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Abstract

A geometric 5-configuration is a collection of points and straight lines, typically in the Eu-
clidean plane, in which every point has 5 lines passing through it and every line has 5 points
lying on it; that is, it is an (n5) configuration for some number n of points and lines. Using
reduced Levi graphs and two elementary geometric lemmas, we develop a construction that
produces infinitely many new 5-configurations which are movable; in particular, we pro-
duce infinitely many 5-configurations with one continuous degree of freedom, and we pro-
duce 5-configurations with k− 2 continuous degrees of freedom for all odd k > 2.

Keywords: Configurations, incidence geometry.

Math. Subj. Class.: 51A20, 51A45, 51E30, 05B30

A geometric k-configuration is a collection of points and straight lines, typically in the
Euclidean plane, where every point lies on k lines and every line passes through k points.
Geometric 3-configurations have been studied since the mid-1800s, and geometric 4-con-
figurations since the late 1900s, with the first intelligible drawing of a 4-configuration ap-
pearing in a 1990 paper by Grünbaum and Rigby [15]. However, the situation for more
highly incident configurations, that is, for (pq, nk) configurations with at least one of q,
k ≥ 4, is poorly understood in general.

Two constructions that produce infinite families of 5-configurations with a reasonably small
number of points and lines are known [7, 9]. The (485) configuration shown in Figure 1a
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is the smallest known geometric 5-configuration and is the smallest example of the con-
struction in [9]; a reasonably small example of the construction discussed in [7] is shown
in Figure 1b (the smallest example is not intelligible at small scale). In his monograph
on configurations [14, Section 4.1], Grünbaum spends only 5 pages (mostly pictures) dis-
cussing the little that is known about 5-configurations.

(a) A (485) configuration with 4 symmetry classes of
points and lines

(b) A (645) configuration with 8 symmetry classes of
points and lines

Figure 1: Examples of known small 5-configurations

In this paper, we present a new construction that produces infinitely many new geomet-
ric 5-configurations which are movable: that is, there is at least one continuous degree of
freedom in the construction while fixing 4 points in general position. This construction sig-
nificantly generalizes the construction presented in [9] and removes the need to complete
the construction via a continuity argument, instead providing an entirely ruler-and-compass
construction for those configurations, given an initial m-gon. The new construction tech-
nique uses two elementary geometric lemmas, the Circumcircle Construction Lemma and
the Crossing Spans Lemma, which previously have been used separately in other configu-
ration construction techniques.

1 Definitions; Levi and reduced Levi graphs

Given any (pq, nk) configuration, whether geometrically realizable or not, it is possible to
construct a corresponding bipartite graph, called a Levi graph, which has one white vertex
for each point of the configuration and one black vertex for each line of the configuration,
with two vertices in the graph incident if and only if the corresponding point and line are
incident in the configuration. More details on Levi graphs and configurations may be found
in Grünbaum [14, Section 1.4] and Coxeter [12].

We say that a geometric k-configuration is symmetric if there exist non-trivial isometries



L. W. Berman, E. Jacksch and L. Ver Hoef: An infinite class of movable 5-configurations 413

of the Euclidean plane that map the configuration to itself. Note that in other places in
the literature, the word ‘symmetric’ has been used to mean (pq, nk) configurations where
q = k (and thus p = n), i.e., k-configurations. Since we are interested in emphasizing
the geometric nature of the configuration, we—following Grünbaum [14, p. 16]—refer to
k-configurations as balanced, and reserve the word ‘symmetric’ to refer to the geometric
structure. The symmetry class of an element (point or line) is the orbit of the element under
the symmetry group of the configuration. If a geometric configuration has the property
that every symmetry class under some fixed cyclic subgroup of the geometric symmetry
group contains the same number of elements, then the configuration is called polycyclic;
polycyclic configurations were first described by Boben and Pisanski [11].

