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Abstract

Like Cayley graphs, G-graphs are graphs that are constructed from groups. A method
for constructing expander families of G-graphs is presented and is used to construct new
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1 Introduction
Expander graphs are sparse graphs that have strong connectivity properties. Expander con-
structions have found extensive applications in computer science [13, 16], in constructing
of algorithms, error correcting codes [12], random walks [23], and sorting networks [1]. If
one chooses at random a family of d-regular graphs, it is almost certain to be an expander
graph [10]. Nevertheless, constructing expander families is not an easy task. Most con-
structions use deep algebraic and combinatorial techniques; mainly through Cayley graphs
and the Zig-Zag product (see for example [15, 19]).

Like Cayley graphs, G-graphs are defined from groups, but they correspond to an al-
ternative construction. These graphs, introduced in [6], have highly regular properties. In
particular, because the algorithm for constructingG-graphs is simple, it appears to be a use-
ful tool to construct new symmetric and semi-symmetric graphs [7]. Several extensively
studied problems in graph theory such as the hamiltonicity of Cayley graphs (see e.g. [3, 18]
for the latest development on this problem) may as well be approached using these objects.
For instance, G-graphs are used to characterize new classes of Hamiltonian Cayley graphs
[4], and to improve some upper bounds in the cage graphs problem [6]. Recently in [9], the
authors studied some robustness properties of G-graphs such as edge/vertex-connectivity
and vertex/edge-transitivity. It turns out, that several families of G-graphs are optimally
connected where an optimally connected graph can be thought of as a graph whose vertex-
connectivity is equal to its minimum degree. Because of their nice properties, it is natural
to consider the problem of constructing an expander family of G-graphs.

One of the chief tools for constructing a family of expander graphs is the concept of
Cayley graphs. The main advantage for using such graphs is that at first it enables us
when fixing the size of the generating set, to construct a large family of sparse graphs
in an effective and concise way. Additionally, the underlying properties of a group G
and its generating set S can give us an insightful gaze on the expansion properties of its
corresponding Cayley graph Cay(G,S). Generally speaking, it is hard to prove that a
certain family of Cayley graphs is an expander family. Concerning this, a huge amount of
research in the last few decades has been devoted to dealing with the following question:
which sequence of groups corresponds to an expander family of Cayley graphs? Using
some algebraic techniques that depend mainly on Kazhdan constant, many partial results
were obtained. In fact, most of these results gave negative answers to this question for
certain groups (see [14] and [17], see also Example 3.2 below). The purpose of this article is
to present a technique for constructing such families. Our construction is based on a relation
between some known expander families of Cayley graphs and certain expander families of
G-graphs. More precisely, for a group G and a subset S of G with S∗ =

⋃
s∈S 〈s〉 \ {e}

(i.e. if S = {s1, . . . , sk}, then S∗ = {s1, . . . , s
o(s1)−1
1 , . . . , sk, . . . , s

o(sk)−1
k }, where o(si)

denotes the order of si), we prove the following main result (see below for terminology).

Theorem 1.1. If {Cay(Gn, S
∗
n), n ∈ N+} is an expander family, then {Φ̃(Gn, Sn), n ∈

N+} is also an expander family.

The rest of the paper is organized as follows. In Section 2, we give a review of some
basic facts concerning groups, multigraphs, G-graphs and expander graphs that are needed
for our purposes. In Section 3, we shall prove the preceding theorem. In addition, just
like in the case of Cayley graphs, we prove that abelian groups can not yield an expander
family of G-graphs. In Sections 4 and 5, we first identify a new method for generating
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an infinite regular family of Cayley graphs from another one by switching specific edges.
This leads to a new infinite expander family of Cayley graphs on the projective special
linear group PSL(2,Z/pZ). Consequently, we construct several new infinite families of
expander G-graphs on the special linear group SL(2,Z/pZ) and projective special linear
group PSL(2,Z/pZ). These families are formed of irregular graphs, in particular semi-
regular, which are of the very few ones.

2 Preliminaries
This section has been designed to give a general introduction to some of the basic facts
needed from the theory of groups, multigraphs, expanders andG-graphs. This introduction
is given here to provide a convenient repository for all readers. We discuss briefly the
material we shall require from these theories and for more details on any of these subjects,
see for example [2, 11, 14, 17, 20].

