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Abstract. In this paper fault detection and isolation schemes using an extended Luenberger observer for non-linear systems and 
linear fault sensitive filters are presented. The idea is to implement both approaches on the same plant, achieve on-line fault 
detection and show some practical issues related to on-line fault detection implementation on a real laboratory plant, where for 
evaluation of residuals and fault isolation an adaptive threshold together with Boolean decision logic is used. FDI methods tested 
in this paper were performed on a most popular case study, namely the three-tank system, which has in our case an unusual 
structure as the inflow to the tanks is mounted at the bottom of the tanks and contributes to additional non-linear behaviour. On-
line data acquisition was realized by local controller using Ethernet communication and OPC interface, and FDI schemes were 
performed in the Matlab/Simulink environment. The implemented fault detection schemes proved themselves well even when 
small abrupt changes/faults were generated in the real process. 
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Sprotno odkrivanje in izolacija napak z uporabo analitične 
redundance

Povzetek. V prispevku predstavljamo shemo odkrivanja in 
izolacije napak z linearnim in nelinearnim pristopom. Na 
laboratorijskem procesu smo realizirali metodo z razširjenim 
Luenbergerjevim opazovalnikom in filtri, občutljivimi na 
napake. Za sklepanje o napakah smo preizkusili fiksni in 
adaptivni prag v kombinaciji z Boolovo logiko, sheme pa 
izvedli na laboratorijskem testnem sistemu (modelu treh 
posod) s specifično strukturo, saj je izveden dotok v posode na 
dnu, kar vnese v proces dodatne nelinearnosti. Z uporabo 
lokalnega krmilnika, vmesnika OPC in komunikacije Ethernet 
smo sproti zajemali podatke v okolje Matlab/ Simulink, kjer je 
bil izveden algoritem odkrivanja in izolacije napak. Izvedene 
sheme so se izkazale za ustrezne tako pri večjih kot pri 
manjših napakah, nastalih v procesu. 
 
Ključne besede: opazovalniki, odkrivanje in izolacija 
napak, hidravlični modeli.  

1 Introduction 
 The area of fault detection and isolation (FDI) has 
undergone considerable development in the last few 
years [8], leading to a wide variety of model-based 
approaches. Still, the concept of analytical redundancy 
remains unchanged: deviation between values of 
measured system inputs and outputs and its model-
based computed inputs and outputs generates fault 

indicators called residuals. The goal of the fault-
detection algorithm is to produce such residuals that are 
sensitive only to a single fault, thus ensuring fault 
isolation in the system. This can be achieved by using 
many developed techniques [1], [2], [3], [5], however an 
adequate model of the system must be obtained first. 
 Deriving an adequate model for a part of the modern 
production plant requires a lot of effort, since the 
processes are usually of a large scale and complex, 
running with a large number of measured signals. Such 
derived models are non-linear, implicit with respect to 
the set of output signals and reflect the static and 
dynamic properties of the system in the whole range of 
operation. Furthermore, their non-linear nature and 
usually a closed-loop control can cause problems with 
detection and isolation of certain faults in the system. 
Nevertheless, many non-linear FDI approaches based on 
non-linear models have been developed, however only 
few of them are really applicable and can not be simply 
put into practice. For that reason, the use of linear 
models has been preferred in practice and in many cases 
they still offer satisfying results. The idea of this paper 
is to implement both approaches on the same plant, 
achieve on-line fault detection and show some practical 
issues related to on-line fault detection implemented on 
a real laboratory plant.  
 The paper is structured as follows: theory on 
deriving model-based fault detection and isolation using 
an extended Luenberger observer for nonlinear systems 
and linear fault sensitive filters is presented in the 
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second chapter. In the third, an adaptive threshold for 
evaluation of residuals and fault isolation together with 
Boolean decision logic is described. Both on-line FDI 
schemes were successfully implemented to a laboratory 
three-tank plant which is described in chapter four. The 
obtained experimental results are presented and 
evaluated in the end. 
 

