we may
assume without loss of generality that `1 ∩ Σ1

3 is a point P which is not on `2. Let s1 and
s2 be the two elements of the disjoint line spreads in S13 which are incident with P. Then
d(`1, s1) = d(`1, s2) = 2. As `2 is not contained in S13 , it cannot intersect both s1 and s2.
Hence at least one of the distances d(`2, s1) and d(`2, s2) is 4. Thus `1 and `2 are divided
by S13 ⊂ S.

The size of S is

(2q2 + aq + g3(p))
qn+1 − 1

q4 − 1
= 2qn−1 + aqn−2 + g4m+3(p),

where the degree of g4m+3 is (n− 3)h+ deg g4m+3 = (n− 3)h+ s ≤ (n− 2)h− 1, so
we are done.

Theorem 2.16. Let q = ph, p prime. Suppose that there exists a resolving set in Γ3,q of
size 2q2 + aq + g33(p) where g33 is a polynomial of degree s ≤ h− 1. Then for n ≥ 3 there
exists a resolving set in Γn,q of size

r(n, q) =


2qn−1 + (a+ 2)qn−2 + gn,0(p), if n ≡ 0 (mod 4),

2qn−1 + (a+ 2)qn−2 + gn,1(p), if n ≡ 1 (mod 4),

2qn−1 + (a+ 4)qn−2 + gn,2(p), if n ≡ 2 (mod 4),

2qn−1 + aqn−2 + gn,3(p), if n ≡ 3 (mod 4),

where gn,i (i = 0, 1, 2, 3) is a polynomial of degree (n−3)h+ s whose coefficients depend
only on n.

Proof. We prove it by induction on the dimension modulo 4. For n ≡ 3 (mod 4) the
statement follows from Proposition 2.15.

If n ≡ 0 (mod 4), then we apply Proposition 2.10 for d = n−1 with k = rP(n−1, q)
and m = 0. Therefore by the induction hypothesis

rP(n, q) ≤ (q + 1)rP(n− 1, q) +
qn−2 − 1

q − 1

= 2qn−1 + (a+ 2)qn−2 + (q + 1)gn−1,3(p) + (a+ 1)qn−3 + qn−4 + · · ·+ 1.
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Thus gn,0(p) = (q + 1)gn−1,3(p) + (a + 1)qn−3 + qn−4 + · · · + 1, hence its degree is
(n− 3)h+ s ≤ (n− 2)h− 1.

If n ≡ 1 (mod 4), then n − 2 ≡ 3 (mod 4), hence we can apply Proposition 2.10
for d = n− 1 so that Σd−1 contains a resolving set constructed in Proposition 2.15. Then
k = 2qn−2 + (a+ 2)qn−3 + gn−1,0(p) and m = 2qn−3 + aqn−4 + gn−2,3(p). Hence

rP(n, q) = (q + 1)k − qm+
qn−2 − 1

q − 1
= 2qn−1 + (a+ 2)qn−2 + gn,1(p),

where

gn,1(p) = (q + 1)gn−1,0(p)− qgn−2,3(p) + 3qn−3 + qn−4 + · · ·+ 1,

so its degree is (n− 3)h+ s ≤ (n− 2)h− 1.
Finally, if n ≡ 2 (mod 4), then n − 3 ≡ 3 (mod 4). Hence we cannot do better than

apply Proposition 2.10 for d = n − 1 so that Σd−1 contains entirely only elements of a
(d− 2)-dimensional resolving set constructed in Proposition 2.15. Now k = 2qn−2 + (a+
2)qn−3 + gn−1,1(p) and m = 2qn−4 + aqn−5 + gn−3,3(p). This gives

rP(n, q) = (q + 1)k − qm+
qn−2 − 1

q − 1
= 2qn−1 + (a+ 4)qn−2 + gn,2(p),

where

gn,2(p) = (q + 1)gn−1,1(p)− qgn−3,3(p) + (a+ 1)qn−3 + qn−4 + · · ·+ 1,

thus its degree is (n− 3)h+ s ≤ (n− 2)h− 1 again. The theorem is proved.

Let us remark that the polynomials gn,i can be determined exactly. We omit the long,
but straightforward calculations, because their coefficients do not play any role in the rest
of the paper.

In the next part of the section semi-resolving sets for lines in Γn,q are investigated. In
their constructions double blocking sets and their duals play an important role. For the rel-
evant definitions and estimates on their sizes we refer to the paper of Ball and Blokhuis [3].

Theorem 2.17. For all q > 3 there exists a semi-resolving set for lines in Γ3,q of size

rL(3, q) = min{12q − 22, 4τ2(q)− 10},

where τ2(q) denotes the size of the smallest minimal double blocking set in PG(2, q).

Proof. First, we construct two sets of lines in PG(2, q) which are semi-resolving sets for
points.

1. Let E1, E2, and E3 be the vertices of a triangle, `i denote the line EjEk and Pi be
the pencil of lines with carrier Ei. Let

S = P1 ∪ P2 ∪ P3 \ {`1, `2, `3, `},

where ` ∈ P1, `2 6= ` 6= `3. Then S is a semi-resolving set for points in Γ2,q,
because U = ` ∩ `1 is a unique uncovered point, every point in the set `1 ∪ `2 ∪
`3 \ {E1, E2, E3, U} is 1-covered and all other points are at least 2-covered, hence
resolved. The size of S is 3q − 4.
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2. Let D be a dual double blocking set in PG(2, q). Then, by definition, each point
is incident with at least two lines of D. Thus if we delete an arbitrary line ` from
D, then the set of lines D \ {`} is still a semi-resolving set for points and, by the
Principle of Duality, its size is at most τ2(q)− 1.

Hence, for all q > 3 there is a set of lines in PG(2, q) of size min{3q − 4,
τ2(q) − 1} which is a semi-resolving set for points. Let H1,H2,H3, and H4 be the faces
of a tetrahedron K in PG(3, q). Let T i be a semi-resolving set for points inHi which con-
sists of lines only. We can choose T i so that each edge of K belongs to both corresponding
semi-resolving sets, because the full collineation group of PG(2, q) acts transitively on
triangles. We claim that S = ∪4i=1T i is a semi-resolving set for lines in Γ3,q.

The edges of K belong to S, thus they are resolved by definition. Let `1 and `2 be lines
such that none of them is an edge of K. Then each of them is contained in at most one face
of K, so we may assume without loss of generality that `1 intersects Hi in a single point,
denoted by P i1, for i = 1, 2, 3. We distinguish two main cases.

1. If P 1
1 = P 2

1 = P 3
1 , then this point is a vertex K of K.

• If `2 also contains K, thenH4 ∩ `1 6= H4 ∩ `2, hence, by Lemma 2.12, the two
lines are divided by T 4.

• If `2 does not contain K, then we may assume that H2 ∩ `2 is a single point
P 2
2 . Since P 2

2 6= K, by Lemma 2.12, the two lines are divided by T 2.

2. If none of `1 and `2 contains any vertex, then we may assume that P 1
1 6= P 2

1 .

• If `2 is not contained in neither H1 nor H2, then it intersects Hi in a single
point, denoted by P i2, for i = 1, 2. Since `1 ∩ `2 contains at most one point, we
may assume that P 1

1 6= P 1
2 . Then, by Lemma 2.12, the two lines are divided

by T 1.

• Finally, if `2 is contained in one of H1 and H2, then we may assume that
`2 ⊂ H1 and `2 ∩ H2 in a single point P 2

2 . Then P 2
2 is in H1, so P 2

2 6= P 2
1 ,

because otherwise `1 ⊂ H1. Hence, by Lemma 2.12, the two lines are divided
by T 2.

Since S has the required size, we are done.

Remark 2.18. Let us remark that if the double blocking setD in the proof of Theorem 2.17
is the disjoint union of two dual blocking sets, then not only one, but two lines can be
deleted without violating the semi-resolving set property. We will consider this case in
Section 3, Theorem 3.1.

Unfortunately, the exact value of τ2(q) is not known in general. It is known that τ2(q) =
2q + 2

√
q + 2 for q is a square and q > 16 [3, Theorem 3.1], and for some small values

of q. In the latter case for the known values τ2(q) > 3q − 3 always holds. Combining the
semi-resolving set for points constructed in Corollary 2.7 and the semi-resolving set for
lines of Theorem 2.17, we get the following upper bound on µ(Γ3,q).

Theorem 2.19. The metric dimension of Γ3,q satisfies the inequality

µ(Γ3,q) ≤ 2q2 + 12q − 24

for all q > 3.
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Proof. For q > 3 let SL be a semi-resolving set for lines of size 12q − 22 constructed
in Theorem 2.17. Let L1 be a regular line spread of PG(3, q) which contains two skew
(non-intersecting) elements of SL. Such spread exists, because the collineation group of
PG(3, q) acts transitively on the pairs of skew lines. Create a semi-resolving set for points
SP which contains L1 as we did it in Corollary 2.7. Then S = SL ∪ SP is a resolving set
in Γ3,q and its size is 2q2 + 12q − 24. This proves the inequality.

By combining Theorem 2.16, with s = 0, and Theorem 2.19, we get the following
bounds.

Corollary 2.20. Let n ≥ 3 and q > 3. Then the metric dimension of Γn,q satisfies the
inequality

µ(Γn,q) ≤


2qn−1 + 14qn−2 + hn,2(q), if n ≡ 0 or n ≡ 1 (mod 4),

2qn−1 + 16qn−2 + hn,3(q), if n ≡ 2 (mod 4),

2qn−1 + 12qn−2 + hn,1(q), if n ≡ 3 (mod 4),

where hn,i (i = 1, 2, 3) is a polynomial of degree at most n− 3 whose coefficients depend
only on n.

The metric dimension of Γ2,q for q ≥ 23 was determined by Héger and Takáts [12].
For higher dimensions we do not know the exact value, but Theorems 2.1, 2.19, and Corol-
lary 2.20 imply the following result.

Corollary 2.21. For all n > 2 and q > 3

|µ(Γn,q)− 2qn−1| = O(qn−2).

This means that µ(Γn,q) is asymptotically 2qn−1. The number of vertices in Γn,q is

v = qn+1−1
q−1 + (qn+1−1)(qn−1)

(q+1)(q−1)2 , so its metric dimension is roughly 2
√
v. The automorphism

group of PG(n, q) is PΓL(n + 1, q) and it is well-known that its base size is n + 1 if q
is a prime, and it is n + 2 if q = ph with h > 1. Hence the dimension jump of Γn,q is
roughly 2

√
v.

3 Bounds for q = ph, h ≥ 2

In this section we consider the case q = ph, h > 1. In the case h even, we will present a
better bound on the size of a semi-resolving set for points in Γ3,q using small dual double
blocking sets in PG(2, q). When h > 2, then we will show that a particular type of spread
of lines in PG(3, q) can be used to resolve the lines. In fact, for a regular spread, there exist
many pairs of lines of the spaces intersecting the same set of elements of the spread. We
now investigate a different type of spread, called aregular, and we determine all the lines of
the space intersecting the same set of elements of the spread; see Theorem 3.6. The main
goal is to construct a set of lines of PG(3, q) which resolves all the lines of the spaces; see
Theorem 3.7.

Theorem 3.1. If q is a square, then the metric dimension of Γ3,q satisfies the inequality

µ(Γ3,q) ≤ 2q2 + 8q + 8
√
q − 8.
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Proof. The union of the sets of lines of two disjoint Baer subplanes is a dual double block-
ing set in PG(2, q) and its size is 2q + 2

√
q + 2. This set is the disjoint union of two dual

blocking sets. Hence, by a result of Héger and Takáts [12, Proposition 22], we can delete
two of its lines so that the remaining set is still a semi-resolving set for points in PG(2, q);
see also Remark 2.18.

Thus we can construct a semi-resolving set for lines SL of size 8q + 8
√
q − 6 by the

method applied in the proof of Theorem 2.17. Finally, we can extend it to a resolving set
of size 2q2 + 8q + 8

√
q − 8 in the same way as we did in the proof of Theorem 2.19.

By combining Theorem 2.16, with s = 0, and Theorem 2.19, we get the following
bounds.

Corollary 3.2. If q is a square and n ≥ 3, then the metric dimension of Γn,q satisfies the
inequality

µ(Γn,q) ≤


2qn−1 + 10qn−2 + hn,2(q), if n ≡ 0 or 1 (mod 4),

2qn−1 + 12qn−2 + hn,3(q), if n ≡ 2 (mod 4),

2qn−1 + 8qn−2 + hn,1(q), if n ≡ 3 (mod 4),

where hn,i (i = 1, 2, 3) is a polynomial of degree at most n− 3 whose coefficients depend
only on n.

Theorem 3.3 ([13, Theorem 17.3.3]). Let q = ph, h > 1, and choose b, c ∈ F∗q such that
the polynomial tp+1 − tb+ c has no roots in Fq . Let

Ab,c = {tα,β : α, β ∈ Fq} ∪ {Z = T = 0},

where tα,β is the line through the points (α : β : 1 : 0) and (cβp : αp + bβp : 0 : 1). Then
Ab,c is a spread, called the aregular spread.

In what follows, we will associate to each line r of the space an algebraic curve
Cr : Fr(X,Y, T ) = 0 such that tα,β intersects r if and only if Fr(α, β, 1) = 0. We distin-
guish four types of lines.

1. Lines rx,y,`,m through the points (x : y : 0 : 1) and (` : m : 1 : 0). Note that if
x = cmp and y = `p + bmp then rx,y,`,m coincides with t`,m ∈ Ab,c. From now
on we consider (x, y) 6= (cmp, `p + bmp). A line tα,β intersects r = rx,y,`,m if and
only if for some λ ∈ Fq the points

(x+ λ` : y + λm : λ : 1), (α : β : 1 : 0), (cβp : αp + bβp : 0 : 1)

are collinear, that is

x+ λ`− cβp = λα, y + λm− (αp + bβp) = λβ.

This implies

λ(`− α) = cβp − x, λ(m− β) = αp + bβp − y,

and therefore
(cβp − x)(m− β) = (αp + bβp − y)(`− α).

In this case, Fr(X,Y, T ) = (cY p−xT p)(mT −Y )− (Xp+ bY p−yT p)(`T −X).
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2. Lines s = sx,y,z,` through the points (x : y : z : 1) and (` : 1 : 0 : 0). A line tα,β
intersects sx,y,z,` if and only if for some λ ∈ Fq the points

(x+ λ` : y + λ : z : 1), (α : β : 1 : 0), (cβp : αp + bβp : 0 : 1)

are collinear, that is

x+ λ`− cβp = zα, y + λ− (αp + bβp) = zβ.

This implies

λ` = −x+ cβp + zα, λ = −y + zβ + αp + bβp

and therefore
−x+ cβp + zα = `(−y + zβ + αp + bβp).

So, Fs(X,Y, T ) = −`Xp + (c− `b)Y p + zXT p−1 − `zY T p−1 + (`y − x)T p.

3. Lines u = ux,y,z through the points (x : y : z : 1) and (1 : 0 : 0 : 0). In this case,
Fu(X,Y, T ) = Xp + bY p + zY T p−1 − yT p.

4. Lines v = vx,y,z contained in the planes T = 0 and xX + yY + zZ = 0. Then,
Fv(X,Y, T ) = xX + yY + zT .

Such a curve is absolutely irreducible if z 6= 0, otherwise it collapses into a single line.

Proposition 3.4. Consider the curves Cr, Cs, Cu, and Cv . Then

1. Cr is absolutely irreducible;

2. Cs is either absolutely irreducible or a line repeated p times;

3. Cu is either absolutely irreducible or a line repeated p times.

Proof.

1. Now we prove that Cr is absolutely irreducible. Let ϕ(X,Y, T ) = (X + x0T, Y +
y0T, T ) with xp0 = y − bx/c, yp0 = x/c. Then

Fr(ϕ(X,Y, T ))

= (c(Y + y0T )p − xT p)(mT − Y − y0T )

− ((X + x0T )p + b(Y + y0T )p − yT p)(`T −X − x0T )

= (cY p + cyp0T
p − xT p)(mT − Y − y0T )

− (Xp + xp0T
p + bY p + yp0T

p − yT p)(`T −X − x0T )

= (cY p + xT p − xT p)(mT − Y − y0T )

− (Xp + yT p − bx/cT p + bY p + bx/cT p − yT p)(`T −X − x0T )

= cY p(mT − Y − y0T )− (Xp + bY p)(`T −X − x0T )

= Gr(X,Y, T ).

Finally

Gr(X, 1, Y ) = c(mY − 1− y0Y )− (Xp + b)(`Y −X − x0Y ),
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that is the curve Cr is Fq-isomorphic to

C′ : Y =
c−X(Xp + b)

cm− cy0 + (x0 − `)(Xp + b)
,

which is an irreducible rational curve with q+1 Fq-rational points (note that (x, y) 6=
(cmp, `p+bmp) yieldsm 6= y0 or ` 6= x0). This means that the curve Cr is absolutely
irreducible.

2. First, note that the homogeneous term −`Xp + (c− `b)Y p cannot vanish otherwise
c = 0, a contradiction.

• If (`, z) = (0, 0), Cs is a line of type b0Y + c0T = 0 repeated p times.
• If ` = 0 and z 6= 0, then Fs(X,Y, T ) reads cY p + zXT p−1 − xT p and Cs is

absolutely irreducible.
• If ` 6= 0 and z = 0 then Cs is a (repeated) line a0X + b0Y + c0T = 0, where
ap0 = −`, bp0 = (c− `b), cp0 = (`y − x).

• If ` 6= 0 and z 6= 0 then consider ϕ(X,Y, T ) = (X + p
√

(c− `b)/` Y, Y, T )
and so

Gs(X,Y, T ) = Fs(ϕ(X,Y, T )) =

− `Xp + zXT p−1 + z( p
√

(c− `b)/`− `)Y T p−1 + (`y − x)T p.

By our assumption of b, c, there is no ` ∈ Fq such that p
√

(c− `b)/` − ` = 0.
The curve Gs(X,Y, T ) = 0 is rational and irreducible and it is Fq-isomorphic
to Cs.

3. Clear.

Proposition 3.5. Let q = ph, h > 2. Two lines of the same type (r, s, u, v) do not intersect
the same set of lines of the aregular spread Ab,c.

Proof. The assumption h > 2 implies q + 1 > (p + 1)2. The curves Cr, Cs, Cu, Cv have
degree at most p and they have q + 1 Fq-rational points (corresponding to the lines of the
spread intersecting them). By Proposition 3.4, such curves are either absolutely irreducible
or they consist of a repeated line. Thus, if two curves attached to the lines w1 and w2

of the same type share q + 1 Fq-rational points, the corresponding polynomials must be
proportional. By direct computations, this yields w1 = w2.

Theorem 3.6. Let q = ph, h > 2. If two lines in PG(3, q) intersect the same set of lines of
the spreadAb,c then one of them lies on the plane Z = 0 and the other on the plane T = 0.

Proof. The reduced (absolutely irreducible) curves associated with the different types of
lines (r, s, u, v) have degree p+ 1, degree p or 1, degree p or 1, and degree 1, respectively.
They can share q + 1 Fq-rational points only in the following cases:

• both Cs and Cu have degree p;

• both Cs and Cu have degree 1;

• both Cs and Cv have degree 1;
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• both Cu and Cv have degree 1.

The first case is not possible. The second case would imply c = 0, a contradiction. Recall
that the lines v = vx,y,z are contained in the plane T = 0 of PG(3, q). The claim follows
observing that if Cs or Cu have degree 1, then s = sx,y,0,` or u = ux,y,0. So, both s and u
are contained in the plane Z = 0.

Theorem 3.7. Let q = ph, h > 2. Then there exists a set of q2 + 3 lines resolving all the
lines of PG(3, q).

Proof. Consider the aregular spread Ab,c with b, c ∈ F∗q and such that the polynomial
tp+1 − tb+ c has no roots in Fq . We already know by Theorem 3.6 that lines of PG(3, q)
intersecting the same set of elements of Ab,c are contained in the planes Z = 0 or T = 0.
Note that two lines in a fixed plane cannot intersect the same elements of Ab,c. Consider
two distinct extra lines w1 and w2 contained in Z = 0 intersecting the line Z = T = 0 at
two distinct points. It is readily seen thatAb,c∪{w1, w2} resolves all the lines of PG(3, q).

Corollary 3.8. If q = ph, h > 2, then there exists a resolving set in Γ3,q of size 2q2 + 2.

Proof. Consider the set of q2 + 3 lines from Theorem 3.7 and use the argument of Theo-
rem 2.9. One of the two extra lines could be an element of the other spread. Finally, delete
one line from the modified regular spread.

Finally, the following bounds are obtained combining again Theorem 2.16, with s = 0,
and Theorem 2.19.

Corollary 3.9. If q = ph, h > 2, then the metric dimension of Γn,q satisfies the inequality

µ(Γn,q) ≤


2qn−1 + 2qn−2 + hn,2(q), if n ≡ 0 or 1 (mod 4),

2qn−1 + 4qn−2 + hn,3(q), if n ≡ 2 (mod 4),

2qn−1 + hn,1(q), if n ≡ 3 (mod 4),

where hn,i (i = 1, 2, 3) is a polynomial of degree at most n− 3 whose coefficients depend
only on n.

4 Resolving sets for small q
We performed a computer search to obtain sets of lines that are semi-resolving sets for
lines in PG(3, q) for small q. We used MAGMA, a computer algebra system for symbolic
computation developed at the University of Sydney; see [6]. We started classifying all set
of lines of a certain size k. Then we extended the non-equivalent sets of size k using a
backtracking algorithm.

In PG(3, 2) there are 35 lines, so a semi-resolving set for lines must contain at least six
elements. We found that there are 165 non-equivalent sets of lines of size six. Forty-eight
of them are semi-resolving sets for lines in PG(3, 2). An example is the following set of
six lines:

{〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉, 〈(0 : 1 : 0 : 0), (0 : 0 : 0 : 1)〉,
〈(0 : 0 : 1 : 0), (0 : 0 : 0 : 1)〉, 〈(0 : 0 : 0 : 1), (1 : 1 : 0 : 0)〉,
〈(0 : 1 : 0 : 0), (1 : 1 : 1 : 1)〉, 〈(1 : 1 : 0 : 0), (0 : 0 : 1 : 1)〉}.
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In PG(3, 3) there are 130 lines, so a semi-resolving set for lines must contain at least
eight elements. We found that there are 10681 non-equivalent sets of lines of size seven.
An exhaustive search by backtracking has proved that no set of lines of size eight or nine is
a semi-resolving set for lines in PG(3, 3). There exist semi-resolving sets for lines of size
ten. An example is the following set of ten lines:

{〈(1 : 0 : 0 : 0), (0 : 1 : 0 : 0)〉, 〈(1 : 0 : 0 : 0), (0 : 0 : 0 : 1)〉,
〈(0 : 1 : 0 : 0), (0 : 0 : 1 : 0)〉, 〈(0 : 1 : 0 : 0), (1 : 0 : 0 : 1)〉,
〈(1 : 0 : 1 : 2), (0 : 1 : 1 : 0)〉, 〈(1 : 0 : 0 : 2), (0 : 0 : 1 : 1)〉,
〈(1 : 0 : 0 : 0), (0 : 1 : 1 : 2)〉, 〈(1 : 0 : 0 : 0), (0 : 1 : 1 : 0)〉,
〈(0 : 1 : 1 : 1), (1 : 2 : 0 : 0)〉, 〈(1 : 1 : 1 : 0), (0 : 1 : 2 : 0)〉}.
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1 Introduction

Quiver mutation is the fundamental combinatorial process which determines the genera-
tors and relations in Fomin and Zelevinsky’s cluster algebras [15]. Cluster algebras have
arisen in a variety of mathematical areas including Poisson geometry, Teichmüller theory,
applications to mathematical physics, representation theory, and more. Quiver mutation
is a local procedure that alters a quiver and produces a new quiver. Understanding how
a quiver mutates is essential to understanding the corresponding cluster algebra. We will
consider the problem of explicitly constructing sequences of mutations with some special
properties.

1.1 Some history of the problem

A maximal green sequence, and more generally a reddening sequence, is a special sequence
of quiver mutations related to quantum dilogarithm identities which was introduced by
Keller [28, 29]. Such sequences of mutations do not exist for all quivers and determining
their existence or nonexistence is an important problem. For a good introduction to the
study of maximal green and reddening sequences see the work of Brüstle, Dupont, and
Pérotin [3]. In addition to the role they play in quantum dilogrithm identities, these se-
quences of mutations are a key tool utilized in other cluster algebra areas. For example,
the existence of a maximal green sequence allows one to categorify the associated cluster
algebras following the work of Amiot [2]. Also the existence of a maximal green sequence
is a condition which plays a role in the powerful results of Gross, Hacking, Keel, and Kont-
sevich [25] regarding canonical bases. These results use the notion of scattering diagrams
to prove the positivity conjecture for a large class of cluster algebras. Additionally the ex-
istence of a reddening sequence is thought to be related to when a cluster algebra equals its
upper cluster algebra [5, 34]. Maximal green sequences are also related to representation
theory [3] and in the computation of BPS states in physics [1]. Our notion of a component
preserving sequence of mutations, which will be defined in Section 3, is closely related to
what has been called a factorized sequence of mutations [9, 10, 12] in the physics litera-
ture where particular attention has been paid to ADE Dynkin quivers. Our definition is
more general which allows for use with both maximal green sequences and reddening se-
quences. Being able to work with reddening sequences is desirable since the existence of a
reddening sequence is mutation invariant while the existence of a maximal green sequence
is not [35]. Hence, the existence of a reddening sequences ends up being a invariant of the
cluster algebra as opposed to just the quiver.

In general it can be a difficult problem to determine if a quiver admits a maximal green
or reddening sequence. These sequences have been found or shown to not exist in the case
of finite mutation type quivers by the work of a variety of authors [1, 4, 7, 33, 40] leaving
the question of existence only to quivers that are not of finite mutation type. This makes
finding these sequences particularly difficult as the exchange graph for such quivers can
be very complicated. Additionally there are branches of the exchange graph, in which no
amount of mutations can lead to a maximal green sequence; meaning random computer
generated mutations are extremely unlikely to produce maximal green sequences for these
quivers. In addition to finite mutation type quivers, headway has been made on specific
families of quivers such as minimal mutation-infinite quivers [32] and quivers which are
associated to reduced plabic graphs [17]. This gives us many quivers for which we know
reddening or maximal green sequences for. This provides a foundation to produce redden-
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ing and maximal green sequences for quivers which are built out of these.
When a quiver does admit a maximal green or reddening sequence it is desirable to have

an explicit and well understood construction of the sequence. Having the specific sequence
of mutations and understanding the corresponding c-vectors gives us a product of quan-
tum dilogarithms [28, 29] and an expression for the Donaldson-Thomas transformation of
Kontsevich and Soibelman [31]. The method which we present in this paper allows one to
explicitly produce the sequence so that it can be used to for the corresponding computation.

Work by Garver and Musiker [22], as inspired by [2] and [1], and later by Cao and Li [8]
looked at using what has been called direct sums of quivers to produce maximal green and
reddening sequences when the induced subquivers being summed exhibit the appropriate
sequences. This heuristic approach of building large sequences of mutations from subquiv-
ers is essentially the direction we want to expand upon in this paper. Component preserving
mutations are a way of taking known maximal green and reddening sequences for induced
subquivers (which we will call components) and combining them together to obtain a max-
imal green or reddening sequence for the whole quiver. The direct sum procedure becomes
a particular instance of the theory of component preserving mutations.

The methodology presented has an assortment of applications. It can be used to produce
maximal green sequences for bipartite recurrent quivers, recover known results regarding
admissible source mutation sequences for acyclic quivers, and show that the existence of a
maximal green or reddening sequence is an example of a certain dominance phenomena in
the sense of recent work by Reading [37].

1.2 Summary of the methodology

The goal of this paper is to develop a methodology which allows one to use reddening
sequences of subquivers of a given quiver to build reddening sequences for larger quivers.
Since mutation is a local procedure, only affecting neighboring vertices, this is a natural
approach. Moreover, it is known that when a quiver has a maximal green or reddening se-
quence, then the same is true for any induced subquiver [35]. Hence, developing a method
to produce a maximal green or reddening sequence from induced subquivers is a type of
converse to this fact.

The method starts by breaking the quiver, Q, into subquivers which we call compo-
nents; each of which has a known reddening sequence. The components will partition the
vertices of the quiver, giving a partitioned quiver (Q, π), where π := π1/π2/ · · · /π` is
a partition of the vertices of Q. We label the components Qi. We start with the framed
quiver, where we partition all of the frozen and mutable pairs into the same parts. We call
this quiver the framed partition quiver (Q̂, π̂). We then try to shuffle the respective red-
dening sequences together to see if they form a reddening sequence for the entire quiver.
It is not the case that one can always find a shuffle which works on the entire quiver. To
guarantee that they do build a reddening sequence, we must check that at each mutation
step the mutation vertex satisfies the component preserving condition which will be given
in Definition 3.6. If this condition holds the main result of this paper shows that you have
constructed a reddening sequence for the larger quiver.

Theorem 1.1 (Main Result). Let (Q̂, π̂) be a framed partition quiver where for each Q̂i
we have a reddening sequence σi. Let τ be a shuffle of the σi such that at every mutation
step of the sequence τ we have that k is component preserving with respect to π. Then τ is
a reddening sequence for Q̂.
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This main result is proven in Section 3 where is it restated in Theorem 3.11. This ap-
proach gives one a starting point as to where to search for reddening sequences given an
arbitrary quiver. First break the quiver into subquivers you are comfortable constructing
reddening sequences for; and then attempt to shuffle these sequences. This approach may
initially seem overwhelming as you could consider any partition of the quiver into sub-
quivers along with any shuffle of reddening sequences. However, as we explored utilizing
this technique what we realized was that there are often very natural shuffles and partitions
present in many commonly studied quivers. For instance, this concept generalizes the idea
of direct sums of quivers where the shuffle takes the particular simple form of concate-
nation. Additionally, it can be used to give short and effective constructions of maximal
green sequences for bipartite recurrent quivers, and many more examples where some well
behaved properties of a specific quiver provides the recipe for how to shuffle and partition
the vertices.

This article is structured in the following way. Section 2 will give some preliminaries
for quiver mutation and the study of reddening sequences. In Section 3 we will present the
main results of the paper outlining how the component preserving procedure can produce
new maximal green and reddening sequences from induced subquivers. Within Section 3
we present a large amount of examples to try and illustrate how this procedure works. In the
sections following this we look at some applications of this procedure to produce interesting
and new results. Results related to dominance phenomena are in Section 4 and bipartite
recurrent quivers are considered in Section 5. In Section 6 we consider the computation
of Donaldson-Thomas invariants and minimal length maximal green sequences. We have
added a large amount of examples to the article in an effort to try and give the reader an
opportunity to become familiar with how one uses this method in a hands-on manner. This
is intentional, as from exploring these methods it appears that many reddening sequences
are built in this manner from small set of “basic reddening sequences.” The intuition of the
authors is that there may be a way to describe a list of “basic reddening sequences” from
which any reddening sequence can be built. It is our hope that this paper is the first step in
building the concrete theory behind this intuition.

2 Preliminaries
A quiver Q is a directed multigraph with vertex set V (Q) and whose edge set E(Q) con-
tains no loops or 2-cycles. Elements of E(Q) will typically be referred to as arrows. An
ice quiver is a pair (Q,F ) where Q is a quiver, F ⊆ V (Q), and Q contains no arrows
between elements of F . Vertices in F are called frozen while vertices in V (Q) \ F are
called mutable. The framed quiver associated to a quiver Q, denoted Q̂, is the ice quiver
whose vertex set, edge set, and set of frozen vertices are the following:

V (Q̂) := V (Q) t {i′ | i ∈ V (Q)},

E(Q̂) := E(Q) t {i→ i′ | i ∈ V (Q)},
F = {i′ | i ∈ V (Q)}.

The framed quiver corresponds to considering a cluster algebra with principal coefficients.
Given an ice quiver (Q,F ) for any mutable vertex i, mutation at the vertex i produces

a new quiver denoted by (µi(Q), F ) obtained from Q by doing the following:

(1) For each pair of arrows j → i, i → k such that not both i and j are frozen add an
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arrow j → k.

(2) Reverse all arrows incident on i.

(3) Delete a maximal collection of disjoint 2-cycles.

Mutation is not allowed at any frozen vertex. Since mutation does not change the set of
frozen vertices we will often abbreviate an ice quiver (Q,F ) byQ and (µi(Q), F ) by µi(Q)
where the set of frozen vertices is understood from context. We will be primarily focused
on framed quivers and quivers which are obtained from a framed quiver by a sequence of
mutations. In fact, whenever we have an ice quiver with a nonempty set of frozen vertices
we will assume it is obtainable from a framed quiver by some sequence of mutations. So,
the set of frozen vertices will be of a very particular form.

A mutable vertex is green if it there are no incident incoming arrows from frozen ver-
tices. Similarly, a mutable vertex is red if there are no incident outgoing arrows to frozen
vertices. If we start with an initial quiver Q and perform mutations at mutable vertices
of the framed quiver Q̂, then any mutable vertex will always be either green or red. The
result is known as sign-coherence and was established by Derksen, Weyman,and Zelevin-
sky [13]. For each vertex i in a quiver obtained from Q̂ by some sequence of mutations, the
corresponding c-vector is defined by its jth entry being the number of arrows from i to j′

(with arrows j′ to i counting as negative). In these terms sign-coherence says a c-vector’s
entries are either nonnegative or nonpositive. Notice also that all vertices are initially green
when starting with Q̂. Keller [28, 29] has introduced the following types of sequences of
mutations which will be our main interest. A sequence mutations is called a reddening
sequence if after preforming this sequence of mutations all mutable vertices are red. A
maximal green sequence is a reddening sequence where each mutation occurs at a green
vertex. When a sequence of mutations is a reddening sequence we may say it is a reddening
sequence for either Q or Q̂. In terms of being a reddening sequence or not, the quiver Q
and the framed quiver Q̂ are equivalent data.

We may write a maximal green or reddening sequence as either a sequence of vertices
(read from left to right) or as a composition of mutations (read from right to left as is usual
with composition of functions). For a quiver Q we will let green(Q) denote the set of
maximal green sequences for Q. If we consider the quiver Q = 1 → 2 there are exactly
two maximal green sequences and we can record them either as

green(Q) = {(1, 2), (2, 1, 2)}

in sequence of vertices notation or as

green(Q) = {µ2µ1, µ2µ1µ2}

in composition notation.
We will need to modify and combine sequences of vertices when producing maximal

green and reddening sequences. This is done by shuffling mutation sequences together.

Definition 2.1. A shuffle of two sequences (a1, a2, . . . , ak) and (b1, b2, . . . , b`) is any se-
quence whose entries are exactly the elements of {a1, a2, . . . , ak} ∪ {b1, b2, . . . , b`} (con-
sidered as a multiset) with the relative orders of (a1, a2, . . . , ak) and (b1, b2, . . . , b`) are
preserved.
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For example there are 6 shuffles of the sequences (1, 2) and (a, b). They are the se-
quences (1, 2, a, b), (1, a, 2, b), (1, a, b, 2), (a, 1, 2, b), (a, 1, b, 2), and (a, b, 1, 2). In the
next section we will define component preserving mutations and show how by checking
for the component preserving property you can create shuffles of reddening sequences on
induced subquivers whose result is a reddening sequence for a larger quiver.

3 Component preserving mutations
We start by establishing some basic definitions and notation of what we mean by a compo-
nent of the quiver.

Definition 3.1. Let Q be an ice quiver with vertex set V . Then let π = π1/π2/ · · · /π` be
a set partition of V . Then let Qi be the induced subquiver of Q obtained by deleting every
vertex v 6∈ πi. We will call the Qi the components of Q and the pair (Q, π) a partitioned
quiver.

Definition 3.2. When (Q, π) is a partitioned quiver with π = π1/π2/ · · · /π`, we will
define π̂ as the partition of V̂ where each π̂i = {v, v̂ | v ∈ πi}. Then (Q̂, π̂) will be called
a partitioned ice quiver.

Remark 3.3. In other words, for each mutable vertex v, the frozen copy of a vertex, v̂, lies
in the same component as v. It is straight forward to see that (̂Qi) = (Q̂)i.

Definition 3.4. Mutation of a partitioned ice quiver is defined as the following:

µk((Q, π)) := (µk(Q), π).

Definition 3.5. Let (Q, π) be a partitioned ice quiver. A bridging arrow a → b is any
arrow in Q in which a and b are in different components.

Now we can talk about the definition that is crucial to all the results in the rest of
the paper. This is the notion of component preserving vertices and component preserving
mutations.

Definition 3.6. A vertex k ∈ Qi is component preserving with respect to π when one of
the following occurs:

• If ∃ k → j′ for a frozen vertex j′, then ∀ a→ k we have a ∈ V (Qi); or

• If ∃ j′ → k for a frozen vertex j′, then ∀ k → a we have a ∈ V (Qi).

Remark 3.7. Another way of thinking about component preserving mutations is in terms
of sign-coherence. One can think of a component preserving vertex, k, as a vertex where
freezing each mutable vertex outside of its component results in an ice quiver in which
the extended exchange matrix is still sign-coherent with respect to this larger set of frozen
vertices. In this way one can think of component preserving mutations as being a type of
locally sign-coherent mutation.

Remark 3.8. Another observation to make is that whenever one starts from a framed
quiver, mutation at component preserving vertices does not result in creating bridging ar-
rows that involve frozen vertices. This means that any quiver which is the result of a se-
quence of component preserving mutations starting from a framed quiver has the support
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k

j′

Qi

k

j′

Qi

Figure 1: An illustration of a component preserving vertex k ∈ Qi on the left with arrow
k → j′ and on the right with arrow j′ → k.

of all of its c-vectors contained entirely within a component. In terms of the quiver, this
means that the sequence of component preserving mutations results in a quiver in which all
arrows involving frozen vertices are between mutable vertices and frozen vertices within
the same component.

The choice of terminology is because performing mutation at a component preserving
vertex, k, does not affect Qi unless k ∈ πi. We will prove this fact and then show how one
can use this fact to shuffle maximal green sequences together if at every mutation step you
mutated at a component preserving vertex.

3.1 Preservation proof

Now that we have the language to talk about components of the quiver, we want to set up
a condition on a vertex, k, which forces µk to only affect the component which contains
k and none of the other induced subquivers. This is exactly the property that component
preserving vertices have.

Lemma 3.9. Let (Q, π) be a partitioned ice quiver. If k is a component preserving vertex
then µk(Q)i = µk(Qi) ∀ 1 ≤ i ≤ `.

Proof. First notice that these are in fact two ice quivers on the same set of vertices. To
check that the lemma holds we need to see that each step of mutation has the same effect
on the subquivers µk(Q)i and µk(Qi) for each i. The key step of mutation to check is
where new arrows are created, which is step one in our definition of mutation. There are
two cases to consider:

Case 1: k ∈ πi. Let a → b be an arrow in µk(Qi) created by mutation at vertex k. Then
since Qi is the quiver Q restricted to the component πi we know that a, b along with k
are elements of V (Qi). Therefore the arrows a → k and k → b are elements of E(Qi).
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Therefore all of these arrows are present in Q and hence the arrow a → b is present in
µk(Q). Since both endpoints of the arrow are in πi the arrow a → b is also created in the
mutation µk(Q)i.