Given a polycyclic geometric configuration with cyclic symmetry group Zm, it is possible
to construct an edge-labelled bipartite graph, called the reduced Levi graph, by associating
one vertex of the graph to each symmetry class of points and of lines in the configuration,
and connecting two vertices of the graph with an edge precisely when the corresponding
elements of the configuration are incident. Suppose the elements of each symmetry class
of elements are labelled cyclically counterclockwise, beginning from some chosen 0th ele-
ment in each class; for example, line class L is labelled (L)0, . . . , (L)m−1 and vertex class
v is labelled (v)0, . . . , (v)m−1. If for each i, line Li and vertex vi+a are incident (with
indices computed modulo m), the corresponding directed edge in the reduced Levi graph
from vertex L to vertex v is labelled a; in the case where Li and vertex vi are incident (that
is, where a = 0), then we use an undirected thick edge. When vertices vi and vi+a both lie
on line Li, or from an alternate point of view, when lines Li and Li−a intersect at point vi,

then the reduced Levi graph contains a double arc
vL

a

.

If p and q are any two points, we denote the line L passing through p and q as p ∨ q. Simi-
larly, if L andM are any two lines, we denote their point of intersection as L∧M (possibly
at infinity if L‖M ). Given points v0, . . . , vm−1 that form the vertices of a regular m-gon
centered at O, we say that a line is span b if it passes through vi and vi+b for some i, with

all indices computed modulo m; span b lines correspond to double arcs
vL

b

in the reduced Levi graph. A circle C is a circumcircle of span b if it passes through vi,O,
and vi−b for some i; to specify which i, we say that C is a circumcircle of span b through
vd. (Note that span b lines are constructed by moving counterclockwise from the initial
point, and span b circumcircles by moving clockwise!)

2 Two construction lemmas

In 2006, one of the authors (LWB) discovered the Crossing Spans Lemma [3] (somewhat
restated here):
Lemma 2.1 (Crossing Spans Lemma (CSL)). Given a regular m-gon with vertices cycli-
cally labelled as u0, u1, . . . , um−1 and lines Li = ui∨ui+a of span a andMi = ui∨ui+b
of span b, where 1 ≤ a 6= b < m

2 , suppose that v0 is an arbitrary point on M0 (different
from u0, ub to avoid degeneracies), and construct other points vi to be the rotations of v0
through 2πi

m . Let Ni = vi ∨ vi+a and let wi = Ni ∧Ni−b. Then wi also lies on Li.

Although easy to state and prove, the Crossing Spans Lemma has been used to produce a
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(a) Illustrating the Crossing Spans Lemma; m =
7, a = 2, b = 3. Only point w0 in class w has been
shown, to better illustrate that the three lines Li,Ni−b,
and Ni really do intersect three at a time (that is, no
almost-incidences are covered by points).
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(b) The reduced Levi graph corresponding to Figure 2;
the dashed edge corresponds to the forced incidence.

Figure 2: Illustrating the Crossing Spans Lemma

number of novel constructions for configurations [3, 5, 8, 9]. The Crossing Spans Lemma
and its associated reduced Levi graph “gadget” are shown in Figure 2.

In fact, it is straightforward to show (by relabelling symmetry classes and applying duality
arguments) that given either of the labelled subgraphs in a reduced Levi graph that are
shown in Figure 3, the incidence given by the dashed line is induced, where white nodes
correspond to point classes and gray nodes to line classes. These subgraphs, with various
choices of labels, are used extensively in the proof of Theorem 4.1.
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Figure 3: In either of these subgraphs in a reduced Levi graph (over Zm), the dashed line
corresponds to a forced incidence via the CSL; , c, x, y are integers between 0 and m − 1,
and 1 ≤ a 6= b < m

2 . Gray vertices correspond to line classes and white vertices to point
classes. In the construction in Section 4, we typically take c = 0, x = 0, and y = 0 or δ.

In [14, p. 116–118], Branko Grünbaum described a geometric technique to constructing
a certain class of 3-configurations. This technique was extended in [7] to the Circumcir-
cle Construction Lemma. Although the lemma can be stated as a more general incidence
theorem [8], we state it as follows in order to facilitate the main construction in Section
4.
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Lemma 2.2 (Circumcircle Construction Lemma (CCL)). Let v0, v1, . . . , vm−1 and
w0, w1, . . . , wm−1 form the vertices, labelled cyclically counterclockwise, of two regular
convex m-gons centered at O. The point w0 lies on the circle passing through vd, vd−b,O
if and only if the points w0, wb, vd are collinear.