2.1 Groups

Throughout this paper, all groups are assumed to be finite. Let (G, ., e) be a group, where
e denotes the identity element of G and “.” denotes the group operation (multiplicative
notation). For every g inGwe define the order of g, denoted by o(g), as the smallest integer
l such that gl = e. Let S = {s1, . . . , sk} be a non-empty subset ofG, and letOmax(S) and
Omin(S) be respectively the maximum and the minimum o(si) for all i ∈ {1, . . . , k}. A
subset S of G is said to be symmetric if every element in S has its inverse in S. We define
〈S〉 to be the smallest subgroup of G which contains S. If 〈S〉 = G, then set S is said to be
a generating set of G, or G is generated by S. If H is a subgroup of G then the set Hx is
called right coset of H in G, and we denote by G/H to be the set of all right cosets of H
in G. A subset TH of G is said to be a right transversal for H if TH contains exactly one
element from each right coset ofH inG. LetA andB be subsets of a set U, then we denote
B \ A = {x ∈ B and x /∈ A} and A = U \ A. The special linear group SL(2,Z/qZ) is
defined as follows:

SL(2,Z/qZ) =
{(

a1 a2

a3 a4

)
; a1, a2, a3, a4 ∈ Z/qZ and a1a4 − a2a3 = 1

}
.

The projective special linear group PSL(2,Z/qZ) = SL(2,Z/qZ)/{± I2}, where I2 is the
2× 2 identity matrix.

2.2 Multigraphs

All multigraphs considered in this paper are undirected and finite. Generally, we define an
undirected multigraph Γ as the triple (V (Γ), E(Γ), ξΓ), where V (Γ) is the set of vertices,
E(Γ) is the set of edges, and ξΓ is an incidence function that associates with each edge of
Γ an unordered pair of vertices of Γ. In addition, we denote by {u, v} the multi-edge that
links vertices u and v. The multiplicity of the multi-edge {u, v} is the cardinality of the
set of edges that links u and v. A multi-edge with identical end-points is called a loop. A
multigraph is a simple graph if it has neither loops nor multi-edges with multiplicity greater
than or equal to 2.

The neighborhood of vertex u denoted byN(u) is the set of all vertices that are adjacent
to u. The degree of a vertex v in a multigraph Γ, denoted by d(v) is the number of edges
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of Γ incident to v where each loop counts as two edges. The maximum and minimum
degree of a multigraph Γ are denoted by ∆(Γ) and δ(Γ) respectively. A multigraph Γ is
d-regular if d(u) = d for all u ∈ V (Γ). A family of d-regular multigraphs is formed
of regular multigraphs where each has degree d, while a family of regular multigraphs is
formed of regular multigraphs with possibly varying degrees. The distance d(u, v) between
two vertices u and v is the number of edges in a shortest path that connects u and v. The
diameter diam(Γ) of a multigraph Γ is defined by:

diam(Γ) = max{d(u, v);u, v ∈ V (Γ)}.

Let Γ1 = (V1, E1, ξ1) and Γ2 = (V2, E2, ξ2) be two multigraphs, a homomorphism
from Γ1 to Γ2 is a couple (f, f#) where f : V1 → V2 and f# : E1 → E2 such that if
ξ1(a) = {u, v} then ξ2(f#(a)) = {f(u), f(v)}. A graph isomorphism is the couple
(f, f#) where f and f# are bijective. We say that Γ1 is isomorphic to Γ2 if there exists an
isomorphism between Γ1 and Γ2. In such a case, we write Γ ' Γ′.

A multigraph Γ = (V,E, ξΓ) is k-partite if there is a partition of V into k parts such
that each part is a stable set. We will write Γ = (

⊔
i∈I Vi;E) where I = {1, . . . , k}. A

multigraph is minimum k-partite (k ≥ 1) if it is k-partite and not (k − 1)-partite. It is easy
to verify that for any multigraph Γ, there exists k such that Γ is minimum k-partite. If a
multigraph Γ is k-partite, then we will say that (Vi)i∈{1,2,...,k} is a k-representation of Γ.

Cayley graphs offer a combinatorial depiction of groups and their generators. More
precisely, the Cayley graph Cay(G,S) is the multigraph with vertex setG and two elements
x and y of G are adjacent if and only if y = s.x for some s ∈ S. It is well-known that
Cay(G,S) is connected if and only if G = 〈S〉 (see for example [14]).

2.3 G-graphs

Definition 2.1. Let (G, ., e) be a finite group. Let S be a nonempty subset of G. For s ∈ S,
consider the cycles (s)x = (x, sx, . . . , so(s)−1x) of permutation gs : x 7→ sx. Note that
〈s〉x is the set {x, sx, . . . , so(s)−1x}.We define theG-graph Φ(G,S) in the following way:

1. The vertex set of Φ(G,S) is V =
⊔

s∈S Vs where Vs = {(s)x, x ∈ T〈s〉} where
T〈s〉 is a right transversal for the subgroup 〈s〉 .