2 Fault detection using analytical 
redundancy 

 Faults in technical processes are unavoidable. 
Different approaches in the time or frequency domain 
have been proposed to realize the fault detection, 
isolation and diagnostic task. In the case of a known 
model structure, the problem reduces mainly to an 
appropriate selection of experimental conditions and 
detection algorithm with respect to the faults to be 
identified [7]. Unfortunately, the industrial cases are 
usually limited and may not be allowed at all to 
manipulate a system in the production mode. Also the 
use of linear approaches is limited if the system is 
strongly non-linear [8]. 
 In order to evaluate which of the FDI approaches are 
more suitable to implement to our laboratory plant from 
the engineering point of view, a non-linear and linear 
approach were tested. The tested FDI schemes were an 
extended Luenberger observer and fault-sensitive filters. 
 
2.1 Extended Luenberger observer for non-linear 

systems 

One should consider that many industrial processes are 
of a non-linear nature and thus can be described in the 
form below (1): 
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where x(t) is the state, u(t) is the input of the system, y(t) 
is the output of the system, θf represents the actual 
system parameters of the failure-free case, θfs represents 
parameters in the output equation and θd is the un-
modeled dynamics of the plant. When there are no faults 
present in the process, the above parameters are denoted 
as: θf0 and θfs0 respectively.  
 To overcome the problem of model uncertainties, a 
design of the nonlinear unknown input observers can be 
performed, still the task is in many cases non-trivial. 
One way to overcome this problem is to employ 
linearization-based approaches, but on the other hand it 
is known, that this solution works well only when there 
is no large mismatch between the linearized model and 
the non-linear behaviour of the system. 
 An alternative approach was a synthesis of an 
extended Luenberger observer for non-linear systems, 
where:  

ˆ ˆ,x y are estimated values, , ,x y um m m are measured 
values 
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The residuals are, as a matter of fact, differentiating 
filters with respect to the fault signal, where K
represents the vector of parameters, experimentally 
obtained to achieve proper behaviour of the observer, 
and has to fulfill two tasks. Firstly, it determines the cut-
off frequency of the filter. The noise is better suppressed 
with the lower cut-off frequency but the fault effect 
becomes slower visible; the detection algorithm should 
not become too stiff. Secondly, the parameters set the 
steady-state gain of the time derivative of the fault 
signal. That means the effect of a fault on the residual is 
bigger with smaller values of the components of vector 
K. Finally, a trade-off between robustness to un-
modelled dynamics, parameter uncertainties, sensitivity 
to slow arising faults and proper detection of abrupt 
changes must be achieved.  
 
2.2 Fault-sensitive filters 

 The theory of fault-sensitive filters assumes linear, 
time-invariant process model written in the state-space 
form. One can simply construct the fault-sensitive filters 
if the system is fully measurable and the state variables 
x can be uniquely expressed as a linear combination of 
the system outputs y. From the observability point of 
view, all states are directly measurable and the output C
matrix is actually a unit matrix I. To obtain the fault 
sensitive filters, one has to derive an observer with such 
parameters, to be able to detect and localize parameter 
changes.  
 According to Figure 1, the only possibility to define 
the feedback matrix H, is that the residuals r offer a 
unique inference of possible faults. Therefore, if a 

Figure 1. Full-order observer. 
Slika 1: Shema opazovalnika polnega reda 
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change of parameters and output faults occurs, the faults 
should be properly described. While the fault vector f is 
not known, its influence can be modelled in the state-
space form of the model. 
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If matrix C is considered to be regular, and Rank 
(C)=n, then n linear independent fault vectors can be 
formed. An output error is denoted as the residual: 
 

ˆr y y= − (4) 
 

