
AN ANALVSIS OF INFORMATION SVSTEMS
DESIGN METHODOLOGIES

INFORMATICA 3/1988

UDK 681.3.:519.863

Krista Rizman
Ivan Rozman

Anton Zorman
Tehniška fakulteta Maribor

ABSTRACT
To Improve development and use of information ajfstems
methodologies, theae have to be dlscuased and studled from many
aspects. We have anal/sed JSD, ISAC, SA-SD and the Warnier/Orr
methodology. The contents of this paper is not a descriptlon
of studled methodologies. It is the descriptlon of our
flndlngs and the results of evaluatlng the practlcal value of
the methodologies in relative terms by comparing them. We

methodologies according to their life cycle
representatlon shemes, learnabllity, their
real time environment and automated toola by
supported. Our maln point here lies in

demonstrating that each of the four methodologies is relative
powerful in some circumstances and for some system3.

characterize the
coverage, their
behavior in the
which they are

INTRODUCTION

The use of computers has spread to ali areas of
labour and life and the way of use has changed.
In the first period of use, computers were used
only for calculation. Almost ali data
processings vere numerical. The main point of
use has moved from calculation to storing and
searchlng data - Information. There has been a
great progress of new approaches, methodologies
and tools for developing of Information s/stems
re3pectivly application by the last decade.
The Information 3y3tem is a system with the
follovfing tasks: creating, collecting,
Processing and distributing informations.
Information systems could be developed only if
they in some way can improve some activitiea of
Information process.

The progress of computer technology, especialy
the fall of prices, caused the mass use of
computers. The development of applications has
become a bottleneck. This is a reason why the
languages of the fourth generation (application
= functi onal languages: LISP, PROLOG, query
languages...) and a great number of computer
aided tools for system analysis and design have
been produced.

There are a great number of graphic tools and
methodologies that can be used for analysing
and design of Information sy3tems. The problem

from this set of is to choose one
methodologies, that will be the most efficient,
easy for use and will give the best results.
There are many questions: 'Which methodology
to choose?', 'Vfhich is the beist?', ' Which is
the most general?', 'What are advantages of
each of them?'

Which methodology to use? This is a difficult
question because it depends on your needs, on
the type, the extension and the complexity of
Information systems you want to develope, on
your experience, style of thinking and probably
on your knowledge of principles of different
methodologies.

We restrlct our study on methodologies that are
shovn in table 1, mainly because we think they
are the most efficient and Hidespread used for
developing Information systems. This paper
presents the results of study the different
methodologies with the purposo to answer some
questions above.

Table 1: In the following we give the
methodologies covered in this report along Hith
developers

Methodology Full name of
mnemonic methodology

Developers

SDM System Development G.F.Hlce,
Methodology K.S.Turner

SA-SD Structured Analy3iš De Marco
and Structured Design Yourdon

ISAC Information Systems Mats
Work and Analy3is Lundeberg
of Changes

JSD Jackson System
Development

Michael Jackson

Warnier/Orr-method VJarnier, Orr

40

It must be pointed out that our anal/sis draws
on the referenced literature. This is
important because methodologies are not
finished products. They do not have precise
characteristics. They are iraproved through
time. Methodologies in a practical use can be
adapted to chainging environmenta and
circumatancea. On the other hand, the authors
often emphaaize ascpects considered as most
original, while aspects regarded as more usual
are left out.

Several points of view can be used to anal/se a
methodology and ali of them must be considered
in a complete analysis.

2 LIFE CYCLK COVERAGS

By analy3ing the mentioned methodologies, we
find out that they have much in common. They
have a great diversity in form, in original
principles and in name of each phase, but they
agree with basic elementa that need to be
defined. A lot of them cover almost ali phases
of a life cycle(table 2).

The life cycle is an important concept in
discussing methodologies. Our view is that an
efficient methodology must support a process of
activtty that covers the entire life cycle. It
doea little good to have a methodology for
design if tharo is not a procedure for
specifing requirement3 and funotions which are
used for the design and the sy3tem that must be
built. There are numeroua life cycle models in
use and many of them separate analysis and
functional specification activities./PORC83/ WQ
merge both of them into one phase (analysi3)
because the diacussed methodologies do not
distinguish between these tMo ateps. For both
phases almost ali of them (except the ISAC
methodology) support the aame graphical
diagrams and other tools and in both the uaers
are most included.