2. For each (s)x, (t)y ∈ V , there exists edge between (s)x and (t)y labeled g for each
g ∈ 〈s〉x ∩ 〈t〉y, such an edge will be denoted by ({(s)x, (t)y}, g). If card(〈s〉x ∩
〈t〉y) = p, p ≥ 1 then there exists p labeled edges between (s)x and (t)y, or
{(s)x, (t)y} is a multi-edge with multiplicity p.

Since the cosets of 〈s〉 form a partition ofG, (Vs)s∈S is a |S|-representation of Φ(G,S).
Every vertex (s)x has o(s) loops. We denote by Φ̃(G,S) the multigraph Φ(G,S) without

loops. The multigraph ˜̃Φ(G,S) is the simple graph underlying Φ(G,S), that is, the vertices

(s)x and (t)y in V ( ˜̃Φ(G,S)) are connected by a single edge if 〈s〉x ∩ 〈t〉y is non-empty.
If S = {s1, . . . , sk} then the level of any si, noted Vsi (or simply Vi), is the stable set of
Φ̃(G,S) which comprises all the vertices of the form (si)x where x ∈ G. Note that each
level Vs contains |G|o(s) vertices, therefore we have the following relation:

|V (Φ̃(G,S))| = |G|
∑
s∈S

1

o(s)
.
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The principal clique1 of x ∈ G, denoted by Cx, is the subgraph of Φ̃(G,S) induced by the
set of vertices which contain x. In Φ̃(G,S) there are |G| principal cliques; each contains
|S| vertices.

Example 2.2. Let G be the cyclic group of order 6, i.e. G = {e, a, a2, a3, a4, a5}. Clearly
G can be generated by an element of order 3 and another of order 2. Let S be {a2, a3}.
Then the vertices of the corresponding G-graph without loops Φ̃(G,S) are

(a2)e = (e, a2e, a4e) = (e, a2, a4), (a2)a = (a, a2a, a4a) = (a, a3, a5)

which are the 3-cycles and

(a3)e = (e, a3), (a3)a = (a, a3a) = (a, a4), (a3)a2 = (a2, a3a2) = (a2, a5)

which are the 2-cycles. Obviously, in this case the multigraph Φ̃(G,S) is isomorphic to
K2,3 (Figure 1). The levels Va2 and Va3 are respectively {(a2)e, (a2)a} and {(a3)e, (a3)a,
(a3)a2}. There are 6 principal cliques each of size |S| = 2. For instance, the principal
cliques Ce and Ca are the induced subgraphs of Φ̃(G,S) with vertex set {(a2)e, (a3)e}
and {(a2)a, (a3)a} respectively.

Figure 1: The bipartite multigraph K2,3.

The next 3 propositions can be found in [5].

Proposition 2.3 ([5]). Φ(G,S) and Φ̃(G,S) are minimum |S|-partite graphs.

Proposition 2.4 ([5]). Φ̃(G,S) is connected if and only if S is a generating set of G.

Proposition 2.5 ([5]). Let Φ̃(G,S) = (
⊔

s∈S Vs;E) be a G-graph with |G| = n and
|S| = k. Then the following holds.

d((s)x) = o(s)(k − 1), for all (s)x ∈ Vs,∑
(s)x∈Vs

d((s)x) = n(k − 1), for all s ∈ S,

|E(Φ̃(G,S))| = nk(k − 1)

2
.

2.3.1 New results on G-graphs

Proposition 2.6. Let Φ̃(G,S) be any G-graph such that |S| = {s1, . . . , sk}. Then the
following are equivalent:

1This definition is due to [4].
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i. Φ̃(G,S) is d-regular,

ii. o(si) = d
k−1 , for all i ∈ {1, . . . , k},

iii. |Vsi | = |Vsj |, for all i, j ∈ {1, . . . , k}.

Proof. Let (s)x ∈ Vs, where s ∈ S. From Proposition 2.5, we have

d((s)x) = o(s)(k − 1) or o(s) =
d((s)x)

k − 1
,

and then

|Vs| =
|G|
o(s)

=
|G|(k − 1)

d((s)x)
.

Therefore o(si) = o(sj) if and only if |Vsi | = |Vsj |, for all i, j ∈ {1, . . . , k}.

Remark 2.7. When Φ̃(G,S) is a regular multigraph, we use the notationO instead of o(s)
for any s ∈ S.

The following lemma can be found in [22].