We will now show this is a biconditional relationship. Assume a → b is an arrow in
µk(Q)i which is created from mutation. This occurs if and only if a → k → b is present
in Q and a, b ∈ πi. Since we have assumed that k ∈ πi we know that a, b, k ∈ πi and the
arrow a→ b is also created in µk(Qi).

Case 2: k 6∈ πi. Since k is not a vertex in Qi we will not be able to mutate the quiver Qi in
direction k. Therefore µk(Qi) = Qi. Now what we must check is that no arrow a → b is
created in µk(Q)i by step (1) of mutation.

By way of contradiction, assume that a → b in µk(Q)i is created by the composition
of mutation and restriction. Then a→ k → b is present in Q and also a, b ∈ πi. But since
k is not in the same component as a and b, arrows a → k and k → b are bridging arrows
in opposite directions. This is a contradiction since each component preserving vertex is
incident to bridging arrows in at most one direction.

3.2 Applications to reddening sequences and maximal green sequences

We have seen that if k is a component preserving vertex, then µk only affects arrows in
Qi and possibly bridging arrows. This can be extremely useful in the context of redden-
ing sequences. The goal is to utilize reddening sequences on each component to create a
reddening sequence for the larger quiver. This turns out to be possible if at each mutation
step you are performing a component preserving mutation. The following is a useful con-
sequence which follows directly from the sign-coherence of c-vectors as presented in [13]
and Remark 3.8 on the support of c-vectors.

Lemma 3.10. Let (Q̂, π̂) be a partitioned framed quiver. Let σ be any sequence of compo-
nent preserving mutations. Also, let v be a vertex in the component πi. Then the color of a
vertex v in µσ(Q̂) is the same as the color of the vertex v in µσ(Q̂)i.

Theorem 3.11. Let (Q̂, π̂) be a framed partition quiver where for each Q̂i we have a
reddening sequence σi. Then let τ be a shuffle of the σi such that at every mutation step
of the sequence τ we have that k is component preserving with respect to π. Then τ is a
reddening sequence for Q̂.

Proof. Let (Q̂, π̂) be a framed partition quiver. Then since each mutation in τ is component
preserving you have from the Lemma 3.9 that

µτ (Q̂)i = µτ (Q̂i) = µσi
(Q̂i).

Meaning that for each i any vertex v ∈ π is red in µτ (Q̂)i since it is the result of
running a reddening sequence. It then follows from Lemma 3.10 that v is red in the larger
quiver µτ (Q̂).

Corollary 3.12. Furthermore if additionally you have that each σi is a maximal green
sequence for the component Q̂i then you have that τ is a maximal green sequence for Q̂.

Proof. By Theorem 3.11 we know we have a reddening sequence. By Lemma 3.10 and
Lemma 3.9 to decide if a mutation step occurred at a green vertex we only need to look at
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the component containing that vertex. Then we consider that each σi is a maximal green
sequence and it follows from the same equation:

µτ (Q̂)i = µτ (Q̂i) = µσi
(Q̂i).

This can be quite useful. In practice what it tells you is that if you partition your
quiver up into components, and you know a reddening (or maximal green) sequence for
each component then you can try and shuffle the sequences together. If every mutation
in the shuffle is component preserving, then you have successfully created a reddening
(or maximal green) sequence for the larger quiver. In the sections that follow we will
show some of the applications of using this approach to find maximal green and reddening
sequences for a variety of quivers. Before showing new applications of the component
preserving mutation method, we first provide some examples of previously known maximal
green sequences that come from component preserving mutations. These known examples
serve to show that our framework unifies many known maximal green sequences. Also
the following examples aim to demonstrate that applications of Corollary 3.12 occur “in
nature” and thus Definition 3.6 is not too restrictive as it includes many naturally occurring
examples.

3.3 Example: Admissible source sequences

A sequence of vertices (i1, i2, . . . , in) of a quiver Q with n vertices is called an admissible
numbering by sources if {i1, i2, . . . , in} = V (Q) and ij is a source of µij−1

◦ · · · ◦µi1(Q).
It is well known that any acyclic quiver Q admits an admissible numbering by sources
and that any such admissible numbering by sources (i1, i2, . . . , in) is a maximal green
sequence [3, Lemma 2.20]. In terms of component preserving mutations, (i1, i2, . . . , in)
being an admissible numbering by sources means that τ = µin ◦µin−1

◦ · · · ◦µi1 is a com-
ponent preserving sequence of mutations with respect to the partition {i1}/{i2}/ · · · /{in}
of V (Q) into singletons. Corollary 3.12 states (i1, i2, . . . , in) is a maximal green sequence
in this special case. Figure 2 shows an example of an acyclic quiver where (4, 1, 2, 3, 5) is
a maximal green sequence from an admissible numbering by sources with the vertices as
labeled in the figure.

1 2

3

4

5

Figure 2: An acyclic quiver with maximal green sequence (4, 1, 2, 3, 5).

3.4 Example: Direct sum

A direct sum of quivers A and B is any quiver Q with

V (Q) = V (A) t V (B)

E(Q) = E(A) t E(B) t E
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where E is any set of arrows such which has for any i → j ∈ E implies i ∈ V (A) and
j ∈ V (B). In other words, a direct sum of quivers simply takes the disjoint union of the
two quivers then adds additional arrows between the quivers with the condition that all
arrows are directed from one quiver to the other. We can take the partition V (A)/V (B)
of V (Q) and the consider the concatenation τ = τBτA for any reddening sequence τA of
A and τB of B. Then τ will be component preserving and hence a reddening sequence by
Theorem 3.11

An example of a direct sum of quivers A and B where V (A) = {1, 2} and V (B) =
{4, 5, 6} is given in Figure 3. We can take the maximal green sequences (2, 1, 2) and
(4, 6, 5) on the components and obtain maximal green sequence (2, 1, 2, 4, 6, 5) on the
direct sum. We will not prove that such sequences of mutations are component preserving
since proofs for maximal green sequences and reddening sequences of direct sums are
already in the literature [22, Theorem 3.12], [8, Theorem 4.5].

1

2

4

5

6

Figure 3: A direct sum of quivers with maximal green sequence (2, 1, 2, 4, 6, 5).

3.5 Example: Square products

The square product of two Dynkin quivers is considered by Keller in his work on periodic-
ity [30]. For two type A quivers the square product is a grid with all square faces oriented
in a directed cycle. In Figure 4 we show a square product of type (A2, An). Consider the
partition π = B/B′ of the quiver in Figure 4 where B is the set of vertices in the top row
and B′ is the set of vertices in the bottom row. Then the quiver restricted to either B or
B′ is an alternating path which has a maximal green sequence of repeatedly applying sink
mutations. A component preserving shuffle for these quivers can be found by alternating
between mutations in B and B′ until you have completed both maximal green sequences.
This example generalizes to many other quivers in a family called bipartite recurrent quiv-
ers. Maximal green sequences for bipartite recurrent quivers will be investigated in more
depth in Section 5.

Figure 4: An arbitrary length square product of type (A2, An).
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3.6 Example: Dreaded torus

Let Q be the quiver shown in Figure 5 which comes from a triangulation of the torus
with one boundary component and a single marked point on the boundary. With vertices
as labeled in the figure we can take the partition {1, 4}/{2, 3} and the maximal green
sequences (1, 4, 1) and (3, 2, 3) on the two components. The sequence (1, 3, 4, 2, 1, 3) is
component preserving and hence a maximal green sequence by Corollary 3.12. The quiver
Q is an example of a quiver which admits a maximal green sequence, and hence a reddening
sequence, but is not a member of the class P of Kontsevich and Soibelman [31]. So, Q
should be included in a solution to a question posed by the first two authors which seeks
to identify a collection of quivers which generate all quivers with reddening sequences by
using quiver mutation and the direct sum construction [5, Question 3.6].

1 2

3

4

Figure 5: The quiver for the torus with one boundary component and one marked point. A
maximal green sequence for this quiver is (1, 3, 4, 2, 1, 3).

3.7 Example: Cremmer-Gervais

In the Gekhtman, Shapiro, and Vainshtein approach to cluster algebras with Poisson ge-
ometry there is an exotic cluster structure on SLn known as the Cremmer-Gervais cluster
structure [23, 24]. The mutable part of the quiver defining this cluster structure for the case
n = 3 is shown in Figure 6. The cluster algebra has the interesting property that whether
or not it agrees with its upper cluster algebra is ground ring dependent [6, Proposition 4.1].
A maximal green sequence for the quiver in Figure 6 is (2, 3, 4, 1, 5, 1, 6, 3) which can be
obtained by considering the partition {1, 2, 5}/{3, 6}/{4} along with maximal green se-
quences (2, 1, 5, 1), (3, 6, 3), and (4). The authors believe it would be interesting to try the
technique of component preserving maximal green sequences on quivers for the Cremmer-
Gervais cluster structure for larger values for n.

4

3 6

1 2 5

Figure 6: The mutable part of the quiver defining the Cremmer-Gervais cluster structure.
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4 Applications to quiver dominance
One natural question that arises when discussing any algebraic object is to ask questions
about what information can be extracted from considering the smaller sub-objects inside
your larger object. The methods we have presented thus far give a way of producing red-
dening sequences on larger quivers by considering reddening sequences on quivers with
fewer vertices. In this section we will give a way of producing reddening sequences on
larger quivers by considering reddening sequences on quivers with fewer arrows but the
same number of vertices.

Component preserving mutations give rise to a dominance phenomenon of quivers. In
terms of matrices dominance is given by the following definition. One obtains a definition
of dominance in quivers by considering its skew-symmetric exchange matrix.

Definition 4.1. Given n × n exchange matrices B = [bij ] and A = [aij ], we say B
dominates A if for each i and j, we have bijaij ≥ 0 and |bij | ≥ |aij |.

An initiation of a systematic study of dominance for exchange matrices was put forth
by Reading [37]. Dominance had previously been considered by Huang, Li, and Yang [26]
as part of their definition of a seed homomorphism. One instance of the dominance phe-
nomenon observed by Reading is the following observation about scattering fans.

Phenomenon 4.2 ([37, Phenomenon III]). Suppose that B and B′ are exchange matrices
such that B dominates B′. In many cases, the scattering fan of B refines the scattering fan
of B′.

Remark 4.3. Following [25] to any quiver one can associate a cluster scattering diagram
inside some ambient vector space. Reddening sequences and maximal green sequences
then correspond to paths in the ambient vector space subject to certain restrictions coming
from the scattering diagram. A cluster scattering diagram partitions the ambient vector into
a complete fan called the scattering fan [38]. Hence, the phenomenon that the scattering
fan of B often refines the scattering fan of B′ when B dominates B′ means that it should
be more difficult to find a reddening sequence for B since the scattering diagram of B has
additional walls imposing more constraints. However, we will find certain conditions for
when a reddening sequence for B′ will still work as a reddening sequence for B.

In this section we will apply the results of Section 3 to show that the existence of a
reddening (maximal green) sequence passes through the dominance relationship in many
cases. The interesting aspect of this result is it appears to go in the wrong direction; the
property is passed from the dominated quiver to the dominating quiver. Let B dominate
A. If A has a reddening (maximal green) sequence then, we wish to produce a reddening
(maximal green) sequence for B. This is not a true statement in general, but if we put some
restrictions on howB dominatesA and extra conditions on the reddening or maximal green
sequence this turns out to be true. Going forward we will consider dominance in terms of
the quivers instead of exchange matrices. A reformulation of dominance is the following.

Definition 4.4. Given quivers B and A on the same vertex set we say that B dominates A
if:

• for every pair of vertices (i, j) any arrows between i and j in A are in the same
direction as any arrow between i and j in B; and
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• for every pair of vertices (i, j) the number of arrows in B involving vertices i and j
is greater than or equal to the number of arrows in A involving i and j.

For an example of quiver dominance see Figure 7 where multiplicity of an arrow greater
than 1 is denoted by the number next to the arrow. We now need to establish the notion of
π-dominance. This is a restrictive form of dominance, where we the quivers A and B have
the same component subquivers with respect to a partition π but have the multiplicity of
the bridging arrows altered in a consistent way.

2 3 4 5

Figure 7: An example where the quiver on the right dominates the quiver on the left.

Definition 4.5. Let (A, π) and (B, π) be two partitioned ice quivers with the same vertex
set and same set partition π. We say that B π-dominates1 A if:

• the component quivers Ai = Bi for each i;

• for all u ∈ Bi and v ∈ Bj with i 6= j we have the #(u → v in B) is equal to
dij ×#(u → v in A), where dij is a positive integer that is the same for the entire
i-th and j-th components.

The dij are called the dominance constants associated to (B, π) and (A, π). As usual in
Definition 4.5 arrows in the opposite direction are counted as negative. A practical way of
thinking about π-dominance is that B is obtained from the A by scaling up the multiplicity
of the bridging arrows between components by the appropriate dominance constant. Notice
that the dominance constants are always positive, and hence bridging arrows are always in
the same direction after scaling by the dominance constants. An example of π-dominance
can be seen in Figure 8. This example has the type (A2, A4) square product on the left side
and the Q-system quiver of type A4 on the right side.

2 2 2 2

Figure 8: This is π-dominance where the components are the horizontal rows of the quiver.
The right hand quiver π-dominates the left hand quiver and d12 = 2.

Theorem 4.6. Let k be a component preserving vertex in (A, π) and (B, π) be an ice
quiver which π-dominates A with dominance constants dij . Then µk(B) dominates µk(A)
with dominance constants dij .

Proof. Since k is a component preserving vertex in (A, π) we know that k is also a compo-
nent preserving vertex in (B, π) since the direction of the bridging arrows is unchanged by
scaling by the multiple dij . Also as k is component preserving in both A and B we know

1This is a more restrictive version of the dominance phenomena presented by Reading. In general, not all
quivers B which dominate a quiver A will π-dominate the quiver.
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by Lemma 3.9 that µk(A)i = µk(Ai) = µk(Bi) = µk(B)i. Therefore we only need to
consider the bridging arrows between components.

The bridging arrows incident to k are only affected by the step of mutation which
reverses arrows incident to k. Therefore dominance is preserved for these arrows because
they are reversed by mutation at k in both A and B.

Now we must check the number of bridging arrows created during mutation for both
µk(B) and µk(A). For some nonnegative integer α, we will use the notation i α→ j to
denote that there are α arrows from i to j in a quiver.

Assume s α→ k
β→ t is present in A with α, β ≥ 0. Then mutation will create arrows

from s → t with multiplicity αβ. Since we need only consider bridging arrows we will
assume the αβ many arrows from s to t created are bridging arrows. In the case that k
is green we know that s must be in the same component as k because k is component
preserving. Assume k, s ∈ V (Ai) and t ∈ V (Aj) for i 6= j. We now will show that µk(B)

creates dijαβ arrows from s to t. The presence of s α→ k
β→ t in A implies that there

is s α→ k
dijβ→ t in B. Therefore mutation at k in B creates dijαβ arrows s → t. Now

we can consider the multiplicity of bridging arrows resulting from cancellation of 2-cycles
mutation. In µk(A) the multiplicity of the arrows from s to t is αβ + γ, where γ is the
number of arrows from s to t in A (here we allow γ to be negative if there are arrows from
t to s). In µk(B) the multiplicity of arrows from s to t is dijαβ + dijγ since there are
dijγ arrows from s to t in B by the assumption that B π-dominates A. Therefore there are
exactly dij(αβ + γ) arrows from s to t in µk(B) which is exactly the condition needed to
say that µk(B) π-dominates µk(A).

The case where k is red is very similar. In this case t must be in the same component as

k because k is component preserving. The presence of s α→ k
β→ t in A now implies that

there is s
dijα→ k

β→ t in B. Again mutation at k in B creates dijαβ arrows s → t and the
rest of the argument follows the case where k was green.

We can now state our main result regarding dominance, that certain reddening se-
quences can be passed from a quiver A to a π-dominating quiver B.

Corollary 4.7. Let (A, π) be a partitioned quiver, with π = π1/π2/ · · · /π`. Let σ1, σ2, . . . ,
σ` be reddening sequences for A1, A2, . . . , A` respectively. If A admits a reddening se-
quence, τ , which is a component preserving shuffle of σ1, σ2, . . . , σ` and B π-dominates
A, then τ is also a reddening sequence for B. Moreover, if τ is a maximal green sequence
for A, then τ is a maximal green sequence for B.

Proof. Theorem 4.6 shows that each component preserving mutation in A is also a com-
ponent preserving mutation in B. Therefore the mutation sequence τ is a component
preserving sequence for B since it is a component preserving sequence for A. The def-
inition of π-dominance tells us that A1 = B1, A2 = B2, . . . , A` = B`. Therefore
since σ1, σ2, . . . σ` are reddening sequences for A1, A2, . . . , A`, they are also reddening
sequences for B1, B2, . . . , B`. Then by Theorem 3.11 and Corollary 3.12 we have that
they are in fact reddening sequences and additionally maximal green in the case where
each σi is a maximal green sequence.

Now we are equipped to use π-dominance to produce reddening and maximal green
sequences for the dominating quivers by having well behaved sequences on the dominated
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quiver. We conclude this section with a few examples each providing a family of applica-
tions of Corollary 4.7.

4.1 Examples of applying Corollary 4.7

Corollary 4.7 applies to any case where one can produce a maximal green or reddening
seqeunce using component preserving mutations. Thus, this result can be applied in many
cases to produce infinite families of examples. In this section we highlight a few examples.

Example 4.8 (Dreaded torus). Previously much attention has been paid to maximal green
sequences for finite mutation type quivers (see [33]). In Section 3.6 we saw one example
of a maximal green sequence for a finite mutation type quiver using component preserving
mutations. Now we revisit this example, except we can scale the bridging arrows between
the components and leave the case of finite mutation type. By Corollary 4.7 we know
that the original maximal green sequence for the dreaded torus will also be a maximal
green sequence for all π-dominating quivers. Therefore (1, 3, 4, 2, 1, 3) is a maximal green
sequence for all of the quivers in Figure 9, where a is a positive integer. This is an example
of a quiver where the shuffle is not one that can be obtained from direct sum results as
the partition does not form a direct sum of either the original quiver or the π-dominating
quivers.

1

a2a

a

a
2

3

4

Figure 9: For each positive integer a, Corollary 4.7 produces a maximal green sequence for
the quiver, which was the maximal green sequence from the dreaded torus. The maximal
green sequence is (1, 3, 4, 2, 1, 3).

Example 4.9 (The cycle). Another example of finite mutation type quiver is the directed
cycle quiver with vertex set {1, 2, . . . , n} and arrow set {i → (i + 1) : 1 ≤ i < n} ∪
{n→ 1}. In [4, Lemma 4.2] it is shown this quiver has the maximal green sequence

(1, 2, . . . , n− 2, n− 1, n, n− 2, n− 3, . . . , 2, 1)

which can be seen to be component preserving with respect to the partition {1, 2, . . . , n−3,
n − 2, n}/{n − 1}. By applying Corollary 4.7 we then obtain maximal green sequences
for many quivers of infinite mutation type. The case n = 6 is shown in Figure 10.

Example 4.10 (Q-systems). Consider Figure 11 when α = 2 in which we can produce a
maximal green sequence for theQ-system quiver of typeA4 by utilizing the maximal green
sequence from the square product quiver of type (A2, A4). This technique also produces
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Figure 10: A quiver dominating the cycle which has the maximal green sequence
(1, 2, 3, 4, 5, 6, 4, 3, 2, 1).

maximal green sequences for other Q-system quivers (see [14, 27]) which are dominat-
ing quivers of square products. The next section will focus on producing maximal green
sequences for a variety of bipartite recurrent quivers.

1

2

3

4

5

6
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8

1
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4

5

6

7

8

α α α α

Figure 11: This is π-dominance where the components are the horizontal rows of the quiver.
The square product quiver on the left has a maximal green sequence compatible with a π
component preserving shuffle of (2, 3, 6, 7, 1, 4, 5, 8, 2, 3, 6, 7, 1, 4, 5, 8, 2, 3, 6, 7). Corol-
lary 4.7 shows that the quiver on the left where α is any positive integer admits the same
maximal green sequence.

5 Bipartite recurrent quivers
In this section we consider certain quivers arising in the setting of T -systems and Y -
systems. An early application of cluster algebras was Fomin and Zelevinsky’s proof of peri-
odicity for Y -systems associated to root systems [16] which was conjectured by Zamolod-
chikov [42]. This has lead to many more applications of cluster algebra theory in periodicity
for T -systems and Y -systems. We will focus on work of Galashin and Pylyavskyy on bi-
partite recurrent quivers [18, 19, 20]. For certain bipartite recurrent quivers we will produce
maximal green sequences in Theorem 5.3. An important ingredient in our constructions of
maximal green sequences will be an extension of Stembridge’s bigraphs [41]. The pattern
for the maximal green sequences produced in this section was originally observed by Keller
in the case of square products [30]. For a quantum field theory perspective on the results
in this section we refer the reader to [10] where some of the same mutation sequences
we construct are also considered. The main contribution of this section is to demonstrate
how component preserving mutation neatly establishes the existence of a maximal green
sequence for all quivers in Galashin and Pylyavskyy’s classification of Zamolodchikov pe-
riodic quivers [18] as well as for some additional bipartite recurrent quivers.

We call a quiver Q bipartite if there exists a map ε : V (Q) → {0, 1} such that ε(i) 6=
ε(j) for every arrow i→ j of Q. The choice of such a map ε when it exists for a quiver Q
is called a bipartition. Given a bipartition ε for Q a vertex i ∈ V (Q) will be called white
if ε(i) = 0 and black if ε(i) = 1. Let i1, i2, . . . , i` denote the white vertices and Q and
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j1, j2, . . . , jm denote the black vertices. We then let

µ◦ = µi1 ◦ µi2 ◦ · · · ◦ µi`

and
µ• = µj1 ◦ µj2 ◦ · · · ◦ µjm

denote the mutations at all white vertices or black vertices respectively. Since the quiver
is bipartite no white vertex is adjacent to any other white vertex and so the order of muta-
tion among the white vertices in µ◦ does not matter. Similarly the order among the black
vertices in µ• does not matter. A bipartite quiver Q is recurrent if both µ◦(Q) = Qop

and µ•(Q) = Qop where Qop denotes the quiver obtained from Q by reserving the di-
rection of all arrows. Thus for a bipartite recurrent quiver we have µ•(µ◦(Q)) = Q and
µ◦(µ•(Q)) = Q.

A bigraph is a pair (Γ,∆) of undirected graphs on the same underlying vertex set with
no edges in common. Let AΓ and A∆ denote the adjacency matrices of Γ and ∆ respec-
tively. Given any bipartite quiver Q with bipartition ε we obtain a bigraph (Γ(Q),∆(Q))
on vertex set V (Q) where Γ(Q) has an edge {i, j} for each arrow i→ j inQ with ε(i) = 0
and ∆(Q) has an edge {i, j} for each arrow i → j of Q with ε(i) = 1. By abuse of
notation we may also think of Γ(Q) and ∆(Q) as directed graphs with the direction of
edge inherited from the quiver. Galashin and Pylyavskyy have shown that a bipartite quiver
Q is recurrent if and only if AΓ(Q) and A∆(Q) commute [18, Corollary 2.3]. A bigraph
(Γ,∆) is called an admissible ADE bigraph if every component of both Γ and ∆ is an
ADE Dynkin diagram and the adjacency matrices of Γ and ∆ commute. In the case of an
admissible ADE bigraph, each connected component of Γ, and similarly of ∆, will be an
ADE Dynkin diagram will the same Coxter number [41, Corollary 4.4]. More generally,
we wish to also consider what we will refer to as half-finite bigraphs where for at least one
of Γ or ∆ each connected component is a ADE Dynkin diagram. Note the half-finite case
includes both the admissible ADE bigraph case (which are exactly those quivers which
are Zamolodchikov periodic [18]) as well as the affine � finite case in the classification
of Galashin and Pylyavskyy [20]. An example of a bipartite recurrent quiver is shown in
Figure 12. Let Q denote the bipartite recurrent quiver in Figure 12. The edges of Γ(Q)
correspond to the thick red arrows while the edges of ∆(Q) correspond to the thin blue
arrows.

Figure 12: An example of a bipartite recurrent quiver.

For an ADE Dynkin diagram Λ we denote its Coxeter number by h(Λ) and its number
of positive roots by |Φ+(Λ)|. These quantities will be important in the maximal green
sequences we construct. Table 1 shows the values for h(Λ) and |Φ+(Λ)| for each ADE
Dynkin diagram Λ. We now present a result due to Galashin and Pylyavskyy generalizing
the result for admissible ADE bigraphs.
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Table 1: Coxeter numbers and number of positive roots for ADE types.

Λ An Dn E6 E7 E8

h(Λ) n+ 1 2n− 2 12 18 30

|Φ+(Λ)|
(
n+1

2

)
n2 − n 36 63 120

Lemma 5.1 ([20, Corollary 1.1.9]). If (Γ,∆) is a half-finite bigraph so that each compo-
nent of Γ is an ADE Dynkin diagram, then the Coxeter number of each component of Γ
will be the same.

If Q is an orientation of an ADE Dynkin diagram Γ, then the length of the longest
possible maximal green sequence is |Φ+(Λ)| which has been shown in [3, Theorem 4.4]
and [36, Proposition 7.3]. A quiver Q is an alternating orientation of an ADE Dynkin
diagram Λ if it is an orientation of Λ so that every vertex is either a source or sink. In
the case we have an alternating orientation, we will be interested in a certain maximal
green sequence of length |Φ+(Λ)| coming from bipartite dynamics. We may assume we
have a bipartition of Q such that all sinks are the white vertices and all sources are the
black vertices. The maximal green sequence in the following lemma was first observed by
Keller [29].

Lemma 5.2 ([29]). Let Q be an alternating orientation of an ADE Dynkin diagram with
Coxeter number h. If h = 2k, then (µ•µ◦)

k is a maximal green sequence. If h = 2k + 1,
then µ◦(µ•µ◦)k is a maximal green sequence.

We are ready to state and prove our theorem which gives a maximal green sequence
for any half-finite bipartite recurrent quiver. Notice the assumption that Γ(Q) consists of
connected components which are all ADE Dynkin diagrams can easily be exchanged for
the assumption that ∆(Q) consists of connected components which are all ADE Dynkin
diagrams. Also the assumption on white vertices is only to allow us to explicitly state the
maximal green sequences. An easy modification gives the correct statement of the theorem
with the roles of black and white vertices reversed.

Theorem 5.3. Let Q be a half-finite bipartite recurrent quiver. Assume that Γ(Q) consists
of connected components which are all ADE Dynkin diagrams. Further assume that with
the orientation induced by Q the white vertices are sinks in Γ(Q) and sources is ∆(Q). Let
h be the Coxeter number of some component of Γ(Q). If h = 2k is even, then (µ•µ◦)

k is
a maximal green sequence of Q. If h = 2k + 1 is odd, then µ◦(µ•µ◦)k is a maximal green
sequence of Q.

Proof. We will construct a maximal green sequence forQ via component preserving muta-
tions where components are given by the connected components of Γ(Q). By construction
within each component every vertex will be either a source or sink. Under our assump-
tions white vertices are initially sinks while black vertices are initially sources within each
component. Since Q is a bipartite recurrent quiver µ◦(Q) = Qop and µ•(µ◦(Q)) = Q.
Initially, mutation at any white vertex will be component preserving as each white vertex
is a sink within its component and thus all arrows to other components will be outgoing.
Mutation at a given white vertex will not change the fact another white vertex is compo-
nent preserving. For the same reason mutation at any black vertex is component preserving
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in Qop. It follows that (µ•µ◦)
m and µ◦(µ•µ◦)

m are component preserving sequences
of mutations for any m. By Lemma 5.1 each component has the same Coxeter number.
Lemma 5.2 says that we do indeed have maximal green sequences on each component and
therefore the theorem is proven by appealing to Corollary 3.12.

6 Other applications
In this section we provide a variety of uses of the technique of component preserving mu-
tations.

6.1 Quantum dilogarithms

We will review Keller’s [28] association of a product of quantum dilogarithms with a se-
quence of mutations. We will then consider properties of such products of quantum dilog-
arithms which come from component preserving mutations. Let q

1
2 be an indeterminant.

We define the quantum dilogarithm as

E(y) = 1 +
q

1
2 y

q − 1
+ · · ·+ q

n2

2 yn

(qn − 1)(qn − q) · · · (qn − qn−1)
+ · · ·

which is consider as an element of the power series ring Q(q
1
2 )[[y]]. Keller has shown how

reddening sequences give identities of quantum dilogarithms in a certain quantum algebra
determined by a quiver.

Given a quiver Q with vertex set V and skew-symmetric adjacency matrix B = (buv)
we obtain a lattice Λ = ZV with basis {ev}v∈V . There is a skew-symmetric bilinear form
λ : Λ× Λ→ Z defined by

λ(eu, ev) := buv.

The completed quantum algebra of the quiver Q, denoted by ÂQ, is then the noncommu-
tative power series ring modulo relations defined as

ÂQ := Q(q
1
2 )〈〈yα, α ∈ Λ : yαyβ = q

1
2λ(α,β)yα+β〉〉.

For any sequence σ = (i1, i2, . . . , iN ) of vertices in Q we define

Qσ,t := µit ◦ µit−1
◦ · · · ◦ µi1(Q)

for 0 ≤ t ≤ N where Qσ,0 = Q. We then define the product EQ,σ ∈ ÂQ as

EQ,σ := E(yε1β1)ε1E(yε2β2)ε2 · · ·E(yεNβN )εN

where βt is the c-vector corresponding to vertex it inQσ,t−1 and εt ∈ {±1} is the common
sign on the entries of βt. If σ is a reddening sequence, then EQ,σ is known as the combi-
natorial Donaldson-Thomas invariant of the quiver Q. If σ and σ′ are two reddening se-
quences, then we have the quantum dilogarithm identity EQ,σ = EQ,σ′ [29, Theorem 6.5].

In the case that α =
∑
i∈I ei where I = {i1, i2, . . . , i`} we may write yi1i2···i` in place

of yα. Using this abbreviated notation, the well known pentagon identity is

E(y1)E(y2) = E(y2)E(y12)E(y1) (6.1)
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and can be seen by looking at the two maximal green sequences for the quiver Q = (1 →
2). Now consider the quiver in Figure 13 which is an alternating orientation of the Dynkin
diagram A3. The two maximal green sequences

(2, 1, 3)

and
(1, 3, 2, 1, 3, 2)

give the quantum dilogarithm identity

E(y2)E(y1)E(y3) = E(y1)E(y3)E(y123)E(y23)E(y12)E(y2). (6.2)

Reineke [39] has given quantum dilogarithm identities associated to any alternating ori-
entation of an ADE Dynkin diagram which generalize Equations (6.1) and (6.2). Using
cluster algebra theory, Keller [29] has further generalized these identities to square prod-
ucts associated to pairs of ADE Dynkin diagrams. Even more general identities follow
from Theorem 5.3 since we have now produced two maximal green sequences for any
Zamolodchikov periodic quiver.

1 2 3

Figure 13: An alternating orientation of the Dynkin diagram A3.

Let us give a few properties of quantum dilogarithm products coming from component
preserving mutations. For α =

∑
i aiei ∈ Λ we define its support to be Supp(α) := {i :

ai 6= 0}. Consider a quiver Q, a subset of vertices C ⊆ V (Q), and a sequence of vertices
σ = (i1, i2, . . . , iN ). Define σ|C to be the restriction of σ to C (i.e. σ where all vertices
not in C have been deleted). Again write

EQ,σ = E(yε1β1)ε1E(yε2β2)ε2 · · ·E(yεNβN )εN

and define (EQ,σ)|C to be the product EQ,σ (taken in the same order) with the terms
E(yεtβt)εt removed whenever it 6∈ C. We now provide a proposition which tells us that
when a reddening sequence of component preserving mutations is performed, there is a re-
striction on the support of the c-vectors occurring in the combinatorial Donaldson-Thomas
invariant. The proposition follows readily from the definitions and Remark 3.8. When π is
a set partition of a set X and x ∈ X is an element of that set, we will use π(x) to denote
the block of the set partition π which contains x.

Proposition 6.1. Let (Q, π) be a partitioned quiver so that σ = (i1, i2, . . . , iN ) is a com-
ponent preserving sequence of vertices. If C = Qj is some component, then EQ,σ|C =
(EQ,σ)|C . Moreover, we have that Supp(βt) ⊆ π(it) for each 1 ≤ t ≤ N .

When Q is such that (Γ(Q),∆(Q)) is an admissible ADE bigraph we can obtain a
second maximal green sequence from Theorem 5.3 by exchanging the roles of Γ(Q) and
∆(Q). A square product of two ADE Dynkin diagrams produces a quiver Q such that
(Γ(Q),∆(Q)) is an admissible ADE bigraph. For square products of ADE Dynkin dia-
grams Keller [29] has previously produced the maximal green sequences in Theorem 5.3.
The square product ofA3 andA4 is shown in Figure 12. Stembridge’s classification [41] of
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admissible ADE bigraphs includes more than just those bigraphs encoding square products
of ADE Dynkin diagrams. Thus, Theorem 5.3 provides new quantum dilogarithm iden-
tites which can be thought of as generalizations of the pentagon identity. An infinite family
examples of quivers which are not square products are the twists of an ADE Dynkin dia-
grams [41, Example 1.4]. The quiver Q which is the twist of A3 is shown in Figure 14. On
the left of Figure 14 the quiver is pictured to indicated the bigraph (Γ(Q),∆(Q)), and on
the right we show the quiver with vertex labels. The two expressions of the combinatorial
Donaldson-Thomas invariant of Q obtain from the maximal green sequences constructed
in Theorem 5.3 are

E(y1)E(y3)E(y4)E(y6)E(y123)E(y456)E(y23)E(y12)E(y56)E(y45)E(y2)E(y4) (6.3)

and

E(y2)E(y5)E(y15)E(y35)E(y24)E(y26)E(y246)E(y135)E(y1)E(y3)E(y4)E(y6). (6.4)

These expressions are equal and give one example of the quantum dilogarithm identities
obtained from Theorem 5.3. Looking at supports we can verify Proposition 6.1 in this
example. Expression (6.3) comes from considering {1, 2, 3} and {4, 5, 6} as components
while Expression (6.4) comes from considering {1, 3, 5} and {2, 4, 6} as components. The
maximal green sequences corresponding to the products of quantum dilogarithms in Equa-
tions (6.3) and (6.4) are

(1, 3, 4, 6, 2, 5, 1, 3, 4, 6, 2, 5)

and
(2, 5, 1, 3, 4, 6, 2, 5, 1, 3, 4, 6)

respectively.

1

2

3

4

5

6

Figure 14: The quiver obtained from the twist of A3.

6.2 Minimal length maximal green sequences

There has been recent interest in finding maximal green sequences of minimal possible
length for a given quiver [11, 21]. We will now show how minimal length maximal green
sequences can be constructed with component preserving mutations. In additional to being
a natural question to ask about maximal green sequences, it has been observed by Garver,
McConville, and Serhiyenko that the minimal possible length of a maximal green sequence
may be related to derived equivalence of cluster tilted algebras (see [21, Question 10.1]).
The following result is a component preserving generalization of [21, Proposition 4.4]
which considers the direct sum case.
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Lemma 6.2. Let (Q, π) be a partitioned quiver with π = π1/π2/ · · · /π`. Also let σi be a
minimal length maximal green sequence for Qi for each 1 ≤ i ≤ `. If τ is a component
preserving shuffle of σ1, σ2, . . . , σn, then τ is a minimal length maximal green sequence
for Q.

Proof. Let Li be the length of a minimal length maximal green sequence of Qi for each
1 ≤ i ≤ ` and let L = L1 + L2 + · · · + L`. By Corollary 3.12 we know that τ is a
maximal green sequence and will have length L. So, we now need to show that there are no
shorter maximal green sequences. Consider any maximal green sequence τ ′ for Q. By [21,
Theorem 3.3] it follows that for each 1 ≤ i ≤ ` there is a subsequence of mutations in τ ′

at vertices in Qi which is a maximal green sequence of Qi. This means τ ′ must mutate at
vertices of Qi at least Li times for each 1 ≤ i ≤ `. Since π is a partition, Qi and Qj share
no vertices when i 6= j. It follows that τ ′ has length at least L = L1 + L2 + · · ·+ L`.

To illustrate a use of Lemma 6.2, let Q be the quiver2 in Figure 15. We will take the set
partition {v1, v2, v3, v4, v5}/{u1, u2, u3, u4}. A minimal length maximal green sequence
for Q is then

(u1, u2, u3, v1, v2, v3, v4, v5, v3, v2, v1, u4)

which is a shuffle of (v1, v2, v3, v4, v5, v3, v2, v1) and (u1, u2, u3, u4). The first is a max-
imal green sequence for the cycle by [4, Lemma 4.2] and is of minimal length by [21,
Theorem 6.1]. The second is a maximal green sequence coming from an admissible num-
bering by sources.

v1

v2

v3

v4

v5

u1u2u3u4

Figure 15: A quiver where a minimal length maximal green sequence can be found by
component preserving mutations.

6.3 Exponentially many maximal green sequences for Dynkin quivers

In [3, Remark 4.2 (3)] the authors observe that the number of maximal green sequences of
the lineary oriented Dynkin quiver of type An seems to grow exponentially with n. The
main result of this section will affirm this observation. A Dynkin quiver of type An is any
orientation of the Dynkin diagram of type An. The linearly oriented Dynkin quiver of type
An has vertex set {i : 1 ≤ i ≤ n} and arrow set {i→ i+ 1 : 1 ≤ i < n}. Figure 16 shows
the linearly oriented Dynkin quiver of type A5. We will show that the number of maximal
green sequences of arbitrarily oriented Dynkin quiver of type An is at least expontential.
We give a simple and explicit proof of an exponential lower bound to | green(Q)| where Q

2The use of Lemma 6.2 readily generalizes to quivers similar to Q with longer cycle or longer path.
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is any Dynkin quiver of type An. After we will provide an improved bound in the case Q
is a linearly oriented Dynkin quiver of type An.

1 2 3 4 5

Figure 16: The linearly oriented Dynkin quiver A5.

Recall the Fibonacci numbers are defined by the recurrence F1 = 1, F2 = 2, and
Fn = Fn−1 + Fn−2 for n ≥ 2. A closed form expression for Fn is

Fn =
φn − ψn√

5

where

φ =
1 +
√

5

2
ψ =

1−
√

5

2
.

Proposition 6.3. If Q is a Dynkin quiver of type An for any n ≥ 1, then | green(Q)| ≥
Fn+1.

Proof. It can be easily checked that | green(Q)| = 1 = F2 for n = 1 and | green(Q)| =
2 = F3 for n = 2. For n ≥ 3 assume inductively that | green(Q)| ≥ Fm+1 for all
1 ≤ m < n. We first consider components of Q coming from the set partition C/C ′ where
C = {i : 1 ≤ i ≤ n− 1} and C ′ = {n}. Here Q is isomorphic to a direct sum of a Dynkin
quiver of type An−1 and a Dynkin quiver of type A1. Hence, Q has at least | green(Q|C)|
maximal green sequences by considering any maximal green sequence on Q|C with (n)
either appended or prepened depending of whether (n−1)→ n ∈ Q or n→ (n−1) ∈ Q.