In this paper each methodology is presented
through the description of the following life
cycle steps:

analysis,
design,
implementation,
validatlon,
evolution.

2.1 Analyaia

Analy3l9 is the first step of any Information
sy3tems development aotivity. The result of
this step is besldes the requirementa
definition also a functional specification -
description of system functions and an ansHer
to the question : 'What should the system
do?'. Functional specifications are used
during the design phase as a checkpoint against
which to validate the design.
The successful analysls includes Communications
with the users. The analysi3 must be able to
bound a problem and to identify those areaa
where the Information sy3tem is useful and
practical.

A particularly effectlve method of analy3i3 ia
raodeling. Models represent the problem and the
real world in a formal form. Models used for
analy3is are graphical diagrams, graphs and
tables.

Because of the complexlty of problems and
3y3tems, methodologies must support a problem
decomposition nhich can be procedural or data
flow or data abstraction.

Ali diacussed methodologies are performed
through an analysis of the data, elther data
atructures or data flows! The data orientation
is sensible because data are more stable than
processes. SA-SD and ISAC analyse data floHS,
but the VJarnier methodology analyses the data

IMPLEMEN-! VALIDATION *
TATION !

/. In property tables is documen-
C/!tation of hoH the original

requirejnent3 are fulflled.

.1 System outputs are
validated against

)output requlrements.

'^Z A Completed system can be
',CjA compared with original

structured specifications.

Transformation of speclfl-
cation to implementation
can be manual checked.

repreaenta how detail is a particular phase covered

EA - roethodology contains a special phase wlth the purpose to choose specific
equipment and then to adapat the equipment independent solution to
this choice

c - codlng

• - how the completed sy3tem is validated against the original requirement3

Table 2: Life cycle coverage

41

structures of the outputa. JSD analyse3 the
entlt^/action structure of the real Horld.
(Figure 3)

niethodology
/\
/ \

/ \
/ \

/ \
are performed through are performed through
an analysis of data an analysis of data

structures floHs

JSD, Vfarnier SA-SD, ISAC

Figure 3; A slmple dlvision of the Information
sy3tems design methodologles

Our view is that the data flow methodologles
are more understandable than the methodologles
which base on the data structure. A data flow
diagram (DFD) is a better tool for
understandlng and more perfect representation
of any Information sy3tem than data structure
diagrams. It represents both flovjs and
actions. (Figure 5 3hows an example of DFD.)
It is a netHork diagram that can be ea3y used
for bounding the system. First of ali, wa draw
the diagram with only one action and wlth input
and output data floHs. They are then
decomposed. We think that so the users and the
arialysts can ea3ily, systematlcally and by
degrees, with the help of DFD, make the
requirement definitions and the functional
specifications.

The SA-SD methodology is very useful for
working in a team because of the logical
functional decomposltlon and well-known input
and output data of any decomposed action.

More complex and detailed analysing process can
be done by ISAC. Besides the Information
(message) flow3 we can also describe the real
flows (persons and objects). The picture of
current and future Information system is
complete.
ISAC is very strong in the early phases of the
3y3tem life cycle: the change analy3is, the
actlvity analy3i3 and the Information analy3i3.
The ISAC approach is exten3ive and
comprehensive!
In ISAC interest groups are studied thoroughly
and described both with the problems they have.
This is a part of the change analy3i3. The
ISAC approach Is widespread used in the
Scandinavlan countries.

The weak point of ISAC is that the graphical
notation for the Information analysl3 is
redundant because ali Information contained in
Information graphs (I-graphs) is derived from
activity graphs (A- graphs) from the change or
the activity analysis. (Figure 6 show3 an
example of A-graph!)
The weak point is also that it is neces3ary to
illustrate two identical Information sets in
the same I-graph because of the hierarchlcal
way of descrlption. Two sets are needed uhen
one Information set is output set of a graph
and at the same tirne is a precedent to other
set in the same graph.
I-graphs show Information sets and precedence
relations among Information sets, but C-graphs
(component relation graphs) describe the
contents and the structure of the Information
set. The methodology does not provide that the
•same Information set will have only one
C-graph. It depends on when the particular
C-graph is created.

We think that many of definitions and work of
the Information. analyse could be overcome by
use more powerful Information model such as

extended entity-attribute diagram to replace
both Information graphs and component graphs.