Then the residual gets the following form: 
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There are n linear independent vectors available. If 
one needs more fault vectors (linear combinations), the 
system matrix of the residuals 1C A C C H−⋅ ⋅ − ⋅ has to be 
diagonal and stable, fast and equal eigenvalues λ have 
to be chosen in order to obtain uniquely distinguishable 
residuals: 

1C A C C H Iλ−⋅ ⋅ − ⋅ = ⋅ (6) 
 

In that way the residuals become independent one 
from another and depend only on input and output 
signals.  
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A faulty signal is filtered with 1/(s-λ) and affects the 
residuals in accordance with the output matrix C and 
fault matrix Bf and Df.. In addition, each element of the 
residual has the same dynamics and declination, but not 
the value of the fault. Therefore, a weight matrix W can 
be derived to achieve insensibility of a residual to 
certain fault. However, there are certain cases, when 
rows of Bf and Df are linearly independent and one can 
isolate multiple faults. The eigenvalues need to be 
chosen negative and smaller than the smallest process 
eigenvalue. In that way the high-frequency noise can be 
supressed. Nevertheless, λ affects the amplification of 
the residuals and needs to fulfill two tasks. Firstly, it 
defines the boundary frequency of the filter; the lower it 
is the better the noise is suppressed, however residuals 
become stiff. Secondly, λ defines the gain of the signal 
derivations, meaning that the influence of a fault on the 
residuals increases with smaller value λ.

3 Adaptive threshold function 
 Although unknown, the faults are assumed to be 
deterministic. Assuming that the noise has a zero mean, 

the residuals have a time–varying mean contributed 
entirely by the faults and due to the actual difference 
between the model and real process; therefore they 
never have the zero mean value. This ca be overcome 
by setting the threshold levels correspondingly higher or 
by using an adaptive threshold function. 
 Using the adaptive threshold as an alternative to the 
fixed one, or to another fault-isolation method [6] can 
sometimes significantly improve operation of the FDI 
scheme as it takes noise and model uncertainty into 
account. Incomplete knowledge about the process 
behaviour, disturbances and deviations, present 
unknown inputs to the system and can cause significant 
FDI problems. If the values of the threshold depend on 
the input process variable variations, problems caused 

by the unknown inputs can be overcome. Figure 2 
presents an adaptive threshold scheme, where inputs are 
driven by the system inputs. Function r'(u) transforms 
process inputs (Q1(t), Q2(t)) into residuals, where input 
signals affect the residuals and only then the adaptive 
threshold really depends on disturbances and un-
modelled dynamics in the same way as the residuals do. 
Using a filter in addition, presents elimination of the 
mean value and sets the dynamics dependency of the 
input signals. The signal is then directed. This enables 
also a negative change of the input signal to influence 
the threshold. The c value is added to overcome the 
noise.  
 There are three parameters to be defined: Td, Ti and 
c. Ti was chosen in accordance with the limit frequency 
of the process. The ratio Td/Ti=10 was chosen since it 
offered promising results [10], [11]. The constant c was 
chosen by measurement of the maximum value of the 
noisy residual (|r|max) when no faults were present. 
When Gaussian distribution of the stochastic noise is 
assumed, the standard deviation can be written as: 
 

max

1
3r rσ ≈ ⋅  (8) 

 

The threshold c=k⋅σr is defined by using the Chebyshev 
inequality: 

( ) 2

1( ) 1r rP k r t k
k
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By choosing k=4 [4], the 93.75 % probability that no 
false alarm will be triggered in a fault-free case is 
achieved. 