Next consider components of Q coming from the set partition D/D′ where D = {i :
1 ≤ i ≤ n − 2} and D′ = {n − 1, n}. Now Q is isomorphic to a direct sum of Dynkin
quiver of type An−2 and a Dynkin quiver of type A2. Thus, Q has at least | green(Q|D)|
maximal green sequences by considering any maximal green sequence on D with:

• (n, n− 1, n) appended if (n− 2)→ (n− 1), (n− 1)→ n ∈ Q.

• (n, n− 1, n) prepended if (n− 1)→ (n− 2), (n− 1)→ n ∈ Q.

• (n− 1, n, n− 1) appended if (n− 2)→ (n− 1), n→ (n− 1) ∈ Q.

• (n− 1, n, n− 1) prepended if (n− 1)→ (n− 2), n→ (n− 1) ∈ Q.

We see that the set of maximal green sequences forQ coming from green(Q|C) are disjoint
from those coming from green(Q|D). In the former n is mutated at only once and is either
mutated first or last in the sequence. In the latter n is either mutated at twice or otherwise
is neither the first nor the last mutation. It follows that

| green(Q)| ≥ | green(Q|C)|+ | green(Q|D)| ≥ Fn + Fn−1 = Fn+1

and the proposition is proven.

For a linearly oriented Dynkin quiver Q of type An, we have the maximal green se-
quence

(n, n− 1, . . . , 1, n, n− 1, . . . , 2, . . . , n, n− 1, n)
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which we will call the long sequence.3 As an example in the case n = 4 the long seqeunce
is

(4, 3, 2, 1, 4, 3, 2, 4, 3, 4).

The long sequence is a maximal green sequence coming from a reduced factorization of
the longest element in the corresponding Coxeter group.

Proposition 6.4. IfQ is the linearly oriented Dynkin quiver of typeAn for any n ≥ 1, then
| green(Q)| ≥ 2n−1.

Proof. For n = 1 we have | green(Q)| = 1 and for n = 2 and | green(Q)| = 2. Given
n ≥ 3, assume inductively that | green(Q)| ≥ 2m−1 for all 1 ≤ m < n. Consider
components from the set partition C(k)/D(k) where C(k) = {1, 2, . . . , k} and D(k) =
{k+ 1, k+ 2, . . . , n} for 0 ≤ k < n. For each k, our quiver Q has at least | green(Q|C(k))|
many maximal green sequences by appending the long sequence of Q|D(k) to any maximal
green sequence of Q|C(k) . Here we count one maximal green sequence, the long sequence
for Q, when k = 0. In the long sequence for Q|D(k) vertex n is mutated at n − k times,
and thus the maximal green sequences coming from green(Q|C(k1)) and green(Q|C(k2))
are disjoint for k1 6= k2. So,

| green(Q)| ≥
n−1∑
k=0

| green(Q|C(k))| ≥ 1 +

n−1∑
k=1

2k−1 = 2n−1

and the proposition follows.

Let green(An) denote the set of maximal green sequences of a linearly oriented type
An quiver. Proposition 6.4 is constructive starting from knowing green(A1) = {(1)} and
green(A2) = {(1, 2), (2, 1, 2)}. The method in the proof of Proposition 6.4 produces

{(1, 2, 3), (2, 1, 2, 3), (1, 3, 2, 3), (3, 2, 1, 3, 2, 3)} ⊆ green(A3),

and we show in Table 2 the 8 maximal green sequences in green(A4) constructed by apply-
ing the proof of Proposition 6.4 one more time. The maximal green sequences in Table 2
are arranged according to the set partition C(k)/D(k).

Table 2: Maximal green sequences in green(A4) constructed in proof of Proposition 6.4
according to set partition C(k)/D(k).

k Maximal green sequences

0 (4, 3, 2, 1, 4, 3, 2, 4, 3, 4)

1 (1, 4, 3, 2, 4, 3, 4)

2 (1, 2, 4, 3, 4), (2, 1, 2, 4, 3, 4)

3 (1, 2, 3, 4), (2, 1, 2, 3, 4), (1, 3, 2, 3, 4), (3, 2, 1, 3, 2, 3, 4)

3There are many possible maximal green sequences of this maximal length. So, we should perhaps say a long
sequence instead of the long sequence. However, we wish to emphasize that in this section we will be using only
this particular sequence of mutations.
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Abstract

A finite group G is called a DCI-group if two Cayley digraphs over G are isomorphic
if and only if their connection sets are conjugate by a group automorphism. We prove that
the group C5

2 × Cp, where p is a prime, is a DCI-group if and only if p 6= 2. Together
with the previously obtained results, this implies that a group G of order 32p, where p is a
prime, is a DCI-group if and only if p 6= 2 and G ∼= C5

2 × Cp.

Keywords: Isomorphisms, DCI-groups, Schur rings.
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1 Introduction
LetG be a finite group and S ⊆ G. The Cayley digraph Cay(G,S) overGwith connection
set S is defined to be the digraph with vertex set G and arc set {(g, sg) : g ∈ G, s ∈ S}.
Two Cayley digraphs over G are called Cayley isomorphic if there exists an isomorphism
between them which is also an automorphism ofG. Clearly, two Cayley isomorphic Cayley
digraphs are isomorphic. The converse statement is not true in general (see [3, 10]). A
subset S ⊆ G is called a CI-subset if for each T ⊆ G the Cayley digraphs Cay(G,S)
and Cay(G,T ) are isomorphic if and only if they are Cayley isomorphic. A finite group
G is called a DCI-group (CI-group, respectively) if each subset of G (each inverse-closed
subset of G, respectively) is a CI-subset.
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The investigation of DCI-groups was initiated by Ádám [1] who conjectured, in our
terms, that every cyclic group is a DCI-group. This conjecture was disproved by Elspas and
Turner in [10]. The problem of determining of finite DCI- and CI-groups was suggested
by Babai and Frankl in [5]. For more information on DCI- and CI-groups we refer the
readers to the survey paper [21].

In this paper we are interested in abelian DCI-groups. The cyclic group of order n
is denoted by Cn. Elspas and Turner [10] and independently Djoković [8] proved that
every cyclic group of prime order is a DCI-group. The fact that Cpq is a DCI-group for
distinct primes p and q was proved by Alspach and Parsons in [3] and independently by
Klin and Pöschel in [17]. The complete classification of cyclic DCI-groups was obtained
by Muzychuk in [23, 24]. He proved that a cyclic group of order n is a DCI-group if and
only if n = k or n = 2k, where k is square-free.

Denote the class of all finite abelian groups where every Sylow subgroup is elementary
abelian by E. From [18, Theorem 1.1] it follows that every DCI-group is the coprime
product (i.e. the direct product of groups of coprime orders) of groups from the following
list:

Ckp , C4, Q8, A4, H o 〈z〉,

where p is a prime, H is a group of odd order from E, |z| ∈ {2, 4}, and hz = h−1 for every
h ∈ H . One can check that the class of DCI-groups is closed under taking subgroups. So
one of the crucial steps towards the classification of all DCI-groups is to determine which
groups from E are DCI.

The following non-cyclic groups from E are DCI-groups (p and q are assumed to be
distinct primes): C2

p [2, 14]; C3
p [2, 9]; C4

2 , C5
2 [7]; C4

p , where p is odd [15] (a proof for
C4
p with no condition on p was given in [22]); C5

p , where p is odd [13]; C2
p × Cq [18];

C3
p ×Cq [27]; C4

p ×Cq [20]. The smallest example of a non-DCI-group from E was found
by Nowitz [28]. He proved that C6

2 is non-DCI. This implies that Cn2 is non-DCI for every
n ≥ 6. Also Cn3 is non-DCI for every n ≥ 8 [33] and Cnp is non-DCI for every prime p
and n ≥ 2p+ 3 [32].

In this paper we find a new infinite family of DCI-groups from E which are close to
the smallest non-DCI-group from E. The main result of the paper can be formulated as
follows.

Theorem 1.1. Let p be a prime. Then the group C5
2 × Cp is a DCI-group if and only if

p 6= 2.

Theorem 1.1 extends the results obtained in [18, 20, 27] which imply that the group
Ckp × Cq is a DCI-group whenever p and q are distinct primes and k ≤ 4. Note that the
“only if” part of Theorem 1.1, in fact, was proved by Nowitz in [28]. The next corollary
immediately follows from [18, Theorem 1.1] and Theorem 1.1.

Corollary 1.2. Let p be a prime. Then a group G of order 32p is a DCI-group if and only
if p 6= 2 and G ∼= C5

2 × Cp.

To prove Theorem 1.1, we use the S-ring approach. An S-ring over a group G is a
subring of the group ring ZG which is a free Z-module spanned by a special partition
of G. If every S-ring from a certain family of S-rings over G is a CI-S-ring then G is
a DCI-group (see Section 4). The definition of an S-ring goes back to Schur [31] and
Wielandt [34]. The usage of S-rings in the investigation of DCI-groups was proposed by



G. Ryabov: The Cayley isomorphism property for the group C5
2 × Cp 279

Klin and Pöschel [17]. Most recent results on DCI-groups were obtained using S-rings
(see [15, 18, 19, 20, 27]).

The text of the paper is organized in the following way. In Section 2 we provide defi-
nitions and basic facts concerned with S-rings. Section 3 contains a necessary information
on isomorphisms of S-rings. In Section 4 we discuss CI-S-rings and their relation with
DCI-groups. We also prove in this section a sufficient condition of CI-property for S-rings
(Lemma 4.4). Section 5 is devoted to the generalized wreath and star products of S-rings.
Here we deduce from previously obtained results two sufficient conditions for the general-
ized wreath product of S-rings to be a CI-S-ring (Lemma 5.5 and Lemma 5.8). Section 6
and 7 are concerned with p-S-rings and S-rings over a group of order pk, where p is a prime
and GCD(p, k) = 1, (so-called non-powerful order) respectively. In Section 8 we provide
properties of S-rings over the groups Cn2 , n ≤ 5, and prove that all S-rings over these
groups are CI. The material of this section is based on computational results obtained with
the help of the GAP package COCO2P [16]. Finally, in Section 9 we prove Theorem 1.1.

Notation. Let G be a finite group and X ⊆ G. The element
∑
x∈X x of the group ring

ZG is denoted by X .
The set {x−1 : x ∈ X} is denoted by X−1.
The subgroup of G generated by X is denoted by 〈X〉; we also set rad(X) = {g ∈ G :

gX = Xg = X}.
Given a set X ⊆ G the set {(g, xg) : x ∈ X, g ∈ G} of arcs of the Cayley digraph

Cay(G,X) is denoted by A(X).
The group of all permutations of G is denoted by Sym(G).
The subgroup of Sym(G) consisting of all right translations of G is denoted by Gright.
The set {K ≤ Sym(G) : K ≥ Gright} is denoted by Sup(Gright).
For a set ∆ ⊆ Sym(G) and a section S = U/L ofG we set ∆S = {fS : f ∈ ∆, Sf =

S}, where Sf = S means that f permutes the L-cosets in U and fS denotes the bijection
of S induced by f .

If K ≤ Sym(Ω) and α ∈ Ω then the stabilizer of α in K and the set of all orbits of K
on Ω are denoted by Kα and Orb(K,Ω) respectively.

If H ≤ G then the normalizer of H in G is denoted by NG(H).
The cyclic group of order n is denoted by Cn.
The class of all finite abelian groups where every Sylow subgroup is elementary abelian

is denoted by E.

2 S-rings
In this section we give a background of S-rings. In general, we follow [20], where the most
part of the material is contained. For more information on S-rings we refer the readers
to [6, 25].

Let G be a finite group and ZG the integer group ring. Denote the identity element of
G by e. A subring A ⊆ ZG is called an S-ring (a Schur ring) over G if there exists a
partition S(A) of G such that:

(1) {e} ∈ S(A),

(2) if X ∈ S(A) then X−1 ∈ S(A),

(3) A = SpanZ{X : X ∈ S(A)}.
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The elements of S(A) are called the basic sets of A and the number rk(A) = |S(A)| is
called the rank of A. If X,Y ∈ S(A) then XY ∈ S(A) whenever |X| = 1 or |Y | = 1.

Let A be an S-ring over a group G. A set X ⊆ G is called an A-set if X ∈ A. A
subgroup H ≤ G is called an A-subgroup if H is an A-set. From the definition it follows
that the intersection of A-subgroups is also an A-subgroup. One can check that for each
A-set X the groups 〈X〉 and rad(X) are A-subgroups. By the thin radical of A we mean
the set defined as

Oθ(A) = {x ∈ G : {x} ∈ S(A)}.

It is easy to see that Oθ(A) is an A-subgroup.

Lemma 2.1 ([11, Lemma 2.1]). Let A be an S-ring over a group G, H an A-subgroup of
G, and X ∈ S(A). Then the number |X ∩Hx| does not depend on x ∈ X .

Let L� U ≤ G. A section U/L is called an A-section if U and L are A-subgroups. If
S = U/L is an A-section then the module

AS = SpanZ {Xπ : X ∈ S(A), X ⊆ U} ,

where π : U → U/L is the canonical epimorphism, is an S-ring over S.

3 Isomorphisms and schurity
Let A and A′ be S-rings over groups G and G′ respectively. A bijection f : G → G′ is
called an isomorphism from A to A′ if

{A(X)f : X ∈ S(A)} = {A(X ′) : X ′ ∈ S(A′)},

where A(X)f = {(gf , hf ) : (g, h) ∈ A(X)}. If there exists an isomorphism from A to
A′ then we say that A and A′ are isomorphic and write A ∼= A′.

The group of all isomorphisms from A onto itself contains a normal subgroup

{f ∈ Sym(G) : A(X)f = A(X) for every X ∈ S(A)}

called the automorphism group of A and denoted by Aut(A). The definition implies that
Gright ≤ Aut(A). The S-ring A is called normal if Gright is normal in Aut(A). One can
verify that if S is an A-section then Aut(A)S ≤ Aut(AS). Denote the group Aut(A) ∩
Aut(G) by AutG(A). It easy to check that if S is an A-section then AutG(A)S ≤
AutS(AS). One can verify that

AutG(A) = (NAut(A)(Gright))e.

Let K ∈ Sup(Gright). Schur proved in [31] that the Z-submodule

V (K,G) = SpanZ{X : X ∈ Orb(Ke, G)},

is an S-ring over G. An S-ring A over G is called schurian if A = V (K,G) for some
K ∈ Sup(Gright). One can verify that given K1,K2 ∈ Sup(Gright),

if K1 ≤ K2 then V (K1, G) ≥ V (K2, G). (3.1)
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If A = V (K,G) for some K ∈ Sup(Gright) and S is an A-section then AS = V (KS , S).
So if A is schurian then AS is also schurian for every A-section S. It can be checked that

V (Aut(A), G) ≥ A (3.2)

and the equality is attained if and only if A is schurian.
An S-ring A over a group G is defined to be cyclotomic if there exists K ≤ Aut(G)

such that S(A) = Orb(K,G). In this case we write A = Cyc(K,G). Obviously, A =
V (GrightK,G). So every cyclotomic S-ring is schurian. If A = Cyc(K,G) for some
K ≤ Aut(G) and S is an A-section then AS = Cyc(KS , S). Therefore if A is cyclotomic
then AS is also cyclotomic for every A-section S.

Two permutation groupsK1 andK2 on a set Ω are called 2-equivalent if Orb(K1,Ω
2) =

Orb(K2,Ω
2) (here we assume that K1 and K2 act on Ω2 componentwise). In this case we

write K1 ≈2 K2. The relation ≈2 is an equivalence relation on the set of all subgroups of
Sym(Ω). Every equivalence class has a unique maximal element with respect to inclusion.
Given K ≤ Sym(Ω), this element is called the 2-closure of K and denoted by K(2). If
A = V (K,G) for some K ∈ Sup(Gright) then K(2) = Aut(A). An S-ring A over G is
called 2-minimal if

{K ∈ Sup(Gright) : K ≈2 Aut(A)} = {Aut(A)}.

Two groups K1,K2 ≤ Aut(G) are said to be Cayley equivalent if Orb(K1, G) =
Orb(K2, G). In this case we write K1 ≈Cay K2. If A = Cyc(K,G) for some K ≤
Aut(G) then AutG(A) is the largest group which is Cayley equivalent toK. A cyclotomic
S-ring A over G is called Cayley minimal if

{K ≤ Aut(G) : K ≈Cay AutG(A)} = {AutG(A)}.

It is easy to see that ZG is 2-minimal and Cayley minimal.

4 CI-S-rings
Let A be an S-ring over a group G. Put

Iso(A) = {f ∈ Sym(G) : f is an isomorphism from A onto an S-ring over G}.

One can see that Aut(A) Aut(G) ⊆ Iso(A). However, the converse statement does not
hold in general. The S-ring A is defined to be a CI-S-ring if Aut(A) Aut(G) = Iso(A).
It is easy to check that ZG and the S-ring of rank 2 over G are CI-S-rings.

Put
Sup2(Gright) = {K ∈ Sup(Gright) : K(2) = K}.

The group M ≤ Sym(G) is said to be G-regular if M is regular and isomorphic to G.
Following [15], we say that a group K ∈ Sup(Gright) is G-transjugate if every G-regular
subgroup of K is K-conjugate to Gright. Babai proved in [4] the statement which can
be formulated in our terms as follows: a set S ⊆ G is a CI-subset if and only if the
group Aut(Cay(G,S)) is G-transjugate. The next lemma provides a similar criterion for a
schurian S-ring to be CI.

Lemma 4.1. LetK ∈ Sup2(Gright) and A = V (K,G). Then A is a CI-S-ring if and only
if K is G-transjugate.
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Proof. The statement of the lemma follows from [15, Theorem 2.6].

Let K1,K2 ∈ Sup(Gright) such that K1 ≤ K2. Then K1 is called a G-complete
subgroup of K2 if every G-regular subgroup of K2 is K2-conjugate to some G-regular
subgroup ofK1 (see [15, Definition 2]). In this case we writeK1 �G K2. The relation�G
is a partial order on Sup(Gright). The set of the minimal elements of Sup2(Gright) with
respect to �G is denoted by Supmin

2 (Gright).

Lemma 4.2 ([20, Lemma 3.3]). Let G be a finite group. If V (K,G) is a CI-S-ring for
every K ∈ Supmin

2 (Gright) then G is a DCI-group.

Remark 4.3. The condition that V (K,G) is a CI-S-ring for every K ∈ Supmin
2 (Gright)

is equivalent to, say, that every schurian S-ring over G is a CI-S-ring. The latter condition
means that every 2-closed overgroup of Gright is G-transjugate. However, 2-closed over-
group of Gright may not be the automorphism group of a Cayley digraph over G. So the
condition that the automorphism group of every Cayley digraph overG isG-transjugate or,
equivalently, that G is a DCI-group, seems weaker than the condition of Lemma 4.2. It is
a natural question whether there exists a DCI-group for which the condition of Lemma 4.2
does not hold.

We finish the section with the lemma that gives a sufficient condition for an S-ring to
be a CI-S-ring. In order to formulate this condition, we need to introduce some further
notations. Let A be a schurian S-ring over an abelian group G and L a normal A-subgroup
of G. Then the partition of G into the L-cosets is Aut(A)-invariant. The kernel of the
action of Aut(A) on the latter cosets is denoted by Aut(A)G/L. Since Aut(A)G/L is a
normal subgroup of Aut(A), we can form the group K = Aut(A)G/LGright. Clearly,
K ≤ Aut(A). From [15, Proposition 2.1] it follows that K = K(2).

Lemma 4.4. Let A be a schurian S-ring over an abelian group G, L an A-subgroup of G,
and K = Aut(A)G/LGright. Suppose that both AG/L and V (K,G) are CI-S-rings and
AG/L is normal. Then A is a CI-S-ring.

Proof. Firstly we prove that the group Aut(A)G/L isG/L-transjugate. Suppose that F is a
G/L-regular subgroup of Aut(A)G/L. The S-ring AG/L is a CI-S-ring by the assumption
of the lemma. So Lemma 4.1 implies that the group Aut(AG/L) isG/L-transjugate. Since
F ≤ Aut(A)G/L ≤ Aut(AG/L), we conclude that F and (G/L)right are Aut(AG/L)-
conjugate. However, AG/L is normal and hence F = (G/L)right. Therefore Aut(A)G/L

is G/L-transjugate.
Now let us show that K �G Aut(A). Let H be a G-regular subgroup of Aut(A).

Then HG/L is abelian transitive subgroup of Aut(A)G/L and hence HG/L is regular on
G/L. Therefore HG/L ∼= (G/L)right = (Gright)

G/L. There exists γ ∈ Aut(A) such that
(HG/L)γ

G/L

= (G/L)right = (Gright)
G/L because Aut(A)G/L is G/L-transjugate. This

yields that Hγ ≤ K. Thus, K �G Aut(A).
Finally, let us prove that Aut(A) is G-transjugate. Again, let H be a G-regular sub-

group of Aut(A). Since K �G Aut(A), there exists γ ∈ Aut(A) such that Hγ ≤
K. The S-ring V (K,G) is a CI-S-ring by the assumption of the lemma. So K is G-
transjugate by Lemma 4.1. Therefore Hγ and Gright are K-conjugate and hence H and
Gright are Aut(A)-conjugate. Thus, Aut(A) is G-transjugate and A is a CI-S-ring by
Lemma 4.1.
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It should be mentioned that the proof of Lemma 4.4 is similar to the proof of [20,
Lemma 3.6].

5 Generalized wreath and star products
Let A be an S-ring over a group G and S = U/L an A-section of G. An S-ring A is called
the S-wreath product or the generalized wreath product of AU and AG/L if L E G and
L ≤ rad(X) for each basic set X outside U . In this case we write A = AU oS AG/L and
omit S when U = L. The construction of the generalized wreath product of S-rings was
introduced in [12].

The S-wreath product is called nontrivial or proper if L 6= {e} and U 6= G. An S-ring
A is said to be decomposable if A is the nontrivial S-wreath product for some A-section S
of G; otherwise A is said to be indecomposable. We say that an A-subgroup U < G has
a gwr-complement with respect to A if there exists a nontrivial normal A-subgroup L of G
such that L ≤ U and A is the S-wreath product, where S = U/L.

Lemma 5.1 ([19, Theorem 1.1]). Let G ∈ E, A an S-ring over G, and S = U/L an A-
section of G. Suppose that A is the nontrivial S-wreath product and the S-rings AU and
AG/L are CI-S-rings. Then A is a CI-S-ring whenever

AutS(AS) = AutU (AU )S AutG/L(AG/L)S .

In particular, A is a CI-S-ring if

AutS(AS) = AutU (AU )S or AutS(AS) = AutG/L(AG/L)S .

Lemma 5.2 ([19, Proposition 4.1]). In the conditions of Lemma 5.1, suppose that AS =
ZS. Then A is a CI-S-ring. In particular, if U = L then A is a CI-S-ring.

Lemma 5.3 ([20, Lemma 4.2]). In the conditions of Lemma 5.1, suppose that at least
one of the S-rings AU and AG/L is cyclotomic and AS is Cayley minimal. Then A is a
CI-S-ring.

Lemma 5.4. Let A be an S-ring over an abelian group G. Suppose that A is the non-
trivial S = U/L-wreath product for some A-section S = U/L and L1 is an A-subgroup
containing L. Then B = V (K,G), where K = Aut(A)G/L1

Gright, is also the S-wreath
product.

Proof. Since K ≤ Aut(A), from Equations (3.1) and (3.2) it follows that

B = V (K,G) ≥ V (Aut(A), G) ≥ A.

So U and L are also B-subgroups.
Let C = ZU oS Z(G/L). The S-rings CU and CG/L are schurian and CS is 2-minimal

because CS = ZS. So C is schurian by [26, Corollary 10.3]. This implies that

C = V (Aut(C), G). (5.1)

Every element from Aut(C)e fixes every basic set of C and hence it fixes every L-
coset. Since L1 ≥ L, every element from Aut(C)e fixes every L1-coset. We conclude that
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Aut(C)e ≤ Aut(A)G/L1
and hence Aut(C) ≤ K. Now from Equations (3.1) and (5.1) it

follows that
C = V (Aut(C), G) ≥ V (K,G) = B. (5.2)

The group U is a B- and a C-subgroup. Due to Equation (5.2), every basic set of B
which lies outsideU is a union of some basic sets of C which lie outsideU . SoL ≤ rad(X)
for every X ∈ S(B) outside U . Thus, B is the S-wreath product.

Lemma 5.5. In the conditions of Lemma 5.1, suppose that: (1) every S-ring over U is a
CI-S-ring; (2) AG/L is 2-minimal or normal. Then A is a CI-S-ring.

Proof. Let B = V (K,G), whereK = Aut(A)G/LGright. From Lemma 5.4 it follows that
B is the S-wreath product. SinceL1 = L, the definition of B implies that BG/L = Z(G/L)
and hence BS = ZS. Clearly, BG/L is a CI-S-ring. The S-ring BU is a CI-S-ring by the
assumption of the lemma. Therefore B is a CI-S-ring by Lemma 5.2. The S-ring AG/L is
a CI-S-ring by the assumption of the lemma. Thus, A is a CI-S-ring by [20, Lemma 3.6]
whenever AG/L is 2-minimal and by Lemma 4.4 whenever AG/L is normal.

Let V and W be A-subgroups. The S-ring A is called the star product of AV and AW
if the following conditions hold:

(1) V ∩W EW ;

(2) each T ∈ S(A) with T ⊆ (W \ V ) is a union of some V ∩W -cosets;

(3) for each T ∈ S(A) with T ⊆ G \ (V ∪W ) there exist R ∈ S(AV ) and S ∈ S(AW )
such that T = RS.

In this case we write A = AV ? AW . The construction of the star product of S-rings
was introduced in [15]. The star product is called nontrivial if V 6= {e} and V 6= G. If
V ∩W = {e} then the star product is the usual tensor product of AV and AW (see [11,
p. 5]). In this case we write A = AV ⊗ AW . One can check that if A = AV ⊗ AW then
Aut(A) = Aut(AV )×Aut(AW ). If V ∩W 6= {e} then A is the nontrivial V/(V ∩W )-
wreath product. Indeed, let T ∈ S(A) such that T * V . If T ⊆ W \ V then V ∩W ≤
rad(T ) by Condition (2) of the definition. If T ⊆ G \ (V ∪W ) then T = RS for some
R ∈ S(AV ) and some S ∈ S(AW ) such that S ⊆W \V by Condition (3) of the definition.
Since V ∩W ≤ rad(S), we obtain V ∩W ≤ rad(T ).

Lemma 5.6. Let G ∈ E and A a schurian S-ring over G. Suppose that A = AV ?AW for
some A-subgroups V and W of G and the S-rings AV and AW/(V ∩W ) are CI-S-rings.
Then A is a CI-S-ring.

Proof. The statement of the lemma follows from [18, Proposition 3.2, Theorem 4.1].

Lemma 5.7 ([13, Lemma 2.8]). Let A be an S-ring over an abelian group G = G1 ×G2.
Assume that G1 and G2 are A-groups. Then A = AG1 ⊗ AG2 whenever AG1 or AG2 is
the group ring.

Lemma 5.8. In the conditions of Lemma 5.1, suppose that |G : U | is a prime and there
exists X ∈ S(AG/L) outside S with |X| = 1. Then A is a CI-S-ring.
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Proof. Let X = {x} for some x ∈ G/L. Due to G ∈ E, we conclude that |〈x〉| is prime.
So |〈x〉 ∩S| = 1 because x lies outside S. Since |G : U | is a prime, G/L = 〈x〉×S. Note
that A〈x〉 = Z〈x〉. Therefore

AG/L = Z〈x〉 ⊗AS

by Lemma 5.7.
Let ϕ ∈ AutS(AS). Define ψ ∈ Aut(G/L) in the following way:

ψS = ϕ, xψ = x.

Then ψ ∈ AutG/L(AG/L) because AG/L = Z〈x〉 ⊗AS . We obtain that

AutG/L(AG/L)S ≥ AutS(AS),

and hence AutG/L(AG/L)S = AutS(AS). Thus, A is a CI-S-ring by Lemma 5.1.

6 p-S-rings
Let p be a prime. An S-ring A over a p-group G is called a p-S-ring if every basic set of
A has a p-power size. Clearly, if |G| = p then A = ZG. In the next three lemmas G is a
p-group and A is a p-S-ring over G.

Lemma 6.1. If B ≥ A then B is a p-S-ring.

Proof. The statement of the lemma follows from [29, Theorem 1.1].

Lemma 6.2. Let S = U/L be an A-section of G. Then AS is a p-S-ring.

Proof. From Lemma 2.1 it follows that for every X ∈ S(A) the number λ = |X ∩ Lx|
does not depend on x ∈ X . So λ divides |X| and hence λ is a p-power. Let π : G→ G/L
be the canonical epimorphism. Note that |π(X)| = |X|/λ and hence |π(X)| is a p-power.
Therefore every basic set of AS has a p-power size. Thus, AS is a p-S-ring.

Lemma 6.3 ([13, Proposition 2.13]). The following statements hold:

(1) |Oθ(A)| > 1;

(2) there exists a chain of A-subgroups {e} = G0 < G1 < · · · < Gs = G such that
|Gi+1 : Gi| = p for every i ∈ {0, . . . , s− 1}.

Lemma 6.4. Let G be an abelian group, K ∈ Supmin
2 (Gright), and A = V (K,G). Sup-

pose that H is an A-subgroup of G such that G/H is a p-group for some prime p. Then
AG/H is a p-S-ring.

Proof. The statement of the lemma follows from [18, Lemma 5.2].

7 S-rings over an abelian group of non-powerful order
A number n is called powerful if p2 divides n for every prime divisor p of n. From now
throughout this section G = H × P , where H is an abelian group and P ∼= Cp, where p
is a prime coprime to |H|. Clearly, |G| is non-powerful. Let A be an S-ring over G, H1

a maximal A-subgroup contained in H , and P1 the least A-subgroup containing P . Note
that H1P1 is an A-subgroup.
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Lemma 7.1 ([20, Lemma 6.3]). In the above notations, if H1 6= (H1P1)p′ , the Hall p′-
subgroup of H1P1, then AH1P1

= AH1
?AP1

.

Lemma 7.2 ([27, Proposition 15]). In the above notations, if AH1P1/H1
∼= ZCp then

AH1P1 = AH1 ?AP1 .

Lemma 7.3 ([11, Lemma 6.2]). In the above notations, suppose that H1 < H . Then one
of the following statements holds:

(1) A = AH1
oAG/H1

with rk(AG/H1
) = 2;

(2) A = AH1P1
oS AG/P1

, where S = H1P1/P1 and P1 < G.

8 S-rings over Cn
2 , n ≤ 5

All S-rings over the groups Cn2 , where n ≤ 5, were enumerated with the help of the
GAP package COCO2P [16]. The list of all S-rings over these groups is available on the
web-page [30] (see also [35]). The next lemma is an immediate consequence of the above
computational results (see also [11, Theorem 1.2]).

Lemma 8.1. Every S-ring over Cn2 , where n ≤ 5, is schurian.

To prove Theorem 1.1, we will show that every schurian S-ring over C5
2 × Cp is CI.

Since the most of schurian S-rings over C5
2 ×Cp are generalized wreath or star products of

S-rings over its proper subgroups, we need to check that all schurian S-rings over proper
subgroups of C5

2 ×Cp are CI. In this section we will do it for G ∼= Cn2 , where n ≤ 5. Note
that G is a DCI-group by [2, 7] but this does not imply that every S-ring over G is CI (see
Remark 4.3). We will describe 2-S-rings overG using computational results and check that
all S-rings over G are CI. Until the end of the section G is an elementary abelian 2-group
of rank n and A is a 2-S-ring over G.

Lemma 8.2. Let n ≤ 3. Then A is cyclotomic. Moreover, A is Cayley minimal except for
the case when n = 3 and A ∼= ZC2 o ZC2 o ZC2.

Proof. The first part of the lemma follows from [20, Lemma 5.2]; the second part follows
from [20, Lemma 5.3].

Analyzing the lists of all S-rings over C4
2 and C5

2 available on the web-page [30], we
conclude that up to isomorphism there are exactly nineteen 2-S-rings over G if n = 4 and
there are exactly one hundred 2-S-rings over G if n = 5. It can can be established by
inspecting the above 2-S-rings one after the other that there are exactly fifteen decompos-
able and four indecomposable 2-S-rings over G if n = 4 and there are exactly ninety six
decomposable and four indecomposable 2-S-rings over G if n = 5.

Lemma 8.3. Let n ∈ {4, 5} and A indecomposable. Then A is normal. If in addition
n = 5 then A ∼= ZC2 ⊗A′, where A′ is indecomposable 2-S-ring over C4

2 .

Proof. Let n = 4. One can compute |Aut(A)| and |NAut(A)(Gright)| using the GAP
package COCO2P [16]. It turns out that for each of the four indecomposable 2-S-rings
over G the equality

|Aut(A)| = |NAut(A)(Gright)|
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is attained. So every indecomposable 2-S-ring over G is normal whenever n = 4.
Let n = 5. The straightforward check for each of the four indecomposable 2-S-rings

over G yields that A = AH ⊗ ZL, where H ∼= C4
2 , L ∼= C2, and AH is indecomposable

2-S-ring. Clearly, ZL is normal. By the above paragraph, AH is normal. Since Aut(A) =
Aut(AH)×Aut(AL), we obtain that A is normal.

Note that if p > 2 then Lemma 8.3 does not hold. In fact, if p > 2 then there exists an
indecomposable p-S-ring over C5

p which is not normal (see [13, Lemma 6.4]).

Lemma 8.4. Let n ≤ 5. Then A is normal whenever one of the following statements holds:

(1) A is indecomposable;

(2) |G : Oθ(A)| = 2;

(3) n = 4 and A ∼= (ZC2 o ZC2)⊗ (ZC2 o ZC2).

Proof. If n ≤ 3 and A is indecomposable then A = ZG by [20, Lemma 5.2]. Clearly,
in this case A is normal. If n ∈ {4, 5} and A is indecomposable then A is normal by
Lemma 8.3. There are exactly n − 1 2-S-rings over G for which Statement (2) of the
lemma holds. For every A isomorphic to one of these 2-S-rings and for A ∼= (ZC2 oZC2)⊗
(ZC2 o ZC2) one can compute |Aut(A)| and |NAut(A)(Gright)| using the GAP package
COCO2P [16]. It turns out that in each case the equality |Aut(A)| = |NAut(A)(Gright)|
holds and hence A is normal.

Lemma 8.5. Let n = 4. Then A is cyclotomic.

Proof. If A is decomposable then A is cyclotomic by [20, Lemma 5.6]. If A is indecom-
posable then A is normal by Lemma 8.3. This implies that

Aut(A)e = (NAut(A)(Gright))e ≤ Aut(G).

The S-ring A is schurian by Lemma 8.1. So from Equation (3.2) it follows that A =
V (Aut(A), G) and hence A = Cyc(Aut(A)e, G).

Lemma 8.6. Let n = 5. Suppose that A is decomposable and |Oθ(A)| = 8. Then A is
cyclotomic.

Proof. Let A be the nontrivial S-wreath product for some A-section S = U/L. Note that
|U | ≤ 16, |G/L| ≤ 16, and |S| ≤ 8. The S-rings AU , AG/L, and AS are 2-S-rings by
Lemma 6.2. So each of these S-rings is cyclotomic by Lemma 8.2 whenever the order of
the corresponding group is at most 8 and by Lemma 8.5 otherwise. Since |Oθ(A)| = 8, we
conclude that |S| ≤ 4 or |S| = 8 and |Oθ(AS)| ≥ 4. In both cases AS is Cayley minimal
by Lemma 8.2. This implies that

AutU (AU )S = AutG/L(AG/L)S = AutS(AS).

Now from [20, Lemma 4.3] it follows that A is cyclotomic.
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In the next two lemmas we establish some properties of decomposable 2-S-rings over
G ∼= C5

2 whose thin radical is of size 2 or 4. These properties will be used in the proof of
Theorem 1.1. The statements of Lemma 8.7 and Lemma 8.8 can be verified by analysis of
computational results obtained with the help of the GAP package COCO2P [16]. For every
decomposable 2-S-ring A with |Oθ(A)| ∈ {2, 4} overG (see the list [30]), we compute all
A-subgroups, automorphism groups, and Cayley automorphism groups of some restrictions
and quotients.

Lemma 8.7. Let n = 5. Suppose that A is decomposable and |Oθ(A)| = 4. Then one of
the following statements holds:

(1) there exists an A-subgroup L ≤ Oθ(A) of order 2 such that A = ZOθ(A) oS AG/L,
where S = Oθ(A)/L;

(2) |AutG(A)| ≥ |AutU (AU )| for every A-subgroup U with |U | = 16 and U ≥
Oθ(A);

(3) A is normal;

(4) there exist an A-subgroup L ≤ Oθ(A) and X ∈ S(A) such that |L| = |X| = 2,
L 6= rad(X), and AG/L is normal.

Lemma 8.8. Let n = 5. Suppose that A is decomposable, |Oθ(A)| = 2, and there exists
X ∈ S(A) with |X| > 1 and | rad(X)| = 1. Then |X| = 4 and one of the following
statements holds:

(1) A ∼= B o ZC2, where B is a 2-S-ring over C4
2 ;

(2) |AutG(A)| ≥ |AutU (AU )| for every A-subgroup U with |U | = 16;

(3) there exists an A-subgroup L such that |L| ∈ {2, 4} and AG/L is normal.

Lemma 8.9. Let D ∈ E such that every S-ring over a proper section of D is CI, D an
S-ring over D, and S = U/L a D-section. Suppose that D is the nontrivial S-wreath
product. Then D is a CI-S-ring whenever D/L ∼= Ck2 for some k ≤ 4 and DD/L is a
2-S-ring.

Proof. The S-ring DD/L is cyclotomic by Lemma 8.2 whenever |D/L| ≤ 8 and by
Lemma 8.5 whenever |D/L| = 16. The S-ring DS is a 2-S-ring by Lemma 6.2. If
DS � ZC2 o ZC2 o ZC2 then DS is Cayley minimal by Lemma 8.2. The S-rings DU and
DD/L are CI-S-rings by the assumption of the lemma. So D is a CI-S-ring by Lemma 5.3.

Assume that
DS
∼= ZC2 o ZC2 o ZC2.

In this case |D/L| = 16, |S| = 8, and there exists the least DS-subgroupA of S of order 2.
Every basic set of DD/L outside S is contained in an S-coset because D(D/L)/S

∼= ZC2.
So rad(X) is a DS-subgroup for every X ∈ S(DD/L) outside S. If | rad(X)| > 1 for
everyX ∈ S(DD/L) outside S then DD/L is the S/A-wreath product becauseA is the least
DS-subgroup. This implies that D is the U/π−1(A)-wreath product, where π : D → D/L
is the canonical epimorphism. One can see that |D/π−1(A)| ≤ 8 and |U/π−1(A)| ≤
4. The S-rings DD/π−1(A) and DU/π−1(A) are 2-S-rings by Lemma 6.2. The S-ring
DD/π−1(A) is cyclotomic by Lemma 8.2 and the S-ring DU/π−1(A) is Cayley minimal by
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Lemma 8.2. The S-rings DU and DD/π−1(A) are CI-S-rings by the assumption of the
lemma. Thus, D is a CI-S-ring by Lemma 5.3.