Heakness of JBD is the first step of
mathodology (enttty-actlon step), by which ne
analyse data and actions of the real world. It
seems to us that in this step the methodology
does not provide such a graphical tool whlch
can help the users and the analysts to edit,
colect and represent specifications (especialy
ali entitles).
Graphical notations are useful in shoning the
interrelationships between the system
components, which enable ea3y Communications
between the users and the analysts and so help
both of them to build the complete Information
system,
JSD does not provide such a graphical tool.
Jackson suggests a simple process to make a
wide list of entitles and actions: nouns which
appear in the users descrlption of the real
world are Identifled as potential entitles, but
verbs as possible actions. The users many
tlmes forget to mention some parts of the
reality because they do not have resource for
sistematic descrlption of often very complex
sistems. Unfortunately, the complete list of
entitles and actions is reque3t and conditlon
for success of entire development. JSD does
not support graphical presentations of links
between entitles of the entire system, from .
Hhich can the users and the analy3ts quickly
find out the mlssing entitles.

The JSD methodology is little oposite to the
other Information system3 development
methodologles. They tend to more exact
analy3is with purpose to build a better sy3tem
wlth less prlce to meet the needs of its users
and to reduce costs of correcting.
The second tendency is reduoing of returning to
previous steps. Of course, there is an
iteration, but we ali want to reduce It as much
as possible. Modem methodologles and computer
aided tools include mechanlsm to reduce it to
minimum.

In the Warni«r m«thodolog7 the flrst step is to
determlne whlch are required outputs. The
answer is quite obvious Hhen the 3y3tem is not
too big. Else we have to subdivlde the real
3ystem Into several smaller. Many tlmes the
subdlvision will be done according to the
organisation of the firm. Analyst may help
formulating que3tions and so help to create a
list of required outputs. The methodology does
not provide any graphical tools to help in this
first step.

Ali the methodologles except JSD apply the
hierarchlcal decomposltlon. Of course, levels
of detall are related to complexlty and
vagueness. The vagueness concerns the early
phasas of life cycle, when the functional and
the data system may be fuzzy and there is no
clear idea how the ay3tem will Hork.- In this
context a crude Information analysis is quite
good alternative. The possibillty of the crude
Information analy3ls is embedded in the ISAC
methodology. We start to build ncH 3ystem with
the crude Information analysls in the change
analy3ls and then we end wlth the detailed
analy3is in the Information analysis phase.
The crude Information analysls is also
supported by SA-SD, 'which enables simple
executlon of the functional decomposltlon.
Our vtew Is that the most detailed analysis Is
provided by ISAC, then follow SA-SD, JSD and
the Harnier methodology.

2.2 D«sign

is the process of determining the architecture

42

of the system components, the algorithms to be
used and the loglcal data structures. This
phase is an answer to the question:'How will
the systera perform the functions defined in the
previous phase?' . An output of design
activities can be used by the programmer to
Implement the 3ystem. We must'emphasize that
coupling and coheison are the simple judge of
whether a design strategy produces good designa
or bad designs.

A developer nust' be able not to continue only
forward to the next phase of the life cycle,
but al so back to a previous phase. The need
for this is the fact that work must be changed
and any nece33ary corrections can be made. It
is important to note that information lost at a
particular phase is generally lost forever with
a bad result on the sy3tern. For example, if a
requirement are not documented, it will not
appear in the functional specification and it
will cause the failure of the system.

Ali the methodologies except JSD are •very
strong based on the levels of abstraction and
on the hierarchical decomposition, where there
is always the problem of wheter the model at
the lower level satisfies the specification
fixed at the upper levels. This problem can
partly be dlspatch by detailed transformation
rules from an upper level to a lower one and by
automated tools.
SA-SD supports two transformation rules; a
transform analy3is and an analysi3 of
activities for producing a structure diagram
from data flow diagrams. We must teli that
structured diagrams can not be made only by the
transaction and the transform analysis but it
require3 some judgement and common sense on the
part of the designef.

This strategy is considered in the Warnier
methodology well but in ISAC only particular.
ISAC makes levels of abstraction quite visible,
but there is not a visible connections between
the analysis phase and the design phase.
Perhaps it is the reason in use of other method
(Jackson Structured Programming) for the
design.