Lemma 2.8 ([22]). Let Φ(G,S) be a G-graph with S = {s1, . . . , sk} a generating set
of G, then all the multi-edges between levels Vsi and Vsj have the same multiplicity
| 〈si〉 ∩ 〈sj〉 |.

As a result, we have the following corollary.

Corollary 2.9. Let Φ̃(G,S) be a G-graph with S = {s1, . . . , sk}. Then Φ̃(G,S) is a
simple graph if and only if 〈si〉 ∩ 〈sj〉 = {e} for all i, j ∈ {1, . . . , k} with i 6= j.

2.4 Expanders

Before we define expander graphs, we need to define some expansion parameters. Let
Γ = (V,E, ξΓ) be a non-oriented multigraph with |V | ≥ 2 and V ′ be a subset of V . The
edge boundary of V ′ in Γ denoted by ∂V ′(Γ) (or simply ∂V ′ when no ambiguity occurs)
is defined as follows:

∂V ′(Γ) = {α ∈ E; ξΓ(α) ∈ V ′ × V̄ ′}.

In other words, this is the set of edges emanating from the set V ′ to its complement. The
rate of expansion of Γ is then defined as follows:

h(Γ) = min
0<|V ′|≤ |V |2

|∂V ′|
|V ′|

.

Definition 2.10. For ε ∈ R∗+, a multigraph Γ is said to be an ε-expander if

ε ≤ h(Γ).

Definition 2.11. If a family of multigraphs {Γi = (Vi, Ei, ξi), i ∈ N+} satisfies the
following three conditions:

i. |Vi| → ∞ as i→∞,
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ii. There exists r ∈ N+ such that ∆(Γi) ≤ r for all i ∈ N+. That is {Γi, i ∈ N+} is a
sequence of bounded degree multigraphs,

iii. There exists ε ∈ R∗+ such that Γi is an ε-expander for all i ∈ N+,

then this family is called an expander family and an element of this family is an expander
graph.

If Γ is a d-regular multigraph, then in [14] it is proved that logd |V (Γ)| ≤ diam(Γ).
The next proposition is a simple generalization of this result.

Proposition 2.12. Let Γ be a connected multigraph such that ∆(Γ) ≤ r ∈ N+. Then

logr |V (Γ)| ≤ diam(Γ).

Proof. Consider v ∈ V (Γ) and define Bl(v) = {u ∈ V (Γ); d(v, u) ≤ l}. We show by
induction that |Bl(v)| ≤ rl. The result is trivial for l = 0. Suppose it is true up to l− 1 and
let’s prove it for l. Since every vertex in Bl−1(v) has at most r − 1 neighbors in Bl−1(v),
then |Bl(v)| ≤ (r−1)|Bl−1(v)|+ |Bl−1(v)| = r|Bl−1(v)| ≤ rrl−1 = rl. If l = diam(Γ),
then Bl(v) = V (Γ) and therefore |V (Γ)| ≤ rdiam(Γ).

3 Cay-expanders and G-expanders
In this section, we are mainly concerned with proving Theorem 1.1. First, we need to
introduce more auxiliary materials. We start with the following definition which is virtually
an interpretation of Definition 2.11 for the G-graph and Cayley graph cases.

Definition 3.1. Let {Gi, i ∈ N+} be a family of finite groups. We say that {Gi, i ∈ N+}
is a G-expander family, if for every i ∈ N+ there exists a generating subset Si of Gi such
that {Φ̃(Gi, Si), i ∈ N+} is an expander family. More precisely, {Gi, i ∈ N+} is a
G-expander family if the following 3 conditions are satisfied:

i. |V (Φ̃(Gi, Si))| = |Gi|
∑

s∈Si

1
o(s) →∞ as i→∞.

ii. There exists a positive integer r such that ∆(Φ̃(Gi, Si)) ≤ r for all i ∈ N+ which by
Proposition 2.5 means that for every (s)x ∈ Vs we have d((s)x) = (|Si| − 1)o(s) ≤
∆(Φ̃(Gi, Si)) ≤ r ∈ N+ for all i ∈ N+. This in turn means that there exists
r1, r2 ∈ N+ such that 2 ≤ |Si| ≤ r1 and o(s) ≤ r2 for all s ∈ Si and for all i ∈ N+.
In addition, since ∆(Φ̃(Gi, Si)) ≤ r for all i ∈ N+, then clearly Condition i. is
equivalent to saying that |Gi| → ∞ as i→∞.

iii. There exists an ε ∈ R∗+ such that ε ≤ h(Φ̃(Gi, Si)) for all i ∈ N+.

Note that 2 ≤ |Si| since otherwise Φ̃(Gi, Si) will be a disconnected multigraph so that
h(Φ̃(Gi, Si)) = 0, and so it is clear that max{r1, r2} ≤ r.