Suppose that there exists a basic set X of DD/L outside S with | rad(X)| = 1. If
DD/L is decomposable then

AutD/L(DD/L)S = AutS(DS)

by [20, Lemma 5.8]. Therefore D is a CI-S-ring by Lemma 5.1.
If DD/L is indecomposable then DD/L is normal by Lemma 8.3. So all conditions of

Lemma 5.5 hold for D. Thus, D is a CI-S-ring.

Lemma 8.10. Let n ≤ 5. Then every S-ring over G is a CI-S-ring.

Proof. Every S-ring over G is schurian by Lemma 8.1. So to prove the lemma, it is suf-
ficient to prove that B = V (K,G) is a CI-S-ring for every K ∈ Supmin

2 (Gright) (see
Remark 4.3). The S-ring B is a 2-S-ring by Lemma 6.4. If n ≤ 4 then B is CI by [20,
Lemma 5.7]. Thus, if n = 4 then the statement of the lemma holds.

Let n = 5. Suppose that B is indecomposable. Then the second part of Lemma 8.3
implies B ∼= ZC2⊗B′, where B′ is indecomposable 2-S-ring overC4

2 . Since B is schurian
by Lemma 8.1 and every S-ring over an elementary abelian group of rank at most 4 is CI
by the above paragraph, we conclude that B is a CI-S-ring by Lemma 5.6.

Now suppose that B is decomposable, i.e. B is the nontrivial S = U/L-wreath product
for some B-section S = U/L. Clearly, |G/L| ≤ 16. The S-ring BG/L is a 2-S-ring by
Lemma 6.2. Since every S-ring over an elementary abelian group of rank at most 4 is CI,
B is a CI-S-ring by Lemma 8.9.

9 Proof of Theorem 1.1
Let G = H × P , where H ∼= C5

2 and P ∼= Cp, where p is a prime. These notations are
valid until the end of the paper. If p = 2 then G is not a DCI-group by [28]. So in view of
Lemma 4.2, to prove Theorem 1.1, it is sufficient to prove the following theorem.

Theorem 9.1. Let p be an odd prime and K ∈ Supmin
2 (Gright). Then A = V (K,G) is a

CI-S-ring.

The proof of Proposition 9.1 will be given at the end of the section. We start with the
next lemma concerned with proper sections of G.

Lemma 9.2. Let S be a section of G such that S 6= G. Then every schurian S-ring over S
is a CI-S-ring.

Proof. If S ∼= Cn2 for some n ≤ 5 then we are done by Lemma 8.10. Suppose that S ∼=
Cn2 ×Cp for some n ≤ 4. Then the statement of the lemma follows from [20, Remark 3.4]
whenever n ≤ 3 and from [20, Remark 3.4, Theorem 7.1] whenever n = 4.

A key step towards the proof of Theorem 9.1 is the following lemma.

Lemma 9.3. Let A be an S-ring over G and U an A-subgroup with U ≥ P . Suppose that
P is an A-subgroup, A is the nontrivial S-wreath product, where S = U/P , |S| = 16, and
AG/P is a 2-S-ring. Then A is a CI-S-ring.
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Proof. Firstly we prove two lemmas concerned with some special cases of Lemma 9.3.

Lemma 9.4. Suppose that S has a gwr-complement with respect to AG/P . Then A is a
CI-S-ring.

Proof. The condition of the lemma implies that there exists an AG/P -subgroup A such
that AG/P is the nontrivial S/A-wreath product. This means that A is the nontrivial
U/π−1(A)-wreath product, where π : G→ G/P is the canonical epimorphism. Note that
|G/π−1(A)| ≤ 16 and AG/π−1(A)

∼= A(G/P )/A is a 2-S-ring by Lemma 6.2. Therefore A

is a CI-S-ring by Lemma 9.2 and Lemma 8.9.

Lemma 9.5. Suppose that S does not have a gwr-complement with respect to AG/P . Then

|AutG/P (AG/P )S | = |AutG/P (AG/P )|.

Proof. To prove the lemma it is sufficient to prove that the group

(AutG/P (AG/P ))S = {ϕ ∈ AutG/P (AG/P ) : ϕS = idS}

is trivial. Let ϕ ∈ (AutG/P (AG/P ))S . Put C = Cyc(〈ϕ〉, G/P ). Clearly, 〈ϕ〉 ≤
Aut(AG/P ). So from Equations (3.1) and (3.2) it follows that C ≥ AG/P . Lemma 6.1
yields that C is a 2-S-ring. Since ϕS = idS , we conclude that Oθ(C) ≥ S.

If C 6= Z(G/P ) then Oθ(C) = S. Therefore C = ZS oS/A Z((G/P )/A) for some C-
subgroup A by Statement (i) of [19, Proposition 4.3]. This implies that AG/P = AS oS/A
A((G/P )/A) because C ≥ AG/P and S is both AG/P , C-subgroup. We obtain a contradic-
tion with the assumption of the lemma. Thus, C = Z(G/P ) and hence ϕ is trivial. So the
group (AutG/P (AG/P ))S is trivial.

If AG/P is indecomposable then AG/P is normal by Lemma 8.3. So A is a CI-S-ring
by Lemma 9.2 and Lemma 5.5. Further we assume that AG/P is decomposable. Due to
Lemma 9.4, we may assume also that

S does not have a gwr-complement with respect to AG/P . (9.1)

If there exists X ∈ S(AG/P ) outside S with |X| = 1 then A is a CI-S-ring by Lemma 9.2
and Lemma 5.8. So we may assume that

Oθ(AG/P ) ≤ S. (9.2)

Note that |Oθ(AG/P )| > 1 by Statement (1) of Lemma 6.3 and |Oθ(AG/P )| ≤ 16 by
Equation (9.2). So |Oθ(AG/P )| ∈ {2, 4, 8, 16}. We divide the rest of the proof into four
cases depending on |Oθ(AG/P )|.

Case 1: |Oθ(AG/P )| = 16.
Due to Equation (9.2), we conclude that AS = ZS. So A is a CI-S-ring by Lemma 9.2

and Lemma 5.2.

Case 2: |Oθ(AG/P )| = 8.
Since AG/P is decomposable, Lemma 8.6 implies that AG/P is cyclotomic. The S-ring

AS is a 2-S-ring by Lemma 6.2. In view of Equation (9.2), we obtain that |Oθ(AS)| = 8.
So Statement (ii) of [19, Proposition 4.3] yields that the S-ring AS is Cayley minimal.
Thus, A is a CI-S-ring by Lemma 9.2 and Lemma 5.3.
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Case 3: |Oθ(AG/P )| = 4.
In this case one of the statements of Lemma 8.7 holds for AG/P . If Statement (1) of

Lemma 8.7 holds for AG/P then we obtain a contradiction with Equation (9.1).
If Statement (2) of Lemma 8.7 holds for AG/P then |AutG/P (AG/P )| ≥ |AutS(AS)|.

From Lemma 9.5 it follows that |AutG/P (AG/P )S | = |AutG/P (AG/P )| and hence

|AutG/P (AG/P )S | ≥ |AutS(AS)|.

Since AutG/P (AG/P )S ≤ AutS(AS), we conclude that AutG/P (AG/P )S = AutS(AS).
Thus, A is a CI-S-ring by Lemma 9.2 and Lemma 5.1.

If Statement (3) of Lemma 8.7 holds for AG/P then AG/P is normal. In this case A is
a CI-S-ring by Lemma 9.2 and Lemma 5.5.

Suppose that Statement (4) of Lemma 8.7 holds for AG/P , i.e. there exists an AG/P -
subgroup A ≤ Oθ(AG/P ) of order 2 and X = {x1, x2} ∈ S(AG/P ) such that A(G/P )/A

is normal and A 6= rad(X). Let L = π−1(A), where π : G → G/P is the canonical
epimorphism, and B = V (N,G), where N = Aut(A)G/LGright.

Prove that B is a CI-S-ring. Lemma 5.4 implies that B is the S-wreath product. From
Equations (3.1) and (3.2) it follows that B ≥ A. So BG/P ≥ AG/P and hence BG/P is a
2-S-ring by Lemma 6.1. We obtain that B and U satisfy the conditions of Lemma 9.3.

One can see that X is a BG/P -set and

Oθ(BG/P ) ≥ Oθ(AG/P ) (9.3)

because BG/P ≥ AG/P . The definition of B yields that every basic set of B is contained
in an L-coset and hence every basic set of BG/P is contained in an A-coset. Therefore

{x1}, {x2} ∈ S(BG/P ) (9.4)

because X is a BG/P -set and A 6= rad(X). Now from Equations (9.3) and (9.4) it follows
that

|Oθ(BG/P )| ≥ 8. (9.5)

If BG/P is indecomposable then BG/P is normal by Lemma 8.3 and hence B is CI by
Lemma 9.2 and Lemma 5.5. If S has a gwr-complement with respect to BG/P then B is CI
by Lemma 9.4. If Oθ(BG/P ) � S then B is CI by Lemma 9.2 and Lemma 5.8. Suppose
that none of the above conditions does not hold for B. Then, in view of Equation (9.5), B
satisfies all conditions from one of the Cases 1 or 2. Therefore, B is CI.

Clearly, AG/L ∼= A(G/P )/A and hence AG/L is normal. Also AG/L is CI by Lem-
ma 9.2. The S-ring B is CI by the above paragraph. Thus, A is CI by Lemma 4.4.

Case 4: |Oθ(AG/P )| = 2.
Let A = Oθ(AG/P ). Clearly, A is the least AG/P -subgroup. If | rad(X)| > 1 for

every X ∈ S(AG/P ) outside S then A ≤ rad(X) for every X ∈ S(AG/P ) outside S and
we obtain a contradiction with Equation (9.1). So there exists X ∈ S(AG/P ) outside S
with | rad(X)| = 1. From Equation (9.2) it follows that |X| > 1. Lemma 8.8 implies that
|X| = 4. The number λ = |X ∩ Ax| does not depend on x ∈ X by Lemma 2.1. If λ = 2
then A ≤ rad(X), a contradiction. Therefore

λ = 1. (9.6)
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One of the statements of Lemma 8.8 holds for AG/P . If Statement (1) of Lemma 8.8
holds for AG/P then there exists Y ∈ S(AG/P ) with |Y | = 16 and | rad(Y )| = 16. Since
|S| = 16, we conclude that Y lies outside S and hence Y = (G/P ) \S. This means that S
is a gwr-complement to S with respect to AG/P . However, this contradicts Equation (9.1).

If Statement (2) of Lemma 8.8 holds for AG/P then |AutG/P (AG/P )| ≥ |AutS(AS)|.
So Lemma 9.5 implies that AutG/P (AG/P )S = AutS(AS). Therefore, A is CI by
Lemma 9.2 and Lemma 5.1

Suppose that Statement (3) of Lemma 8.8 holds for AG/P , i.e. there exists an
AG/P -subgroup B such that |B| ∈ {2, 4} and A(G/P )/B is normal. Let L = π−1(B),
where π : G → G/P is the canonical epimorphism, and B = V (N,G), where N =
Aut(A)G/LGright.

We prove that B is a CI-S-ring. As in Case 3, B is the S-wreath product by Lemma 5.4
and B ≥ A by Equations (3.1) and (3.2). So BG/P ≥ AG/P and hence BG/P is a 2-S-ring
by Lemma 6.1. Therefore B and U satisfy the conditions of Lemma 9.3.

Note that X is a BG/P -set and Equation (9.3) holds because BG/P ≥ AG/P . By the
definition of B, every basic set of B is contained in an L-coset and hence every basic set of
BG/P is contained in aB-coset. The setX is a BG/P -set with |X| = 4 and | rad(X)| = 1.
So there exists X1 ∈ S(BG/P ) such that

X1 ⊂ X and |X1| ∈ {1, 2}.

If |X1| = 1 thenX1 ⊆ Oθ(BG/P ). If |X1| = 2 thenX1 is a coset by a BG/P -subgroup
A1 of order 2. Clearly, A1 ⊆ Oθ(BG/P ). In view of Equation (9.6), we have A1 6= A.
Thus, in both cases Oθ(BG/P ) � A. Together with Equation (9.3) this implies that

|Oθ(BG/P )| ≥ 4. (9.7)

If BG/P is indecomposable then BG/P is normal by Lemma 8.3 and hence B is CI by
Lemma 9.2 and Lemma 5.5. If S has a gwr-complement with respect to BG/P then B is CI
by Lemma 9.4. If Oθ(BG/P ) � S then B is CI by Lemma 9.2 and Lemma 5.8. Suppose
that none of the above conditions does not hold for B. Then, in view of Equation (9.7), B
satisfies all conditions from one of the Cases 1, 2 or 3. Therefore, B is CI.

The S-ring AG/L is normal because it is isomorphic to A(G/P )/B . The S-rings AG/L
and B are CI by Lemma 9.2 and the above paragraph respectively. Thus, A is CI by
Lemma 4.4.

All cases were considered.

Proof of Theorem 9.1. Let H1 be a maximal A-subgroup contained in H and P1 the least
A-subgroup containing P .

Lemma 9.6. If H1 = H then A is a CI-S-ring.

Proof. The S-ring AG/H is a p-S-ring over G/H ∼= Cp by Lemma 6.4. So AG/H ∼= ZCp.
Clearly, G = HP1. Therefore A = AH ?AP1

by Lemma 7.2. Since H and P1/(H ∩ P1)
are proper sections of G, the S-rings AH and AP1/(H∩P1) are CI by Lemma 9.2. Thus, A
is CI by Lemma 5.6.

Lemma 9.7. If H1 < H and H1P1 = G then A is a CI-S-ring.
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Proof. Since H1 6= (H1P1)p′ = H , Lemma 7.1 implies that A = AH1
?AP1

. The S-rings
AH1

and AP1/(H∩P1) are CI by Lemma 9.2 because H1 and P1/(H1 ∩ P1) are proper
sections of G. Therefore A is CI by Lemma 5.6.

In view of Lemma 9.6, we may assume that H1 < H . Then one of the statements of
Lemma 7.3 holds for A. If Statement (1) of Lemma 7.3 holds for A then

A = AH1 oAG/H1
,

where rk(AG/H1
) = 2. If H1 is trivial then rk(A) = 2. Obviously, A is CI in this case. If

H1 is nontrivial then A is CI by Lemma 9.2 and Lemma 5.2.
Assume that Statement (2) of Lemma 7.3 holds for A, i.e.

A = AU oS AG/P1
,

where U = H1P1, S = U/P1, and P1 < G. In view of Lemma 9.7, we may assume that
H1P1 < G, i.e. A is the nontrivial S-wreath product. The groupG/P1 is a 2-group of order
at most 32 because P1 ≥ P . Lemma 6.4 implies that AG/P1

is a 2-S-ring. If |G/P1| ≤ 16
then A is CI by Lemma 9.2 and Lemma 8.9. So we may assume that |G/P1| = 32. Clearly,
in this case

P1 = P.

In view of Statement (2) of Lemma 6.3, we may assume that

|S| = 16.

Indeed, if |S| < 16 then S is contained in an AG/P -subgroup S′ of order 16 by State-
ment (2) of Lemma 6.3. Clearly, A = AU ′ oS′ AG/P , where U ′ = π−1(S′) and π : G →
G/P is the canonical epimorphism. Replacing S by S′, we obtain the required.

Now all conditions of Lemma 9.3 hold for A and U . Thus, A is CI by Lemma 9.3.
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Abstract

Shareshian and Woodroofe asked if for every positive integer n there exist primes p and
q such that, for all integers k with 1 ≤ k ≤ n− 1, the binomial coefficient

(
n
k

)
is divisible

by at least one of p or q. We give conditions under which a number n has this property
and discuss a variant of this problem involving more than two primes. We prove that every
positive integer n has infinitely many multiples with this property.

Keywords: Binomial coefficients, divisibility, primorials.

Math. Subj. Class. (2020): 11B65, 05A10

1 Introduction
Binomial coefficients display interesting divisibility properties. Conditions under which a
prime power pa divides a binomial coefficient

(
n
k

)
are given by Kummer’s Theorem [10]

and also by a generalized form of Lucas’ Theorem [5, 13].
Still, there are problems involving divisibility of binomial coefficients that remain un-

solved. In this article we investigate the following question, which was asked by Shareshian
and Woodroofe in [16].

Question 1.1. Is it true that for every positive integer n there exist primes p and q such
that, for all integers k with 1 ≤ k ≤ n − 1, the binomial coefficient

(
n
k

)
is divisible by p

or q?

As in [16], we say that n satisfies Condition 1 if such primes p and q exist for n. In this
article we discuss sufficient conditions under which an integer n satisfies Condition 1. In
Sections 2 and 3 we prove a variation of the Sieve Lemma from [16] and use it to show that
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E-mail address: scasacubertapuig@college.harvard.edu (Sı́lvia Casacuberta)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



298 Ars Math. Contemp. 19 (2020) 297–309

n satisfies Condition 1 if certain inequalities hold. In Section 5 we infer that every positive
integer has infinitely many multiples for which Condition 1 is satisfied.

The collection of numbers for which Condition 1 is not known to hold has asymptotic
density 0 assuming the truth of Cramér’s conjecture (as first shown in [16]) and includes
most primorials p1p2 · · · pi, where p1, . . . , pi are the first i primes, namely those primorials
such that (p1p2 · · · pi)− 1 is not a prime.

In addition, we introduce the following variant of Condition 1:

Definition 1.2. A positive integer n satisfies the N -variation of Condition 1 if there exist
N different primes p1, . . . , pN such that if 1 ≤ k ≤ n − 1 then

(
n
k

)
is divisible by at least

one of p1, . . . , pN .

For example, it follows from Kummer’s Theorem or from Lucas’ Theorem that a pos-
itive integer n satisfies the 1-variation of Condition 1 if and only if n is a prime power,
and every integer n satisfies the m-variation of Condition 1 if n = pa11 · · · pamm where
p1, . . . , pm are distinct primes. In Section 4 we discuss upper bounds on N so that a given
n satisfies the N -variation of Condition 1.

2 An extended Sieve Lemma
Our results in this section will be based on Lucas’ Theorem:

Theorem 2.1 (Lucas [13]). Let p be a prime and let

n = nrp
r + nr−1p

r−1 + · · ·+ n1p+ n0

k = krp
r + kr−1p

r−1 + · · ·+ k1p+ k0

be base p expansions of two positive integers, where 0 ≤ ni < p and 0 ≤ ki < p for all i,
and nr 6= 0. Then (

n

k

)
≡

r∏
i=0

(
ni
ki

)
(mod p).

By convention, a binomial coefficient
(
ni

ki

)
is zero if ni < ki. Hence, if any of the digits

of the base p expansion of n is 0 whereas the corresponding digit in the base p expansion
of k is nonzero, then

(
n
k

)
is divisible by p. As a particular case, if a prime power pa with

a > 0 divides n and does not divide k, then
(
n
k

)
is divisible by p.

Observe that, if n satisfies Condition 1 with two primes p and q, then at least one of
these primes has to be a divisor of n, because otherwise

(
n
1

)
would not be divisible by any

of them. The next two results are elementary consequences of Lucas’ Theorem.

Proposition 2.2. If n = pa+1 with p a prime and a > 0, then n satisfies Condition 1 with
p and any prime dividing n.

Proof. If n−1 is a prime power then the two summands in the left-hand term of the equality(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
are divisible by p by Lucas’ Theorem if 2 ≤ k ≤ n − 2, and hence

(
n
k

)
is also divisible

by p. If k = 1 or k = n− 1, then
(
n
k

)
= n, so any prime factor of n divides

(
n
k

)
.
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Proposition 2.3. If a positive integer n is equal to the product of two prime powers pa1 and
pb2 with a > 0, b > 0, and p1 6= p2, then n satisfies Condition 1 with p1 and p2.

Proof. The base p1 expansion of n ends with a zeroes and the base p2 expansion of n ends
with b zeroes. Because a positive integer k smaller than n cannot be divisible by both pa1
and pb2, it is not possible that k ends with a zeroes in base p1 and b zeroes in base p2.
Consequently, we can apply Lucas’ Theorem modulo p1 if pa1 does not divide k or modulo
p2 if pb2 does not divide k.

Proposition 2.3 generalizes as follows.

Proposition 2.4. If p1, . . . , pm are distinct primes and n = pa11 · · · pamm with ai > 0 for
all i, then n satisfies the m-variation of Condition 1 with p1 . . . , pm.

Proof. If 1 ≤ k ≤ n − 1, then the base pi expansion of k ends with less zeroes than the
base pi expansion of n for at least one prime factor pi of n.

The following result extends [16, Lemma 4.3]. It is the starting point of our discussion
of Question 1.1 in the next sections. By symmetry, we only need to consider those values
of k with k ≤ n/2. Moreover, we may restrict our study further to those values of k that
are multiples of pa, since otherwise

(
n
k

)
is divisible by p.

Theorem 2.5. Let n be a positive integer and suppose that pa divides n where p is a prime
and a > 0. Suppose that there is a prime q with n/(d + 1) < q < n/d, where d ≥ 1,
and let k ≤ n/2. Then

(
n
k

)
is divisible by p or q except possibly when k is a multiple of pa

belonging to one of the intervals [cq, cq + β] with β = n− dq and 0 ≤ c < (d+ 1)/2.

Proof. Since q < n/d, the number β = n−dq is positive. If k ≤ β then k is in the interval
[0, β], which is the case c = 0 in the statement of the theorem.

The assumption that n/(d+1) < q is equivalent to assuming the inequality n−dq < q,
which implies that the last digit in the base q expansion of n is equal to β. Hence, if
β < k < q then we may infer from Lucas’ Theorem that

(
n
k

)
is divisible by q.

The remaining range of values of k to be considered is q ≤ k ≤ n/2. In this case we
look at the last digit of the base q expansion of k. If this last digit is bigger than β, then(
n
k

)
is again divisible by q. Thus the undecided cases are those in which the residue of k

modulo q is smaller than or equal to β. This happens when cq ≤ k ≤ cq + β for some
positive integer c, and if cq ≤ k ≤ n/2 then c ≤ n/(2q) < (d+ 1)/2.

By the Bertrand-Chebyshev Theorem [2], for every integer n > 2 there exists a prime
q such that n/2 < q < n. This yields the following particular instance of Theorem 2.5,
which is also a special case of [16, Lemma 4.3].

Corollary 2.6. For a positive integer n, suppose that pa divides n where p is a prime and
a > 0. If q is a prime such that n/2 < q < n and n− q < pa, then n satisfies Condition 1
with p and q.

Proof. Pick d = 1 in Theorem 2.5.

Note that, under the assumptions of Corollary 2.6, the equality n− q = pa cannot hold,
since p divides n and p 6= q because q does not divide n. Hence there remains to study
the case when n − q > pa and q is the largest prime smaller than n while pa is the largest
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prime power dividing n. In other words, Condition 1 holds for n whenever there is a prime
between n− pa and n.

The sequence of integers n for which there is no prime between n − pa and n can be
found in the On-Line Encyclopedia of Integer Sequences (OEIS) [17] with the reference
A290203 [3]. Its first terms are the following:

126, 210, 330, 630, 1144, 1360, 2520, 2574, 2992, 3432, 3960, 4199, . . . (2.1)

Banderier’s conjecture [1] claims that if pn# denotes the n-th primorial, that is,

pn# = p1p2 · · · pn

where p1, . . . , pn are the first n primes, and q is the largest prime below pn#, then either
pn#− q = 1 or pn#− q is a prime.

Proposition 2.7. If Banderier’s conjecture is true, then the sequence (2.1) contains all
primorials pn# such that pn#− 1 is not a prime.

Proof. If pn#−1 is not a prime, then pn#− q is a prime according to Banderier’s conjec-
ture. Since pn#− q does not divide pn#, we infer that pn#− q is bigger than pn, which
is the largest prime power dividing pn#.

The first primorials pn# such that pn#− 1 is not a prime are

p4# = 210, p7# = 510510, p8# = 9699690, p9# = 223092870.

Inspecting this list could be a strategy to seek for a counterexample for Question 1.1. The
complementary list of primorials can be found in OEIS with reference A057704 [11].

For any fixed value of d, the number β in Theorem 2.5 is smallest when q is as close as
possible to n/d. For this reason, we focus our attention on the largest prime qd below n/d
for various values of d. This motivates the next definition.

Definition 2.8. For positive integers n and 1 ≤ d < n/2, let qd be the largest prime
smaller than n/d and let βd = n− dqd. For each integer c with 0 ≤ c < (d+1)/2, we call
[cqd, cqd + βd] a dangerous interval.

By Theorem 2.5, if we attempt to prove that Condition 1 holds with p and qd assuming
that qd > n/(d + 1) —that is, assuming that the dangerous intervals are disjoint— we
only need to care about values of k that lie in a dangerous interval and are multiples of the
largest power of p dividing n.

In the case d = 1, the only dangerous interval below n/2 is [0, n − q1]. When d = 2,
we have that [0, n − 2q2] and [q2, n − q2] are dangerous intervals. Since n − q2 > n/2,
the second interval may be replaced by [q2, n/2] to carry our study further, as we do in the
next section.

Example 2.9. The largest prime below n = p7# = 510510 is q1 = 510481 and the
largest prime dividing n is p = 17. Here n − q1 = 29 and therefore

(
n
k

)
is divisible by 17

or 510481 for all k except for k = 17.
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On the other hand, the largest prime below n/2 = 255255 is q2 = 255253. Thus
β2 = n− 2q2 = 4 and therefore [0, 4] and [255253, 255257] are dangerous intervals. The
second interval contains a multiple of 17, namely n/2. However, since

510510 = 6 · 174 + 1 · 173 + 15 · 172 + 8 · 17,
255255 = 3 · 174 + 0 · 173 + 16 · 172 + 4 · 17,

we infer from Lucas’ Theorem that
(
510510
255255

)
is divisible by 17. Consequently,

(
n
k

)
is divis-

ible by 17 or 255253 for all k.

3 Using the nearest prime below n/2

Nagura showed in [14] that, if m ≥ 25, then there is a prime between m and (1 + 1/5)m.
Therefore, there is a prime q such that 5n/6 < q < n when n ≥ 30. This implies that,
if n ≥ 30 and the largest prime-power divisor pa of n satisfies pa ≥ n/6, then there is a
prime q between n− pa and n and hence Condition 1 holds for n with p and q.

The following result is sharper.

Proposition 3.1. If n ≥ 2010882 and the largest prime-power divisor pa of n satisfies
pa ≥ n/16598, then n satisfies Condition 1 with p and the nearest prime q below n.

Proof. Schoenfeld proved in [15] that for m ≥ 2010760 there is a prime between m and
(1 + 1/16597)m. Hence, if n ≥ 2010882 and the largest prime-power divisor pa of
n satisfies pa ≥ n/16598 then there is a prime between n − pa and n, and therefore
Condition 1 holds for n by Corollary 2.6.

The following are consequences of Nagura’s and Schoenfeld’s bounds.

Lemma 3.2. Let qd be the largest prime below n/d for positive integers n and d.

(a) If n ≥ 120 and d < 5, then n/(d+ 1) < qd.

(b) If n ≥ 3.34 · 1010 and d < 16597, then n/(d+ 1) < qd.

Proof. By Nagura’s bound [14], if n/d ≥ 30, then 5n/6d < qd < n/d. Therefore,
n− dqd < n/6. If d < 5, then 6d < 5(d+ 1) and hence

n <
5n(d+ 1)

6d
< qd(d+ 1),

as claimed. The proof of part (b) is analogous using Schoenfeld’s bound [15].

In order to apply Theorem 2.5 with d = 2 for a given n, we need that there is a prime
q such that n/3 < q < n/2. If q2 denotes the nearest prime below n/2, then the inequality
n/3 < q2 holds if n ≥ 120 by Lemma 3.2. Since by (2.1) we have that n − q1 < pa if
n < 126, we may assume that n/3 < q2 without any loss of generality.

Note that the inequality n/3 < q is equivalent to n−2q < q, so the intervals [0, n−2q]
and [q, n− q] are disjoint.

Theorem 3.3. For an odd positive integer n and a prime power pa dividing n, suppose
that there is a prime q with n/3 < q < n/2 and n− 2q < pa. Then n satisfies Condition 1
with p and q.
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Proof. By Theorem 2.5, in order to infer that
(
n
k

)
is divisible by p or q, the only cases that

we need to discuss are those values of k that are multiples of pa with k ∈ [0, n − 2q] or
k ∈ [q, n−q]. By assumption, there are no multiples of pa in [0, n−2q]. Since n−q > n/2,
we may focus on the interval [q, n/2]. Since n is odd, n/2 is not an integer; hence we are
only left to prove that there is no multiple k of pa with q ≤ k < n/2. We will prove this
by contradiction.

Thus suppose that q ≤ λpa < n/2 for some integer λ. The assumption that n−2q < pa

implies that n− pa < 2q and hence

n/2− pa/2 < q ≤ λpa.

Consequently, λpa < n/2 < (λ + 1/2)pa. If we now write n = mpa, we obtain that
2λ < m < 2λ+ 1, which is impossible for an integer m.

The rest of this section is devoted to the case when n is even.

Lemma 3.4. Suppose that n is even and there is a prime q with q < n/2 and n− 2q < pa,
where pa is the largest power of p dividing n. If there is a multiple k of pa in the interval
[q, n/2], then p is odd and k = n/2.

Proof. Suppose first that p is odd. Then the integer n/2 is a multiple of pa, so we may write
n/2 = λpa for some integer λ. If there is another multiple of pa in the interval [q, n/2],
then q ≤ (λ− 1)pa < n/2, and this implies that

n/2− pa = λpa − pa = (λ− 1)pa ≥ q.

Hence n− 2q ≥ 2pa, which is incompatible with our assumption that n− 2q < pa.
In the case p = 2 (so that 2a is the largest power of 2 dividing n), we have that n/2 is

divisible by 2a−1, and we may write n/2 = λ2a−1 with λ odd. If there is a multiple of 2a

in the interval [q, n/2), then q ≤ µ2a < n/2, so µ < λ/2 and µ ≤ (λ− 1)/2 because λ is
odd. Therefore

n/2− 2a−1 = (λ− 1)2a−1 ≥ µ2a ≥ q.

Hence, as above, n− 2q ≥ 2a, which contradicts that n− 2q < 2a.

Theorem 3.5. For an even positive integer n, suppose that there is a prime q such that
n/3 < q < n/2 and n− 2q < pa, where pa is the largest power of p dividing n.

(a) If p = 2, then n satisfies Condition 1 with 2 and q.

(b) If p 6= 2, then n satisfies Condition 1 with p and q if and only if
(
n
n/2

)
is divisible

by p.

Proof. By Theorem 2.5 and Lemma 3.4, the only case left is k = n/2 for p odd. Con-
sequently, if

(
n
n/2

)
is divisible by p, then n satisfies Condition 1 with p and q. Moreover,(

n
n/2

)
is not divisible by q, since the base q expansions of n and n/2 are, respectively,

2 · q + (n− 2q) and 1 · q + (n/2− q). Hence the assumption that
(
n
n/2

)
be divisible by p

is necessary.
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Our last remarks in this section correspond to the case when n is even, and they are
only relevant if p 6= 2, by Theorem 3.5. Next we give sufficient conditions to infer that a
prime p divides

(
n
n/2

)
. The greatest integer less than or equal to a real number x is denoted

by bxc, and we write vp(n) = a if pa is the maximum power of p such that pa divides n.
Recall from [12] that

vp(n!) =

∞∑
k=1

⌊
n

pk

⌋
=
n− sp(n)
p− 1

, (3.1)

where sp(n) denotes the sum of all the digits in the base p expansion of n.

Proposition 3.6. Suppose that n is even. A prime p divides
(
n
n/2

)
if and only if at least one

of the numbers bn/prc with r ≥ 1 is odd.

Proof. By comparing vp(n!) and vp((n/2)!) we see that, for each r,⌊
n

pr

⌋
= 2

⌊
n/2

pr

⌋
if bn/prc is even. If bn/prc is even for all r, we conclude that vp(n!) = 2vp((n/2)!), and
hence p does not divide

(
n
n/2

)
. However, if bn/prc is odd, then⌊

n

pr

⌋
= 2

⌊
n/2

pr

⌋
+ 1

and consequently vp(n!) is greater than 2vp((n/2)!).

Corollary 3.7. If n is even and (n− sp(n))/(p− 1) is odd, then p divides
(
n
n/2

)
.

Proof. This follows from Proposition 3.6 and Legendre’s formula (3.1).

Corollary 3.8. Suppose that n is even.

(a) If any of the digits in the base p expansion of n/2 is larger than bp/2c, then p
divides

(
n
n/2

)
.

(b) If one of the digits in the base p expansion of n is odd, then p divides
(
n
n/2

)
.

Proof. If a digit of n/2 in base p is larger than bp/2c, then when we add n/2 to itself in
base p to obtain n there is at least one carry. Similarly, if n has an odd digit in base p,
then there is a carry when adding n/2 and n/2 in base p. Hence, by Kummer’s Theorem
[10] with k = n/2, if there is at least one carry when adding n/2 to itself in base p, then p
divides

(
n
n/2

)
.

Corollary 3.9. Let n be an even positive integer. Suppose that there is a prime q such that
n/3 < q < n/2 and n − 2q < pa, where pa denotes the largest power of p dividing n.
If pblogn/ log pc > n/2, then p divides

(
n
n/2

)
and therefore n satisfies Condition 1 with p

and q.

Proof. The largest value of r such that pr < n < pr+1 is blog n/ log pc. Therefore,
in Proposition 3.6, the exponent r is bounded by blog n/ log pc. Also note that r ≥ a,
where a is the largest exponent of p such that pa divides n. If pblogn/ log pc > n/2, then
bn/prc = 1. Because this is odd, p divides

(
n
n/2

)
by Proposition 3.6.
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In those cases when the inequalities n − q1 < pa and n − 2q2 < pa both fail for the
largest prime power pa dividing n, a possible strategy would be to analyze the inequality
n− dqd < pa for bigger values of d, where qd is the largest prime below n/d.

Up to 1,000,000 there are 88 integers that do not satisfy n − 2q2 < pa, where pa is
the largest prime power dividing n. The On-Line Encyclopedia of Integer Sequences has
published these numbers with the reference A290290 [4]. Among these, there are 25 that
do not satisfy the inequality n − 3q3 < pa; there are 7 that do not satisfy the inequality
n− 4q4 < pa either; there are 5 for which the inequality n− 5q5 < pa also fails, and there
is only one integer for which the inequality n− 6q6 < pa still fails (namely, n = 875160).
However, the value of n− dqd need not decrease as d grows, and the number of dangerous
intervals that one needs to inspect when n− dqd < pa increases linearly with d. Therefore
this strategy is not conclusive, although it often works in practice.

Example 3.10. The largest prime power dividing n = p14# = 13082761331670030 is
p = 43. In this case, n − q1 = 89 and n − 2q2 = 268. Thus, Condition 1 fails for p
and q1 and it also fails for p and q2. Nevertheless, n − 3q3 = 27 works, as the dangerous
interval [q3, n−2q3] contains one multiple of 43, namely n/3, and

(
n
n/3

)
is divisible by 43.

Therefore Condition 1 holds for p = 43 and q3 = 4360920443890001.

Example 3.11. For n = 210, the inequality n − q1 < 7 fails while n − 2q2 < 7 is true.
However,

(
210
105

)
is not divisible by 7. Hence we look for greater values of d and find that

n − 5q5 < 7 with q5 = 41. Now 42 ∈ [41, 46] and 84 ∈ [82, 87], yet
(
210
42

)
and

(
210
84

)
are

both divisible by 7. Hence Condition 1 is satisfied with p = 7 and q5 = 41.

Example 3.12. For n = 875160, the inequality n− dqd < 17 is satisfied with d = 11 but
not with any smaller value of d. There are 6 dangerous intervals of length n − 11q11 =
11. Each of these intervals (except the first) contains one multiple of 17, and in each
case the corresponding binomial coefficient

(
n
k

)
happens to be divisible by 17. Therefore

Condition 1 is satisfied with p = 17 and q11 = 79559.

4 On the N -variation of Condition 1
Recall from Definition 1.2 that n satisfies the N -variation of Condition 1 if there are N
primes p1, . . . , pN such that if 1 ≤ k ≤ n − 1 then

(
n
k

)
is divisible by at least one of

p1, . . . , pN .

Theorem 4.1. If an even positive integer n satisfies n − 2q < pa for a prime q with
n/3 < q < n/2, where pa is the largest power of p dividing n and p 6= 2, then n satisfies
the 3-variation of Condition 1 with p, q and any prime that divides

(
n
n/2

)
.

Proof. According to the statement of part (b) of Theorem 3.5, the only binomial coefficient(
n
k

)
with 1 ≤ k ≤ n− 1 that might fail to be divisible by p or q is

(
n
n/2

)
. Hence it suffices

to add an extra prime with this purpose.

Proposition 4.2. For a positive integer n, let q1 be the largest prime smaller than n, let
pa11 be the largest prime-power divisor of n and let pa22 be the second largest prime-power
divisor of n. If pa11 p

a2
2 > n− q1, then n satisfies the 3-variation of Condition 1 with p1, p2

and q1.
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Proof. By Lucas’ Theorem, for any k such that 1 ≤ k < pa11 , the binomial coefficient
(
n
k

)
is divisible by p1, and for any k such that n− q1 < k ≤ n/2 the binomial coefficient

(
n
k

)
is

divisible by q1. Thus we need to add a prime that divides at least the binomial coefficients(
n
k

)
with pa11 ≤ k ≤ n − q1 in which k is a multiple of pa11 . For this, we pick p2 and

therefore we only need to consider those values of k that are, in addition, multiples of pa22 .
The least k that is a multiple of both prime powers is pa11 p

a2
2 . Therefore, if pa11 p

a2
2 > n−q1,

then all values of k lying in the interval pa11 ≤ k ≤ n− q1 are such that
(
n
k

)
is divisible by

p1 or p2.

In the statement of Proposition 4.2, the condition that pa11 p
a2
2 > n − q1 holds by

Nagura’s bound [14] if we impose instead that pa11 p
a2
2 > n/6.

For each n, we are interested in the minimum number N of primes such that n satisfies
the N -variation of Condition 1. We next discuss upper bounds for N .

Proposition 4.3. For positive integers n and d, suppose that there is a prime q such that
n/(d + 1) < q < n/d and a prime-power divisor pa of n such that n − dq < pa. Then n
satisfies the N -variation of Condition 1 with N = 2 + bd/2c.

Proof. By Theorem 2.5, the binomial coefficients
(
n
k

)
are divisible by q except possibly if

k lies in a dangerous interval. In the dangerous intervals we only need to consider those
integers that are multiples of pa, since otherwise

(
n
k

)
is divisible by p. Since we are assum-

ing that n−dq < pa, we know that in each dangerous interval there is at most one multiple
of pa. This means that the worst case is the one in which there is a multiple of pa in every
dangerous interval [cq, cq + β] with 1 ≤ c ≤ bd/2c. Hence we pick one extra prime for
each such interval.

Corollary 4.4. If 1 < d < 5 and pa > qd + βd where pa divides n and qd is the largest
prime below n/d, and βd = n− dqd, then n satisfies Condition 1 with p and qd.