2.3 Implementatlon

is the production of executable code. Coding
transforms algorithms into functions or
procedures and logical data structures into
phisical data structures. It must be pointed
out that good coding cannot make up for poor
analysis or design. Good coding cannot make
bad information system3 good! This phase is an
answer to the question: 'How can we run this
sy3tem on machine available to us?'
Th« ISAC and the JSD methodology enable design
which is not confused with implementatlon, The
delimitation betMeen design and implementatlon
is in the ISAC and the JSD methodology very
rigorous. Not before the latest phase we
include the use of existing hardware and
programming languages for realization developed
3ystem.
This is an advantage of both methods, because
the design system is more transferable and more
portable. We can use it with little changes on
different hardware ^ecause only the last phase
must be changed.

The choice of the hardware and the software
needed and technical asspects of the
implementatlon the Warnier mathodology and
SA-SD do not solve.

2.4 Validation

is the process of determining that a system
correctly performs those functions described in
the functional specifIcation. It is often a
step performed as a part of each phase where we
must verlfy that the phase correctly carries
out the intent of the previous step. The
validation of code raay be done either through
testing or formal proof of correctnes.
The methodology must aupport determination of
system corroctneas through the life oycle.
Methodologies usualy enable correspondence
between the results of one stage of development
and the previous stage.
Table 2 shows how the whole systera can be
validated against the original requirements.

2.5 Kvolution

System3 go through many versions during their
lifetimes. The development methodology can
help in evolution phase by providing system
doGumentation and, of course, a well structured
software sy3tem that is easy modified by people
making the sy3tem changes. The great eraphasis
to a well structure of a program is given in
the SA-SD methodology. The factors
contrlbuting to interactions between 3ystem3
components (modules) and the coheison of
individual system3 components are very well
described. /Your79/ We tent to the greater
coheison of individual modules in the system
and the loMer coupling between modules.

3 IKTERMEDIATE WORK PRODUCTS

By methodology we mean a number of coherent
work steps including rules for type3 of
documentation that are produced during these
work steps. The documentation must be a
natural part of work and not something that you
do aftervjard! Table 4 show3 the steps of ali
the four discussed methodologies and the
products that are produced at each step!
Figure5 5,6,7 and 8 show the viorking procedure
of ali the four methodologies. Each working
procedure is presented by the diagram, nhich is
particularly signicifant for each of the four
methodologies.

We have already emhasized that graphical tools
in ISAC seem to us redundant because the
contents in I- graphs is the same as in A
graphs. But the purpose of using both graphs
is different. A- graphs give an overviev of
the connections between the information system
and its environment. I-graphs show the
information contents in detail. ISAC enables
adding details in a systematic way, but by help
of the different graphs.

We think that the data flow diagrams (SA-SD
methodology) have an advantage, because it can
be used for connections of the information
system with the environment by sorces/sinks and
for adding details by the functional
decomposition and multilevel diagrams. For ali
this ve have to use more graphical notations of
the ISAC methodology.

There is an assumption in ISAC that careful and
detailed decomposition of the user activities
wlll largely procedure the information
requirements. From ISAC point of view work
methods are more important than description
tehnique3. We do not quite agree with this
because we emphasize that description tehniques
must be used as the basis for understanding the
problem and for communication betHeen the users
and team.

43

TABLE 4; Table shows steps of s/stem development of ali the four discussed
methodologies ^nd the products that are produced at each step:

ISAC: working procedure:
different analy3is and design
areas each of them is devided
into more than 3 steps and substeps!)

workproduct3 (documentation)

1. CHANGE ANALYSrS:analysis of problems
and needs and the current state.
We deftne and produce alternative
changes and choose the best!

A-dtagrams are used for hierarchical
decomposition current activities.

We can use also; problem groups tables,
text pages, property tables, table of
objectivea]

2. ACTIVITY ANALYSIS: we continue .with
the decomposition of activities.
We more detail define Information flows
and Information subsystems!

A-graphs (Figure 6), property tables

3. INFORMATION ANALYSIS; we analyse
relationšhip between Information sets
and the structure of Information sets.

I-graphs:hierachical graphs of
Information flows, textual description

C-graphs

4. DATA SYSTEM DESIGN ! D-graphs
!D and P strctures (JSP)

5. EQUIPHENT.ADAPTATION E- graphs

JSD: working procedure work products (documentation)

1. ENTITY/ACTION STEP: We define
entities and actions by help of user
specifications (actions are verbs,
entities are nouns).

entity' action list

2. ENTITY STRUCTURE STEP structure hierarchical diagram
(Figure 8) '

3. INITIAL MODEL STEP: An entity is
defined as a proces which is with data
flow or State vector conected with
entity of the real world or with
other process in a model. Processes are
detailed described with pseudocode.