On the other hand, we say that {Gi, i ∈ N+} is a Cay-expander family, if for every
i ∈ N+ there exists a symmetric generating subset Si of Gi such that {|Si| : i ∈ N+}
is uniformly bounded and provided that {Cay(Gi, Si), i ∈ N+} is an expander family.
More explicitly, {Gi, i ∈ N+} is a Cay-expander family if the following 2 conditions are
satisfied:

i. |V (Cay(Gi, Si))| = |Gi| → ∞ as i→∞,
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ii. There exists an ε ∈ R∗+ such that ε ≤ h(Cay(Gi, Si)) for all i ∈ N+.

Example 3.2. For every i ∈ N+, let D2i be the dihedral group:

D2i =
〈
s, f | s2 = f i = e, sf = f−1s

〉
.

In 2002, Rosenhouse [21] showed that h(Cay(D2i, {f, f−1, s})) = 4
i . Hence, h(Cay(D2i,

{f, f−1, s})) → 0 as i → ∞. Thus {Cay(D2i, {f, f−1, s}), i ∈ N+} is not an ex-
pander family. In fact, it was shown later (see [14]) that for any set of generator Si of
D2i, {Cay(D2i, Si), i ∈ N+} is not an expander family. Thus {D2i, i ∈ N+} is not a
Cay-expander family.

It is well-known that no family of abelian groups is a Cay-expander [14]. Before we
prove the same result for the G-expander case, we need the following lemma.

Lemma 3.3. Let G be an abelian group generated by S = {s1, . . . , sk} and let Φ̃(G,S)
be the corresponding G-graph, then

diam(Φ̃(G,S)) ≤ |S|.

Proof. Let (sp)x, (sq)y ∈ V (Φ̃(G,S)), where x, y ∈ G and 1 ≤ p, q ≤ |S| = k. Since
G = 〈S〉 is an abelian group, then

x = si11 . . . sipp . . . siqq . . . s
ik
k y = si11 . . . sipp . . . s

iq−1

q−1 s
iq+1

q+1 . . . s
ik
k s

iq
q y,

where 1 ≤ il ≤ o(sl) for all 1 ≤ l ≤ k. It is easy to see that (sp)x is adjacent to
(s1)si22 . . . sikk y which is in turn connected to (s2)si33 . . . sikk y and so on up to (sk)s

iq
q y

which is connected to (sq)y. Thus d((sp)x, (sq)y) ≤ |S|.

Corollary 3.4. No family of abelian groups is a G-expander.

Proof. Suppose that {Gi, i ∈ N+} is a family of finite abelian groups and that {Φ̃(Gi, Si),
i ∈ N+} is an expander family. Then there exists r ∈ N+ such that |Si| ≤ r for all i ∈ N+.
But then by the preceding lemma diam(Φ̃(Gi, Si)) ≤ |Si| ≤ r ∈ N+, and that contradicts
Proposition 2.12.

Now we are ready to prove the main result of this paper which is Theorem 1.1.

Proof of Theorem 1.1. Since Cay(Gn, S
∗
n) is an expander family, then |Gn| → ∞ as

n → ∞ and there is an r ∈ N+ such that |S∗n| ≤ r for all n ∈ N+. Hence |Sn| ≤ r
and Omax(Sn) ≤ r for every n ∈ N+. Then |V (Φ̃(Gn, Sn))| → ∞ as n → ∞ and
∆(Φ̃(Gn, Sn)) < r2 for all n ∈ N+.

Suppose that H ⊂ V (Φ̃(Gn, Sn)) where 0 < |H| < |V (Φ̃(Gn,Sn))|
2 , and Hi = H ∩ Vi

for every 1 ≤ i ≤ |Sn|. Then, clearly we have

H =
⊔
i

Hi.

Let W =
⋂

i

⋃
(s)x∈Hi

〈s〉x ⊂ G. Since |H| ≤ |V (Φ̃(Gn,Sn))|
2 , we have |W | ≤ |G|2 . Now

let Xi = {(si)x ∈ Hi | 〈si〉x ⊂ W}, then |Xi| ≤ |W |. Denote by X and Y the following
sets of vertices,

X =

|Sn|⊔
i=1

Xi, and Y = H \X.
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If (s)x ∈ Y , there is an edge between (s)x and a vertex in V (Φ̃(Gn, Sn)) \H . Hence

|∂H| ≥ |Y |.