Proof. By Lemma 3.2, we may assume that n/(d + 1) < qd. If 1 < d < 5, then bd/2c
equals 1 or 2. If bd/2c = 1, then the assumption that pa > qd+βd implies that no multiple
of pa falls into any dangerous interval until n/2. If bd/2c = 2, then we need to check that
2pa > 2qd + βd in order to ensure that 2pa does not fall into the third dangerous interval.
The minimum value of pa such that our assumption pa > qd+βd holds is qd+βd+1. The
next multiple of qd+βd+1 is 2qd+2βd+2, which is greater than 2qd+βd and therefore
2pa does not fall into the third dangerous interval.

In order to refine the conclusion of Proposition 4.3, we consider the Diophantine
equation

pax− qdy = δ, (4.1)

for 0 ≤ δ ≤ βd = n−dqd, where pa is a prime-power divisor of a given number n and qd is
the largest prime below n/d with d ≥ 1. We keep assuming, as above, that qd > n/(d+1).
We will also assume that p 6= qd, which guarantees that (4.1) has infinitely many solutions
for each value of δ. Specifically, if (x1, y1) is a particular solution for some value of δ, then
the general solution for this δ is

x = x1 + rqd, y = y1 + rpa,

where r is any integer. In the next theorem we denote by N(δ) the number of solutions
(x, y) of (4.1) with x > 0 and 0 ≤ y ≤ bd/2c for each value of δ with 0 ≤ δ ≤ βd. Thus
N(δ) = 0 precisely when (4.1) has no solution (x, y) subject to these conditions.
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Theorem 4.5. For positive integers n and d, suppose that the largest prime qd below n/d
satisfies qd > n/(d + 1), and let βd = n − dqd. Let pa be a prime power dividing n with
p 6= qd. Then n satisfies the N -variation of Condition 1 with

N = 2 +

βd∑
δ=0

N(δ),

where N(δ) is the number of solutions (x, y) of pax − qdy = δ with x > 0 and 0 ≤ y ≤
bd/2c for each value of δ with 0 ≤ δ ≤ βd.

Proof. The number N(δ) counts how many times a multiple of pa falls into a dangerous
interval [cqd, cqd+βd] at a distance δ from the origin of that interval. Thus we pick an extra
prime for each such case, and add two to the sum in order to account for p and qd.

Example 4.6. The largest prime-power divisor of n = 96135 is p = 29. For d = 4 we
find that q4 = 24029 and β4 = 19. Since 24029 ≡ 17 (mod 29), the only solution (x, y)
of the Diophantine equation 29x − 24029y = δ with x > 0 and 0 ≤ y ≤ 2 is (829, 1) for
δ = 12. Thus, N(12) = 1 and N = 3 for d = 4. In other words, the only occurrence of a
multiple of 29 in a dangerous interval for d = 4 is 24041 ∈ [24029, 24048]. This example
shows that the bound 2 + bd/2c given in Proposition 4.3 can be lowered.

The number N given by Theorem 4.5 is not a sharp bound. For those multiples pax of
pa falling into a dangerous interval [cqd, cqd + βd], it often happens that the corresponding
binomial coefficient

(
n
pax

)
is divisible by p, as in Example 4.6 or in other examples given

in the previous sections. It could also be divisible by qd if d ≥ qd. When d < qd, we
have that n satisfies Condition 1 with p and qd if and only if the binomial coefficient

(
n
pax

)
is divisible by p for every solution (x, y) of (4.1) with x > 0 and 0 ≤ y ≤ bd/2c, since
n = dqd + βd and pax = yqd + δ with δ ≤ βd < qd and y ≤ bd/2c < d, so

(
n
pax

)
is not

divisible by qd by Lucas’ Theorem. Note also, for practical purposes, that
(
n
pax

)
≡
(
n/pa

x

)
(mod p).

5 Every number has multiples for which Condition 1 holds
We next prove that every positive integer n has infinitely many multiples for which Condi-
tion 1 holds. We are indebted to R. Woodroofe for simplifying and improving our earlier
statement of this result, which was based on prime gap conjectures.

It follows from the Prime Number Theorem [7] that, given any real number ε > 0, there
is a prime between m and m(1+ ε) for sufficiently large m. This fact can be used to prove
the following:

Theorem 5.1. For every positive integer n and every prime p, the number npk satisfies
Condition 1 with p and another prime, for all sufficiently large values of k.

Proof. For any prime p and any k > 0, let m = npk − pk = pk(n− 1). Then

npk = m+ pk = m

(
1 +

1

n− 1

)
.

Therefore, by the Prime Number Theorem, there is a prime between m and npk for all
sufficiently large values of k. Choose the largest prime q with this property. Thus,

npk − pk < q < npk,
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so npk − q < pk, from which it follows, according to Corollary 2.6, that npk satisfies
Condition 1 with p and q.

Theorem 5.2. For every positive integer n there is a number M such that if p is any prime
with p > M then np satisfies Condition 1 with p and another prime.

Proof. Given n, let ε = 1/(n − 1). Choose m0 such that there is a prime between m and
m(1 + ε) for all m ≥ m0, and let M = εm0. If p is any prime such that p > M , then for
m = p(n− 1) we have

np = m+ p = m
(
1 +

p

m

)
= m

(
1 +

1

n− 1

)
= m(1 + ε).

Therefore, by our choice of m0, there is a prime between m and np. If q is the largest
prime with this property, then np− p < q < np, and consequently np satisfies Condition 1
with p and q.

Prime gap conjectures provide information relevant to our problem. For example, if pi
denotes the i-th prime, then Cramér’s conjecture [6] claims that there exist constants M
and N such that if pi ≥ N then

pi+1 − pi ≤M(log pi)
2.

Proposition 5.3. Letm be the number of distinct prime factors of n. If Cramér’s conjecture
is true and n grows sufficiently large keeping m fixed, then n satisfies Condition 1.

Proof. If n has m distinct prime factors, then m
√
n ≤ pa, where pa is the largest prime-

power divisor of n. Let M and N be the constants given by Cramér’s conjecture. Pick
n0 such that if n ≥ n0 then M(log n)2 < m

√
n. For every n such that n ≥ n0 and

N ≤ pi < n ≤ pi+1 (where pi denotes the i-th prime), we have

n− pi ≤ pi+1 − pi ≤M(log pi)
2 < M(log n)2 < m

√
n ≤ pa,

from which it follows that n satisfies Condition 1 with p and pi.

We note that the argument used in the proof of Proposition 5.3 yields an alternative
proof of the fact that Condition 1 holds for a set of integers of asymptotic density 1 if
Cramér’s conjecture holds, a result first found in [16, § 5]:

Theorem 5.4 ([16]). If Cramér’s conjecture is true, then the set of numbers in the sequence
(2.1) has asymptotic density zero.

Proof. Suppose that Cramér’s conjecture holds with constants M and N , and denote by
ω(n) the number of distinct prime divisors of n. Thus n1/ω(n) ≤ pa, where pa is the
largest prime-power divisor of n. According to [8, § 3.2], for every ε > 0 the inequality

ω(n) < (1 + ε) log log n (5.1)

holds for all n except those of a set of asymptotic density zero. Since

lim
n→∞

n1/ log logn

(log n)k
=∞



308 Ars Math. Contemp. 19 (2020) 297–309

for all k, there is an n0 such that n1/ω(n) > M(log n)2 if n ≥ n0. Now, if n is bigger than
n0 and satisfies N ≤ pi < n ≤ pi+1, and moreover n is not in the set of integers for which
(5.1) fails, then

n− pi ≤ pi+1 − pi ≤M(log pi)
2 < M(log n)2 < n1/w(n) ≤ pa.

Therefore, n satisfies Condition 1 with p and pi.

6 Multinomials
We also consider a generalization of Condition 1 to multinomials. We say that a positive
integer n satisfies Condition 1 for multinomials of order m if there are primes p and q such
that the multinomial coefficient(

n

k1, k2, . . . , km

)
=

n!

k1!k2! · · · km!

is divisible by either p or q whenever k1 + · · ·+ km = n with 1 ≤ ki ≤ n− 1 for all i.

Proposition 6.1. If n satisfies Condition 1 with two primes p and q, then n satisfies Con-
dition 1 for multinomials of any order m ≤ n with p and q.

Proof. This follows from the equality(
n

k1, k2, . . . , km

)
=

(
n

k1

)(
n− k1
k2

)(
n− k1 − k2

k3

)
· · ·
(
km
km

)
,

and the fact that
(
n
k1

)
is divisible by p or q by assumption.

Therefore, if Condition 1 is proven for binomial coefficients, then it automatically holds
for multinomial coefficients.
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[2] J. Bertrand, Mémoire sur le nombre de valeurs que peut prendre une fonction quand on y
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Abstract

For every probability p ∈ [0, 1] we define a distance-based graph property, the pTS-
distance-balancedness, that in the case p = 0 coincides with the standard property of
distance-balancedness, and in the case p = 1 is related to the Hamiltonian-connectedness.
In analogy with the classical case, where the distance-balancedness of a graph is equivalent
to the property of being self-median, we characterize the class of pTS-distance-balanced
graphs in terms of their equity with respect to certain probabilistic centrality measures,
inspired by the Travelling Salesman Problem. We prove that it is possible to detect this
property looking at the classical distance-balancedness (and therefore looking at the clas-
sical centrality problems) of a suitable graph composition, namely the wreath product of
graphs. More precisely, we characterize the distance-balancedness of a wreath product of
two graphs in terms of the pTS-distance-balancedness of the factors.

Keywords: Distance-balanced graph, pTS-distance-balanced graph, total distance, wreath product
of graphs.
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1 Introduction
The investigation of distance-balanced graphs began in [13], though an explicit definition
was provided later in [15, 18]. Such graphs generated a certain degree of interest also
by virtue of their connection with centrality measures [2, 8] and with some well known
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and largely studied distance-based invariants, such as the Wiener and the Szeged index
[2, 14, 15, 16]. For instance, it was proven in [14] that, in the bipartite case, distance-
balanced graphs maximize the Szeged index.

Throughout the paper we will denote byG = (VG, EG) a simple connected finite graph
G with vertex set VG and edge set EG. We say that such a graph has order n if |VG| = n.
For a pair of adjacent vertices u, v ∈ VG (we say u ∼ v in G) we define

WG
uv = {z ∈ VG : dG(z, u) < dG(z, v)}, (1.1)

where dG(u, v) denotes the geodesic distance in G. In other words, WG
uv is the set of

vertices of G which are closer to u than to v.

Definition 1.1. A graph G = (VG, EG) is distance-balanced if |WG
uv| = |WG

vu|, for every
pair of adjacent vertices u, v ∈ VG.

Cyclic graphs and complete graphs are simple examples of distance-balanced graphs.
More generally, it is known that the class of distance-balanced graphs contains vertex-
transitive graphs [18], which are graphs G = (VG, EG) whose group of automorphisms
Aut(G) acts transitively on the vertex set. On the other hand, the Handa graph H24, intro-
duced in [13], is an example of a non-vertex-transitive distance-balanced graph.

Recall that semisymmetric graphs are regular graphs which are edge-transitive (the
group Aut(G) acts transitively on the edge set) but not vertex-transitive graphs. In particu-
lar, a semisymmetric graph is bipartite, and the two sets of the bipartition coincide with the
orbits of Aut(G). As for such graphs there exists no automorphism switching two adjacent
vertices, they appear as good candidates to be not distance-balanced. However, in [18] it
is explicitly proven that there exist infinitely many semisymmetric graphs which are not
distance-balanced, as well as infinitely many semisymmetric graphs which are distance-
balanced.

In [15], the behaviour of the four classical graph compositions with respect to the
distance-balanced property is investigated. More precisely, it is shown that the Carte-
sian product G�H of two connected graphs is distance-balanced if and only if both G
and H are distance-balanced; the lexicographic product G ◦ H of two connected graphs
is distance-balanced if and only if G is distance-balanced and H is regular; on the other
hand, it is shown there, by explicit counterexamples, that the direct product G × H and
the strong product G � H do not preserve the property of being distance-balanced. A
generalization of the distance-balancedness, called `-distance-balancedness, is studied in
[19]. In [12], Cartesian and lexicographic graph products which are 2-distance-balanced
are characterized.

In [3], in order to construct an algorithm that recognizes whether a given graph is
distance-balanced or not, the authors establish a connection with some graph centrality
measures; more precisely, they characterize the distance-balancedness of a graph in terms
of its median vertices, and therefore in terms of their total distance (also known as trans-
mission in the literature).

We denote the normalized total distance of a vertex u ∈ VG as

dG(u) :=
1

|VG|
∑
v∈VG

dG(u, v),

which is the average of the distances of u from each vertex of G. A vertex u ∈ VG is said
to be median if dG(u) = minv∈VG

dG(v). The graph G is said to be self-median if every
vertex u ∈ VG is median.
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Theorem 1.2 ([3, Theorem 3.1]). A graph G = (VG, EG) is distance-balanced if and only
if it is self-median.

Using this characterization, Cabello and Lukšič studied in [6] the complexity of the
problem of finding the minimum number of edges that can be added to a given graph to
obtain a distance-balanced graph.

According to Theorem 1.2, distance-balanced graphs are graphs where all vertices have
the same relevance in some sense, but they are not necessarily indistinguishable (notice that
there are even examples of distance-balanced graphs with a trivial automorphism group
[17]). Therefore, distance-balanced graphs are of special interest in the study of social
networks, as all people in such graphs are equal with respect to the total distance. A related
measure of this equality is given by the opportunity index, which is defined as follows.
Given a graph G = (VG, EG) with |VG| = 2n, and two subsets V1 and V2 of VG such that
|V1| = |V2| = n and V1 ∪ V2 = VG (called a half-partition of G), the opportunity index of
G is defined as opp(G) = max{|WV1

(G) −WV2
(G)| : {V1, V2} is a half-partition of G}

where, for a given U ⊆ VG, WU (G) denotes the sum of the distances between all pairs
of vertices in U . In particular, distance-balanced graphs are characterized as those graphs
whose opportunity index is zero [2].

In the present paper, aimed at generalizing distance-balancedness in a probabilistic di-
rection, we start exactly from this point of view, and we interpret the set of median vertices
of a graph, and the whole class of distance-balanced graphs itself, as solutions of partic-
ular facility location problems, very typical in graph centrality investigations. In order to
deeper understand this correspondence, let us suppose that G = (VG, EG) represents a
city; its vertex set is the set of the buildings/locations, the edges are connections between
the buildings and then, for any u, v ∈ VG, the geodesic distance dG(u, v) represents the
distance between buildings u and v, or the cost of reaching the vertex v from the vertex
u. In these terms, the quantity dG(u) is the average distance of the location u from all
locations, and the median vertices are those vertices solving the following problem.

Problem 1.3. Find the location for a facility in order to minimize its average distance from
all the buildings of the city.

Consequently, distance-balanced graphs are those graphs whose vertices are all equal
with respect to Problem 1.3. That is, they solve this second problem.

Problem 1.4. Find a city where Problem 1.3 is solved by any location.

From another point of view, that we will develop in the last part of the paper, our work
can be interpreted as the investigation of the distance-balancedness in a wreath product of
graphs. In this sense, it is the natural continuation of [8]. The wreath product of graphs
represents the graph analogue of the classical wreath product of groups, as it is true that
the wreath product of the Cayley graphs of two finite groups is the Cayley graph of the
wreath product of the groups. In [10], this correspondence is proven in the more general
context of generalized wreath products of graphs, inspired by the construction introduced
in [1] for permutation groups. Also, observe that in [9] the wreath product of matrices
has been defined, in order to describe the adjacency matrix of the wreath product of two
graphs: spectral computations using this matrix representation have been developed for
some infinite families of wreath products in [5, 4, 11].
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The paper is organized as follows. In Section 2, we consider two optimization prob-
lems, namely Problem 2.5 and Problem 2.6, that are the analogue, respectively, of Prob-
lem 1.3 and Problem 1.4, where the centrality measure at the vertex u is not yet the normal-
ized total distance, but the quantity dpG(u), that is, the expectation of the length of a shortest
path starting from u that satisfies some random requirements depending on the probability
p. In particular, these new problems collapse to the classical ones in the case p = 0.

Problems 2.5 and 2.6 are of some interest on their own, given their connection with
the Travelling Salesman Problem, which is among the most studied optimization problems,
largely investigated in literature also in its several probabilistic versions.

Then we extend the classical definition of distance-balanced graph by introducing the
notion of pTS-distance-balanced graph in Definition 2.9, and we prove in Theorem 2.10 a
pTS analogue of Theorem 1.2: pTS-distance-balanced graphs are exactly the graphs that
solve Problem 2.6 (that is, the TS-version of Problem 1.4). We present examples and non-
examples of pTS-distance-balanced graphs.

In Section 3, we recall the definition of the wreath product G oH of two graphs G and
H (Definition 3.1). It turns out that, when the order of H is m, the uniform probability dis-
tribution on the vertices of G oH is compatible, in a precise sense explained in Lemma 3.3,
with the model introduced in Section 2 for G, when p = m−1

m .
It follows that the TS-problems considered on the graphG are equivalent to the classical

problems on the wreath productG oH , for a suitable choice of the graphH . More precisely
we characterize, in Theorem 3.4, the distance-balancedness of a wreath product in terms
of pTS-distance-balancedness of its factors. Finally, we investigate the class of graphs that
are pTS-distance-balanced for every p ∈ [0, 1], giving several equivalent characterizations
in Theorem 3.11. We conclude the paper by asking if this class actually coincides with the
class of vertex-transitive graphs (Question 4.1).

2 pTS centrality
As a natural generalization of Problem 1.3, suppose that every day each building (vertex)
of the city (graph) G = (VG, EG), independently, with the same probability p ∈ [0, 1],
requires a visit from the facility and with probability 1− p does not. An example could be
a postoffice with a postman delivering parcels. We want to find a location for the postoffice
in order to minimize the expectation of the length of a shortest walk starting from the
postoffice, visiting at least once each building waiting for a parcel, and finally arriving at
the postman’s house, that can be on each vertex with the same probability 1

n (observe that
the postoffice and the postman’s house locations may coincide). This set-up is justified if,
for example, we have to decide the postoffice location prior to be aware of the location
of the postman’s house, or for example if every day the postman can be different. We are
going to formalize this model in what follows.

Definition 2.1. Let G = (VG, EG) be a graph and let A ⊆ VG. We define a map ρA on
VG×VG such that, for any pair of vertices u and v in VG, the number ρA(u, v) is the length
of a shortest walk joining u and v, visiting at least once all vertices in A.

Remark 2.2. Let G = (VG, EG) be a graph of order n, and let u, v, z ∈ VG and A ⊆ VG.
We list some properties of the map ρA; see [7] for more details.

• ρ∅(u, v) = dG(u, v).

• ρA(u, v) = ρA(v, u). (Symmetry)
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• ρA∪B(u, v) ≤ ρA(u, z) + ρB(z, v). (Triangle inequality)

• B ⊆ A =⇒ ρB(u, v) ≤ ρA(u, v). (Monotonicity)

• ρA(u, v) < n2.

Combining the first with the third property we have

|ρA(u, z)− ρA(v, z)| ≤ dG(u, v). (2.1)

Let G = (VG, EG) be a graph of order n, and let u, v ∈ VG. A Hamiltonian path from
u to v in G is a path from u to v visiting each vertex of G exactly once. A Hamiltonian
cycle is a Hamiltonian path between adjacent vertices u and v. A graph is Hamiltonian
if it admits a Hamiltonian cycle, that is equivalent to say that ρVG

(u, u) = n for some,
or equivalently, for every u ∈ VG. A graph G is Hamilton-connected if, for every pair
u, v ∈ VG, there exists a Hamiltonian path from u to v. It is easy to observe that

∀u, v ∈ VG, ρVG
(u, v) =

{
n− 1 if u 6= v

n if u = v
⇐⇒ G is Hamilton-connected. (2.2)

The computation of ρVG
for Hamilton-connected graphs is rather easy; however, to deter-

mine ρA is in general very hard. This is not the case for the easiest example of Hamilton-
connected graph, that is, the complete graph Kn.

Example 2.3. Let Kn = (VKn , EKn) be the complete graph on n vertices. For every
nonempty A ⊆ VKn and every u, v ∈ VKn we have

ρA(u, v) =



|A|+ 1 if u, v /∈ A
|A| if u /∈ A, v ∈ A or viceversa
|A| − 1 if u, v ∈ A, u 6= v

|A| if u = v ∈ A, |A| > 1

0 if u = v ∈ A, |A| = 1.

The hypothesis that each vertex independently with probability p requires a visit implies
that the probability for a given subset A ⊆ VG to be the random subset waiting for the
parcels is

pA := p|A|(1− p)n−|A|. (2.3)

Then we define the quantity dpG(u), that is, the expected length of a walk from u,
visiting the random set A and arriving to the random vertex v (uniformly distributed on
VG), as follows:

dpG(u) :=
1

n

∑
v∈VG

∑
A⊆VG

pA ρA(u, v). (2.4)

Remark 2.4.

• If p = 0 we have pA =

{
1 if A = ∅
0 otherwise

and dpG(u) = dG(u).

• If p = 1
2 we have pA = 1

2n and dpG(u) = 1
2nn

∑
v∈VG

∑
A⊆VG

ρA(u, v).



316 Ars Math. Contemp. 19 (2020) 311–324

• If p = 1 we have pA =

{
1 if A = VG

0 otherwise
and dpG(u) = 1

n

∑
v∈VG

ρVG
(u, v).

We are now in position to formulate the pTS versions of Problem 1.3 and Problem 1.4,
respectively.

Problem 2.5. Find a vertex u ∈ VG such that dpG(u) = minv∈VG
dpG(v).

Problem 2.6. Find a graph such that Problem 2.5 is solved by any vertex.

This leads us to introduce a notion of medianity in this setting, as a solution of the above
mentioned problems.

Definition 2.7. In a graph G = (VG, EG) a vertex u ∈ VG is pTS-median if it solves
Problem 2.5. The graph G is self-pTS-median if it solves Problem 2.6.

Remark 2.8. Notice that, as a consequence of Remark 2.4, when p = 0 the Problem 1.3
and Problem 1.4 and their pTS versions, Problem 2.5 and Problem 2.6 respectively, are
equivalent.

In analogy with Equation (1.1), for any subsetA ⊆ VG and any pair of adjacent vertices
u, v ∈ VG, we define the vertex subsets

WA
uv := {z ∈ VG : ρA(z, u) < ρA(z, v)},

and the expectation of their cardinality is

wpuv :=
∑
A⊆VG

pA|WA
uv|. (2.5)

A natural generalization of the distance-balancedness is given in the following definition.

Definition 2.9. A graph G = (VG, EG) is pTS-distance-balanced if wpuv = wpvu, for
every pair of adjacent vertices u, v ∈ VG. A graph G is TS-distance-balanced if it is
pTS-distance-balanced for each p ∈ [0, 1].

The following is the pTS-version of Theorem 1.2.

Theorem 2.10. A graph G = (VG, EG) is pTS-distance-balanced if and only if it is self-
pTS-median.

Proof. Observe that, as the graph G = (VG, EG) is connected, the statement is proved if
we show that, for every pair of adjacent vertices u, v ∈ VG, one has:

dpG(u)− dpG(v) =
1

n
(wpvu − wpuv). (2.6)

Now, by the definition of dpG(u) in Equation (2.4), we get

dpG(u)− dpG(v) =
1

n

∑
z∈VG

∑
A⊆VG

pA(ρA(u, z)− ρA(v, z))

=
1

n

∑
A⊆VG

pA
∑
z∈VG

(ρA(u, z)− ρA(v, z)) =
1

n

∑
A⊆VG

pA(|WA
vu| − |WA

uv|)
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since, being u and v adjacent, by virtue of Equation (2.1), we have

ρA(u, z)− ρA(v, z) =


1 if z ∈ WA

vu

−1 if z ∈ WA
uv

0 otherwise.

Finally, by Equation (2.5), we have

dpG(u)− dpG(v) =
1

n

∑
A⊆VG

pA(|WA
vu| − |WA

uv|) =
1

n
(wpvu − wpuv),

that proves Equation (2.6).

Remark 2.11. As we have already observed,

G is distance-balanced ⇐⇒ G is 0TS-distance-balanced.

Moreover, if, for two given vertices u, v ∈ VG, there exists ϕ ∈ Aut(G) such that ϕ(u) =
v, one has dpG(u) = dpG(v), for every p ∈ [0, 1]. This implies

G is vertex-transitive =⇒ G is TS-distance-balanced.

On the other hand, when p = 1, Hamilton-connected graphs satisfy d1G(u) = n− 1 + 1
n by

Equation (2.2) and Remark 2.4 for every vertex u ∈ VG, and then:

G is Hamilton-connected =⇒ G is 1TS-distance-balanced.

Notice that the converse of the last implication is not true, since there exist graphs which
are vertex-transitive but not Hamilton-connected (e.g., cyclic graphs).

Example 2.12. The graphW7 depicted in Figure 1 is the Wheel graph on 7 vertices. Being
Hamilton-connected, the graph W7 is 1TS-distance-balanced. Clearly, it is not distance-
balanced and then it is not 0TS-distance-balanced.

By an explicit computation (brute-force) we computed d1/2W7
(u) = 1

7·27 · 3842, whether
u is the central vertex or it belongs to the external cycle. As a consequence, the graph
W7 is 1

2TS-distance-balanced. We found quite surprising that this graph, that has a so
recognizable central vertex, presents such an equality property.

Figure 1: The Wheel graph W7 on 7 vertices.
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Example 2.13. Let H9 be the graph on 9 vertices depicted in Figure 2. This graph has
been introduced in [14] as the smallest example of a non-regular distance-balanced graph.
In particular, it is 0TS-distance-balanced, but an explicit computation gives d1/2H9

(v1) =
1

9·29 · 26688 and d1/2H9
(v2) = 1

9·29 · 26656. By virtue of Theorem 2.10, it is not 1
2TS-

distance-balanced.

v1 v2

Figure 2: The graph H9.

3 pTS-distance-balancedness and wreath product of graphs
We start this section by recalling the definition of the wreath product of two graphs.

Definition 3.1. Let G = (VG, EG) and H = (VH , EH) be two graphs. Let us fix an
enumeration of the vertices of G so that VG = {x1, . . . , xn}. The wreath product G o H
is the graph with vertex set V VG

H × VG = {(y1, . . . , yn)xi : xi ∈ VG, yj ∈ VH , j ∈
{1, . . . , n}}, where two vertices u = (y1, . . . , yn)xi and v = (y′1, . . . , y

′
n)xk are connected

by an edge if:

• (edges of type I) either i = k and yj = y′j for every j 6= i, and yi ∼ y′i in H;

• (edges of type II) or yj = y′j , for every j ∈ {1, . . . , n}, and xi ∼ xk in G.

It follows that if |VG| = n and |VH | = m, the graph G o H has nmn vertices. It is
proved that G oH is connected, bipartite or vertex-transitive, if and only if both G and H
are, respectively, connected, bipartite or vertex-transitive [7]. Moreover, if G is a regular
graph of degree rG and H is a regular graph of degree rH , then the graph G o H is an
(rG + rH)-regular graph.

There exists a practical and clarifying interpretation of the graph wreath product, given
by the Lamplighter random walk [20]. Suppose that a lamplighter moves along G, so that
each vertex of G represents a possible position of the lamplighter: at each vertex of G,
there is a lamp. The vertices of the graph H represent the possible colors of each lamp.
Therefore, a vertex (y1, . . . , yn)xi in G o H can be regarded as a configuration of colors
(y1, . . . , yn) (each yj is from VH ) together with a particular position xi (from VG) of the
lamplighter: the lamp at the position xj ∈ VG has the color yj ∈ VH . Two vertices of
G oH are adjacent if either they share the same configuration of colors and have adjacent
positions for the lamplighter in G (such an edge of type II corresponds to the situation of
the lamplighter moving to a neighbor vertex in G but leaving all lamps unchanged); or
they share the same position but the configuration of colors differ, by two adjacent colors,
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exactly for the lamp associated at that position (such an edge of type I corresponds to the
situation of the lamplighter changing the color of the lamp, to an adjacent color in H , in
the position where he stays). For this reason, the wreath product G o H is also called the
Lamplighter graph, with base graph G and color graph H .

The Lamplighter interpretation allows us to highlight the relationship between the
wreath product of graphs and Problems 2.5 and 2.6. We explicit this connection in the
two following lemmas, where the distance and the normalized total distance in G o H are
expressed in terms of distance and normalized total distance in H , and of their TS-version
in G.

Lemma 3.2 ([7]). Let G = (VG, EG) and H = (VH , EH) be two graphs of order n and
m, respectively. For any vertices u = (y1, . . . , yn)x, v = (y′1, . . . , y

′
n)x′ ∈ VGoH , we

have:

dGoH(u, v) = ρδ(u,v)(x, x
′) +

n∑
i=1

dH(yi, y
′
i),

where δ(u, v) := {xi ∈ VG : yi 6= y′i}.

Observe that the sum
∑n
i=1 dH(yi, y

′
i) can be interpreted as the geodesic distance in

the n-th iterated Cartesian product of H with itself. Moreover, in the Lamplighter interpre-
tation, the subset δ(u, v) consists of those vertices xi of the base graph G where the color
of the associated lamps yi and y′i does not coincide. In other words, δ(u, v) is the set of the
vertices of G that the lamplighter has to visit in order to move from the lamp configuration
of u to that of v.

Notice that fixing a vertex u in the graph G oH and considering a random vertex v =
(y′1, . . . , y

′
n)x′, with uniform probability 1

nmn in VGoH , induces a random subset δ(u, v)
of VG and a random vertex x′ in VG. More precisely, for a given subset A ⊆ VG, the
probability that the random set δ(u, v) is equal to A is exactly n(m− 1)|A|/nmn, because
the Lamplighter may be in any position, and there are |A| vertices where the lamps may
takem−1 distinct colors, whereas the colors of the lamps at the remaining n−|A| vertices
are fixed. This probability is exactly pA of Equation (2.3) for p = m−1

m . This means that
the model considered in Section 2 can be simply derived by assigning a uniform probability
distribution to the vertices of the wreath product. This is formally proved in Lemma 3.3.

Lemma 3.3. Let G = (VG, EG) and H = (VH , EH) be two graphs of order n and m,
respectively. Let u = (y1, . . . yn)x ∈ VGoH and p = m−1

m . Then:

dGoH(u) = dpG(x) +

n∑
i=1

dH(yi).

Proof. From Theorem 17 in [8], where the focus is on the non-normalized total distance,
we have:

nmndGoH(u) = nmn−1
n∑
i=1

mdH(yi) +
∑
A⊆VG

(m− 1)|A|
∑
x′∈VG

ρA(x, x′).
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Taking into account that p = m−1
m , we obtain:

dGoH(u) =

n∑
i=1

dH(yi) +
1

n

∑
A⊆VG

∑
x′∈VG

(m− 1)|A|

mn
ρA(x, x′)

=

n∑
i=1

dH(yi) +
1

n

∑
A⊆VG

∑
x′∈VG

p|A|(1− p)n−|A|ρA(x, x′).

The claim follows by using Equations (2.3) and (2.4).

In the following theorem we give necessary and sufficient conditions for a vertex of a
wreath product to be median and for the wreath product itself to be distance-balanced.

Theorem 3.4. Let G = (VG, EG) and H = (VH , EH) be two graphs with |VG| = n,
|VH | = m. Let u = (y1, . . . , yn)x ∈ VGoH , and p = m−1

m . Then u is median in G oH if
and only if y1, . . . , yn are median in H and x is pTS-median in G. In particular:

G is pTS-distance-balanced
H is distance-balanced ⇐⇒ G oH is distance-balanced .

Proof. Suppose that yi∗ is not median in H , so that there exists ȳ ∈ VH such that dH(ȳ) <
dH(yi∗). Denoting by u′ the vertex (y1, . . . , yi∗−1, ȳ, yi∗+1, . . . , yn)x ∈ VGoH , by Lem-
ma 3.3 we have dGoH(u′) < dGoH(u), and then u is not median in G oH .

Similarly, suppose that x is not pTS-median in G, so that there exists x̄ ∈ VG such that
dpG(x̄) < dpG(x). Denoting by u′′ the vertex (y1, . . . , yn)x̄ ∈ VGoH , by Lemma 3.3 again
we have dGoH(u′′) < dGoH(u), and then u is not median in G oH .

Viceversa, suppose that u is not median inG oH and then dGoH(u) is not minimal, then
one among {dH(yi)}i=1,...,n or dpG(x) cannot be minimal, and the statement follows.

Corollary 3.5. If H and H ′ are two distance-balanced graphs of the same order, then
G oH is distance-balanced if and only if G oH ′ is distance-balanced.

Remark 3.6. Another consequence of Theorem 3.4 is the equivalence of the TS-problems
forG with the classical problems forG oH , whereH is any distance-balanced graph. More
precisely, letH = (VH , EH) be a distance-balanced graph of orderm, and p = m−1

m . Then
we have:

x ∈ VG
is solution of Problem 2.5 ⇐⇒ (y1, . . ., yn)x ∈ VGoH

is solution of Problem 1.3

G
is solution of Problem 2.6 ⇐⇒ G oH

is solution of Problem 1.4.

Example 3.7. We know from Example 2.12 that the graph W7 is 1
2TS-distance-balanced.

By virtue of Theorem 3.4, the graph W7 o K2 is distance-balanced. Moreover, the graph
W7 o K2 has order 896, it is non-regular (since W7 is non-regular), and it is not bipartite
(since W7 is not bipartite).

Example 3.8. We know from Example 2.13 that the distance-balanced graph H9 is not
1
2TS-distance-balanced. As a consequence, the graph H9 oK2 is not distance-balanced.
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In the light of Example 2.12 and Example 3.7, we deduce that the distance-balancedness
of the wreath product G oH does not imply the distance-balancedness of the first factor G.
Moreover, in the light of Example 2.13 and Example 3.8, we deduce that the distance-
balancedness of the graphs G and H does not imply the distance-balancedness of their
wreath product.

We conclude this section by investigating the class of graphs G such that G o H is
distance-balanced whenever H is distance-balanced. By virtue of Theorem 3.4, this class
must contain the class of TS-distance-balanced graphs. The two classes actually coincide,
as we will prove in Theorem 3.11. We need a preliminary definition and lemma.

Definition 3.9. The total distance vector of the vertex u ∈ VG is the (n+ 1)-vector

Wρ(u,G) = (Wρ0(u,G),Wρ1(u,G), . . . ,Wρn(u,G)),

where, for each k ∈ {0, 1, . . . , n}, we set

Wρk(u,G) :=
∑

A⊆VG, |A|=k

∑
v∈VG

ρA(u, v).

In particular, observe that Wρ0(u,G) is the non-normalized total distance of the vertex u
in G.

Lemma 3.10. For every u ∈ VG and for every p ∈ [0, 1], we have:

dpG(u) =
1

n

n∑
k=0

pk(1− p)n−kWρk(u,G). (3.1)

Proof. The claim follows by combining Equation (2.4) with Definition 3.9, since the ex-
pression of pA in Equation (2.3) only depends on the cardinality of A.

Theorem 3.11. Let G = (VG, EG) be a graph of order n. The following are equivalent.

(1) G is TS-distance-balanced;

(2) G oH is distance-balanced for every distance-balanced graph H;

(3) G oKn32n is distance-balanced;

(4) G is pTS-distance-balanced for more than n distinct values of p ∈ [0, 1];

(5) the total distance vector Wρ(u,G) does not depend on the particular vertex u ∈ VG.

Proof. (1) =⇒ (2): It is a consequence of Theorem 3.4.
(2) =⇒ (4): If G o H is distance-balanced for every distance-balanced graph H , in

particular G oKm is distance-balanced for m = 2, . . . , n + 2, and then, by Theorem 3.4,
the graph G is pTS-distance-balanced for each p ∈

{
1
2 ,

2
3 , . . . ,

n+1
n+2

}
.

(4) =⇒ (5): For a given vertex u ∈ VG, we define the following polynomial of degree
n in the variable x

Pu(x) :=

n∑
k=0

xk(1− x)n−kWρk(u,G).
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By Lemma 3.10, we have Pu(p) = ndpG(u). Combining with hypothesis (4), for any pair
u, v ∈ VG, the polynomials Pu and Pv share more than n evaluations, and so Pu = Pv .
It is an easy exercise to prove that this implies that Wρk(u,G) = Wρk(v,G), for each
k ∈ {0, 1, . . . , n}, and so Wρ(u,G) = Wρ(v,G).

(5) =⇒ (1): It is a consequence of Lemma 3.10 and Theorem 2.10.
(2) =⇒ (3): It is true since the graph Kn32n is distance-balanced.
(3) =⇒ (5): As we already observed in Remark 2.2, for every A ⊆ VG, for every

u, v ∈ VG we have ρA(u, v) < n2. Since the number of subsets of VG having cardinality k
is clearly less than 2n, this implies

0 < Wρk(u,G) =
∑

A⊆VG, |A|=k

∑
v∈VG

ρA(u, v) < 2nn3. (3.2)

We set m := 2nn3 and p := m−1
m . Since, by hypothesis, G oKm is distance-balanced, it

follows that, for every u, v ∈ VG:

dpG(u)nmn = dpG(v)nmn,

and then, by Lemma 3.10:
n∑
k=0

(m− 1)kWρk(u,G) =

n∑
k=0

(m− 1)kWρk(v,G). (3.3)

By virtue of Equation (3.2) we can regard the quantities Wρk(u,G) (resp. Wρk(v,G)) as
the digits of dpG(u)nmn (resp. dpG(v)nmn) in base (m − 1); therefore, Equation (3.3)
implies that Wρk(u,G) = Wρk(v,G), for each k ∈ {0, 1, . . . , n}, and so Wρ(u,G) =
Wρ(v,G).

Example 3.12. Lemma 3.10 and the characterization (5) in Theorem 3.11 make us able to
investigate distance-balancedness (at least in those cases for which the total distance vector
is known) simply by studying roots of polynomials. For the graph H9 from Example 2.13,
we first computed the total distance vectors, which are given by

Wρ(v1, H9) = (14, 252, 1345, 3711, 6279, 6941, 5065, 2363, 641, 77)

Wρ(v2, H9) = (14, 252, 1360, 3762, 6333, 6933, 5001, 2307, 620, 74).

By using Equation (3.1) we were able to determine dpG(v1) and dpG(v2) for a general p.
In particular, the graph H9 is pTS-distance-balanced exactly for all values of p ∈ [0, 1]
satisfying the equation dpG(v1) = dpG(v2). It turns out that these values are p = 0 and
p ≈ 0.48219, which is the unique real root of the polynomial 2x5−13x4 + 38x3−63x2 +
54x− 15.

As we already observed in Remark 2.11, vertex-transitive graphs satisfy the equivalent
properties of Theorem 3.11. Moreover, we recall that regularity, vertex-transitivity and
bipartiteness are all properties preserved by the wreath product. This yields the following
infinite families of examples.