4. FUNCTION STEP

System Specification Diagram

Jackson pseudokod

System Specification Diagram

5. SYSTEM TIMING STEP

6. IMPLEMENTATION STEP-'

note of temporal requirements

System Implementation Diagram

SA-SD: Morking procedure

1. ANALYSIS of sy3tem actions,
Information flows, data bases

! Horkproducts (documentation)

!data flow diagrams (DFD)-(Figure 5)
!data diGtionary, decision tables,
Ipsedocode

2. DESIGN : with help of transform
analy3i3 and transaction analvsis
we produce from data floM diagram
hierarchical data structure!

structure diagram
psedocode

WARNIER:
Morking procedure ! workproduct3 (documentation)

subdivision the big system into several!
smaller, each of them have its own data! note of subsystems
procesing system. !

the list of the required output and the
description ali of them

the organisation of ali the data needed
to obtain the output, the design of a
logical base.

the definition of transactions needed
to update the data.

the definition of logical programs

Warnier diagram (Figure 7)

Warnier diagram

Warnier diagram

44

transaction
analvais

transform
analysis

deciaion tables

user ~~
requirements

-«Janaly3is

V ^-^ J
data flow
diagram

s t ruc tured
languages

7 design \
\ 1-2 / -

information
-_^Sy3tem

Figure 5: DFD of the SA-SD working procedure

/perons with
knowledge
about the
activities.

• activity real set/ / Information set

Figure 6: A- graph of the ISAC working procedure

a I real flow message flow

45

the working
procedure
of the W/0
methodology

r to subdivide the blg system
Into several smaller

to raake the list of the
required output and the
description of each of them

\
to determine the
corresponding data
structure

to determine logical structure

to determine phiaical structure

to definite the actions
needed to update the
data stored in the
Processing 3ystem

to determine the logical programs

Figure 7: Warnier graph of the Warnier working procedure

the work
procedure
of the JSD

specifing
the model
of the real
world

determining and
descrlpting
entities and
actions in the
problem area:
ENTITV/ACTION
STEP •

specifing
the functions
of the sy3teml

determining
functions of
the models:
FUNCTION STEP

determining
the implementation|
of the system:
IMPLEMENTATION
STEP

system timing
of functions:
SVSTEM TIMING
STEP

elaboration
of entity
structures:
ENTITY
STRUCTURE
STEP

composition
of initial
model:
INITIAL MODEL
STEP

Figure 8:
procedure

Structure diagram of the JSD working

ISAC is relatively complex due to several
levels of abstraction and several graphlcal
notations.

It seems clear that understandability is
reduced by the relative complexity of
descriptions.
In ali development phases of the Warnier
methodology we can use only one graphical
tool-Warnier diagram (Figure 7). We can
descrlbe the data and structure process by only
three basic components of stuctured programming
{sequence, iteration and selection).

4 BEHAVIOR IN THE REAL TIME ENVIRONMENT

Behavior of the methodology in the real-time
environment is also very important because the
Information system represents a set of coherent
different or equal actions. We think that JSD
is the most suitable of ali the four discussed
niethodologies for applications from the real
world with the important temporal extension.
In the JSD System Timing Step adequate measures
are taken to ensure a correct scheduling of
system processes. For this purpose,
synhronisation processes are defined.

It is important to emhasize that JSD is
intended for development not only for data
Processing, but for other applications also.
Temporal dimension of Information is not
treated explicitly in ISAC, nor in the Harnier
methodology.

5 LKARNABILITV

The methodology must be ea3y to learn because
even within single organisation, there will be
quite a great number of people who have to use
the methodology as a resource and it must help
ali of them and not make a developer process
more difficult.
It is clear that the methodologies must be
communicable to other persons not only to
developers. Learnability depends on the
complexity of the methodology , which is
probably related with covering the software
development life cycle and perhaps on the depth
of the understanding of Information sy3tems
provided by it. We establish that among the
four discussing methodologies only ISAC is more
complex, the others are relatively simple. We
think that ISAC is less easy to learn.

46

6 AUTOMATED TOOLS

It is clear that automated tools which offer
series of understandable resources, brought
near people, make posaible the supervision of a
project and immediate repairing existing
failures. Automated tools give up to date
version to ali members of the team.