Figure 2. Adaptive threshold function. 
Slika 2: Shema prilagodljivega praga 
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4 Implementation of FDI schemes to a 
three-tank laboratory plant 

 The process flowsheet of the three-tank laboratory 
plant is depicted in Figure 3. The upright tanks T1 and 
T2 are mounted above the tank T3, hence, the inflow of 
the upper tanks also depends on the level (hydrostatic 
pressure) in the tanks T1 and T2, respectively (the pumps 
P1 and P2 are not an ideal generator to the system). The 
outlet pipes are mounted at the bottom of the tank T3,
hence the amount of water in tank T3 affects the outlet 
and the inlet flow of the tanks T1 and T2. The nonlinear 
model was derived from the mass balance equations 
considering the Torricelli’s rule. The model can be 
conveniently represented as: 

 

1
1 1 21 11

dhA q q q
dt

= − −

2
2 2 21 22

dhA q q q
dt

= + − (10) 

3
3 22 11 1 2

dhA q q q q
dt

= + − −

Where Ai denotes cross-section of the tank, hi level 
in the tank and qij tank volume inflow or outflow, 
respectively. The medium in the tanks is fluid, which is 
taken as ideal and uncompressible, therefore the specific 
density of the medium can be neglected (V denotes 
volume, g denotes gravity constant). 
 

in out
dV dhq q A
dt dt

− = =  (11) 

 
The outlet of the tank is defined by: 
 

( ) 2ij V i Vi i j i jq S k sign h h g h h= ⋅ ⋅ − ⋅ ⋅ ⋅ − (12) 
 

From Eq. (12) it is obvious that the process is of a 
non-linear nature and (10) describes the non-linear 
model of the laboratory plant. 
 Although the process may not represent a full 
production-type industrial plant, it exhibits 

characteristics that are common in nature (non-
linearities, multiple inputs and outputs, noisy 
measurements, etc).  
 For both schemes the table of possible faults that 
could be brought about in the process, were put down 
(Table 1). The faults had to be modelled properly and 

then included in model equations. In the presented paper 
only some of them were used to test functionality and 
performance of FDI schemes. 
 The Df matrix takes into account that the third state 
variable (level h3) is not being measured but calculated 
from the mass (volume) balance of the system. 
 

1 1 2 2
3

3
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A

− ⋅ − ⋅= (13) 

 

From (13) follows that the »measured« value of h3, h3m 
is indeed affected by fh1 and fh2:

1 2
3 3 1 2

3 3
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A A
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The obtained residuals are functions of described faults: 
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Where
ihf denotes the faults of level sensors and 

iPf
denotes the faults of the pumps, respectively. In the end, 
one must form a weight matrix W to obtain a complete 
isolability of the faults. The following dependencies to 
the faults were chosen: 
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Where 'r W r= ⋅ and finally (16) gives the following 
isolation matrix: 
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Figure 3. Three-tank laboratory plant and data acquisition. 
Slika 3: Laboratorijski model treh posod in zajem podatkov 

Fault Fault description Group 
fh1 Bias of the level 1 (h1) sensor Sensor fault 
f h2 Bias of the level 2 (h2) sensor Sensor fault 
f V1 Clog of the V1 valve Component fault 
f V21 Clog of the V21 valve Component fault 
f V2 Clog of the V2 valve Component fault 
f Q1 Leakage of tank 1 Component fault 
f Q2 Leakage of tank 2 Component fault 
f Q3 Leakage of tank 3 Component fault 
f P1 Clog in pump/pipeline 1 Actuator fault 
f P2 Clog in pump/pipeline 2 Actuator fault 

Table 1. List of possible faults in the process. 
Tabela 1: Seznam možnih napak v procesu 
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4.1 Data acquisition 

 By implementing FDI methods to a real process one 
must consider that results highly depend on quality of 
data acquisition and data extraction from the noise 
correlated signals. In order to set up an optimally 
modern real industrial environment, an OPC standard 
(OLE for Process Control) was used. The laboratory 
model was controlled locally by a PLC and touch-screen 
display, while the process variables (inputs and outputs 
of the model) and FDI schemes were processed in 
Matlab/Simulink software. Communication between 
PLC and PC (Matlab) was realized by the TCP/IP 
protocol, PLC’s OPC server and Matlab’s OPC client.  
 The sampling time was due to limitations of the 
OPC server limited to 100 mS. In order to achieve soft 
real-time, the Simulink’s time was locked to the OPC 
data acquisition time of 100 mS by a real-time 
simulation block capable of monitoring and reserving 
the CPU time for execution of the FDI scheme. The 
simulation time was then identical to the real-process 
operation time. [9] 
4.2 Detection of faults using derived FDI schemes 