In Cay(Gn, S
∗
n), we have |∂W | ≥ ε|W |. Let f : ∂W → ∂H , {x, y} 7→ ({(si)x, (sj)y}, y),

where x ∈W , y /∈W , i and j are chosen so that xy−1 ∈ 〈si〉 and y /∈
⊔

(s)x∈Hj
〈s〉x (note

here that there may be several possible choices for i and j). Now observe that if f(x, y) =

f(x′, y′), then xx′−1 ∈ 〈si〉 and y = y′. So for all α ∈ ∂H , |f−1(α)| ≤ Omax(Sn).
Hence,

|∂H| ≥ |∂W |
Omax(Sn)

≥ ε|W |
Omax(Sn)

≥ εmaxi |Xi|
Omax(Sn)

≥ ε|X|
Omax(Sn)|Sn|

.

Using |∂H| ≥ |Y | and |H| = |X|+ |Y |, we obtain

|∂H| ≥ 1

2
min

{
ε

Omax(Sn)|Sn|
, 1

}
|H| ≥ 1

2
min

{ ε

r2
, 1
}
|H|.

This completes the proof.

The following results are obvious consequences of Theorem 1.1.

Corollary 3.5. If {Gn, n ∈ N+} is a Cay-expander family, then it is also a G-expander
family.

Corollary 3.6. If {Cay(Gi, S
∗
i ), i ∈ N+} is an expander family, then { ˜̃Φ(Gi, Si), i ∈

N+} is also an expander family.

Proof. By Theorem 1.1, {Φ̃(Gi, Si), i ∈ N+} is an expander family. By Definition 3.1,
there exists r ∈ N+ such that o(sj) ≤ r, for every sj ∈ Si. Then | 〈sj1〉 ∩ 〈sj2〉 | ≤ r for

all sj1 , sj2 ∈ Si. Thus h(Φ̃(Gi,Si))
r ≤ h( ˜̃Φ(Gi, Si)).

Remark 3.7.

1. Unlike most constructed expander families which are d-regular, our construction pro-
duces expander families that may be d-regular, regular, or irregular. More specifi-
cally, by Proposition 2.6, if the order of all elements in the generating set Si is the
same, then the constructed family is either a d-regular or regular family depending
on whether there exist si ∈ Si and sj ∈ Sj such that o(si) 6= o(sj). Otherwise, it
will be an irregular family.

2. By Corollary 2.9, if 〈sj1〉 ∩ 〈sj2〉 = {e} for all sj1 ∈ Si, sj2 ∈ Si \ sj1 , and for
every i ∈ N+, then the constructed expander family {Φ̃(Gi, Si), i ∈ N+} is formed

of simple graphs. Note that { ˜̃Φ(Gi, Si), i ∈ N+} is always an expander family of
simple graphs.

3. In Table 1, we compare some graph invariants for the Cayley graph Cay(G,S∗) and
the G-graph Φ̃(G,S).

It is worthy to note that |S∗| =
∑

s∈S o(s) − |S| and every vertex in level Vs of
Φ̃(G,S) has degree equal to o(s)(|S| − 1) where |Vs| = |G|

o(s) . Thus, the degree
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Table 1: Some graph invariants of Cay(G,S∗) and Φ̃(G,S).

Cay(G,S∗) Φ̃(G,S)

Order |G|
∑

s∈S
|G|
o(s)

Degree |S∗|-regular multigraph d(u) = o(s)(|S| − 1)
for all u ∈ Vs and s ∈ S

Size 1
2 |G||S

∗| = 1
2 |G|(

∑
s∈S o(s)−|S|)

1
2 |G||S|(|S| − 1)

of most vertices of Φ̃(G,S) is smaller than |S∗| (see also the remark after Theo-
rem 5.10). In other words, this means that G-graphs enable us to construct sparser
multigraphs than those which can be constructed using the family Cay(G,S∗), and
in some cases even sparser than the ones constructed from the family Cay(G,S),
with possibly smaller expansion ratios (see the proof of Theorem 1.1).

4 Applications
In this section, we present some direct results of Theorem 1.1. But first we start with some
auxiliary materials.

Proposition 4.1. Let xi ∈ Gi \ Si. If {Cay(Gi, Si), i ∈ N+} is an expander family, then
{Cay(Gi, Si ∪ xi±1), i ∈ N+} is also an expander family.

Proof. Since {Cay(Gi, Si), i ∈ N+} is an expander family, then there exists r ∈ N+ such
that |Si| ≤ r, for all i ∈ N+. Thus |Si ∪ xi±1| ≤ r + 2 for all i ∈ N+, so the second
condition of Definition 2.11 is satisfied. Note that Cay(Gi, Si) is a spanning subgraph of
Cay(Gi, Si ∪ xi±1), hence

0 < ε ≤ h(Cay(Gi, Si)) ≤ h(Cay(Gi, Si ∪ xi±1)).