That is, if w0 lies on the circumcircle of span b through vd, then the line L0 of span b
through w0 passes through vd, and conversely. By symmetry, the line L−d will also pass
through the point w0, and in general, if w0 is defined to also lie on some other line M0,
then each rotated image wi will lie on the three lines Li, Li−d and Mi. The Circumcircle
Construction Lemma, along with its reduced Levi graph structure, is illustrated in Figure
4.

w6
w5

w4

w3
w2

w1

v6v5

v4

v3

v2

v1

O v0w0

(a) Illustrating the Circumcircle Construction Lemma;
m = 7, b = 2, d = 3. The green line is L0, and the
dashed gray line is a possible other line M0 passing
through w0 (i.e., w0 could be defined as the intersec-
tion ofM0 andC); other elements of line classesL and
M have been suppressed for clarity.

wL

v M

2

3 3

Z7

(b) The “gadget” in a reduced Levi graph correspond-
ing to Figure 4a. (The connection between w and M
is optional, depending on whether there happens to be
a line M0 passing through w0; this is the typical situa-
tion in applications of the CCL.)

Figure 4: The Circumcircle Construction Lemma.

3 Celestial 4-configurations

The building blocks for the new construction of 5-configurations presented in Section 4 are
the celestial 4-configurations, which are configurations that have the property that every
point has two lines from each of two symmetry classes of lines passing through it, and
every line has two points from each of two symmetry classes of points lying on it. An
example of such a configuration is shown in Figure 5, along with a general reduced Levi
graph. Celestial 4-configurations were first described in detail (aside from a handful of
examples, e.g., [15, 16]) in Boben and Pisanski’s article Polycyclic Configurations [11], as
the main class of 4-configurations analyzed in that paper. Their description was expanded
in Grünbaum’s monograph Configurations of Points and Lines [14, Sections 3.5–3.8], al-
though in that chapter, he unfortunately called them k-astral configurations (even though
as he defined previously [14, p. 34], a k-astral configuration is simply a configuration with
k symmetry classes of points and of lines, and there exist k-astral 4-configurations that are
not k-celestial [13]).
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Every k-celestial 4-configuration can be described by a celestial symbol

m#(s1, t1; . . . ; sk, tk)

that satisfies four axioms:

Axiom 1: (order condition) si 6= ti 6= si+1 (with indices taken modulo m)

Axiom 2: (even condition)
k∑
i=1

(si − ti) = 2δ for some integer δ

Axiom 3: (cosine condition)
k∏
i=1

cos
(siπ
m

)
=

k∏
i=1

cos

(
tiπ

m

)
Axiom 4: (substring condition) no substring si, ti; . . . ; sj , tj or ti; si+1, . . . , tj ; sj+1 sat-

isfies the previous axioms.

A symbol satisfying the 4 axioms is said to be valid. Although celestial 4-configurations are
probably the most well-understood class of 4-configuration, they are still poorly understood
in general. The collection of 2-celestial configurations is completely classified ([2], with a
clearer proof in [14, p. 210-211]), but general k-celestial configurations are not completely
classified, and the problem appears to be non-tractable (since it depends on being able to
solve certain trigonometric diophantine equations). However, some known families of valid
k-celestial configurations, primarily for k = 3, 4, were presented in [1].

Given a valid symbol, there is a corresponding cohort m#S;T , where S = {s1, . . . , sk}
and T = {t1, . . . , tk} (as sets), which corresponds to a collection of valid symbols; in
particular, the sets in a cohort must satisfy the even and cosine conditions, and it must be
possible to find an ordering of the si and ti that satisfies the order condition.

To construct a k-celestial 4-configuration m#(s1, t1; . . . ; sk, tk) with k point classes
v1, . . . , vk and k line classes L1, . . . , Lk, do the following:

Algorithm 1 (Constructing a celestial 4-configuration).