A great number of automated tools and
environments have been explicitlj' developed to
support nearl/ ali studied methodologies. We
do not know if such tools are coinmercialy
available for ISAC methodology in a broad sense
although in the ISAC group a prototype system
called IA/2 was developed in the early
seventies. Automated tools faciliate the work
to designers and improve the productivity of
both the individual developer and development
team.

Tools for computer-aided softwar
provide these bepefits:

Improved productivity and f
development (They automate
documentation, eleminate manual
redrawing and allon quick changes

higher q'uality software (
universal documentacion,
standardisation.)

reduced maintenance (They
changes and allow on-line access

e engineering

aster systems
design and
drawing and

.)
They produce

promote

proroote easy
to design.)

7 CONCLUSION

It is clear that any Information 3y3tems
development methodology is better than no
methodology!
We think that there is no one Information
3ystems design methodology which is best for
developing ali Information 3ystems.
We have represented the main findings about the
methodologies. It is clear that our analysis
is in many respects preliminary, because of
extreme complexity of the subject.
In this section we describe importance of the
methodologies from the practical point of view.

description of entities of entire system and
relationship between them. In the
implementation step ve consider temporal
performance of- each groups of actions. It is
more powerful in the description of actions
then entities. (See Figure 9.b and 9.c)

We think that the V/̂ rnier methodplogy is
suitable for developing complex data and action
3ystems because of use only one simple and
efficient Warnier/Orr diagram.

Our view is that SA-SD is very useful also for
more complex data and actions sy3tems. SA-SD
methodology enables 3imply description of data
components in the data dictionary, A structure
of actions are described by a structure
language or decision tables.

complexity of the
data system

high

coraplexity of the actions
on the data of the system

high-

+ SA-SD

+ WARNIER
+ ISAC
+ JSD

vagueness

JSD
SA-SD
WARNIER
ISAC

low

Figure 9.b

high low 1

ISAC

SA-SD Figure 9.c

+ JSD
+ WARNIER

low

Figure 9.a

RKFERENCES

We demonstrate
methodologies is
situations.
We evolute
methodologies
dimensions:

fuzziness

that each of the
relative powerful in

f our
some

the applacability of the
in very crude terms by use these

of the information
requirements
complexity of the data system
complexity of the actions on the data
of the 3y3tem

Our view is that the relative value of ISAC are
the earlier phases. It is effactive and
suitable for fuzzy information reguirements,
but it is restricted to not too much complex
system because of the restrictions caused by
division information and data system into
relatively small and simple sub-system3 without
any flexible mechanism for integration.
We conclude that the Warnier methodology is
less powerful in the fuzziness aspect. Then
follows JSD methodoIogy. SASD lies somewhere
betueen JSD and ISAC which include a powerful
special mechanism to manage fuzzines. (See
Figure 9.a)

JSD is not quite useful for very complex data
systeras, but for systeras with many actions,
which bring entity from one stage to other,
because JSD methodology provide good
description technique for showing temporal
sequence of actions with three basic components
of structured programming (iteration, 3equence,
selection), but it does not provide good

/CAHE86/ - J. R. Cameron: An overwiev of
JSD, IEEE Software Engineering 1986/2.

/DEMA78/ - Tom De Marco, Structured analysi3
and system specifioation, Prentice-Hall, NCH
Yersey, 1978.

/HIGG79/ - David A. Higgns, Program Design and
Construction, Prentice-Hall, 1979.

/INF083/ - Information Sy3tem3 design
methodologies: A Feature • Analysis, Elsevier
Science publishing company, Amsterdam, 1983.

/JACK83/ - Jackson M. A.:Systera Development,
Prentice-Hall, 1983.

/LUND81/ - Mats Lundeberg, Goran Goldkuhl,
Anders Nilsson: Information Sy3tems
Development: A System Approach, Prentice-Hall,
1981.

/PORC83/ - M. Porcella, P.Freeman, Ada
Methodology Questionarie Summary, ACM Software
Engineering Notes, Vol 8, Mol, Januar 1983.

/THEI83/ - The Information Structures Subgroup
of the Dutch Database Club:' Software
Engeneering: Methods and Tehnique3, Wiley
Interscience Publlcations International 1983.

/YOUR79/ - Vourdon E., Constantine L.,
Structured design, Fundamentals of a Discipline
of Computer Program and Design, Prentice-Hall,
1979.