A direct consequence of the preceding proposition is the following.

Corollary 4.2. Let {Cay(Gi, Si), i ∈ N+} be an expander family. If there exists l ∈ N+

such that |S∗i | ≤ l for all i ∈ N+, then {Cay(Gi, S
∗
i ), i ∈ N+} is also an expander family.

The following theorem was proved by Breuillard and Gamburd in [8].

Theorem 4.3 ([8]). There exists ε ∈ R∗+ and an infinite set of prime numbers P′ such that
for every p ∈ P′ and every generating set {x, y} of SL(2,Z/pZ), the family

Cay(SL(2,Z/pZ), {x±1, y±1})

is an ε-expander.

Let

S1 =

(
0 −1
1 0

)
, S2 =

(
0 1
−1 0

)
and S3 =

(
1 1
0 1

)
.
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It is well-known that SL(2,Z/pZ) = 〈S1, S3〉 = 〈S2, S3〉. The order of S1, S2 is 4, while
the order of S3 in Z/pZ is p. Thus SL(2,Z/pZ) is also generated by one of the following
sets: {S1, S1S3}, {S1, S3S1}, {S2, S2S3}, {S2, S3S2} . Where

S1S3 =

(
0 −1
1 1

)
, S3S1 =

(
1 −1
1 0

)
,

S2S3 =

(
0 1
−1 −1

)
, and S3S2 =

(
−1 1
−1 0

)
.

Note that the orders of S1S3, S3S1, S2S3, and S3S2 are respectively 6, 6, 3 and 3. With
the above notation, we have the following conclusion.

Corollary 4.4. Let

A1 = {S±1
1 , S1S3, S

−1
3 S−1

1 }, A2 = {S±1
1 , S3S1, S

−1
1 S−1

3 },
A3 = {S±1

2 , S2S3, S
−1
3 S−1

2 }, and A4 = {S±1
2 , S3S2, S

−1
2 S−1

3 }.

There exist sets Pa
i of prime numbers such that {Cay(SL(2,Z/pZ), Ai); p ∈ Pa

i } is an
expander family for all 1 ≤ i ≤ 4.

Let B1 = {S1, S1S3}, by Corollaries 4.2 and 4.4 we directly deduce that there exists
a set P′ of prime numbers such that {Cay(SL(2,Z/pZ), B∗1); p ∈ P′} is an expander
family. Using Theorem 1.1, we can easily deduce that {Φ̃(SL(2,Z/pZ), B1); p ∈ P′} is
an expander family. By the same analogy, we obtain the following.

Corollary 4.5. Let

B1 = {S1, S1S3}, B2 = {S1, S3S1},
B3 = {S2, S2S3}, and B4 = {S2, S3S2}.

There exist sets Pb
i of prime numbers such that {Φ̃(SL(2,Z/pZ), Bi); p ∈ Pb

i} is an
expander family for all 1 ≤ i ≤ 4.

In a similar fashion, many other G-graph families on the special linear group
SL(2,Z/qZ) can be constructed.

5 New expander families of G-graphs
In this section, we present a method for constructing a family of Cayley graphs from
another given family by rearrangement of edges in such a way to almost maintain the same
expansion ratio. Consequently, we prove that if the family of Cayley graphs
{Cay(Gi, {s±1

1 , s±1
2 }); i ∈ N+} is an expander, then so is the family of Cayley graphs

{Cay(Gi, {s±1
1 , s1s2, s

−1
2 s−1

1 }); i ∈ N+}. Then using Theorem 1.1, several expander
families of G-graphs are constructed. But first we need to introduce more notation.

Remark 5.1. Let Cay(G,S) be a Cayley graph and let H ′ ⊆ H ⊆ G. Let s ∈ S, we
denote by Ns(H) and Ns(H)(H ′) the set of vertices of Cay(G,S) that are defined in the
following way:

i. Ns(H) = sH ∩ H̄,
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ii. Ns(H)(H ′) = sH ′ ∩ H̄.

Next, we start by the following simple lemma.

Lemma 5.2. Let Cay(G,S) be a Cayley graph, where S = {s±1
1 , . . . , s±1

k }. Let H ⊆ G,
then

|∂H(Cay(G,S))| = 2
∑

i|o(si)>2

|Nsi(H)|+
∑

i|o(si)=2

|Nsi(H)| =
∑

1≤i≤k

|Ns±1
i

(H)|.