Input: A valid celestial symbol m#(s1, t1; . . . ; sk, tk).

1. Construct the vertices of a regular m-gon centered atO, labelled (v1)0, . . . (v1)m−1.

2. Let L1 be the collection of lines of span s1 with respect to point class v1: that is, let
(L1)i = (v1)i ∨ (v1)i+s1 .

3. Construct point class v2 to be the set of t1-st intersection points of the lines L1: that
is, (v2)i = (L1)i ∧ (L1)i−t1 .

4. Continue in this fashion; line class L2 is the set of lines of span s2 with respect to
point class v2, point class v3 is the set of t2-nd intersection points of the lines L2,
etc., stopping after the construction of line class Lk.

Because the symbol m#(s1, t1; . . . ; sk, tk) is valid, the point class vk+1 corresponds, as a
set, to point class v1, and in particular, (vk+1)0 = (v1)δ , where 2δ =

∑k
i=1(si−ti).

The general reduced Levi graph for the configuration m#(s1, t1; . . . ; sk, tk) is shown in
Figure 5b; δ, the “twist” [11], is guaranteed to be an integer by the even condition. In
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general, the underlying graph for every reduced Levi graph of a celestial 4-configuration is
a double cycle of even length; that is, an even cycle in which every edge is replaced by a
pair of parallel edges.

(a) The celestial 4-configuration 9#(4, 3; 2, 3; 1, 3).
The 0th element of each symmetry class is shown larger
(points) or thicker (lines), and elements in different
symmetry classes are distinguished by color (class 1 is
red, class 2 is blue, and class 3 is green).

v1

L1

v2L2

v3

L3

vk

Lk

s1

t1

s2

t2

s3

sk

t k
+
δ

δ

Zm
(b) The reduced Levi graph, a double cycle, for
a general celestial 4-configuration, where δ =
1
2

∑k
i=1(si − ti).

Figure 5: Celestial 4-configurations

4 Constructing movable 5-configurations

The general idea of the construction is to produce a 5-configuration whose reduced Levi
graph consists of concentric double cycles, each of which corresponds to a particular ce-
lestial 4-configuration, where the double cycles are successively linked by single edges by
applying the CSL, and finally, the innermost cycle is linked to the outermost cycle using
the CCL; if k > 2 the construction will produce a movable 5-configuration. The reduced
Levi graph is shown in Figure 6.

More specifically, the reduced Levi graph contains k concentric double cycles, each of
which corresponds to a k-celestial 4-configuration with cohort m#S;T where S∩T = ∅.
If the outermost cycle corresponds to the configuration with symbol

m#(s1, t1; s2, t2; . . . ; sk−1, tk−1; sk, tk),

then each successive cycle has the si’s permuted cyclically one step while the ti’s remain
fixed: that is, the second cycle has symbol

m#(s2, t1; s3, t2; . . . ; sk, tk−1; s1, tk),

the third has symbol
m#(s3, t1; s4, t2; . . . ; s1, tk−1; s2, tk),
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and so on, so that the innermost cycle has symbol

m#(sk, t1; s1, t2; . . . ; sk−2, tk−1; sk−1, tk).

The point classes of the celestial configuration corresponding to cycle j are labelled vj1, . . .
vjk and the line classes Lj1, . . . L

j
k; that is, the superscript indicates the cycle, and the sub-

script the symmetry class in the celestial configuration. In Figure 6, the first point class of
each celestial configuration is highlighted.

Given a valid configuration symbol m#(s1, t1; . . . ; sk, tk) with cohort m#S;T with the
property that S∩T = ∅, the geometric construction algorithm to produce a 5-configuration
with k−2 continuous degrees of freedom is given in Algorithm 2. If k = 2 the configuration
is static and has been described previously in [9]; however, the construction algorithm given
here, which uses the CCL to complete the construction, eliminates the need for completing
the configuration via a continuity argument as described in that paper.

Algorithm 2 (Constructing a 5-configuration).

Input: A valid celestial symbol m#(s1, t1; . . . ; sk, tk) with the property that S ∩ T = ∅.

