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Abstract

Finite horizon optimal stopping problems for Markov chains are a well researched
topic. Frequently they are phrased in terms of cost or return because many financial mod-
els are based on Markov chains. In this paper we will apply optimal stopping to certain
random walks on binary trees motivated by insurance considerations. The results are direct
extensions of known results but the implications for insurance are of interest.
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1 Introduction
Modern insurance regulation requires companies to apply market valuation to assets and
liabilities. The value of assets can be determined directly from market prices, or through
appropriate approximations using fair value methodology. For insurance liabilities, how-
ever, there is no regulated market to determine their value. The particular case that we
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will be considering here are equity-linked life policies with guarantees. The policyholder
invests her premium in an underlying fund managed by the insurance company. A typical
example are long term pension saving products. In recent years there has been a tendency to
attach guarantees such as a minimum return or a minimum death benefit guarantee to these
investments which gives rise to new liabilities. In many cases guarantees can be interpreted
as contingent claims on the underlying fund, for example guarantees in equity-linked prod-
ucts or complementary health policies with equalization schemes, see [10].

Nonnenmacher was one of the first authors to interpret guarantees as put options on
the value on the underlying fund, [8] and [7]. Once a stochastic model for the dynamics
of the fund value is formulated, the liabilities arising from guarantees can be valued using
the methods to value derivative securities. Paper [6] considers equity-linked products as
contingent claims on the value of the underlying asset but introduces mortality as an inde-
pendent additional source of randomness. The assumption of independence is often made,
see [5] for some implications. With this addition the model is no longer complete and the
paper considers optimal hedging strategies that minimize the expected cost for the insurer.

In this paper we will present some extensions of optimal stopping rules motivated by
financial questions in insurance. The proofs follow the steps of classical proofs but the
formulation of the problems is slightly different. These results will then be applied to
investigate relative merits of different ways an insurance company can hedge its liabilities.
The models are simplified versions of reality but can shed some light on what strategies
may lead to best results.

2 Variations of optimal stopping rules
The classical finite horizon optimal stopping problem for a general finite length inhomoge-
neous Markov chainX0, X1, . . . , XN and general state space is to minimize the expression

E

g(Xν) +

ν−1∑
j=1

c(Xj)

 (2.1)

where ν runs over all stopping times with respect to the filtration of the Markov chain, and
g and c are given functions. For the sake of simplicity it will be assumed that g and c are
bounded. For Markov chains it is enough to solve the problem assuming that X0 = x for
x in the state space. Denote the value function vN by

vN (x) = inf
{ν:P (ν≤N)=1}

E

g(Xν) +

ν−1∑
j=1

c(Xj)|X0 = x

 (2.2)

The dynamic programming equations for this problem are defined recursively as

VN (x) := g(x)

Vn(x) := min
{
g(x), c(x) + E [Vn+1 (Xn+1) |Xn = x]

} (2.3)

for n = 0, 1, . . . , N − 1. The solution to the stopping problem is given by

Theorem 2.1. The value function is given by vN (x) = V0(x), and the optimal stopping
time is given by

ν = inf {j ≥ 0 : Vj(Xj) = g(Xj)} . (2.4)
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See [9] for proofs.
The above stopping problem has many possible extensions and generalizations. For the

financial application in this paper we will minimize the expression

E

gν(X1, . . . , Xν) +

ν−1∑
j=1

cj(X1, . . . , Xj)

 (2.5)

for all stopping times ν ≤ N for given functions c1, . . . , cN and g1, . . . , gN . The dynamic
programming equations in this more general setup are

VN (x0, . . . , xN ) := gN (x0, . . . , xN ) (2.6)

Vn(x0, . . . , xn) := min
{
gn(x0, . . . , xn), (2.7)

cn(x0, . . . , xn) + E [Vn+1 (x0, . . . , xn, Xn+1) |Xn = xn]
}

The optimal time is given by

νN = inf {j ≥ 0 : Vj(X0, . . . , Xj) = gj(X0, . . . , Xj)} . (2.8)

For the sake of completness we give the proof of this more general theorem. Define

Zn =

n−1∑
j=0

cj(X0, . . . , Xj) + Vn(X0, . . . , Xn) (2.9)

for j = 0, 1, . . . , N . With this definition we have

Theorem 2.2. The process (Zn)0≤n≤N is a submartingale with respect to the filtration of
the Markov chain.