Example 3.13. Let H9 be the non-regular non-bipartite distance-balanced graph from Ex-
ample 2.13. Let H24 be the Handa graph which is non-regular, bipartite and distance-
balanced [13]. Consider the Generalized Petersen Graph P (7, 3), that is regular, distance-
balanced but not vertex-transitive [15]. Then:



M. Cavaleri and A. Donno: Distance-balanced graphs and travelling salesman problems 323

• {Kn oH9}n∈N is a family of non-regular, non-bipartite, distance-balanced graphs;

• {Kn o P (7, 3)}n∈N is a family of regular, non-vertex transitive, distance-balanced
graphs;

• {Kn,n oH24}n∈N is a family of non-regular, bipartite, distance-balanced graphs.

It is clear that, in order to obtain other infinite families with the same properties, one can
replace Kn,n or Kn with any (bipartite or not) vertex-transitive graph, and the second
factor with any distance-balanced graph sharing the same properties of regularity, vertex-
transitivity, bipartiteness.

4 Conclusions
Vertex-transitive graphs are TS-distance-balanced. More generally, if u and v are vertices
of a graph G = (VG, EG) for which there exists ϕ ∈ Aut(G) such that ϕ(u) = v, one has
Wρ(u,G) = Wρ(v,G). In other words, the total distance vector is constant on the orbits
of VG under the action of Aut(G). This suggests that it is possible to use it as an invariant
in order to distinguish vertices: it is a finer invariant than the standard total distance (see
Example 3.12). Therefore, it is natural to ask whether this invariant is complete on the orbit
partition of vertices. The following question is a total-distance-analogue of Question 1 in
[7] about the Wiener vector and the isomorphism problem.

Question 4.1. Does there exist a graph G = (VG, EG) with two vertices u, v ∈ VG for
which there exists no automorphism ϕ such that ϕ(u) = v, but Wρ(u,G) = Wρ(v,G)?

A negative answer would imply that the equivalent conditions of Theorem 3.11 are also
equivalent to the vertex-transitivity property.

A last remark is that, regardless of the answer to our Question 4.1, the wreath product
construction produces new infinite families of distance-balanced graphs, which cannot be
obtained via the classical graph products. Moreover, the graphs in these families possibly
inherit good properties from their factors (see Example 3.13). We believe that this new
approach may provide different examples and counterexamples in the field of distance-
balancedness and its generalizations, and for this reason it deserves to be further investi-
gated and exploited.
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Abstract

For a k-regular graph Γ and a graph Υ of order k, a generalized truncation of Γ by Υ
is constructed by replacing each vertex of Γ with a copy of Υ. E. Eiben, R. Jajcay and
P. Šparl introduced a method for constructing vertex-transitive generalized truncations. For
convenience, we call a graph obtained by using Eiben et al.’s method a special generalized
truncation. In their paper, Eiben et al. proposed a problem to classify special generalized
truncations of a complete graph Kn by a cycle of length n−1. In this paper, we completely
solve this problem by demonstrating that with the exception of n = 6, every special gener-
alized truncation of a complete graph Kn by a cycle of length n − 1 is a Cayley graph of
AGL(1, n) where n is a prime power. Moreover, the full automorphism groups of all these
graphs and the isomorphisms among them are determined.

Keywords: Truncation, vertex-transitive, Cayley graph, automorphism group.

Math. Subj. Class. (2020): 05C25, 20B25

1 Introduction
In [6], the symmetry properties of graphs constructed by using the generalized truncations
was investigated. In particular, a method for constructing vertex-transitive generalized trun-
cations was proposed (see [6, Construction 4.1 and Theorem 5.1]), and this method was
used to construct vertex-transitive generalized truncations of a complete graph Kn by a
cycle of length n− 1 for some small values of n. The vertex-transitive generalized trunca-
tions of a complete graph Kn by a graph Υ in context of [6, Theorem 5.1] can be defined
as follows.

Let Kn be a complete graph of order n with n ≥ 4, and let V (Kn) = {v1, v2, . . . , vn}.
Let G be an arc-transitive group of automorphisms of Kn. Then G acts 2-transitively
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on V (Kn). Let v = v1, and let Ov be a union of orbits of the stabilizer Gv acting on
{{x, y} | x 6= y, x, y ∈ V (Kn)\{v}}. Let Υ be the graph with vertex set {v2, v3, . . . , vn}
and edge set Ov . For each u ∈ V (Kn), let Vu = {(u,w) | w ∈ V (Kn) \ {u}}. The
special generalized truncation of Kn by Υ, denoted by T (Kn, G,Υ), is the graph with the
vertex set

⋃
u∈V (Kn) Vu, and the adjacency relation in which a vertex (u,w) is adjacent

to the vertex (w, u) and to all the vertices (u,w′) for which there exists a g ∈ G with the
property ug = v and {w,w′}g ∈ Ov .

Based on the analysis of special generalized truncations of a complete graph Kn by a
cycle of length n− 1 for some small values of n, the authors of [6] proposed the following
problem.

Problem 1.1 ([6, Problem 5.4]). Classify the special generalized truncations of Kn (n ≥ 4)
by a cycle of length n− 1.

The main purpose of this paper is to give a solution of this problem. Before stating the
main result of this paper, we first set some notation. For a positive integer n, we denote
by Zn the cyclic group of order n, and by D2n the dihedral group of order 2n. Let Z∗n
be the multiplicative group of units mod n (Z∗n consists of all positive integers less than
n and coprime to n). Also we use An and Sn respectively to denote the alternating and
symmetric groups of degree n. For two groups M and N , N oM denotes a semidirect
product of N by M . For a group G, the automorphism group of G and the socle of G will
be represented by Aut(G) and soc(G), respectively. For a graph Γ we denote by V (Γ),
E(Γ), A(Γ) and Aut(Γ) the vertex set, edge set, arc set and full automorphism group of Γ,
respectively. A graph Γ is said to be vertex-transitive (resp. arc-transitive (or symmetric))
if Aut(Γ) acts transitively on V (Γ) (resp.A(Γ)). Cayley graphs form an important class of
vertex-transitive graphs. Given a finite group G and an inverse closed subset S ⊆ G \ {1},
the Cayley graph Cay(G,S) on G with respect to S is the graph with vertex set G and
edge set {{g, sg} | g ∈ G, s ∈ S}. Finally, we use Kn and Cn respectively to denote the
complete graph and cycle with n vertices.

Let p be a prime and e a positive integer. Let GF(pe) be the Galois field of order pe

and let x be a primitive root of GF(pe). Then

AGL(1, pe) = {αxi,z′ : z 7→ zxi + z′,∀z ∈ GF(pe) | i ∈ Zpe−1, z
′ ∈ GF(pe)},

and AGL(1, pe) is a 2-transitive permutation group on GF(pe). Let

H = {α1,z′ : z 7→ z + z′,∀z ∈ GF(pe) | z′ ∈ GF(pe)},
K = {αxi,0 : z 7→ zxi,∀z ∈ GF(pe) | i ∈ Zpe−1}.

Then H is regular on GF(pe) and the point stabilizer AGL(1, pe)0 of the zero element 0
of GF(pe) is K. So AGL(1, pe) = H oK.

Construction 1.2. Let z′ be a non-zero element of GF(pe). For each i ∈ Z∗pe−1 with
i < pe−1

2 , let

Ki
pe = Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) (p > 2),

Ki
2e = Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) (p = 2).
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Remark 1.3. Let z′, z′′ be two non-zero elements of GF(pe). There exists xj ∈ GF(pe) \
{0} such that z′xj = z′′. So

{α−1,z′ , αxi,0, αx−i,0}αxj,0 = {α−1,z′′ , αxi,0, αx−i,0} (p > 2),

{α1,z′ , αxi,0, αx−i,0}αxj,0 = {α1,z′′ , αxi,0, αx−i,0} (p = 2).

It follows that

Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) ∼=
Cay(AGL(1, pe), {α−1,z′′ , αxi,0, αx−i,0}) (p > 2),

Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) ∼=
Cay(AGL(1, 2e), {α1,z′′ , αxi,0, αx−i,0}) (p = 2).

In view of this fact, up to graph isomorphism, Ki
pe is independent of the choice of z′.

The following is the main result of this paper.

Theorem 1.4. Let K̃n be a special generalized truncation of Kn (n ≥ 4) by Cn−1. Then
K̃n is isomorphic to either T (K6, A5, C5) (see Figure 1), or one of the graphs Ki

pe (i ∈
Z∗pe−1, i <

pe−1
2 ). Conversely, each of the above graphs is indeed a special generalized

truncation of Kn (n ≥ 4) by a cycle of length n− 1, where n = 6 or a prime power.
Furthermore, for any distinct i, i′ ∈ Z∗pe−1 with i, i′ < pe−1

2 , Ki
pe
∼= Ki′

pe if and only
if i′ ≡ ipj or −ipj (mod pe − 1) for some 1 ≤ j ≤ e. Moreover, the following hold:

(i) Aut(T (K6, A5, C5)) ∼= A5;

(ii) Aut(K1
4) ∼= S4;

(iii) Aut(K1
7) ∼= D42 o Z3;

(iv) Aut(K3
11) ∼= PGL2(11);

(v) Aut(K7
23) ∼= PGL2(23);

(vi) if Ki
pe is not isomorphic to one of the graphs: K1

4, K1
7, K3

11 and K7
23, then

Aut(Ki
pe) ∼= AGL(1, pe).

Figure 1: The graph T (K6, A5, C5).
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2 Preliminaries
All groups considered in this paper are finite and all graphs are finite, connected, simple
and undirected. For the group-theoretic and graph-theoretic terminology not defined here
we refer the reader to [3, 12].

Let Γ = Cay(G,S) be a Cayley graph on a group G relative to a subset S of G. It
is easy to prove that Γ is connected if and only if S is a generating subset of G. For
any g ∈ G, R(g) is the permutation of G defined by R(g) : x 7→ xg for x ∈ G. Set
R(G) = {R(g) | g ∈ G}. It is well-known that R(G) is a subgroup of Aut(Γ). For
briefness, we shall identify R(G) with G in the following. In 1981, Godsil [7] proved
that the normalizer of G in Aut(Γ) is G o Aut(G,S), where Aut(G,S) is the group
of automorphisms of G fixing the set S set-wise. Clearly, Aut(G,S) is a subgroup of
the stabilizer Aut(Γ)1 of the identity 1 of G in Aut(Γ). We say that the Cayley graph
Cay(G,S) is normal if G is normal in Aut(Cay(G,S)) (see [13]). If Γ = Cay(G,S) is
a normal Cayley graph on G, then we have Aut(G,S) = Aut(Γ)1, and if, in addition, Γ
is also arc-transitive, then Aut(G,S) is transitive on S. From this we can easily obtain the
following lemma.

Lemma 2.1. There does not exist an arc-transitive normal Cayley graph of odd valency at
least three on a cyclic group.

A Cayley graph Cay(G,S) on a group G relative to a subset S of G is called a CI-
graph of G, if for any Cayley graph Cay(G,T ), whenever Cay(G,S) ∼= Cay(G,T ) we
have T = Sα for some α ∈ Aut(G). The following proposition is a criterion for a Cayley
graph to be a CI-graph.

Proposition 2.2 ([1, Lemma 3.1]). Let Γ be a Cayley graph on a finite group G. Then
Γ is a CI-graph of G if and only if all regular subgroups of Aut(Γ) isomorphic to G are
conjugate.

Let Γ be a connected vertex-transitive graph, and let G ≤ Aut(Γ) be vertex-transitive
on Γ. For a G-invariant partition B of V (Γ), the quotient graph ΓB is defined as the graph
with vertex set B such that, for any two different vertices B,C ∈ B, B is adjacent to C
if and only if there exist u ∈ B and v ∈ C which are adjacent in Γ. Let N be a normal
subgroup of G. Then the set B of orbits of N in V (Γ) is a G-invariant partition of V (Γ).
In this case, the symbol ΓB will be replaced by ΓN .

In view of [11, Theorem 9], we have the following proposition.

Proposition 2.3. Suppose that Γ is a connected trivalent graph with an arc-transitive group
G of automorphisms. If N E G has more than two orbits in V (Γ), then N is semiregular
on V (Γ), and ΓN is a trivalent symmetric graph with G/N as an arc-transitive group of
automorphisms.

3 Proof of Theorem 1.4
3.1 Special generalized truncations of Kn by Cn−1

In this subsection, we shall prove the first part of Theorem 1.4 by determining all special
generalized truncations of Kn (n ≥ 4) by Cn−1. Throughout this subsection, we shall use
the following assumptions and notations.
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Assumption 3.1.

(1) Let Kn be a complete graph of order n with n ≥ 4, and let V (Kn) = {v1, v2, . . . ,
vn}.

(2) Let G ≤ Aut(Kn) be an arc-transitive group of automorphisms.

(3) Let v = v1, and let Ov be a union of orbits of the stabilizer Gv acting on {{x, y} |
x 6= y, x, y ∈ V (Kn) \ {v}}. Let Υ be the graph with vertex set {v2, v3, . . . , vn}
and edge set Ov .

(4) For each u ∈ V (Kn), let Vu = {(u,w) | w ∈ V (Kn) \ {u}}.

(5) Let K̃n = T (Kn, G,Υ) be the graph with the vertex set
⋃
u∈V (Kn) Vu, and the

adjacency relation in which a vertex (u,w) is adjacent to the vertex (w, u) and to
all the vertices (u,w′) for which there exists a g ∈ G with the property ug = v and
{w,w′}g ∈ Ov .

In view of [6, Theorem 5.1], we have the following proposition.

Proposition 3.2. Use the notations in Assumption 3.1. Then Aut(K̃n) has a vertex-
transitive subgroup G̃ such that P = {Vu | u ∈ V (Kn)} is an imprimitivity block system
for G̃. Furthermore, the following hold.

(1) The quotient graph of K̃n relative to P is isomorphic to Kn.

(2) G̃ ∼= G.

(3) G̃ acts faithfully on P .

For the two groups G̃,G in the above proposition, we shall follow [6] to say that G̃ is
the lift of G. The next lemma shows that if Υ ∼= Cn−1 then G̃ is a 2-transitive permutation
group on P and the point stabilizer G̃Vu is either cyclic or dihedral.

Lemma 3.3. Use the notations in Assumption 3.1. Let Υ ∼= Cn−1 and let G̃ be the lift
of G. Then for each u ∈ V (Kn), the subgraph of K̃n induced by Vu is a cycle of length
n− 1, and the subgroup G̃Vu of G̃ fixing Vu set-wise acts faithfully and transitively on Vu.
In particular, G̃ acts faithfully and 2-transitively on P , and G̃Vu

∼= Zn−1, or Dn−1 (if n is
odd), or D2(n−1).

Proof. By Assumption 3.1 (3) and (5), the subgraph of K̃n induced by Vv is isomorphic to
Υ. By Proposition 3.2, P = {Vu | u ∈ V (Kn)} is an imprimitivity block system for G̃,
and so for each u ∈ V (Kn), the subgraph of K̃n induced by Vu is a cycle of length n− 1.

For any two vertices u,w of Kn, by Assumption 3.1 (5), {(u,w), (w, u)} is the unique
edge of K̃n connecting Vu and Vw. This implies that the subgroup K of G̃Vu fixing Vu
point-wise will fix every block in P . It then follows from Proposition 3.2 (3) that K = 1,
and so G̃Vu

acts faithfully on Vu. Since G̃ is transitive on V (K̃n), G̃Vu
is transitive on Vu.

Since the subgraph of K̃n induced by Vu is a cycle of length n− 1, one has G̃Vu
∼= Zn−1,

or Dn−1 (if n is odd), or D2(n−1).
Again since {(u,w), (w, u)} is the unique edge of K̃n connecting Vu and Vw, it follows

that G̃Vu also acts transitively on P \ {Vu}. This implies that G̃ acts 2-transitively on P .
By Proposition 3.2 (3), G̃ acts faithfully on P .
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The above lemma enables us to determine the structure of G̃ in the case when Υ ∼=
Cn−1.

Lemma 3.4. Use the notations in Assumption 3.1. Let Υ ∼= Cn−1 and let G̃ be the lift of
G. Then one of the following holds:

(1) n = 6 and soc(G̃) = A5;

(2) n = 4 and G̃ ∼= AGL(1, 22) or AΓL(1, 22);

(3) n = pe 6= 4 and G̃ ∼= AGL(1, pe), where p is a prime and e is a positive integer.

Proof. By Lemma 3.3, G̃ can be viewed as a 2-transitive permutation group onP with point
stabilizer isomorphic to Zn−1, or Dn−1 (if n is odd), or D2(n−1). By [5, Propositon 5.2],
soc(G̃) is either elementary abelian or non-abelian simple, and furthermore, if soc(G̃) is
non-abelian simple, then by checking the list of the simple groups which can occur as
socles of 2-transitive groups in [5, p. 8], we have soc(G̃) = A5. In order to complete the
proof of this lemma, it remains to deal with the case when soc(G̃) is elementary abelian.

In what follows, assume that soc(G̃) ∼= Zep for some prime p and positive integer e.
View soc(G̃) as an e-dimensional vector space over a field of order p, and let 0 denote the
zero vector of soc(G̃). Recall that G̃0

∼= Zpe−1, Dpe−1 (p odd), or D2(pe−1). By checking
Hering’s theorem on classification of 2-transitive affine permutation groups [8] (see also
[10, Appendix 1]), we have G̃ ≤ AΓL(1, pe) with point-stabilizer G̃0 ≤ ΓL(1, pe). As
G̃ = soc(G̃) o G̃0, to determine G̃, we only need to determine all possible subgroups of
ΓL(1, pe) which are isomorphic to Zpe−1, Dpe−1 (p odd), or D2(pe−1), and transitive on
soc(G̃) \ {0}.

Note that ΓL(1, pe) can be constructed in the following way. Let GF(pe) be the Galois
field of order pe, and view soc(G̃) as the additive group of GF(pe). It is well-known that
the multiplicative group GF(pe)∗ of GF(pe) is cyclic, and let x be a generator of GF(pe)∗.
Then GL(1, pe) = 〈x〉. Let y be the Frobenius automorphism of GF(pe) such that y maps
every g ∈ GF(pe) to gp. Then we have

ΓL(1, pe) = 〈x, y | xp
e−1 = ye = 1, y−1xy = xp〉.

In the following, we shall first determine all possible cyclic subgroups of ΓL(1, pe) of
order either pe−1 or p

e−1
2 (p odd) (Claim 1), and then this is used to determine all possible

subgroups of ΓL(1, pe) which are isomorphic to Zpe−1, Dpe−1 (p odd), or D2(pe−1), and
transitive on soc(G̃) \ {0}.

Claim 1. Let T be a cyclic subgroup of ΓL(1, pe) of order p
e−1
r with either r = 1 or r = 2

and p is odd. Then either T = 〈xr〉, or pe = 32, T ∼= Z pe−1
2

and T = 〈xy〉 or 〈x3y〉.

Proof of Claim 1. Let ` = pe−1 or p
e−1
2 (p odd). Since T is a cyclic subgroup of ΓL(1, pe)

of order `, we may let T = 〈xjyk〉 with 0 ≤ j ≤ pe − 2 and 0 ≤ k ≤ e− 1. If k = 0, then
T ≤ 〈x〉 and so T = 〈xr〉 with either r = 1 or r = 2 and p is odd.

Assume now that 0 < k ≤ e − 1. Then yk 6= 1. Since y−1xy = xp, one has
yxpy−1 = x, and hence (yxy−1)p = x. Clearly, pe ≡ 1 (mod pe−1), so yxy−1 = xp

e−1

.
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It follows that ykxjy−k = xjp
k(e−1)

, and so ykxj = xjp
k(e−1)

yk. By this equality, we have
for any positive integer m,

(xjyk)m = xj(1+pk(e−1)+p2k(e−1)+···+p(m−1)k(e−1))ymk = x
j pmk(e−1)−1

pk(e−1)−1 ymk. (3.1)

From Equation (3.1) it follows that (xjyk)e = x
j pek(e−1)−1

pk(e−1)−1 . Since pe − 1 | pke(e−1) − 1,
one has

(xjyk)e(p
k(e−1)−1) = xj(p

ek(e−1)−1) = 1.

This implies that the order of xjyk divides e(pk(e−1) − 1), namely, ` | e(pk(e−1) − 1).
Since ` = pe − 1 or p

e−1
2 (p odd), we have pe − 1 | 2e(pk(e−1) − 1).

Suppose that e ≥ 3. If (p, e) = (2, 6), then ` = pe − 1 = 63. However, it is easy
to check that 63 - 6(25k − 1) for any k ≤ 5, contrary to ` | e(pk(e−1) − 1). Thus,
(p, e) 6= (2, 6). Then by a result of Zsigmondy [14], there exists at least one prime q such
that q divides pe − 1 but does not divide pt − 1 for any positive integer t < e. Clearly,
p 6= q, so p is an element of Z∗q ∼= Zq−1 of order e. In particular, we have q > e. Since
q | pe − 1 and pe − 1 | 2e(pk(e−1) − 1), we have q | pk(e−1) − 1, implying k(e− 1) > e.
Since k ≤ e − 1, we may let k(e − 1) = me + t for some positive integers m and t < e,
and since pme(pt − 1) = (pk(e−1) − 1)− (pme − 1), we have q | pt − 1. However, this is
impossible because it is assumed that q - pt − 1 for any t < e.

Thus, e < 3. Since 0 < k ≤ e−1, one has e = 2 and k = 1, and then p2−1 | 4(p−1).
It follows that p + 1 | 4 and hence p = 3. Then (xjy)2 = x4j has order at most 2

since 〈x〉 ∼= Z8, and then xjy has order dividing 4. This implies that ` = pe−1
2 = 4 and

T = 〈xy〉 or 〈x3y〉. This completes the proof of Claim 1.

By now, we have shown that Claim 1 is true. Recall that G̃0 ≤ ΓL(1, pe), G̃0
∼= Zpe−1,

Dpe−1 (p odd), or D2(pe−1) and G̃0 is transitive on soc(G̃) \ {0}. We shall finish the proof
by considering the following three cases.

Case 1. G̃0
∼= Zpe−1.

In this case, by Claim 1, we must have G̃0 = 〈x〉 = GL(1, pe) and so G̃ ∼= AGL(1, pe).

Case 2. G̃0
∼= Dpe−1 (p odd).

In this case, by Claim 1, either x2 ∈ G̃0, or pe = 9 and G̃0 contains xy or x3y.
For the former, we have G̃0 = 〈x2, f〉, where f is an involution of ΓL(1, pe) such that
fx2f = x−2 and f /∈ 〈x〉. Note that G̃0 is transitive on soc(G̃)\{0}. We may let f = xyk

and 0 < k ≤ e− 1. By Equation (3.1), f2 = (xyk)2 = 1 implies that e is even and k = e
2 ,

and furthermore, xp
e(e−1)

2 +1 = 1. It follows that pe − 1 | p
e(e−1)

2 + 1. However, since
pe

(e−2)
2 (p

e
2 + 1) = (p

e(e−1)
2 + 1) + (pe

(e−2)
2 − 1), we would have pe − 1 | p e

2 + 1, forcing
that p = 2, a contradiction.

For the latter, we have G̃0
∼= D8. However, it is easy to check that in ΓL(1, 9) =

〈x, y | x8 = y2 = 1, y−1xy = x3〉 there does not exist an involution inverting xy or x3y,
a contradiction.

Case 3. G̃0
∼= D2(pe−1).

By Claim 1, we must have G̃0 = 〈x〉 o 〈y e
2 〉 with y

e
2xy

e
2 = x−1. On the other

hand, since y−1xy = xp, we have y
e
2xy

e
2 = xp

e
2 and hence xp

e
2 = x−1. It follows that
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p
e
2 ≡ −1 (mod pe − 1) and hence pe − 1 divides p

e
2 + 1. Consequently, we have pe = 4,

G̃0 = 〈x, y〉 = ΓL(1, 4), and G̃ ∼= AΓL(1, 4) ∼= S4.

Now we are ready to determine all possible special generalized truncations of Kn by
Cn−1.

Lemma 3.5. Use the notations in Assumption 3.1. Let Υ ∼= Cn−1 and let G̃ be the lift of
G. Then K̃n = T (Kn, G,Υ) is isomorphic to either T (K6, A5, C5) (see Figure 1), or one
of the graphs Ki

pe (i ∈ Z∗pe−1, i <
pe−1

2 ) (see Construction 1.2 for the definition of these
graphs).

Proof. If soc(G̃) ∼= A5, then by [6, Example 5.3], we have G̃ ∼= A5 and up to graph iso-
morphism, there exists a unique graph, and so we may denote this graph by T (K6, A5, C5)
(see Figure 1).

In what follows, we assume that soc(G̃) � A5. Then from Lemma 3.4 we see that G̃
has a subgroup, say T̃ such that T̃ ∼= AGL(1, pe) and T̃ acts regularly on V (K̃n), where
p is a prime and e is a positive integer such that pe ≥ 4. It follows that K̃n is a Cayley
graph on T̃ (∼= AGL(1, pe)) and n = pe. For each u ∈ V (Kn), by Lemma 3.3, the
subgraph of K̃n induced by Vu is a cycle of length n − 1, and the subgroup G̃Vu

of G̃
fixing Vu set-wise acts faithfully and transitively on Vu. Furthermore, G̃ acts faithfully and
2-transitively on P . For convenience, we may identify P with GF(pe), identify Vu with
the zero element 0 of GF(pe) and identify T̃ with AGL(1, pe). We shall use the notations
for T̃ = AGL(1, pe) as well as its elements and subgroups H and K introduced in the
paragraph before Construction 1.2. Then T̃Vu

= K ∼= Zpe−1.
Take (u,w) ∈ Vu, and assume that (u,w1) and (u,w2) are two vertices in Vu adjacent

to (u,w). Since T̃Vu
= K ∼= Zpe−1 is transitive on Vu, there exists a unique αxi,0 ∈ T̃Vu

such that (u,w)αxi,0 = (u,w1) and (u,w)αx−i,0 = (u,w2), and since the subgraph of K̃n

induced by Vu is a cycle of length n− 1, i is coprime to pe − 1 (n = pe). So we may let

K̃n = Cay(AGL(1, pe), {αxi,0, αx−i,0, αxj ,z′}),

where αxj ,z′ is an involution. Since K̃n is connected, if p is odd, then we have αxj ,z′ =
α
x

pe−1
2 ,z′

= α−1,z′ and z′ 6= 0, and if p = 2, then we have αxj ,z′ = α1,z′ and z′ 6= 0, and

correspondingly, we obtain the two graphs Kj
pe (p > 2) and Kj

2e (see Construction 1.2).

From Figure 1 it is easy to see that T (K6, A5, C5) is a special generalized truncation of
K6 by a cycle of length 5. The following lemma shows that each of the Cayley graphs Ki

pe

(i ∈ Z∗pe−1, i <
pe−1

2 ) is also indeed a special generalized truncation of Kpe by a cycle of
length pe − 1.

Lemma 3.6. Each of the graphs Ki
pe (i ∈ Z∗pe−1, i <

pe−1
2 ) (see Construction 1.2) is a

special generalized truncation of Kpe by a cycle of length pe − 1.

Proof. Recall that each Ki
pe (i ∈ Z∗pe−1, i <

pe−1
2 ) is a trivalent Cayley graph on

AGL(1, pe) defined as follows:

Ki
pe = Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) (z′ 6= 0, p > 2),

Ki
2e = Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) (z′ 6= 0).



X. Wang, F.-G. Yin and J.-X. Zhou: On generalized truncations of complete graphs 333

(Keep in mind we use the notations for AGL(1, pe) as well as its elements and subgroups
H and K introduced in the paragraph before Construction 1.2.) Note that AGL(1, pe) =
H oK, where

H = {α1,z′′ : z 7→ z + z′′,∀z ∈ GF (pe) | z′′ ∈ GF (pe)},
K = {αxj ,0 : z 7→ zxj ,∀z ∈ GF (pe) | j ∈ Zpe−1}.

Moreover, K is maximal in AGL(1, pe) since AGL(1, pe) is 2-transitive on GF (pe). As
i ∈ Z∗pe−1, one has K = 〈αxi,0〉 and then the maximality of K implies that 〈α−1,z′ ,

αxi,0〉 = AGL(1, pe) for p > 2 and 〈α1,z′ , αxi,0〉 = AGL(1, 2e). Thus, every Ki
pe

(i ∈ Z∗pe−1, i <
pe−1

2 ) is connected.
It is easy to see that Cay(K, {αxi,0, αx−i,0}) ∼= Cpe−1 is a subgraph of Ki

pe (i ∈
Z∗pe−1, i <

pe−1
2 ). Since AGL(1, pe) acts on V (Ki

pe) by right multiplication, the subgraph
of Ki

pe induced by Kg for any g ∈ AGL(1, pe) is a cycle of length pe− 1. As AGL(1, pe)

acts 2-transitively on B = {Kg | g ∈ AGL(1, pe)}, the quotient graph of Ki
pe relative

to B is a complete graph Kpe . So we have Ki
pe
∼= T (Kpe ,AGL(1, pe),Υi), where Υi is

the subgraph with vertex set B − {K} and edge set {{Kγg,Kγαxi,0g} | g ∈ K} where
γ = α−1,z′ for p > 2 and γ = α1,z′ for p = 2.

3.2 Automorphisms and isomorphisms

In this subsection, we shall determine the automorphism groups and isomorphisms of spe-
cial generalized truncations of Kn byCn−1, and thus prove the second part of Theorem 1.4.
By checking [6, Table 1], we have the following lemma.

Lemma 3.7. Aut(T (K6, A5, C5)) ∼= A5.

In the following two lemmas, we shall determine the automorphisms and isomorphisms
of the graphs Ki

pe (i ∈ Z∗pe−1, i <
pe−1

2 ). We keep using the notations for AGL(1, pe) as
well as its elements and subgroups H and K introduced in the paragraph before Construc-
tion 1.2.

Lemma 3.8. Let Γ be one of the graphs Ki
pe (i ∈ Z∗pe−1, i <

pe−1
2 ) (see Construction 1.2).

Then Theorem 1.4 (ii) – (vi) hold.

Proof. Recall that Γ is a connected trivalent Cayley graph on X = AGL(1, pe). Let
A = Aut(Γ). For convenience of the statement, we view X as a regular subgroup of A.

Suppose first that Γ is arc-transitive. Let N =
⋂
g∈AX

g . If N = 1, then by [9,
Theorem 1.1], we have Aut(Γ) ∼= PGL2(pe) with pe = 11 or 23. If pe = 11, then since
i ∈ Z∗10 and i < 5, we have i = 3 and hence Γ = K3

11. If pe = 23, then i = 3, 5, 7 or 9 as
i ∈ Z∗22 and i < 11, and by MAGMA [4], Aut(Ki

23) ∼= PGL2(23) if and only if i = 7, and
hence Γ = K7

23. If N > 1, then N E A, and in particular, N EX . Since soc(X) ∼= Zep is
the unique minimal normal subgroup of X = AGL(1, pe), one has soc(X) ≤ N . Clearly,
soc(X) is a Sylow p-subgroup of N since N ≤ X . So soc(X) is characteristic in N and
hence normal in A. Consider the quotient graph Σ of Γ relative to soc(X). Clearly, Σ
has pe − 1 vertices. Since pe − 1 > 2, by Proposition 2.3, Σ would be a trivalent arc-
transitive Cayley graph on X/ soc(X) ∼= Zpe−1. Furthermore, by [2, Corollary 1.3], either
Σ ∼= K3,3, or Σ is a trivalent normal arc-transitive Cayley graph on X/ soc(X) ∼= Zpe−1.
However, the latter case cannot happen by Lemma 2.1. For the former, we have pe− 1 = 6



334 Ars Math. Contemp. 19 (2020) 325–335

and so p = 7 and e = 1. In this case, we have i = 1 and Γ = K1
7. By MAGMA [4], we

have Aut(K1
7) ∼= D42 o Z3.

Suppose now that Γ is not arc-transitive. If A > X , then the vertex-stabilizer Aa is a
2-group for any a ∈ V (Γ). Then Aa fixes one and only one neighbor of a. Assume that
the neighbor of a fixed by Aa is b. Then B = {{a, b}g | g ∈ A} is a system of blocks of
imprimitivity of A on V (Γ). It follows that Γ − B is a union of several cycles with equal
lengths, and the set of vertex-sets of these cycles forms an A-invariant partition of V (Γ).
Let C be the cycle of Γ containing the identity 1 of X . Since Γ is a Cayley graph on X , X
acts on V (Γ) = X by right multiplication, and since V (C) is a block of imprimitivity of A
acting on V (Γ), C is actually a subgroup of X . From the definition of Γ = Ki

pe , one may
see that V (C) = K = {αxi,0 : z 7→ zxi,∀z ∈ GF (pe) | i ∈ Zpe−1}, and the vertex set
of every cycle of Γ − B is just a right coset of K. Let B = {Kg | g ∈ X}. Then B is an
A-invariant partition of Γ. Clearly,X acts 2-transitively and faithfully on B, so the quotient
graph of Γ relative B is Kpe . Now it is easy to see that Γ ∼= T (Kpe , A,Υi), where Υi is
the subgraph with vertex set B − K and edge set {{Kγg,Kγαxi,0g} | g ∈ AK} where
γ = α−1,z′ for p > 2 and γ = α1,z′ for p = 2. Clearly, Υi

∼= Cpe−1. From Lemma 3.4 it
follows that either pe = 4 and A = AΓL(1, 4) ∼= S4, or A = X = AGL(1, pe).

Lemma 3.9. For any distinct i, i′ ∈ Z∗pe−1 with i, i′ < pe−1
2 , Ki

pe
∼= Ki′

pe if and only if
there exists 1 ≤ j ≤ e such that i′ ≡ ipj or −ipj (mod pe − 1).

Proof. If pe = 4 or 7, then we must have i = 1, and so we have only one graph for each of
these two cases. If pe = 11 or 23, then by MAGMA [4], for any distinct i, i′ ∈ Z∗pe−1 with
i, i′ < pe−1

2 , one may check that Ki
pe
∼= Ki′

pe if and only if i′ ≡ ipj or−ipj (mod pe−1).
Suppose that Ki

pe is not isomorphic to one of the graphs: K1
4,K

1
7,K

3
11 and K7

23. By
Lemma 3.8, Aut(Ki

pe) ∼= AGL(1, pe) and by Proposition 2.2, Ki
pe is a CI-graph. Recall

that

Ki
pe = Cay(AGL(1, pe), {α−1,z′ , αxi,0, αx−i,0}) (p > 2),

Ki
2e = Cay(AGL(1, 2e), {α1,z′ , αxi,0, αx−i,0}) (p = 2).

Since Ki
pe is a CI-graph, for any distinct i, i′ ∈ Z∗pe−1 with i, i′ < pe−1

2 , Ki
pe
∼= Ki′

pe if and
only if there exists γ ∈ Aut(AGL(1, pe)) such that {αxi,0, αx−i,0}γ = {αxi′ ,0, αx−i′ ,0}
and either αγ−1,z′ = α−1,z′ for p > 2 or αγ1,z′ = α1,z′ for p = 2.

Note that Aut(AGL(1, pe)) = AΓL(1, pe) = AGL(1, pe) o 〈η〉, where η is in-
duced by the Frobenius automorphism of GF(pe) such that αηa,b = αap,bp for any αa,b ∈
AGL(1, pe). Suppose first that i′ ≡ ipj or −ipj (mod pe − 1) for some 1 ≤ j ≤ e.

Then one may check that α
ηjα

(z′)−pj z′,0
±1,z′ = α±1,z′ and {αxi,0, αx−i,0}

ηjα
(z′)−pj z′,0 =

{αxi′ ,0, αx−i′ ,0}. So Ki
pe
∼= Ki′

pe . Conversely, if Ki
pe
∼= Ki′

pe , then there exists γ ∈
Aut(AGL(1, pe)) such that {αxi,0, αx−i,0}γ = {αxi′ ,0, αx−i′ ,0} and either αγ−1,z′ =

α−1,z′ for p > 2 or αγ1,z′ = α1,z′ for p = 2. Since K = 〈αxi,0〉, γ normalizes K,
and since NAΓL(1,pe)(K) = K o 〈η〉, one has γ = αxk,0η

j , for some k ∈ Z∗pe−1 and
1 ≤ j ≤ e. Then

αγxi,0 = α
α

xk,0
ηj

xi,0 = αη
j

xi,0 = αxipj ,0 ∈ {αxi′ ,0, αx−i′ ,0}.

It follows that i′ ≡ ipj or −ipj (mod pe − 1).
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3.3 Proof of Theorem 1.4

From Lemmas 3.5 and 3.6 we can obtain the proof of the first part of Theorem 1.4, and
from Lemmas 3.8 and 3.9, we obtain the proof of the second part of Theorem 1.4.
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nation numbers on cardinal product of any two graphs. Also we determine the exact values
of double Roman domination numbers on P2 × G (for many types of graph G). Also, the
double Roman domination number is found for P2 × Pn, P3 × Pn, P4 × Pn, while upper
and lower bounds are given for P5 × Pn and P6 × Pn.
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will compare double Roman domination versus Roman domination by running a simulation
of a battle.

Keywords: Roman domination, double Roman domination, cardinal products of graphs, paths, cycles.

Math. Subj. Class. (2020): 05C69, 68U20

∗This work has been fully supported by the Croatian Science Foundation under the project IP-2018-01-5591.
E-mail addresses: aneta@efos.hr (Antoaneta Klobučar), aklobucar@fsb.hr (Ana Klobučar)
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1 Introduction
In the 4th century AD Constantine I (274 – 337 AD) ruled the Roman Empire. To defend the
Empire against barbarians, he had to arrange Roman legions in a way that all strategically
important places were protected with as low costs as possible.

If at least one Roman legion was stationed at a certain location, that location was con-
sidered to be secured. Unsecured locations, on the other hand, had no legions, but they had
to be adjacent to at least one secured location. If an unsecured location was under attack,
one could send a legion from some neighbouring secured location. But to avoid making
that secured location unsecure, it had to have at least two legions itself. Maintaining of
an army was expensive, so Constantine had to secure the Empire with as few legions as
possible.

This historical background motivated Ian Stewart (1999) to suggest the new variant
of graph domination known as Roman domination (RD). If we represent locations of the
Empire as graph vertices and roads of the Empire as graph edges, the problem of defending
the Roman Empire becomes a problem of graph domination. Double Roman domination
(DRD) is stronger version in which we double protection.

There are many works dealing with Roman domination [8, 9, 13, 14], but only few
about double Roman dominations. Foundations of DRD are set in [4]. In [3, 15, 16] we
can find bounds on the DRD and the most recent work is [2]. For more details on Roman
domination and double Roman domination and their variants see [5, 6, 7].

In this paper we determine exact values or upper and lower bounds for double Roman
domination numbers on cardinal products of some graphs.

Apart from this introduction, the work is organized in the following way. In Section 2
we define dominating function on a graph G, Roman dominating function on G, double
Roman dominating function onG and on a cardinal product of graphs. Domination number,
Roman domination number and double Roman domination number are defined and some
basic relations among them are given.

In Section 3 we determine one upper and one lower bound for double Roman domina-
tion numbers on cardinal product of any two graphs. Then we determined the exact values
of double Roman domination numbers of P2 × G for many types of graph G. Finally, the
double Roman domination number is found for P2 × Pn, P3 × Pn, P4 × Pn, while upper
and lower bounds are given for P5 × Pn and P6 × Pn.