1. Construct the first k-celestial 4-configuration with symbol m#(s1, t1; . . . ; sk, tk),
with point classes v11 , . . . , v

1
k and line classes L1

1, . . . , L
1
k.

2. If k > 2, for j = 2, . . . , k − 1:

(a) Place a new point (vj1)0 arbitrarily on line (Lj−1
1 )0, and construct the rest of

the points (vj1)i in point class v21 by rotating (v11)0 by 2πi
m for i = 0, . . .m− 1.

(b) Using the point class vj1 as the starting m-gon, construct the configuration

m#(sj , t1; sj+1, t2; . . . ; sj−2, tk−1; sj−1, tk)

(where the sequence s1, s2, . . . , sk−1, sk has been cyclically permuted j steps
but the sequence t1, . . . , tk remains fixed).

3. To construct the k-th celestial configuration:

(a) Construct a circumcircle C of span sk through (v11)c, choosing c (and varying
continuous parameters if possible/necessary) so that C intersects line (Lk−1

1 )0.

(b) Let (vk1 )0 be the intersection of C with line (Lk−1
1 )0, and let (vk1 )i be the rota-

tion of (vk1 )0 through 2πi
m about O.

(c) Construct configuration

m#(sk, t1; s1, t2; . . . ; sk−2, tk−1; sk−1, tk)

using the points (vk1 )i as the initial set of points.

Theorem 4.1. Algorithm 2, beginning with m#(s1, t1; . . . ; sk, tk), creates a valid
5-configuration with mk2 points, mk2 lines and k − 2 continuous degrees of freedom.
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Figure 6: The reduced Levi graph, over Zm, for a movable 5-configuration with k2 point
classes and k2 line classes. It consists of k concentric double cycles, each corresponding to
a particular celestial 4-configuration, with the double cycles linked by arcs. The arcs shown
red and dashed are induced by the Crossing Spans Lemma, with example CSL gadgets
inducing the dashed edges highlighted in yellow and green, while the structure shown in
blue is constructed via the Circumcircle Construction Lemma.
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Proof. First, note that Algorithm 2 constructs k celestial configurations; each celestial con-
fguration contains k symmetry classes of points and of lines, and each symmetry class
contains m elements, for a total of mk2 points and mk2 lines.

Second, for j = 2, . . . , k − 1, the point (vj1)0 is placed arbitrarily on line (Lj−1
1 )0, for

(k − 1)− 2 + 1 = k − 2 continuous degrees of freedom.

Thus, the nontrivial part of the proof is to show that every point lies on 5 lines, and every
line passes through 5 points.

Recall that the symbol for celestial configuration j is

m#(sj , t1; sj+1, t2; . . . ; sj+`, t`; . . . ; sj−1, tk).

By construction, for each j = 1, . . . , k − 1, each line (Lj1)i passes through the point
(vj+1

1 )i (that is, the first symmetry class of points in celestial configuration j+1 lies on the
first symmetry class of lines in celestial configuration j), as well as through points (vj1)i,
(vj1)i+sj , (v

j
2)i, and (vj2)i+t1 from celestial configuration j.

By careful choice of labels and the Crossing Spans Lemma, it follows that for all ` =
2, . . . , k − 1 (with ` indexing the symmetry classes in the celestial configuration j), each
line (Lj`)i passes through point (vj+1

` )i, as well as through points (vj` )i, (v
j
` )i+sj+` , (v

j
`+1)i

and (vj`+1)i+t` from celestial configuration j.

A CSL gadget showing that points v22 are incident with lines L1
2 (dashed red line) beginning

with the input that points v21 are constructed incident with lines L1
2 (solid black line) is

highlighted in Figure 6 in yellow.

Finally, again by the CSL, line (Ljk)i passes through point (vj+1
k )i, as well as through

points (vjk)i, (v
j
k)i+sj−1

, (vj1)i+δ and (vj1)i+δ+tk from the completion of the celestial con-
figuration j.