Proof. Denote Fn = σ(X0, . . . , Xn) for 1 ≤ n ≤ N . We compute

E [Zn+1|Fn] =
n∑
j=0

cj(X0, . . . , Xj) + E [Vn+1(X0, . . . , Xn+1)|Fn]

≥
n−1∑
j=0

cj(X0, . . . , Xj) + Vn(X0, . . . , Xn)

= Zn.

Theorem 2.3. For the time νN defined in (2.6) the expression (2.5) attains its minimum
which equals E(V0(X0)).

Proof. By Theorem 2.2
E [Zν ] ≥ E [Z0] = E [V0(X0)] (2.10)

for all stopping times ν. By definition we have

E [V0(X0)] ≤ E [Zν ] ≤ E

ν−1∑
j=0

cj(X0, . . . , Xj) + gν(X0, . . . , Xν)

 . (2.11)
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Replacing ν by νN we have

E
[
ZνN∧(n+1)|Fn

]
= 1(νN ≤ n)ZνN + 1(νN ≥ n+ 1)E [Zn+1|Fn]
= 1(νN ≤ n)ZνN

+ 1(νN ≥ n+ 1)

 n∑
j=1

cj(X0, . . . , Xj) + E [Vn+1(X0, . . . , Xn+1|X0, . . . , Xn]


= 1(νN ≤ n)ZνN + 1(νN ≥ n+ 1)

n−1∑
j=1

cj(X0, . . . , Xj) + Vn(X0, . . . , Xn)


= 1(νN ≤ n)ZνN + 1(νN ≥ n+ 1)Zn

= ZνN∧n.

It follows that
E [V0(X0)] = E [ZνN∧1] = · · · = E [ZνN∧N ] . (2.12)

By (2.10) – (2.12) the minimum E [V0(X0)] of (2.5) is attained at ν = νN .

3 Application to insurance
Assume that the net premium of the m policyholders is invested in an equity-linked fund
whose price follows the dynamics of the Cox-Ross-Rubinstein model, see [4]. Denote the
prices by S0, S1, . . . , SN . At time j = 0 the total investment of the policyholders is mS0.
In the next time instant the price of the fund is multiplied by u or d with probabilities p and
q = 1−p respectively with the usual assumptions d < 1 < 1+r < u. Many guarantees can
be interpreted as contingent claims on the underlying fund. The minimum yield guarantee,
to give the simplest example, stipulates that the payment to the policyholder at time N will
be equal to at least

G = (1 + r)NS0 (3.1)

for some interest rate agreed to in the contract, which we assume to be constant throughout
the lifetime of policies. Other types of guarantees can be included as well. If at the expi-
ration the price of the fund reduced by possible fees exceeds G the policyholder gets the
bigger of the two sums. If at time j = 0 the insurer buys m put options on the fund price
with strike price k = (1 + r)NS0 and expiration N that completely offsets the financial
risk due to fund price fluctuations. But such a strategy does not take mortality into account.
The strategy we will investigate will be a combination of charging fees towards the fund
and at an optimal time buy options that at least partially offset financial risks. Paper [2]
considers fund linked products with guarantees and an optimal fee structure which means
that the insurance company charges a fee towards the underlying fund in an optimal way so
that the expected discounted loss for the company is zero. In this paper we will consider a
mixed approach. The company will set aside a portion of the fund value as a reserve possi-
bly subject to some conditions. At any time the company can decide to switch to hedging
future liabilities with derivatives based on the fund value and the number of surviving poli-
cyholders. The fees accumulated will partially offset the cost of the options. We will derive
the optimal time to switch which will minimize the expected loss for the company.