In Section 4 we give a case study to determine the efficiency of double protection.
We will simulate a battle between Romans and barbarians in the cases of double Roman
domination and standard Roman domination.

2 Definitions
Dominating function (DF) on G = (V,E) is a function f : V → {0, 1} satisfying the
condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 1. Depending on values of f , we get the ordered partition (V0, V1) of V
where each vertex in V0 is adjacent to at least one vertex in V1. The set V1 is called a
dominating set.

We have bijection between the set of all functions f : V → {0, 1} and the set of all
ordered partitions (V0, V1). Thus we are allowed to write f = (V0, V1). The weight of
f equals w(f) =

∑
v∈V f(v) = 0 · |V0| + 1 · |V1| = |V1|. Of course, we will look for

dominating functions with the minimum weight. This weight γ(G) is called the domination
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number of G.
Further, Roman dominating function (RDF) on G = (V,E) is a function f : V →

{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to
at least one vertex v for which f(v) = 2. Since this function also induces the ordered
partition of V with Vi = {v ∈ V : f(v) = i}, i ∈ {0, 1, 2}, we are allowed to write
f = (V0, V1, V2). The set V1∪V2 is called a Roman dominating set. The weight of an RDF
f equals w(f) =

∑
v∈V f(v) = 0 · |V0|+ 1 · |V1|+ 2 · |V2| = |V1|+ 2|V2|. The minimum

such weight γR(G) is called the Roman domination number on G.
In Roman domination, one legion is required to defend any attacked area. Double

Roman domination is a stronger version of Roman domination that doubles the protection
by ensuring that any attack can be defended by at least two legions.

Finally, double Roman dominating function (DRDF) on G = (V,E) is a function
f : V → {0, 1, 2, 3} if it satisfies the following conditions:

1. If f(v) = 0, then the vertex v has at least two neighbours in V2 or one neighbour in
V3.

2. If f(v) = 1, then the vertex v has at least one neighbour in V2 ∪ V3,

where by Vi we denote the set of vertices assigned with i by the function f . The set
V1 ∪ V2 ∪ V3 is called a double Roman dominating set. The weight of a DRDF equals
w(f) =

∑
v∈V f(v) = |V1|+ 2|V2|+ 3|V3|.

Double Roman domination number γdR(G) equals the minimum weight among all
double Roman dominating functions on G. A double Roman dominating function on G
with weight γdR(G) is called a γdR-function of G.

In Roman domination at most two Roman legions are deployed at any location. But as
we will see in what follows, the ability to deploy three legions at a given location provides
a level of defense that is both stronger and more flexible. Also, the additional security we
get is usually greater than the additional costs.

Here we can see a real benefit of double Roman domination. In the example of the
star graph K1,n−1 (see Figure 1), it is obvious that γdR(K1,n−1) = 3. Note that this is
only one more than γR(K1,n−1) = 2. So we doubled the defense of a graph (at least
two legions against each attack) with an added cost of no more than 50% of the cost of
defending against each attack with one legion.

3

Figure 1: Double Roman domination on star graph.
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In [4], it is observed that γdR(G) ≤ 2|V1| + 3|V2| for any RDF f = (V0, V1, V2). It is
also proved a relation between domination and double Roman domination number of any
graph G, i.e.

2γ(G) ≤ γdR(G) ≤ 3γ(G),

and a relation between Roman domination and double Roman domination number of any
nontrivial connected graph G

γR(G) ≤ γdR(G) ≤ 2γR(G).

Graphs where γdR(G) = 3γ(G) are called double Roman graphs. There is an open
problem to characterize such graphs. Double Roman trees are characterized in [1]. For
more domination parameters and for the terminology see [10, 11, 12].

In this paper we will consider double Roman domination number of cardinal product
of graphs. For arbitrary graphs G and H , the cardinal product of G and H is the graph
G×H which satisfies the following:

1. Its vertex set is V (G×H) = V (G)× V (H).

2. Two vertices (g, h), (g′, h′) ∈ V (G×H) are adjacent if and only if g is adjacent to
g′ in G and h is adjacent to h′ in H .

If H ⊂ V (G) then G[H] is the subgraph induced with H . The cardinal product of
two paths Pm × Pn has two connected components. If the vertices of Pm and Pn are
denoted by {1, 2, 3, . . . ,m} and {1, 2, 3, . . . , n} respectively, then the component of Pm×
Pn containing the vertex (1, 1) will be denoted by K1 and the other component by K2. If
at least one of the parameters m or n is even, the components K1 and K2 are isomorphic
(see Figure 2). Otherwise, the component K1 has one vertex more than the component K2.

1
P2

2

1
P3

2 3

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

P2 × P3

Figure 2: K1 = P2×P3 [{(1, 1), (2, 2), (1, 3)}] andK2 = P2×P3 [{(2, 1), (1, 2), (2, 3)}].

3 Specific values of double Roman domination numbers for cardinal
products of graphs

As for introduction, we will show here some basic results and bounds for double Roman
domination.
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Remark 3.1. In [2] it is proved that

γdR(Pn) =

{
3dn3 e, n ≡ 0, 2 (mod 3)

3dn3 e − 1, n ≡ 1 (mod 3)

=

{
n, n ≡ 0 (mod 3)

n+ 1, n ≡ 1, 2 (mod 3)

and

γdR(Cn) =

{
n, n ≡ 0, 2, 3, 4 (mod 6)

n+ 1, n ≡ 1, 5 (mod 6).

Observartion 3.2. For any graphs G and H of order n and m

γdR(G×H) ≥
⌈ 3mn

∆(G)∆(H) + 1

⌉
,

γdR(G×H) ≤ 2mn
2 + ln((1 + δ(G)δ(H))/2)

δ(G)δ(H) + 1
,

where by ∆(G) (δ(G)) we denote the maximum (minimum) degree of all vertices on G.

Proof. In [16] it is proved that for any graphG of order nwith maximum degree ∆(G) ≥ 1

γdR(G) ≥
⌈ 3n

∆(G) + 1

⌉
.

Further, it holds
∆(G×H) = ∆(G) ·∆(H).

Combining two previous statements we get the lower bound. Next, in [14] it is proved that
for cardinal product any graphs G and H of order n and m

γR(G×H) ≤ mn2 + ln((1 + δ(G)δ(H))/2)

δ(G)δ(H) + 1
.

Then the statement follows from γdR(G) ≤ 2γR(G).

Now we will calculate the exact values of double Roman domination numbers for car-
dinal products of some graphs.

Theorem 3.3. For any tree T and any graph G without cycles of odd length we have

γdR(P2 × T ) = 2γdR(T ) < γdR(P2) · γdR(T ),

γdR(P2 ×G) = 2γdR(G) < γdR(P2) · γdR(G).

Proof. The proof is trivial, since P2 × T and P2 × G consist of two disjoint copies of T
and G, respectively and γdR(P2) = 3.

Theorem 3.4. For the path P2 and any odd cycle C2n+1, n ≥ 1,

γdR(P2 × C2n+1) = 4n+ 2.
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Proof. Note that the cardinal product of P2 and C2n+1 is a cycle C4n+2. Namely, if we de-
note the vertices of P2 with a and b, and the vertices ofC2n+1 with 1, 2, . . . , 2n+1, then the
vertices of the productP2×C2n+1 are adjacent in this order: (a, 1), (b, 2), (a, 3), (b, 4), . . . ,
(a, 2n+1), (b, 1), (a, 2), . . . , (b, 2n+1) and the last vertex (b, 2n+1) is adjacent to (a, 1),
which makes a cycle of length 2(2n+ 1) = 4n+ 2. Remark 3.1 implies that

γdR(C4n+2) = 4n+ 2.

Definition 3.5. For a fixed m, 1 ≤ m ≤ n, the set (Pk)m = {(i,m) : i = 1, . . . , k} is
called a column of Pk × Pn. Similary, for a fixed l, 1 ≤ l ≤ k, the set (Pn)l = {(l, j) :
j = 1, . . . , n} is called a row of Pk × Pn.

Theorem 3.6. Let n ≥ 2. Then

γdR(P3 × Pn) =

{
7, n = 3

2n+ 2, otherwise.

Proof. It is easy to see that γdR(P3 × P3) = 7. Hence we assume n ≥ 4. First we show
that γdR(P3 × Pn) ≤ 2n + 2. Define f : V (P3 × Pn) → {0, 1, 2, 3} by f((2, 2)) =
f((2, n− 1)) = 3, f((2, j)) = 2 for j ∈ {1, . . . , n}− {2, n− 1} and f(x) = 0 otherwise.
Clearly f is a double Roman dominating function on P3 × Pn of weight 2n + 2 and so
γdR(P3×Pn) ≤ 2n+2. To prove inverse inequality, let f = (V0, ∅, V2, V3) be a γdR(P3×
Pn)-function. Since the vertices (2, 2) and (2, n − 1) are strong support vertices, we have
(2, 2), (2, n−1) ∈ V3. On the other hand, since V2∪V3 is a dominating set of P3×Pn, we
have |V2∪V3| ≥ γ(P3×Pn) = n (see [11]). Thus we have γdR(P3×Pn) = 2|V2|+3|V3| =
2(|V2|+ |V3|) + |V3| ≥ 2n+ 2. Thus γdR(P3 × Pn) = 2n+ 2 for n ≥ 4 and the proof is
complete.

Theorem 3.7. Let n ≥ 2. Then

γdR(P4 × Pn) =


3n, n ≡ 0 (mod 4)

3n+ 3, n ≡ 1 (mod 4)

3n+ 2, n ≡ 2 (mod 4)

3n+ 1, n ≡ 3 (mod 4).

Proof. First we show that

γdR(P4 × Pn) ≤


3n, n ≡ 0 (mod 4)

3n+ 3, n ≡ 1 (mod 4)

3n+ 2, n ≡ 2 (mod 4)

3n+ 1, n ≡ 3 (mod 4).

Since P4 × Pn consists of two isomorphic components, we consider only K1 and we mul-
tiply the result by 2.

Case 1: n ≡ 0 (mod 4). Define f : V (K1) → {0, 1, 2, 3} by f((2, 4j + 2)) =
f((3, 4j + 3)) = 3, j = 0, 1, . . . , bn4 c − 1, and f(x) = 0 otherwise. Clearly f is a
double Roman dominating function of weight 3n

2 on K1 and so γdR(P4 × Pn) ≤ 3n, for
n ≡ 0 (mod 4).
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Case 2: n ≡ 1 (mod 4). Define f : V (K1) → {0, 1, 2, 3} by f((2, 4j + 2)) =
f((3, 4j+3)) = 3, j = 0, 1, . . . , bn4 c−1, f((2, n−1)) = 3 and f(x) = 0 otherwise. It can
easily be seen that f is a double Roman dominating function of weight 6

(
n−1
4

)
+3 = 3n+3

2
on K1 and so γdR(P4 × Pn) ≤ 3n+ 3, for n ≡ 1 (mod 4).

Case 3: n ≡ 2 (mod 4). Define f : V (K1) → {0, 1, 2, 3} by f((2, 4j + 2)) = 3,
j = 0, 1, . . . , bn4 c − 1, f((3, 4j + 3)) = 3, j = 0, 1, . . . , bn4 c − 2, f((3, n − 1)) = 3,
f((1, n − 1)) = f((4, n − 4)) = 2 and f(x) = 0 otherwise. Hence f is a double Roman
dominating function of weight 6

(
n−2
4

)
+4 = 3n+2

2 onK1 and so γdR(P4×Pn) ≤ 3n+2,
for n ≡ 2 (mod 4).

Case 4: n ≡ 3 (mod 4). Define f : V (K1) → {0, 1, 2, 3} by f((2, 4j + 2)) =
f((3, 4j + 3)) = 3, j = 0, 1, . . . , bn4 c − 1, f((2, n − 1)) = 3, f((4, n − 1)) = 2
and f(x) = 0 otherwise. Therefore f is a double Roman dominating function of weight
6
(
n−3
4

)
+ 5 = 3n+1

2 on K1 and so γdR(P4 × Pn) ≤ 3n+ 1, for n ≡ 3 (mod 4).

Proof of the minimality: In [16] is proved that if G is a graph of order n with maximum
degree ∆(G) ≥ 1

γdR(G) ≥
⌈ 3n

∆(G) + 1

⌉
.

The order of P4 × Pn is 4n and ∆(P4 × Pn) = 4. Therefore

γdR(P4 × Pn) ≥
⌈12n

5

⌉
= 3n. (3.1)

Let n ≡ 0 (mod 4). From the fact that γdR(P4 × Pn) ≤ 3n and (3.1), it follows

γdR(P4 × Pn) = 3n, n ≡ 0 (mod 4).

In more details, for this case each vertex from V0 is double Roman dominated by only
one vertex from V3. Next, V2 = ∅, and V3 is dominating set (see [11]). Also, on the last
n-th column from P4 × Pn all vertices are from V0 (see Figure 3).

3 3

3 3

Figure 3: The function f(V (K1)) on P4 × P8.

Let n ≡ 1 (mod 4). Then from (3.1) on the first n − 1 columns on P4 × Pn double
Roman function f has a weight at least 3(n− 1). Further, if the function f has the exactly
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weight 3n − 3, then the vertex (2, n − 1) ∈ V0 (on K1). But (2, n − 1) is strong suport
vertex, so must be in V3. The same situation is on K2. It follows that γdR(P4 × Pn) ≥
3n− 3 + 6 = 3n+ 3. Hence,

γdR(P4 × Pn) = 3n+ 3, n ≡ 1 (mod 4).

Let n ≡ 2 (mod 4). It is easy to see that γdR(P4 × P6) = 20 (on each component
10) and that the last 4 × 4 block and nth and (n − 1)th columns make a 4 × 6 block. It
follows that on the last 6 columns we need at least weight 20, and on the first n−6 columns
3(n− 6). Then γdR(P4 × Pn) ≥ 3n− 18 + 20 = 3n+ 2. So,

γdR(P4 × Pn) = 3n+ 2, n ≡ 2 (mod 4).

Let n ≡ 3 (mod 4). Then on the first n−3 columns on P4×Pn double Roman function
f has a weight at least 3(n − 3). On the last 3 columns we need at least weight 5 on one,
or 10 on both components giving γdR(P4 × P3) = 10. It follows that γdR(P4 × Pn) ≥
3n− 9 + 10 = 3n+ 1. Therefore,

γdR(P4 × Pn) = 3n+ 1, n ≡ 3 (mod 4).

For P5 × Pn and P6 × Pn from the formula

2γ(G) ≤ γdR(G) ≤ 3γ(G),

and [11] we have the following bounds:

2



n+ 2, n = 2, 3, 4

11, n = 7
4n+6

3 , n ≡ 0, 3 (mod 6)
4n+4

3 , n ≡ 2, 5 (mod 6)
4n+8

3 , n ≡ 1, 4 (mod 6), n > 7

≤ γdR(P5 × Pn),

γdR(P5 × Pn) ≤ 3



n+ 2, n = 2, 3, 4

11, n = 7
4n+6

3 , n ≡ 0, 3 (mod 6)
4n+4

3 , n ≡ 2, 5 (mod 6)
4n+8

3 . n ≡ 1, 4 (mod 6), n > 7,

4
(
n−

⌊n
5

⌋)
≤ γdR(P6 × Pn) ≤ 6

(
n−

⌊n
5

⌋)
.

4 A case study
In this section we simulate a battle between Romans and barbarians to test efficiency of the
double protection versus the ordinary protection (standard Roman domination). Cardinal
product P4 ×Pn is used to model the battlefield, more precisely component K1. We could
use any other cardinal product of graphs, but we use P4 × Pn because of its convenience:
it is large enough to have multiple outcomes, but not too large for visualization.

Instead of Romans and barbarians, we could have ambulances and patients or firefight-
ers and fires. Ambulances would respond to medical emergencies and firefighters would
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extinguish fires in their local area. Position of hospitals and fire stations would correspond
base vertices, respectively. We are still speaking about Romans and barbarians in order
to conform with the usual terminology dealing with dominations. But as we can see, the
whole situation has also some modern interpretations, which are more practical and more
useful.

First, we will give some basic rules and restrictions to avoid exceptions. The following
rules could be easily adapted to ambulances and patients, and to firefighters and fires.

• The simulation is organized in turns. The first turn is played by the barbarians.

• The simulation stops if all cities are destroyed by the barbarians or if all barbarians
are defeated by legions and legions are returned to their base cities.

• The legions and the barbarian groups move only by one edge in each turn.

• The barbarian groups destroy an unprotected city if Romans do not send enough help
in the next turn.

• If the barbarian group attacks a city with a legion, they fight immediately (no waiting
for the next turn).

• The destroyed city stays destroyed, but both the legions and barbarian groups can
pass through it.

• If the legions are outnumbered, they all die and no barbarian group dies. An analo-
gous rule holds if the barbarians are outnumbered.

• If there is an equal number of legions and barbarian groups, Romans always win.

• Base cities defend only their direct neighbours.

• A base city does not send help to a neighbour if it cannot send enough help.

• At least one legion must stay in its base city.

• If a direct neighbour is secured, the legion returns to its base city.

• If a city is destroyed, the barbarian group moves to the closest undestroyed city. If
there is more then one, then it moves randomly.

• Different barbarian groups move independently.

In the case of double Roman dominations, the initial number of Roman legions and
their positions on the graph will be defined as for minimum double Roman domination
sets in Theorem 3.7. In the case of standard Roman dominations, the layout of Roman
legions will be defined as for minimal Roman domination sets [14], i.e. for P4×Pn, n ≡ 0
(mod 6) and K1 the minimal Roman domination set is:

V1 =
{

(1, 6j + 5), (4, 6j + 2) : j = 0, 1, . . . ,
⌊n

6

⌋
− 1
}

and

V2 =
{

(2, 6j + 2), (3, 6j + 5) : j = 0, 1, . . . ,
⌊n

6

⌋
− 1
}
.

Vertices with initial legions are called the base vertices or base cities. The initial number
and placement of barbarian groups is arbitrary, but we will put at most 2 barbarian groups
into one city. We do not want to destroy all cities in the very beginning.

We consider the placement of the barbarian groups as the first move done by barbarians.
The next turn is on the legions. In each turn we have to check the state of each city i.e. the
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number of barbarian groups and legions and determine their next move. The number of
legions and barbarian groups is fixed (it can only decay by turns).

Because on P4 × Pn we have two symmetrical components we will consider only K1.
On this component from Theorem 3.7, in the case of double Roman dominations, on the
graph P4 × P12 we have 6 base cities and 3 legions in each of them. So 18 legions defend
24 cities. In case of standard Roman dominations, we have 8 base cities with total of 12
legions.

We have noticed that for P4 × P12 there exists a second layout for base vertices. It has
also total sum of 12 legions, but they are placed differently while still satisfying Roman
domination.

In Figure 4, Figure 5 and Figure 6, we see an initial placement for the standard and
double protections.

1 1

2 2

2 2

1 1

Figure 4: First version of initial placement of legions for P4 × P12 according to Roman
dominating set with the lowest weight [14].

2 2 2

2 2 2

Figure 5: Second version of initial placement of legions for P4 × P12 according to Roman
dominating set with the lowest weight.

Now we will test the both cases simultaneously. For the standard case we will take both
layouts into consideration. Further, for a fixed number of barbarians, we will reproduce 30
random possibilities of attack for each case and measure number of destroyed cities and
legions. Numbers of destroyed cities and legions will be represented with their arithmetic
means.

First, we compare Roman dominating set with the first layout and double Roman dom-
inating set. As shown in Table 1, Roman dominating set of 12 legions can survive at most
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3 3 3

3 3 3

Figure 6: Initial placement of legions for P4×P12 according to double Roman dominating
set with the lowest weight.

25 barbarian groups according to our simulation, while double Roman dominating set of
18 legions can survive maximum 45 barbarion groups. So 50% more legions can survive
80% more barbarian groups on P4 × P12 which is efficiency increase of 30%. Also, when
all cities and legions are destroyed in case of Roman dominations, only 27% of cities and
9% of legions are destroyed for double Roman dominations.

Table 1: Average number of destroyed cities and legions at the end of the simulations.

RD 1. layout RD 2. layout DRD
Barb. Destroyed Destroyed Destroyed Destroyed Destroyed Destroyed

legions cities legions cities legions cities legions
10 6.67 1.46 3.70 0.50 0.90 0.10
20 20.66 9.13 15.87 6.13 4.53 0.73
25 23.63 11.63 20.97 9.33 6.56 1.66
29 24 12 23.53 11.53 9.80 3.67
30 24 12 24 12 10.53 4.40
40 24 12 24 12 21.53 15.2
45 24 12 24 12 23.83 17.76
46 24 12 24 12 24 18

Second, we compare Roman dominating set with the second layout and double Roman
dominating set. Now Roman dominating set of 12 legions can survive at most 29 barbarian
groups. So 50% more legions can survive 55% more barbarion groups. The increase in
efficiency is considerably less than for the first layout.

What is common to the second layout of Roman dominating set and double Roman
dominating set is that base cities are closer and bigger. It means that it is better to have few
base cities with higher number of legions than more base cities with smaller number.

5 Conclusion
In this paper bounds for double Roman domination numbers for the cardinal product of any
two graphs are given. Also, the exact values are given for the cardinal product of P2 with
any graph, for P3 × Pn and for P4 × Pn. Furthermore, upper and lower bounds for double
Roman domination numbers of P5 × Pn and P6 × Pn are given.
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We have also created a case study in wich we have compared Roman domination and
double Roman domination on a cardinal product of graphs. The case study has confirmed
that double Roman domination is more efficient because for small cost we can multiple
protection.

Double Roman domination can be useful even today, not only in military sense. For
example, in unsecure parts of a town, where calls for police are common, there should be
at least three teams ready to go out after a call. So, when two teams are gone, the thmining
team can react to some new call. Such services already exist in emergency medical stations.
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Abstract

Let A be a hyperplane arrangement in A isomorphic to Rn. Let Vq be the q-Varchenko
matrix for the arrangement A with all hyperplane parameters equal to q. In this paper, we
consider three interesting cases of q-Varchenko matrices associated to hyperplane arrange-
ments. We show that they have a Smith normal form over Z[q].

Keywords: Hyperplane arrangement, Smith normal form, Varchenko matrix.

Math. Subj. Class. (2020): 15A21, 52C35

1 Introduction
Let M be an n × n matrix over a commutative unital ring R. We say that M has a Smith
normal form (SNF for short) over R if there are matrices P,Q ∈ Rn×n such that det(P )
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divides dj in R for all i < j.
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Recently, there is an interest in SNF in combinatorics. A survey of this topic was given
by Stanley in [11]. The SNF of a matrix of a differential operator was considered by Stanley
and the first author in [2], where they proved a special case of a conjecture given by Miller
and Reiner [7]. In [13], interesting results concerning the SNF of random integer matrix
were found.

It is well known that M has an SNF if R is a principal ideal domain (PID), but not
much is known for general rings. In this paper we are interested in the integer polynomial
ring Z[q]. Some matrices in Z[q]n×n do not have an SNF over R. For example, it is not
hard to show that

[
2 0
0 q

]
does not have an SNF over Z[q]. However, lots of matrices in

Z[q]n×n do have SNF over Z[q]. For example, it is asked whether every matrix of the form
A = (qaij ), where aij are nonnegative integers, has an SNF over Z[q]. There is not a
general solution to this question. But we could give a positive answer which arises from
some special cases of geometrical structures. The matrices we are interested in are called
Varchenko matrices (see [12]). These matrices are associated to a hyperplane arrangement
(see Definition 1.2). The Varchenko matrix was studied in the papers of Varchenko [12],
Schechtman and Varchenko [8], and Brylawski and Varchenko [1]. These matrices describe
the analogue of Serre’s relations for quantum Kac-Moody Lie algebras and are relevant to
the study of hypergeometric functions and the representation theory of quantum groups [6].
Entries appearing in the diagonal of a Smith normal form of a matrix are called invariant
factors. Applications of invariant factors of a q-matrix can be found in [3, 4, 9]. We are
going to prove that Varchenko matrices associated to some hyperplane arrangements do
have an SNF.

We use the notation and terminology on hyperplane arrangements in [10]. A finite
(real) hyperplane arrangementA is a finite set of affine hyperplanes in some affine space A
isomorphic to Rn.

For a hyperplane H in A, let

AH = {H ∩H ′ : H ′ ∈ A such that H ′ ∩H 6= ∅ and H ′ 6= H}.

This is a hyperplane arrangement in the affine space H . We also write A − {H} for the
arrangement from A with H removed.

LetA be a hyperplane arrangement in A. Then A is divided into some regions by these
hyperplanes. Explicitly, a region is a connected component of A−

⋃
H∈AH . We letR(A)

denote the set of regions of A.

Example 1.1. In the following picture, arrangement Ap is an example of the so-called
peelable arrangement, which is treated in Section 2. Here we see straight lines a, b, c form
a hyperplane arrangement in the plane R2. There are 7 regions of Ap which we denote by
1′, 2′, 3′, 1, 2, 3, 4. (We write it in this way for the example in Section 2.) The hyperplane
arrangement Ab

p contains two affine hyperplanes A = b ∩ a,B = b ∩ c (two points in b).
Arrangement Ap is also an example of the regular n-gon arrangement Gn, which is

treated in Section 4. It is a regular triangle arrangement. (Although in Figure 1 the cen-
tral triangle is not so much like a equilateral triangle. This does not matter, because the
Varchenko matrix that we are concerned with is a topological invariant.) As another ex-
ample for the n-gon arrangement, a picture of the pentagon arrangement G5 is given in
Section 4.

Arrangement C4 in Figure 1 is an example of arrangement Cn, which is treated in Sec-
tion 3.
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a

b

c

A B

2

4
1 3

1′
2′

3′

(a) Arrangement Ap

b

a

cd

(b) Arrangement C4

Figure 1: Arrangements Ap and C4.

Definition 1.2. Let A be a finite hyperplane arrangement andR(A) its set of regions, and
let aH for H ∈ A be indeterminates. The Varchenko matrix V = V (A) is indexed by
R(A) with the entries given by

VRR′ =
∏

H∈SepA(R,R′)

aH , (1.1)

where SepA(R,R′) is the set of hyperplanes in A which separate R and R′. We write
Vq = Vq(A) for V (A) when we set each aH = q, an indeterminate, and call Vq the
q-Varchenko matrix of A.

Thus (Vq)RR′ = q#Sep(R,R′). Also note that V (A) and Vq(A) are symmetric matrices
with 1’s on the main diagonal.

We are interested mostly in the q-Varchenko matrix Vq . We are going to prove that
Vq(A) has an SNF over the ring Z[q] for the peelable arrangements (in Section 2), arrange-
ment Cn (in Section 3) and regular n-gon arrangement Gn (in Section 4). (Since this ring
is not a PID, an SNF does not a priori exist.) In Section 5, we compute the SNF of the
Varchenko matrices for two arrangements which are not included in the previous sections.

2 Peelable hyperplane arrangements
Example 2.1. Let us look at the arrangement Ap in Example 1.1. Its Varchenko matrix
Vq = Vq(Ap) is

Vq =



1 q q2 q q2 q3 q2

q 1 q q2 q q2 q3

q2 q 1 q3 q2 q q2

q q2 q3 1 q q2 q

q2 q q2 q 1 q q2

q3 q2 q q2 q 1 q

q2 q3 q2 q q2 q 1


,

where the columns are indexed by the regions in the order 1′, 2′, 3′, 1, 2, 3, 4, and so are the
rows. We will briefly show that this matrix has an SNF. We write Vq as a block matrix the
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way it is partitioned:

Vq =

A1 B1 C1

A2 B2 C2

A3 B3 C3

 .
Notice that (B1, C1) = q(B2, C2) and A2 = qA1. (This is not a coincidence. We see
that [B1, C1] is the submatrix indexed by 1′, 2′, 3′ (rows) and 1, 2, 3, 4 (columns), while
[B2, C2] is the submatrix indexed by 1, 2, 3 (rows) and 1, 2, 3, 4 (columns). There is one
more line, line b, to separate regions i′ and j′ than regions i and j.) We can multiply by the
following matrix on the left to cancel B1:

P =

I3 −qI3 0
0 I3 0
0 0 1

 .
We have

PVq =

A1 − qA2 0 0
A2 B2 C2

A3 B3 C3

 .
As Vq is a symmetric matrix, so is PV P t. We thus have

PVqP
t =

A1 − qA2 0 0
0 B2 C2

0 B3 C3

 =

[
(1− q2)A1 0

0 M1

]
,

where we write

M1 =

(
B2 C2

B3 C3

)
,

and we use that A2 = qA1. The matrix A1 is the q-Varchenko matrix of Ab
p. (See Exam-

ple 1.1 for the notation Ab
p). The matrix M1 is the q-Varchenko matrix of Ap − {b}. We

can use induction to transform PVqP
t into an SNF.

This example motivates us to define a peelable hyperplane in an arrangement.

Definition 2.2. LetA be a finite hyperplane arrangement and H be a hyperplane inA. We
say that H is peelable (fromA) if there is one side Hf of H such that if R is a region of A
and R is in Hf , then R̄ ∩H is the closure of a region of AH .

For example, the hyperplane b is peelable from Ap in Example 1.1. Let us see why this
is. On the side above b there are three regions 1′, 2′ and 3′. For each one of these regions,
the intersection of its closure with b is actually a closure of a region of Ab

p. For instance,
the closure of region 2′ intersects b at a line section AB, and this line section is actually
a closure of a region of Ab

p. (In fact Ab
p has 3 regions: the part to the left of A, the part

between A and B, and the part to the right of B.)

Theorem 2.3. Assume that H is peelable from A. Then there is a matrix P with entries in
Z[q] such that det(P ) = 1 and

PVq(A)P t =

[
(1− q2)Vq(AH) 0

0 Vq(A− {H})

]
.



T. W. Cai, Y. Chen and L. Mu: On the Smith normal form of the Varchenko matrix 355

Remark 2.4. Under the same assumption, a similar result can be given for the Varchenko
matrix V (A), and the proof is almost the same. Using this result, we can prove that the
Varchenko matrix V (A) associated to a peelable hyperplane arrangement (as defined be-
low) has a “diagonal form” in Z[aH : H ∈ A], that is, we can find matrices P,Q whose
determinants are units and PV (A)Q is a diagonal matrix. Let us mention that, subsequent
to our work, Gao and Zhang [5] gave a necessary and sufficient condition on an arrangment
A for V (A) to have a diagonal form.

The main idea of the proof of this theorem is in the previous example. We will give a
rigorous proof in a while, in order to make sure there is no gap that might have occurred
when we move from the more visualizable two-dimensional example.

Iteratively using this result, the Varchenko matrices of a special type of hyperplane
arrangement can be shown to have an SNF.

Definition 2.5. Let A = {H1, H2, . . . ,Hm} be a finite hyperplane arrangement. We
inductively define A to be peelable as follows.

1. If m = 1 then A = {H1} is peelable.

2. If there is one peelable hyperplane H in A such that both A − {H} and AH are
peelable, then we say that A is peelable.

Now it is easy to see that we have the following result.

Corollary 2.6. The q-Varchenko matrix Vq(A) of a peelable hyperplane arrangement A
has an SNF over Z[q]. Moreover, its SNF is of the form

diag((1− q2)n1 , (1− q2)n2 , . . . , (1− q2)nr ),

where 0 ≤ n1 ≤ n2 ≤ · · · ≤ nr is a sequence of nonnegative integers and r is the number
of regions of A.

We will need the following two results, which are not hard to prove.

Lemma 2.7. Let H be a hyperplane in A. Assume that R is a region such that R̄ ∩ H
contains a point which is an interior point of some region R1 in AH . Then R̄1 = R̄ ∩H .

Lemma 2.8. Let H be a hyperplane in A. Assume that R is a region such that R̄ ∩H is
the closure of some region of AH . Then there is a unique region R′ on the other side of H
such that R̄′ ∩H = R̄ ∩H .

To simplify the wording of the proof of Theorem 2.3, we introduce a new notation.

Definition 2.9. Let A be a hyperplane arrangement. Let R1,R2 be two subsets of R(A).
We denote by Vq(R1,R2) the submatrix of Vq(A) with rows indexed by R1 and column
indexed byR2.

Now let us prove Theorem 2.3. Assume that H is peelable from A and Hf is a side of
H with the properties as in Definition 2.2. Let R1, R2, . . . , Rs be the set of the regions in
Hf . Let H , A, Hf be as in the Definition 2.2. Let R′1 = {1′, 2′, . . . , r′} denote the set of
regions in Hf , and let R1 = {1, 2, . . . , r} denote the corresponding regions on the other
side ofHf as given by the previous lemma. LetR2 = {r+1, . . . , r+s} be the set of other
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regions. LetR′ = {1, 2, . . . , r+ t}, i.e.,R′ is the union ofR1 andR2. It is not difficult to
prove the following facts:

Vq(R′1,R′1) = Vq(AH)

Vq(R′,R′) = Vq(A− {H})
Vq(R′1,R′) = qVq(R1,R′)
Vq(R′1,R′1) = qVq(R1,R′1).

The q-Varchenko matrix V = V (A) has the following block matrix form:

Vq(A) =

Vq(R′1,R′1) Vq(R′1,R1) Vq(R′1,R2)
Vq(R1,R′1) Vq(R1,R1) Vq(R1,R2)
Vq(R2,R′1) Vq(R2,R1) Vq(R2,R2)

 .
Now an argument similar to Example 2.1 can be applied to prove the theorem.

3 The case that all lines go through the same point
From now on, we consider hyperplane arrangements in R2. Define Cn to be the arrange-
ment consisting of n lines intersecting in a common point in R2. We prove that the q-
Varchenko matrix V (n) associated to Cn has a Smith normal form (over Z[q], as usual).
This matrix has the form

V (n) =


1 q q2 q3 · · · qn qn−1 · · · q
q 1 q q2 · · · qn−1 qn · · · q2

...
...

q q2 q3 q4 · · · qn−1 qn−2 · · · 1

 .
Remark 3.1. This matrix is an example of circulant matrices C(c1, c2, . . . , cn) which is
defined by

C(c1, c2, . . . , cn) =


c1 c2 c3 . . . cn−1 cn
cn c1 c2 . . . cn−2 cn−1

cn−1 cn c1 . . . cn−3 cn−2

...
...

...
...

...
...

c2 c3 c4 . . . cn c1

 . (3.1)

We see that V (n) is circulant because the regions of Cn are in a circular mode. Similar but
more complicated situations occur in the regular n-gon arrangement, which is considered
in the next section.

Proposition 3.2. Let n be a positive integer. Then the Varchenko matrix V (n) has the
following Smith normal form over Z[q]:

diag(1, 1− q2, . . . , 1− q2︸ ︷︷ ︸
n

, (1− q2)2, (1− q2)(1− q2n), . . . , (1− q2)(1− q2n)︸ ︷︷ ︸
n−2

). (3.2)

Proof. First successively apply the row operations ri − qri−1 (i = n, n − 1, . . . , 2),
rn+i − qrn+i+1 (i = 1, 2, . . . , n − 1), r2n − qr1. This transforms V (n) into the block



T. W. Cai, Y. Chen and L. Mu: On the Smith normal form of the Varchenko matrix 357

matrix 1 α q
O M O
0 β 1− q2

 ,
where M is a 2(n− 1)× 2(n− 1) matrix, α, β are row vectors, O is a zero column vector
and β’s components are all multiples of 1 − q2. It’s easy to see that we only need to find
the Smith normal form of M . Factoring 1− q2 out of M , one finds that

M = (1− q2)

[
A B
Bt At

]
,

where

A =

n−2∑
k=0

qkT k, B =

n−2∑
k=0

qn−1−k(T t)k

and T = (tij) with ti,j = δi+1,j . Note that A is a unitriangular matrix; in particular, it is
invertible in Z[q]. Multiplying M on the left by

P =

[
I O

−BtA−1 I

]
,

we transform M into

(1− q2)

[
A B
O At −BtA−1B

]
.

We see that we only need to find the Smith normal form of At − BtA−1B, but it can be
seen from the following lemma that its SNF is

diag(1− q2, 1− q2n, . . . , 1− q2n︸ ︷︷ ︸
n−2

). (3.3)

Now the SNF of V (n) follows.

Lemma 3.3. Let m×m matrix T = (tij) with ti,j = δi+1,j . Let

A =

m−1∑
k=0

qkT k, B =

m−1∑
k=0

qm−k(T t)k.

Then the matrix
C = (Im − qT t)(At −BtA−1B)

is equal to a matrix with first row

(1− q2, q3 − q2m+1, q4 − q2m, q5 − q2m−1, . . . , qm+1 − qm+3),

the other diagonal entries all equal to 1− q2m+2, and all other entries zero.

Proof. First A−1 = Im − qT , so

BtA−1 = qmIm +

m−1∑
k=1

(qm−k − qm+2−k)T k.
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Then one computes BtA−1B and finds it is equal to

M =



q2 q3 − q2m+1 q4 − q2m . . . qm+1 − qm+3

q3 q4 q5 − q2m+1 . . . qm+2 − qm+4

q4 q5 q6 . . . qm+3 − qm+5

...
...

...
...

...
qm qm+1 qm+2 . . . q2m−1 − q2m+1

qm+1 qm+2 qm+3 . . . q2m


.

Now let N = (Im − qT t)M . We find that the first row of N is the same as that of M , the
other diagonal entries of N are all equal to q2m+2 and all other entries are zero. Now we
see that C is as claimed in the lemma since

C = (Im − qT t)At − (Im − qT t)M = Im − (Im − qT t)M = Im −N.

4 The case of regular n-gon arrangement Gn

Let Gn be the arrangement in R2 obtained by extending the sides of a regular n-gon. Let
Vq(Gn) be the Varchenko matrix associated to Gn. We are going to prove the following

Theorem 4.1. Let Vq(Gn) be the Varchenko matrix associated to the regular n-gon ar-
rangement Gn. A Smith normal form of Vq(Gn) over Z[q] is

diag(1, 1− q2, . . . , 1− q2︸ ︷︷ ︸
n

, (1− q2)2, . . . , (1− q2)2︸ ︷︷ ︸
(p−1)n

), (4.1)

where p is the integer part of (n+ 1)/2.

The above result can be proved by using some results and tools in [3, 12]. But we want
to prove it directly. First, it is easy to calculate the number of regions of the arrangement
Gn. For instance, one uses the formula that the number of regions is one more than the sum
of the number of the lines and the number of intersection points.

Lemma 4.2. The number of the regions associated to the regular n-gon arrangement Pn

is np+ 1, where p is the integer part of (n+ 1)/2.

The main idea of the proof of Theorem 4.1 is to group the regions by their shapes. We
then write the Varchenko matrix as a block matrix. The columns of each block are labeled
by regions of a same shape and so are the rows of a block. For regions of the same shape,
we order them clockwise. The key property of this treatment is that each block is a circulant
matrix. Once we write the block matrix down, it will be relatively easy to do cancelations
and turn it into an SNF, although it takes some space to write the process down. To show
how to write the block matrix, we consider the example of G5. Then in the proof we write
the block matrix for general n and then do the cancelation.