Thus, for j = 1, . . . , k− 1 (indexing the celestial configuration), ` = 1, . . . k (indexing the
symmetry class in the celestial configuration) and i = 0, . . .m−1 (indexing the elements of
the symmetry class) each line (Lj`)i has 5 points lying on it. By inspection of the previous
incidences, for j = 2, . . . , k − 1, each point (vj` )i has 5 lines passing through it; however,
points (v1` )i only have 4 lines passing through them so far.

However, in step 3, we constructed (vk1 )0 be the intersection of C with line (Lk−1
1 )0, where

C is a circle of span sk through (v11)c. By the Circumcircle Construction Lemma it follows
that points (vk1 )0, (vk1 )sk and (v11)c are collinear; that is line (Lk1)0, which is span sk with
respect to the points vk1 by construction, passes through point (v11)c. By symmetry, it
follows that line (Lk1)i passes through (v11)i+c for i = 0, . . . ,m − 1. (This is represented
by the thick blue line connecting the inner and outer rings in Figure 6.) By construction of
the kth celestial configuration, it follows that line (Lk1)i also passes through points (vk1 )i,
(vk1 )i+sk , (vk2 )i and (vk2 )i+tk .

A final application of the Crossing Spans Lemma on gadgets connecting the inner and
outer ring shows that symmetry class Lk` in the k-th celestial configuration is incident with
symmetry class v1` in the first celestial configuration. The CSL gadget showing that Lk2
is incident with v12 (dashed red curve), beginning with the fact that Lk1 is incident with v11
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(thick blue curve) is highlighted in green in Figure 6. Specifically, for ` = 2, . . . k−1, (Lk` )i
passes through (v1` )i, (v

k
` )i, (v

k
` )i+s`−1

, (vk` )i, (v
k
` )i+t` . Finally, (Lkk)i passes through

(v1k)i, (v
k
k)i, (v

k
k)i+sk−1

, (vk1 )i+δ , and (vk1 )i+δ+tk . Thus, every point lies on 5 lines, and
every line passes through 5 points.

5 Some valid inputs for Algorithm 2

Proposition 5.1. The smallest movable 5-configuration produced by Algorithm 2 uses
9#(4, 3; 2, 3; 1, 3) (or another configuration with the same cohort) as its input and has 81
points and lines.

Proof. If k = 2, Algorithm 2 produces static configurations. Inspection of a list of all
valid symbols for small 3-celestial configurations (e.g., from [14, Table 3.7.1] or from the
personal list of one of the the authors (LWB)) shows that the cohort 9#{4, 2, 1}; {3, 3, 3}
is the smallest cohort with disjoint sets.

This configuration is shown in Figure 7.

Theorem 5.2. There exist infinitely many 5-configurations with one continuous degree of
freedom.

Proof. From [1] we know that

2q#{q − p, p, q − 2r}; {q − r, r, q − 2p}, for q ≥ 4 and 0 < p, r < q

is a valid family of celestial 4-configuration cohorts.

Suppose that r 6= p, r 6= q
3 , p 6= q

3 and p+ r 6= q. Under these conditions, the sets S and T
will always be disjoint. To see this, first note that q− p 6= q− r, because p 6= r; q− p 6= r,
because p+ r 6= q; and q− p 6= q− 2p because p 6= 0. Next, p 6= q− r because p+ r 6= q;
p 6= r by hypothesis; and p 6= q − 2p since p 6= q/3. Finally, q − 2r 6= q − r because
r 6= 0; q − 2r 6= r since r 6= q/3; and q − 2r 6= q − 2p because r 6= p. Thus, the sets are
disjoint. Hence the cohort is valid as input for Algorithm 2.

In particular, p = 1 and r = 2 produces the valid input cohort 2q#{q − 1, 1, q − 4}; {q −
2, 2, q − 2} for any q ≥ 4.

Lemma 5.3. The cohort 3q#{1, 2, . . . , 2k−1}; {q, q, . . . , q︸ ︷︷ ︸
k

} for q =
2k + 1

3
, k odd and

k > 2 is a valid celestial cohort.

Proof. Note that the cohort 9#{1, 2, 4}; {3, 3, 3} can be viewed as the case k = 3 of this
cohort.