M. Perman and A. Zalokar: Some extensions of optimal stopping with financial applications 469

Assume that them policyholders are of the same age x. Denote the number of surviving
policyholders at times j = 0, 1, . . . , N by α0, α1, . . . , αN . We will assume that mortality is
independent of the movement of the fund value. For the sake of simplicity we will consider
contracts with no guaranteed minimum death benefit. Note that the sequence α0, . . . , αN
is an inhomogeneous Markov chain due to ageing with P (αj+1 = i − k|αj = i) =(
i
k

)
qkx+jp

i−k
x+j for k = 0, 1, . . . , i in the usual actuarial notation. For mortality simulation

we use [1].
We will apply the theory developed in Section 2 to the Markov chain (Sj , αj)0≤j≤N

and the functions cj and gj that we now proceed to identify. We consider the following
strategy: The company at each time j either sets aside the difference between the fund
price Sj and the accumulated value S0(1 + r)j if this difference is positive and 0 else, or
the company buys a number of put options on the fund at strike price k = S0(1 + r)N .
The number of options to be bought will be determined below in two cases. The options
will offset some of the financial risk due to fund price fluctuation but the cost of buying the
options will be incurred. In the notation of Section 2 what we set aside will reduce the loss
and we define

cj(S0, S1, . . . , Sj) = −mmax
(
Sj − S0(1 + r)j , 0

)
.

Let the price of the put option on the price of the fund at strike price k = S0(1 + r)N at
time j be denoted by πj(Sj , k,N) determined in the standard way for the binomial model,
see [3]. In our scenario two possible numbers of put options can be considered: the first is
to buy αj put options at time j which means that the financial risk is eliminated because
the options cover any possible shortfall of the fund price. The insurer will be able to cover
liabilities towards surviving policyholders but will incur a cost that will contribute towards
the loss. In our notation we put

gj(S0, . . . , Sj , α0, . . . , αj) = αjπj(Sj , k,N). (3.2)

The second possibility is to buy E(αN |αj) options. This only partially offsets the risk of
shortfall because there may be more surviving policyhoders than expected. In this case
define for j < N

gj(S0, . . . , Sj , α0, . . . , αj) = E(αN |αj)πj(Sj , k,N) (3.3)

and
gN (S0, . . . , SN , α0, . . . , αN ) = αN · πN (SN , k,N). (3.4)

In both cases the expression

Lj = (1 + r)−jgj(S0, . . . , Sj , α0, . . . , αj) +

j−1∑
i=1

(1 + r)−ici(S0, . . . , Si) (3.5)

will be the discounted loss for the company if the option is bought at time j. We choose
the stopping rule ν in such a way that the expected loss

E(Lν) (3.6)

will be minimized. Note that the optimality depends on the probabilities p in the underlying
model for the fund price. The solution is provided by Theorem 2.3. Note also that ν = N
means that the insurer does not buy options but covers any shortfall from own funds.
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Explicit calculations are not possible so we present two simulations to illustrate the
results. The table below defines the parameters used in the simulations:

S0 1
u 1.04
d 0.98
r 0.01
N 5
m 1000
x 30
z 5000

where z denotes the number of simulations. Table 1 summarizes some statistics for the
final loss LN for different p when the insurer buys αν options.

Table 1: A few selected descriptive statistics of the final loss distribution when αν options
are bought.

p E(LN ) SD(LN ) 90th percentile E(ν) SD(ν)

0.51 −32.45 135.55 87.54 4.71 0.69
0.50 −21.08 122.52 60.58 3.70 1.57
0.49 −20.45 123.41 42.08 2.85 1.77
0.48 −17.62 117.49 41.72 2.63 1.74

Let us now look at results of simulations when the insurer at time j considers buying
E(αN |αj) options (Table 2).