 The performance of the FDI schemes was evaluated 
by several fault cases introduced to the three-tank 
laboratory plant. The following faults were introduced: 
fh1 and fh2 – displacement of the level sensors (they were 

separately displaced for approximately 2-4%, and fP1
and fP2 – pipeline of the pumps P1 and P2 were partially 
clogged. All tested faults were abruptly brought about r1' r2' r3'

fh1 1 0 1
fh2 0 1 1
fP1 1 1 1
fP2 1 1 0

Table 2. Isolation (incidence) matrix. 
Tabela 2: Izolacijska (incidenčna) matrika 
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Figure 4. Residuals at small displacement of the level 1 sensor 

between 150 and 165 seconds. 
Slika 4:   Potek residuumov pri majhni prestavitvi senzorja  
 nivoja v prvi posodi med 150 in 165 sekundami 
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Figure 5. Residuals at small displacement of the level 2 sensor 

between 200 and 215 seconds. 
Slika 5:   Potek residuumov pri majhni prestavitvi senzorja  
 nivoja v drugi posodi med 200 in 215 sekundami 
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Figure 6. Pipeline of the pump P1 was partially clogged 
 between 60 and 175 seconds. 
Slika 6:   Potek residuumov pri zamašitvi dovoda v prvo 
 posodo med 60 in 175 sekundami 
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Figure 7. Pipeline of the pump P2 was partially clogged 
 between 90 and 150 seconds. 
Slika 7:   Potek residuumov pri zamašitvi dovoda v drugo 
 posodo med 90 in 150 sekundami 
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and no multiple faults were predicted or tested. The 
situation in Figure 4 is clear as level h1 (being actually a 
faulty signal) enters all three equations of the model and 
thus generates residuals, derived from that model. When 
the same fault is introduced to the level sensor 2, a 
similar result appears. That means that in this case those 
two failures can be uniquely identified without 
acquiring additional symptoms of the system. The 
matrix W causes the residuals r2 and r1 to be unaffected 
by the faults fh1 and fh2 respectively. 
 

5 Conclusion 
 In this paper the use and implementation of a non-
linear and linear FDI scheme is presented on a 
laboratory process plant. The schemes were realized in 
Matlab/ Simulink by Ethernet TCP/IP communication, 
which is becoming more and more used in industrial 
environments and together with the OPC standard 
present a powerful communication solution. 
 Firstly, the FDI scheme was performed with no 
linearization, as the extended Luenberger observer 
enables a simple approach not requiring a lot of 
processing time. Next, the implemented linear fault 
sensitive filters were used, though rarely used in 
practice, they proved well and offered good 
performance. According to the observed laboratory 
plant specifics, the non-linear approach showed better 
results on the plant inputs hence the mathematical 
model was not completely known (un-modelled 
dynamics of the pumps). The linear approach, on the 
other hand, proved well with the output faults where 
mathematical equations adequately described behaviour 
of the plant outputs. 
 Still, due to the noise and un-modelled dynamics of 
the models, an adaptive threshold function was used 
which was derived so as to be insensitive to process 
inputs. This means that only faults introduced to the 
plant caused the residuals to cross the threshold limit. 
By using the adaptive instead of the fixed threshold, 
more reliable fault detection can be achieved with 
approximately 6-7% of the false alarm rate if the 
thresholds are set properly. 
 Both approaches in combination with the adaptive 
threshold gave good results and a detection of only 2% 
of the abrupt fault was achieved at the outputs. From 
Figures 4-7 it is obvious that the residuals respond 
according to the predefined isolation matrix (Table 2).  
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