To show the cohort is valid, we need to show that q =
2k + 1

3
is an integer and that the

cohort satisfies the cosine and even conditions.
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Figure 7: The smallest movable 5-configuration produced by Algorithm 2, an (815) con-
figuration, with initial celestial configuration 9#(4, 3; 2, 3; 1, 3) shown in red, second ce-
lestial configuration 9#(2, 3; 1, 3; 4, 3) shown in blue, and final celestial configuration
9#(1, 3; 4, 3; 2, 3) shown in green. The point (v11)0 is highlighted in red, the line (L1

1)0
is the thickest red line, the point (v21)0 is highlighted in blue, and the line (L2

1)0 is the
thickest blue line. The point (v31)0, which was constructed via the intersection of (L2

1)0
with the black circumcircle of span 1 through (v11)0, is highlighted in green, and (L3

1)0
is the thickest green line. Other 0th elements of symmetry classes are shown at medium
weights. Already we have reached the limits of intelligibility of a small-scale diagram.
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If k = 2j + 1 for some integer j, it is straightforward to show that

2k + 1 = 22j+1 + 1 = (2 + 1)

2j∑
i=0

(−1)i2i,

so 22j + 1 is clearly divisible by 3, and q =
∑2j
i=0(−1)i2i, which is odd.

Moreover, if si = 2i−1, then
∑k
i=1 2

i−1 = 2k + 1. Thus, if ti = q for i = 1, . . . , k, then

k∑
i=1

(si − ti) =
(
2k + 1

)
− (2j + 1)q

is even, since both terms are odd.

It remains to show the cosine condition is fulfilled: that is, we need to show that for q =
2k+1

3 ,
k∏
i=1

cos

(
2i−1π

3q

)
=

k∏
i=1

cos

(
qπ

3q

)
. (5.1)

The right-hand side of equation (5.1) clearly evaluates to 1
2k

. To see the left-hand side also
evaluates to 1

2k
, we use the following trigonometric identity, which can be proved using the

identity sin(2θ) = 2 sin(θ) cos(θ) and induction (see [10]):

2k
k−1∏
j=0

cos
(
2ja
)
=

sin
(
2ja
)

sin(a)
. (5.2)

Applying this identity to the left-hand side of (5.1), we see that

k∏
i=1

cos

(
2i−1π

3q

)
=

k∏
i=1

cos

(
2i−1π

2k + 1

)
=

1

2k

 sin
(

2kπ
2k+1

)
sin
(

π
2k+1

)


=
1

2k
sin

(
π − π

2k + 1

)
csc

(
π

2k + 1

)
=

1

2k

(
sin(π) cos

(
π

2k + 1

)
− cos(π) sin

(
π

2k + 1

))
csc

(
π

2k + 1

)
=

1

2k

(
0− (−1) sin

(
π

2k + 1

))
csc

(
π

2k + 1

)
=

1

2k
,

so the cosine condition is satisfied.

Theorem 5.4. There exists at least one 5-configuration with s continuous degrees of free-
dom, for infinitely many values of s.
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Proof. Use the cohort 3q#{1, 2, . . . , 2k−1}; {q, q, . . . , q︸ ︷︷ ︸
k

} for q = 2k+1
3 , k odd and k >

2 from Lemma 5.3; clearly, the sets S and T are disjoint. This produces a movable 5-
configuration with k − 2 degrees of freedom for all odd k ≥ 3.

6 Open Questions

Question 1. In [8], the Crossing Spans Lemma is generalized to allow larger and differ-
ently labelled subgraphs, as the Extended Crossing Spans Lemma. Are there interesting
movable configurations that can be constructed from this generalization?
Question 2. This construction depends on two very simple geometric lemmas, which are
straightforward to prove using basic Euclidean geometry. Are there other such useful lem-
mas? What techniques can be used, and which incidence theorems, to construct new con-
figurations from known configurations while retaining useful symmetry properties?
Question 3. Finding movable 3-configurations is easy [6], and there are a number of known
classes of movable 4-configurations [3, 4, 8, 14]. This paper presents a class of movable
5-configurations. Are there movable k-configurations for any k > 5? For all k > 5? In
particular, are there movable 6-configurations?
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