Table 2: A few selected descriptive statistics of the final loss distribution when options
cover the expected number of surviving policyholders.

p E(LN ) SD(LN ) 90th percentile E(ν) SD(ν)

0.51 0.69 165.27 195.57 3.45 1.60
0.50 9.42 160.78 197.46 3.22 1.64
0.49 11.45 158.66 196.50 3.05 1.63
0.48 18.36 152.96 197.24 2.75 1.64

In the first case the loss is negative and the financial risk is completely offset. It is true
that such a strategy depends on assumptions about availability of derivatives but in more
realistic settings it can still be used to reduce the cost of guarantees. In the second case
note that the loss due to αT exceeding the expected number of survivors needs to be taken
into account because it contributes to the overall loss.

For the case p = 0.48 the distribution of final loss LN and optimal stopping time ν are
shown in Figure 1 for both numbers of options.

4 Conclusions
We propose a strategy of hedging liabilities arising from equity-linked products with mini-
mum guarantees with financial derivatives. Simulations show that there is an optimal time
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Figure 1: The distribution of final loss and optimal time ν.

to switch from charging a fee towards the fund to buying a put option that will offset the
financial risk. The cases considered are simplified but may be an indication that strategies
for more realistic settings are possible.

References
[1] Slovenian mortality tables SIA65, 2010 (Slovenske rentne tablice smrtnosti), Official Gazette

of the Republic of Slovenia 26 (2016), 2148–2149, https://www.uradni-list.si/
_pdf/2016/Ur/u2016018.pdf.

[2] A. R. Bacinello, P. Millossovich, A. Olivieri and E. Pitacco, Variable annuities: a unifying
valuation approach, Insurance Math. Econom. 49 (2011), 285–297, doi:10.1016/j.insmatheco.
2011.05.003.

[3] T. Björk, Arbitrage Theory in Continuous Time, Oxford Finance Series, Oxford University
Press, 3rd edition, 2009.



472 Ars Math. Contemp. 16 (2019) 465–472

[4] J. C. Cox, S. A. Ross and M. Rubinstein, Option pricing: a simplified approach, J. Financial
Econ. 7 (1979), 229–263, doi:10.1016/0304-405x(79)90015-1.

[5] J. Dhaene, A. Kukush, E. Luciano, W. Schoutens and B. Stassen, On the (in-)dependence
between financial and actuarial risks, Insurance Math. Econom. 52 (2013), 522–531, doi:10.
1016/j.insmatheco.2013.03.003.

[6] T. Møller, Hedging equity-linked life insurance contracts, N. Am. Actuar. J. 5 (2001), 79–95,
doi:10.1080/10920277.2001.10595986.

[7] D. J. F. Nonnenmacher, Guaranteed equity-linked products, in: Proceedings of the 8th Interna-
tional AFIR Colloquium, 1998 pp. 413–428, held in Robinson College at Cambridge University,
UK, September 15 – 17, 1998, http://www.actuaries.org/AFIR/colloquia/
Cambridge/Nonnenmacher.pdf.

[8] D. J. F. Nonnenmacher and J. Ruß, Equity-linked life insurance in Germany: quantifying
the risk of additional policy reserves, in: Proceedings of the 7th International AFIR Collo-
quium, Volume 2, 1997 pp. 719–738, held in the Cairns International Hotel, North Queensland,
Australia, August 11 – 15, 1997, http://www.actuaries.org/AFIR/colloquia/
Cairns/Nonnenmacher_Russ.pdf.

[9] A. N. Shiryayev, Optimal Stopping Rules, volume 8 of Stochastic Modelling and Applied Prob-
ability, Springer-Verlag, New York, 2008, doi:10.1007/978-3-540-74011-7, translated from
Russian by A. B. Aries (original Russian edition published by Nauka, Moscow, 1976).
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