Example 4.3. We mark the regions of G5 (see Figure 2) as in the following.
They are regions ∆

(j)
i (i = 1, 2, . . . , 5; j = 1, 2, 3) together with a unmarked central

region. Note that we mark the regions according to their shape. Precisely, for each j, the
shape of the ∆

(j)
i for i = 1, 2, . . . , 5 are the same. Let us call them the regions of type
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∆
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Figure 2: Arrangement G5.

j. For regions of the same type, we label them clockwise as ∆
(j)
1 ,∆

(j)
2 , . . . ,∆

(j)
5 . We

call ∆
(j)
1 the leading region of the type j regions. The union of the three leading regions

∆
(1)
1 ,∆

(2)
1 ,∆

(3)
1 is the region inside an exterior angle of the pentagon. (So is the union of

three region ∆
(1)
i ,∆

(2)
i ,∆

(3)
i .) We obtain the Varchenko matrix

Vq(G5) =


1 Q1 Q2 Q3

Q t
1 E11 E12 E13

Q t
2 E21 E22 E23

Q t
3 E31 E32 E33

 ,

where the first (block) column is indexed by the central non-marked region. For j = 2, 3, 4,
the jth block column is indexed by the type j regions. The block rows are indexed in the
same way. For example, the rows of the matrix E12 are indexed by the type 1 regions
and the columns of it are indexed by type 2 regions. Because regions of the same type are
ordered in a circular mode, the blocksEij should all be circulant matrices (see Remark 3.1).
In fact, it can be checked that the blocks are as follows

Qk = (qk, qk, qk, qk, qk) for k = 1, 2, 3,

E11 = C(1, q2, q2, q2, q2) E12 = C(q, q3, q3, q3, q) E13 = C(q2, q4, q4, q2, q2),

E22 = C(1, q2, q4, q4, q2) E23 = C(q, q3, q5, q3, q) E33 = C(1, q2, q4, q4, q2).

We then use Gaussian elimination (in blocks) to turn the matrix into an SNF. For in-
stance, at the beginning, we subtract the q times of the third block row (Q t

2 E21 E22 E23)
from the fourth block row (Q t

3 E31 E32 E33).
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Proof. We write the Varchenko matrix of Gn in the following form of block matrix:

Vq(Gn) =


1 Q1 Q2 . . . Qp

Q t
1 E11 E12 . . . E1p

Q t
2 E21 E22 . . . E2p

...
...

...
...

...
Q t

p Ep1 Ep2 . . . Epp


where Ekl = E t

lk, Qk is the row vector

Qk = (qk, qk, . . . , qk)︸ ︷︷ ︸
n

(4.2)

and Eij (i ≤ j) is a circulant matrix:

Eij = C
(
qj−i, qj−i+2, qj−i+4, . . . , qj−i+2(i−1), qi+j , . . . , qi+j︸ ︷︷ ︸

n+1−i−j

,

qj+i−2, qj+i−4, . . . , qj+i−2(i−1), qj−i, . . . , qj−i︸ ︷︷ ︸
j−i

)
.

Now we apply Gaussian elimination to Vq(Gn) and transform it into the desired diag-
onal form. We do this in blocks and we will use the multiplication of elementary block
matrices to realize the elimination. We proceed in four steps.

Step 1: We first apply some row eliminations. Let

R1 =


1

−qIn×1 In
In

. . .
In

 and Rk =


1
In

. . .
−qIn In

. . .
In


for k ≥ 2, where In×1 is a column of n 1’s and Rk comes from the (block) identity matrix
by adding the −q times of its (k − 1)th block row to it’s kth block row. Now compute the
matrix M1 = R1R2 · · ·RpVq(Pn).

Step 2: We apply some column eliminations. Let

S1 =


1 −qI1×n

In
In

. . .
In

 and Sk =


1
In

. . .
In −qIn

. . .
In


for k ≥ 2, where I1×n is a row of n 1’s and Sk comes from the (block) identity matrix by
adding the −q times of its (k − 1)th block column to its kth block column. (So Sk = T t

k .)
Now compute the matrix M2 = M1Sp · · ·S2S1.
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Step 3: We apply some more row eliminations. Let

Tk =


1
In

. . .
−qJ In

. . .
In

 with J =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 1
1 0 0 · · · 0 0

 ,

where Tk come from the (block) identify matrix by adding the−qJ times the kth block row
to the (k + 1)th block row. Now compute M3 = T1 · · ·Tp−1M2. We find the Varchenko
matrix is now transformed to

M3 =



1 0 0 0 . . . 0 0
0 D N12 N13 . . . N1p−1 N1p

0 0 D′ N23 . . . N2p−1 N2p

...
...

...
...

...
...

...
0 0 0 0 . . . D′ Np−1p

0 0 0 0 . . . 0 D′


,

where D = (1− q2)In, D
′ = (1− q2)2In and all non-diagonal entries are the multiple of

the diagonal entry on the same row. This ensures that we can do the following:

Step 4: We apply more column eliminations to cancel the non-diagonal entries. This does
not change the diagonal entries of M3. We finish the proof as the diagonal of M3 is the
same as that of (4.1).

5 Two more examples
We now simply say that a hyperplane arrangement A has SNF if its Varchenko matrix
Vq(A) has an SNF over Z[q]. We can use Theorem 2.3 to give more examples of hyperplane
arrangements who have SNF. For example, starting from an arrangement which has SNF,
for instance Cn, we can keep adding straight lines to it. As long as every time the line
added does not separate the set of intersection points of the previous arrangement, the
new arrangement will have SNF. This helps us to construct lots of examples of hyperplane
arrangements having SNF. We now give two examples which can not be constructed this
way. We found that they both have SNF.

1. The Shi arrangement S3 with hyperplanes xi − xj = 0, 1 for 1 ≤ i < j ≤ 3.
We write the multiplicity of a diagonal element in brackets following that entry. For
instance, 1− q2 [3] indicates that 1− q2 occurs three times as a diagonal element of
the SNF. The diagonal elements of the SNF of Vq(S3) are 1 [1], 1− q2 [6], (1− q2)2

[6], and (1− q2)(1− q6) [3].

2. Define a hyperplane arrangement A in R3 by the equations x = 0, y = 0, z = 0,
x − y − z = 0. We verified that its q-Varchenko matrix has an SNF over Z[q], with
diagonal entries 1 [1], 1−q2 [4], (1−q2)2 [6], (1−q2)3 [2], and (1−q2)2(1−q8) [1].

Based on the previous examples, it is natural to consider the following problem.

Problem 5.1. Do all hyperplane arrangements have SNF?
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Abstract

In this paper, we prove that a Frobenius group (except for those which are dihedral
groups) can only be the automorphism group of an orientably-regular chiral map. The
necessary and sufficient conditions for a Frobenius group to be the automorphism group
of an orientably-regular chiral map are given. Furthermore, these orientably-regular chiral
maps with Frobenius automorphisms are proved to be normal Cayley maps. Frobenius
groups conforming to these conditions are also constructed.
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1 Introduction
Maps are 2-cell embeddings of graphs in compact, connected surfaces. A flag of a map
is a topological triangle whose corners are a vertex, the midpoint of an edge incident with
the vertex, and the midpoint of a face incident to both the vertex and the edge. Thus, the
supporting surface of any map can be decomposed into flags (considered as closed discs
bounded by the triangles).
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It is well known that the automorphism group of a map acts semi-regularly on its flags.
If the automorphism group of a map is regular on the flags, then the map is called regular.
Regular maps have the largest automorphism groups, acting regularly on flags of the map.
Similarly, orientably-regular maps are maps in orientable surfaces that have the largest ori-
entation preserving automorphism groups acting regularly on darts (edges with direction).

Regular and orientably-regular maps constitute the most meaningful generalization of
the Platonic solids. Early recognition of the importance of regular maps in modern math-
ematics goes back to Kepler [12]; more recent development of the theory of maps was
closely related to the theory of map colorings, with the topic of highly symmetric maps al-
ways at the center of interest. The study of regular maps is nowadays considered one of the
‘classical’ areas of mathematics (e.g., Heffter [7], Klein [13], Dyck [5], or Burnside [3]).

A groupG acting on a setX is said to act regularly, if for any pair of elements x, y ∈ X
there exists a unique element g ∈ G mapping x to y, xg = y. In such a case, X can
be identified with the elements of G, and consequently, any mathematical structure with
an automorphism group acting regularly on its base set can be identified with the group
itself, the building blocks of the structure being identified with cosets of stabilizers of some
blocks. This identification has been used in the theory of regular and orientably-regular
maps as well and we just sum up the basics, referring for details to [11] and [2] for the
theory of maps on orientable and on general surfaces, and to [16] for a recent survey of the
theory of regular and orientably-regular maps. In all the forthcoming group presentations
we will assume that the listed exponents are the true orders of the corresponding elements.

A finite regular map M can in this way be identified with a (partial) three-generator
presentation of a finite group G, isomorphic to the automorphism group Aut(M) ofM,
of the form

G = 〈x, y, z | x2, y2, z2, (xy)2, (yz)`, (zx)m, . . .〉 (1.1)

where the dots indicate possible presence of additional relators (at least one if the carrier
surface of the map is not simply connected). In particular, all vertices ofM have degree
` and all the face boundary walks in M have length m; we will often refer just to face
length m. The pair (`,m) is the type of the regular mapM. In such a representation of
M, its flags are elements of G, the darts are (say) right cosets of the subgroup 〈x〉, while
edges, vertices and faces are right cosets of the dihedral subgroups 〈x, y〉, 〈y, z〉 and 〈z, x〉
of order 4, 2` and 2m, respectively. The three generators x, y, z correspond to involutory
automorphisms of M taking a fixed flag onto its three neighboring flags, and the three
dihedral subgroups correspond to the edge-, vertex- and face-stabilizers ofM.

We will write M = Map(G;x, y, z) to formally identify a regular map M with a
group presentation as in (1.1). The algebraic situation with finite orientably-regular maps
is similar. Each such mapM can be identified with a partial two-generator presentation of
a group H , isomorphic to the group Aut+(M) of orientation-preserving automorphisms
ofM, of the form

H = 〈ρ, λ | ρ`, λ2, (ρλ)m, . . .〉 . (1.2)

Here, elements of H represent darts ofM; right cosets of the cyclic groups 〈λ〉, 〈ρ〉 and
〈ρλ〉 represent edges, vertices and faces ofM. The generators λ and ρ, stabilizing an edge e
and a vertex v incident to e, represent a half-turn ofM about the center of e and a 2π/` turn
ofM about v in accord with a chosen orientation of the carrier surface of the map. Again,
the pair (`,m) is the type of the map, and we will use the notationM = Map(H; ρ, λ) in
this case.
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If a regular mapM = Map(G;x, y, z) is orientable (meaning that its carrier surface is
orientable),M is also orientably-regular, with Aut+(M) = 〈ρ, λ〉 for λ = xy and ρ = yz.
In fact, a regular map Map(G;x, y, z) is orientable if and only if the subgroup 〈xy, yz〉 has
index 2 inG. Reversing this line of thought, an orientably-regular mapM = Map(H; ρ, λ)
may also be regular. It happens if and only if the map admits an orientation-reversing
automorphism, which (see e.g. [16]) is equivalent to the existence of an automorphism of
H that fixes λ and inverts ρ. In such a case we call the orientably-regular mapM reflexible;
otherwise, that is, when H ∼= Aut+(M) = Aut(M), the map is called chiral.

A Cayley graph Cay(G,X) is a graph whose vertex set can be identified with the ele-
ments of a groupG generated by a setX closed under taking inverses and not containing the
identity 1G, with the pairs of adjacent vertices consisting of all pairs g, gx with g ∈ G and
x ∈ X . A graph Γ is isomorphic to a Cayley graph Cay(G,X) if and only if Aut Γ con-
tains a subgroupG acting regularly on the vertices of Γ [15]. A Cayley map is an orientable
map M that admits a group of orientation preserving automorphisms G acting regularly
on its set of vertices. Therefore, the underlying graphs of Cayley maps are Cayley graphs.
It turns out that many of the orientably-regular maps obtained in the forthcoming sections
fall in the class of Cayley maps the theory of which (without regularity assumptions) was
initiated in [14] and further developed e.g. in [8] and [4].

An orientably-regular Cayley map can therefore be distinguished by M = Map(H;
ρ, λ), where H = J〈ρ〉 for some subgroup J ≤ H such that J ∩ 〈ρ〉 = 1, vertices ofM
are right cosets of 〈ρ〉 inH , and the underlying graph ofM is a Cayley graph Cay(J, S) for
some unit-free inverse-closed generating set S of J . In the even more special instance when
J is normal in H , i.e., when H is a semi-direct product J o 〈ρ〉, we speak about a normal
(orientably-regular) Cayley map. In this case, conjugation by ρ induces an automorphism
ρ̂ of J and its restriction π = πρ̂ to S is a cyclic permutation of S. It turns out that either
all elements in S are involutions, or none of them is and then s−1 = sρ̂`/2 = ρ−`/2sρ`/2

for every s ∈ S, where ` is the order of ρ (necessarily even in this case). Moreover, since
we also know that J〈ρ〉 = 〈λ, ρ〉, the involution λ can be taken to be equal to an arbitrary
element of S in the all-involutions case, or to sρ`/2 for an arbitrary s ∈ S if no element in
S is involutory.

In our paper we address the natural question whether for a given finite Frobenius group
G there exists some orientably-regular or even regular map whose automorphism group is
G. In Section 2, we list some properties of Frobenius groups which we will refer to in
Section 3. In Section 3, necessary and sufficient conditions (Theorems 3.3, 3.5 and 3.6) for
a Frobenius group to be the automorphism group of an orientably-regular chiral map are
given. The Frobenius groups conforming to these conditions are also constructed.

2 Frobenius groups

A Frobenius group is a transitive permutation group G on a set Ω which is not regular
on Ω, but has the property that the only element of G which fixes more than one point is
the identity element. It was shown by Thompson [17, 18] that a finite Frobenius group G
has a nilpotent normal subgroup K, called the Frobenius kernel, which acts regularly on
Ω. Thus, K is the direct product of its Sylow subgroups and G is the semidirect product
K oH , where H is the stabilizer of a point of Ω. Because of the vertex transitivity of the
action, any two point stabilizers are conjugate. As a result, every point stabilizer has the
form (hk)−1H(hk) = k−1Hk = Hk for some h ∈ H and k ∈ K. Each point stabilizer is
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called a Frobenius complement of K in G, so the choice of Frobenius complement is not
unique. Because of the regularity of K acting on Ω, one may identify Ω with K such that
K acts on itself by multiplication. Moreover, Gorenstein [6, pp. 38, 339] showed that every
element of H \ {1} induces an automorphism of K by conjugation which fixes only the
identity element of K. Combining all these results we give a lemma to express the relation
between a Frobenius group and its Frobenius kernel as well as its Frobenius complements.

Lemma 2.1. Let G = K oH be a Frobenius group, where K is the Frobenius kernel and
H is a Frobenius complement. Then, G can be divided in the following two ways.

(1) G = ∪k∈KHk, where Hk1 ∩Hk2 = ∅ for any two different elements k1, k2 ∈ K;

(2) G = (∪k∈KHk) ∪K, where Hk = k−1Hk denotes the conjugation of H by k, and
Hk1 ∩Hk2 = Hk ∩K = {1} for any elements k1, k2, k in K and k1 6= k2.

Given a(several) Frobenius group(s), one can get new Frobenius groups. In the follow-
ing Lemmas 2.3 and 2.4, we give two methods to get new Frobenius groups from original
ones.

Lemma 2.2 ([19, Lemma 3.8, p. 13]). Assume A,B are two groups and B acts on A. If A
has a subgroup P which is invariant under the action ofB, (|B|, |P |) = 1 and (Pa)b = Pa
for some a ∈ A and each b ∈ B, then there is an element x ∈ Pa such that xb = x for
every b ∈ B.

Lemma 2.3. Assume G = K o H , 1 < N < K and N E G. Then G is a Frobenius
group with H as a Frobenius complement if and only if both N o H and K/N o H are
Frobenius groups with H as a Frobenius complement.

Proof. Assume G = K oH is a Frobenius group with H as a Frobenius complement. It
is obvious that N oH is a Frobenius group with H a Frobenius complement. So we only
need to show that K/N o H is a Frobenius group. If not, then there is an h ∈ H such
that h fixes some non-identity element of K/N . That is, there is an element k ∈ K but
k /∈ N such thatNk is fixed by h. ConsiderKo〈h〉. From Lemma 2.2, there is an element
x ∈ Nk which is fixed by h. It is obvious that x 6= 1, and so h fixes at least two elements
in K. This contradicts the assumption of G being a Frobenius group.

Conversely, assume both N o H and K/N o H are Frobenius groups with H as a
Frobenius complement. If G is not a Frobenius group, then there exists 1 6= k ∈ K and
1 6= h ∈ H such that kh = k. Since N oH is a Frobenius group, k /∈ N . Thus Nk 6= 1̄
in K/N . Clearly, (Nk)h = Nkh = Nk. This contradicts the assumption of K/N o H
being a Frobenius group.

Lemma 2.4. Let K1 oH and K2 oH be two Frobenius groups. Then, (K1 ×K2) oH
is a Frobenius group, where H acts on K1 × K2 by (k1k2)h = kh1k

h
2 , for any elements

k1 ∈ K1, k2 ∈ K2 and h ∈ H .

Proof. Note that each non-identity element h ∈ H fixes exactly the identity element of
K1 ×K2.

Lemma 2.5. Let G = K oH be a Frobenius group. For each g ∈ G \K, it satisfies the
following two relations:

(1) 〈g〉 ∩K = {1};
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(2) As an element in the quotient group G/K, Kg has order o(g), where o(g) denotes
the order of g in group G.

Proof. According to Lemma 2.1, there is an element k ∈ K such that g ∈ Hk. So 〈g〉 ∩
K ≤ Hk ∩ K = {1}. As a result, o(Kg) = |K〈g〉/K| = |〈g〉|/〈g〉 ∩ K| = |〈g〉| =
o(g).

Corollary 2.6. Let G = K o H be a Frobenius group. For each h ∈ H,h 6= 1 and for
each k ∈ K, the orders of h, kh and hk are equal, that is o(h) = o(kh) = o(hk).

Proof. Note that Kh = K(kh) = K(hk), so o(h) = o(kh) = o(hk) according to
Lemma 2.5(2).

Remark 2.7. If a group G = N o P is not a Frobenius group, then it may not satisfy the
results in Lemma 2.5. For example, take G = SL2(3) ∼= Q8 oZ3. Let x =

(
0 1
−1 1

)
. There

x ∈ G \Q8, o(x) = 6. But 〈x〉 ∩Q8 = 〈x3〉 6= 1 and o(Q8x) = 3 6= o(x).

3 Maps having Frobenius groups as automorphism groups
The following Lemma 3.1 will be referred to several times in this paper. The result is
known and one can prove it very quickly. But for easy reference, we give a short proof.

Lemma 3.1. Let G be a finite group. If there is an involution τ ∈ Aut(G) such that τ only
fixes the identity element of G, then τ maps each element in G to its inverse and G is an
abelian group of odd order.

Proof. According to the property of τ , one can check that G = {g−1gτ | g ∈ G}. Clearly
(g−1gτ )τ = (g−1gτ )−1. It follows that τ maps each element in G to its inverse. So, for
any two elements a, b ∈ G, one can get (ab)τ = b−1a−1 = aτ bτ = a−1b−1. That is to
say, G is an abelian group. Since τ only fixes the identity element of G, the group G does
not have involutions. Thus, G is of odd order.

If a ∈ L, then we use 〈a〉L to denote the group generated by the elements x−1ax for
x ∈ L.

Theorem 3.2. Other than dihedral groups of order 2n for any odd integer n, Frobenius
groups cannot be the automorphism groups of regular maps.

Proof. Let G = K oH be a Frobenius group. If G can be the automorphism group of a
regular map, then G has the following generating relations:

G = 〈x, y, z | x2, y2, z2, (xy)2, (yz)k, (zx)m, . . .〉,

where 2, k,m are the true orders of xy, yz and zx, respectively. As G/K = 〈Kx,Ky,
Kz〉 ∼= H , |H| is even. By Lemma 3.1, K is an abelian group of odd order and H has a
unique involution. Consequently, H ∼= Z2. Moreover, H is a Sylow-2 subgroup of G.

It is easy to see that 〈x, y〉 is a 2-group. So |〈x, y〉| ≤ |H| = 2. Thus 〈x, y〉 = 〈xy〉.
It follows that x = 1 or y = 1. In either case, G is a dihedral group of order 2n for some
odd integer n. In this situation, the map is an embedding of a semi-star of valency n in
the sphere or the disc, or the dual of the latter, an embedding of a circuit of length n in the
boundary of the disc. It is obvious that these two infinite families of maps are reflexible with
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their full automorphism groups being the dihedral groups of order 2n. Apart from these two
infinite families of maps, the only other possibilities for Frobenius automorphism groups
are orientably-regular chiral maps.

According to Theorem 3.2, we only need to concentrate on Frobenius groups which can
be automorphism groups of orientably-regular chiral maps. There are several well-known
infinite families of examples of these, such as the embeddings of complete graphs Kn [9],
Paley graphs, and generalized Paley graphs [10]. In the following Theorem 3.3, we will
give the necessary conditions that a Frobenius group G = K oH should satisfy to be the
automorphism group of an orientably-regular chiral map.

Theorem 3.3. Let G = K oH be a Frobenius group. If G = 〈ρ, λ | ρk, λ2, (ρλ)m, . . .〉,
k,m ≥ 3, is the automorphism group of an orientably-regular chiral mapM = Map(G;
ρ, λ), then one of the following two cases will happen.

(1) H is a cyclic group of even order and K is an abelian group of odd order. There are
two subcases corresponding to the parity of k.

(1.1) If k is even, then H ∼= Zk and

m =

{
k
2 , if k ≡ 2 (mod 4),

k, if k ≡ 0 (mod 4).

Moreover, the mapM is an orientably-regular normal Cayley map ofK. When
k ≡ 2 (mod 4), M has |G|k vertices, |G|2 edges, 2|G|

k faces and the genus of
the corresponding orientable surface is 1 − |G|(6−k)4k ; when k ≡ 0 (mod 4),
M has |G|k vertices, |G|2 edges, |G|k faces and the genus of the corresponding
orientable surface is 1− |G|(4−k)4k .

(1.2) If k is odd, then H ∼= Z2k and m = 2k. The mapM is an orientably-regular
normal Cayley map of a group isomorphic to K oZ2. In this situation,M has
|G|
k vertices, |G|2 edges, |G|2k faces, so the genus of the corresponding orientable

surface is 1− |G|(3−k)4k .

(2) H is a cyclic group of odd order and H ∼= Zk, K is a 2-group and m = k. In this
situation,M is an orientably-regular normal Cayley map ofK. The mapM has |G|k
vertices, |G|2 edges, |G|k faces and the genus of the corresponding orientable surface
is 1− |G|(4−k)4k .

Proof. (1): If |H| is even, then there is an involution in Aut(K) which only fixes the
identity element. So, K is an abelian group of odd order by Lemma 3.1. In this case,
λ /∈ K and so o(Kλ) = 2 in the quotient group G/K. Note that ρ /∈ K. Otherwise, by
Corollary 2.6 one can get o(ρλ) = o(λ) = 2, that is m = 2. So, o(Kρ) = o(ρ) = k
by Lemma 2.5. According to Lemma 3.1, there is only one involution in H ∼= G/K =
〈Kρ,Kλ〉, so Kλ belongs to the center of G/K which is therefore abelian.

(1.1): If k is even, then Kλ ∈ 〈Kρ〉. So, 〈Kρ,Kλ〉 = 〈Kρ〉 and H ∼= Zk. According
to Lemma 2.1, one can assume H = 〈ρ〉 and λ = aρ

k
2 for some non-identity element

a ∈ K without loss of generality. The vertices of M can be looked as the cosets of H .
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Therefore, K acts regularly on the vertices ofM which implies thatM is an orientably-
regular Cayley map of K. Now, we know that Aut(M) = K o 〈ρ〉. So,M is normal and
from the construction method ofM from G, one can get the corresponding Cayley subset
{a, aρ, aρ2 , . . . , aρk−1}. In this case, K = 〈a〉H .

Since Kλ = Kρ
k
2 , KρKλ = Kρ

k
2+1. If k ≡ 2 (mod 4), then m = o(ρλ) =

o(KρKλ) = o(Kρ
k
2+1) = k

2 . The type ofM is (k, k2 ). Moreover,M has |G|k vertices,
|G|
2 edges, 2|G|

k faces and the genus of the corresponding orientable surface is 1− |G|(6−k)4k .
If k ≡ 0 (mod 4), then m = k and consequently the type of M is (k, k). And M has
|G|
k vertices, |G|2 edges, |G|k faces and the genus of the corresponding orientable surface is

1− |G|(4−k)4k .
(1.2): If k is odd, thenKλ belongs to the center ofG/K which is therefore abelian. So,

〈Kρ,Kλ〉 = 〈KρKλ〉 and as a resultH ∼= Z2k. Because ρ /∈ K, according to Lemma 2.1,
we may assume ρ ∈ H and H = 〈ρ̃〉 with ρ = ρ̃2. As a result, λ = aρ̃k for some non-
identity element a ∈ K. Because λρ = aρ̃k+2, it follows thatm = o(λρ) = o(ρ̃k+2) = 2k
according to Lemma 2.6. The type ofM in this subcase is therefore (k, 2k).

Let H̃ = 〈ρ〉 be the index two subgroup of H and K̃ = Ko 〈ρ̃k〉 ∼= KoZ2. It is clear
that G = K̃ o H̃ . Now, λ ∈ K̃ and so we have the relations G = 〈ρ, λ〉 ≤ 〈λ〉〈ρ〉〈ρ〉 ≤
K̃H̃ = G. Therefore, K̃ = 〈λ〉H̃ .

The vertices ofM can be looked as the cosets of H̃ . Therefore, K̃ acts regularly on the
vertices ofMwhich implies thatM is an orientably-regular normal Cayley map of K̃ with
corresponding Cayley subset {λ, λρ, λρ2 , . . . , λρk−1}. In this case,M has |G|k vertices, |G|2
edges, |G|2k faces, so the genus of the corresponding orientable surface is 1− |G|(3−k)4k .

(2): If |H| is odd, then λ ∈ K and so H ∼= G/K = 〈Kρ〉 is cyclic. Similar to (1.1),
we can assume H = 〈ρ〉 andM is an orientalby-regular normal Cayley map of K with the
corresponding Cayley subset {λ, λρ, . . . , λρk−1}. Also in this case K = 〈λ〉H . It is known
that K is nilpotent, so the Sylow-2 subgroup P of K is a characteristic subgroup of G.
Note that G = 〈λ, ρ〉 = 〈λ〉G〈ρ〉 ≤ P o 〈ρ〉 ≤ K o 〈ρ〉. So, K = 〈λ〉G = P is a 2-group.
According to Corollary 2.6, o(ρλ) = o(ρ) = k and so the type ofM is (k, k). The mapM
has |G|k vertices, |G|2 edges, |G|k faces and the genus of the corresponding orientable surface
is 1− |G|(4−k)4k .

In the proof of Theorem 3.3, for a Frobenius group G = K o H that can be the
automorphism group of an orientably-regular chiral map, we have described the relations
between K and H . To be more clear, we rewrite these relations in Corollary 3.4.

Corollary 3.4. Let G = K oH be a Frobenius group. If G = 〈ρ, λ | ρk, λ2, (ρλ)m, . . .〉
is the automorphism group of an orientably-regular chiral map Map(G; ρ, λ), then one of
the following three cases will happen:

(1) k is even, H = 〈ρ〉 ∼= Zk, K is an abelian group and K = 〈λρ k
2 〉H ;

(2) k is odd, H ∼= Z2k, K is abelian and G = K̃ o H̃ , where K̃ ∼= K o Z2, H̃ = 〈ρ〉
is the index two subgroup of H and K̃ = 〈λ〉H̃ ;

(3) k is odd, H = 〈ρ〉 ∼= Zk and K = 〈λ〉H is a 2-group.

In the following Theorems 3.5 and 3.6, we will show that a Frobenius group whose
Frobenius kernel and Frobenius complement conforming to the conditions in Corollary 3.4
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can be the automorphism group of an orientably-regular normal Cayley map which implies
that the conditions are also sufficient.

Theorem 3.5. Let G = K oH be a Frobenius group, where K is abelian and K = 〈x〉H
for some x ∈ K,H = 〈y〉 is cyclic of order 2n, n ≥ 2. Then, there is an orientably-regular
normal Cayley mapM such that G = Aut(M) and the type ofM is

(k,m) =

{
(2n, n) or (n, 2n), if n is odd,
(2n, 2n), if n is even.

Proof. Let ρ = y, λ = xyn. Then G = 〈ρ, λ〉. It is clear that o(ρ) = 2n, o(λ) = 2,
o(ρλ) = n if n is odd and o(ρλ) = 2n if n is even. So, G is the automorphism group of an
orientably-regular mapM of type (2n, n) or (2n, 2n) depending on whether n is odd or
even. Because H = 〈y〉 = 〈ρ〉, it follows that the vertex set consists of the cosets of H in
G. So, K acts regularly on the vertex set ofM and as a resultM is an orientably-regular
normal Cayley map of K.

When n is odd, if we set ρ = y2, λ = xyn, then o(ρ) = n, o(λ) = 2 and o(ρλ) = 2n.
We claim that G = 〈ρ, λ〉. Set Q = 〈ρ, λ〉, then Q = 〈y2, xy〉 because n is odd. From
the requirement of n ≥ 2, we have y2 6= 1 and so CK(y2) = 1 in the Frobenius group G.
A calculation shows that the commutator [y2, x−1] = (xy)y

2

(xy)−1 ∈ Q. Also, [y2, x−1]
belongs to K. Note that K is abelian. We have

Q ≥ [y2, x−1]〈xy〉 = [y2, x−1]K〈xy〉 = [y2, x−1]K〈y〉

= [y2, x−1]〈y〉 = 〈[y2, (x−1)g] | g ∈ 〈y〉〉.

Define a function σ : K → K such that bσ = [y2, b] for each b ∈ K. Now,

(b1b2)σ = [y2, b1b2] = [y2, b2][y2, b1]b2 = [y2, b1][y2, b2] = bσ1 b
σ
2 .

From CK(y2) = 1, one can get σ ∈ Aut(K). Therefore,

〈[y2, (x−1)g] | g ∈ 〈y〉〉 = 〈((x−1)g)σ | g ∈ 〈y〉〉 = (〈x−1〉〈y〉)σ = Kσ = K.

So, K ≤ Q and 〈xy〉K ≤ Q. Consequently, Q = G. Let K̃ = K o 〈yn〉 and H̃ = 〈ρ〉.
Then, K̃ ∼= K o Z2, H̃ is the index two subgroup of H and G = K̃ o H̃ . Therefore,
G is the automorphism group of an orientably-regular normal Cayley map of K̃ of type
(n, 2n).

Theorem 3.6. LetG = KoH be a Frobenius group, whereK is a 2-group andK = 〈x〉H
for some involution x ∈ K, H = 〈y〉 is cyclic of order n for some odd integer n. Then,
there is an orientably-regular normal Cayley mapM such that G = Aut(M) and the type
ofM is (n, n).

Proof. Let ρ = y, λ = x. Then G = 〈ρ, λ〉. It is clear that o(ρ) = n, o(λ) = 2, o(ρλ) = n.
So, G is the automorphism group of an orientably-regular mapM of type (n, n). Because
H = 〈y〉 = 〈ρ〉, it follows that the vertex set consists of the cosets of H in G. So, K acts
regularly on the vertex set ofM and as a resultM is an orientably-regular normal Cayley
map of K.
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Corollary 3.7. Let K1 o H and K2 o H be Frobenius groups, where K1 = 〈x1〉H ,
K2 = 〈x2〉H are both abelian groups whose orders are coprime with each other, H ∼= 〈y〉
and o(y) = 2n for some integer n ≥ 2. Then, the following two results follow from
Lemma 2.4 and Theorem 3.5.

• (K1 × K2) o H is a Frobenius group, K1 × K2 = 〈x1x2〉H and for each a1 ∈
K1, a2 ∈ K2, b ∈ H the element b acts on a1a2 in the way (a1a2)b = ab1a

b
2,

• (K1 ×K2) oH is the automorphism group of an orientably-regular normal Cayley
map.

According to Theorem 3.5 and Corollary 3.7, one may concentrate on Frobenius groups
whose Frobenius kernels are p-groups and satisfy the conditions in Theorem 3.5. Now, we
want to give an example of Frobenius groups satisfying the conditions in Theorem 3.5.

In a finite group G, for each element g ∈ G we use CG(g) to denote the centralizer of
g in G, that is CG(g) = {h ∈ G | hg = gh}.

Example 3.8. Let K = 〈a1〉 × 〈a2〉 × · · · × 〈ad〉, where o(ai) = pei , p is an odd prime
number and these positive integers ei, 1 ≤ i ≤ d, satisfy e1 ≥ e2 ≥ · · · ≥ ed. Let
H ∼= Zk = 〈b〉 for some positive even integer k satisfying k | p − 1. Assume d ≤ φ(k),
where φ is the Euler’s totient function, ti is a positive integer such that ti + peiZ is an
element in Z∗pei of order k and ti + pZ 6= tj + pZ for any 1 ≤ i 6= j ≤ d. Set G = KoH ,
where abi = atii , then G is a Frobenius group. Take a =

∏d
i=1 ai, then

K = 〈a〉H = 〈a, ab, . . . , ab
d−1

〉.

Proof. To show that G is a Frobenius group, we only need to show that for each element
y ∈ H \ {1}, the equality CK(y) = 1 holds. Suppose x =

∏d
i=1 xi ∈ CK(y), where

xi ∈ 〈ai〉. It is obvious that
∏d
i=1 xi =

∏d
i=1 x

y
i . From the defining relation abi = atii ,

then 〈ai〉 is an H-invariant subgroup, and so xi = xyi for each i. That is xi ∈ C〈ai〉(y).
While y is a power of b and the action of b on 〈ai〉 has only one fixed point, that is the
identity of 〈ai〉, so C〈ai〉(y) = 1.

For each 1 ≤ ` ≤ d− 1, ab
`

=
∏d
i=1 a

t`i
i . If we look at the determinant∣∣∣∣∣∣∣∣∣

1 1 · · · 1
t1 t2 · · · td
...

...
...

...
td−11 td−12 · · · td−1d

∣∣∣∣∣∣∣∣∣
in the finite field Fp, then from the choices of ti this is a non-zero Vandermonde determi-
nant. As a result,

a+ Φ(K), ab + Φ(K), . . . , ab
d−1

+ Φ(K)

is a basis of the linear space K/Φ(K), where Φ(K) is the Frattini subgroup of K. From
the Burnside basis theorem, the result K = 〈a, ab, . . . , abd−1〉 follows.

Corollary 3.9. Let K and H be groups in Example 3.8. Then, the Frobenius group G =
K oH is the automorphism group of an orientably-regular normal Cayley map described
in Theorem 3.5.
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Lemma 3.10. LetA be a group,B be a subgroup ofA of index 3, and each a ∈ A\B, a3 =
1. Then, [b, ba] = 1 for any b ∈ B, a ∈ A \B.

Proof. Note that if b ∈ B and a ∈ A \ B, then ba ∈ A \ B. So, (ba)3 = 1 and
bab = a−1b−1a−1. The commutator [b, ba] = b−1a−1b−1aba−1ba = b−1(a−1b−1a−1) ·
(a−1ba−1)ba = b−1(bab)(b−1ab−1)ba = a3 = 1.

Corollary 3.11. Let G = K o H be a Frobenius group. If G satisfies the following two
conditions:

(1) G can be generated by two elements,

(2) H ∼= Z3,

then K is abelian. Moreover, if G is the automorphism group of an orientably-regular
map, then K is isomorphic to the Klein group K4 and G is isomorphic to the alternating
group A4.

Proof. Assume G = 〈a, b〉 and a /∈ K. By Lemma 2.1 and Corollary 2.6, a3 = 1 and so
G = K∪Ka∪Ka2. As a result, one of the three elements b, ba−1, ba−2 must belong toK.
Suppose b ∈ K, thenG = 〈a, b〉 = 〈a〉〈b〉G ≤ 〈a〉K = G. Because 〈a〉∩K = 1, it follows
that K = 〈b〉G. While 〈b〉G = 〈b, ba, ba2〉, so K is abelian according to Lemma 3.10.

If G is the automorphism group of an orientably-regular map, then without loss of
generality we can assume H ∼= 〈a〉. So, K = 〈b, ba, ba2〉 is a 2-group according to Theo-
rem 3.3. The fact of K being abelian implies that the rank d(K) of K satisfies d(K) ≤ 3.
Therefore, K ∼= Zd(K)

2 . Moreover, from 3 | |K| − 1, one can get d(K) = 2 and K is
isomorphic to K4 and G ∼= A4.

Remark 3.12. In Corollary 3.11, the condition K = 〈b〉H for some element b ∈ K is
necessary. In fact, one may check the list of small groups to find SmallGroup(192, 1023)
in MAGMA [1] to get a Frobenius group satisfying K = 〈a, b〉H for two different elements
a and b of K, H ∼= Z3, but K is not abelian.

According to Theorem 3.3, if the Frobenius group G = K o H is the automorphism
group of an orientably-regular map and |H| is odd, thenK is a 2-group. By Corollary 3.11,
in order to find a non-abelian 2-group as the Frobenius kernel, the smallest order of the
Frobenius complement is 5.

Theorem 3.13. Let G = K oH be a Frobenius group. If K is a non-abelian 2-group, H
is a cyclic group of odd order and G is the automorphism group of an orientably-regular
map, then the group G of the smallest order is SmallGroup(1280, 1116310) in MAGMA.

Proof. Since K is a non-abelian 2-group, its commutator subgroup K ′ is non-trivial and is
a proper subgroup ofK. Set |H| = n. BecauseK/K ′oH andK ′oH are both Frobenius
groups, n | (|K/K ′| − 1) = 2n1 − 1 and n | (|K ′| − 1) = 2n2 − 1 for some integers n1
and n2. According to Corollary 3.11, n is an odd integer but n 6= 3.

If n = 5, then the smallest choices of n1, n2 are 4 and in this case |G| = 28 × 5. The
Frobenius group satisfying these conditions really exists. It is SmallGroup(1280, 1116310)
in the list of groups in MAGMA.

We claim that no Frobenius groups of order less than 28× 5 with non-abelian 2-groups
as Frobenius kernels, cyclic groups of odd orders as Frobenius complements, exist that can



H.-P. Qu, Y. Wang and K. Yuan: Frobenius groups which are the automorphism groups of . . . 373

be automorphism groups of orientably-regular maps. Otherwise, suppose a group G =
〈ρ, λ | ρn, λ2, . . .〉 satisfies these conditions. Then, n = 7, n1 = n2 = 3 and |G| =
26 × 7 = 448. It is SmallGroup(448, 1394) in the list of groups of MAGMA. But, its
Frobenius kernel is abelian which is a contradiction.
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mann’scher Flächen, Math. Ann. 17 (1880), 473–509, doi:10.1007/bf01446929.

[6] D. Gorenstein, Finite Groups, Harper & Row, New York-London, 1968.

[7] L. Heffter, Ueber metacyklische Gruppen und Nachbarconfigurationen, Math. Ann. 50 (1898),
261–268, doi:10.1007/bf01448067.
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