Proof. Let x, y ∈ H such that y = six for some si ∈ S, then x = s−1
i y. Thus the

number of edges in the subgraph H of G that corresponds to si is equal to that of s−1
i and

|Nsi | = |Ns−1
i
|. It is easy to see that: |∂H(Cay(G,S))| =

∑
1≤i≤k |Ns±1

i
(H)| and the

proof is complete.

Example 5.3. Let (Z/nZ,+, 0), n ≥ 10 and S = {±1,±2}. Then Cay(Z/nZ, S) is 4-
regular multigraph on n vertices. LetH be a subgraph of Cay(Z/nZ, S) such that V (H) =
{1, 2, 3, 7}. Let s1 = +1 and s2 = +2. Then Ns1(H) = {4, 8}, Ns−1

1
(H) = {0, 6},

Ns2(H) = {4, 5, 9}, and Ns−1
2

(H) = {0, 5, n− 1}. Thus

|∂H(Cay(Z/nZ, S))| = 2
(
|Ns1(H)|+ |Ns2(H)|

)
= 10.

Next, we shall show that it is possible to construct an expander family of Cayley graphs
from another one by switching some of its edges.

Corollary 5.4. Let {Cay(Gi, {s±1
1 , s±1

2 }); i ∈ N+} be an expander family. If o(s1),
o(s2), and o(s1s2) > 2, then {Cay(Gi, {s±1

1 , s1s2, s
−1
2 s−1

1 }); i ∈ N+} is also an ex-
pander family.

Proof. Let V (H) = {x1, . . . , xt} ∈ G. Define ∂′H , ∂′′H to be the sets of emanat-
ing edges from V (H) in the multigraphs Cay(Gi, {s±1

1 , s±1
2 }) and Cay(Gi, {s±1

1 , s1s2,
s−1

2 s−1
1 }) respectively. By Lemma 5.2, we have:

|∂′H| = 2|Ns1(H)|+ 2|Ns2(H)|, and (1)
|∂′′H| = 2|Ns1(H)|+ 2|Ns1s2(H)|. (2)

Let y ∈ Ns2(H), y = s2x for some x ∈ H .

i. If s1y /∈ H , then s1s2x /∈ H and s1s2x ∈ Ns1s2(H).

ii. And if s1y ∈ H , then s1s2x ∈ H .

Let H1 and H2 be the set of vertices of H defined as follows:

H1 = {x ∈ H/s2x /∈ H and s1s2x /∈ H},
H2 = {x ∈ H/s2x /∈ H and s1s2x ∈ H}.

From equalities (1) and (2), we have

2|Ns1(H)|+ 2|Ns2(H)(H1)|+ 2|Ns2(H)(H2)| = |∂′H|,
2|Ns1(H)|+ 2|Ns1s2(H)(H1)|+ 2|Ns1s2(H)(H2)| ≤ |∂′′H|.
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From the definition of H2, we have |Ns1s2(H)(H2)| = 0, then

2|Ns1(H)|+ 2|Ns1s2(H)(H1)| ≤ |∂′′H|.

Therefore, it holds that

2|Ns1(H)|+ 4|Ns1s2(H)(H1)| − 2|Ns2(H)(H1)| − 2|Ns2(H)(H2)| ≤ 2|∂′′H| − |∂′H|.

From the definition of H1, we have |Ns1s2(H)(H1)| = |Ns2(H)(H1)| and similarly from
the definition of H2, we have |Ns2(H)(H2)| = |Ns−1

1
(H) ∩Ns2(H)|. Thus,

2|Ns1(H)|+ 2|Ns2(H)(H1)| − 2|Ns−1
1

(H) ∩Ns2(H)| ≤ 2|∂′′H| − |∂′H|.

Noticing that
|Ns−1

1
(H) ∩Ns2(H)| ≤ |Ns−1

1
(H)| = |Ns1(H)|,

then
2|Ns2(H)(H1)| ≤ 2|∂′′H| − |∂′H|.

Finally, we obtain

0 < ε ≤ |∂
′H|

2|H|
≤ |∂

′′H|
|H|

.

Remark 5.5. Note that in general {Cay(Gi, {s±1
1 , s±1

2 }); i ∈ N+} and {Cay(Gi, {s±1
1 ,

s1s2, s
−1
2 s−1

1 }); i ∈ N+}may be not isomorphic. An example of this situation is given by
the dihedral group D2i which is defined earlier as follows:

D2i =
〈
s, f | s2 = f i = e, sf = f−1s

〉
.

Let s1 = s and s2 = f , then S = {s±1
1 , s±1

2 } = {s, f±1} and L = {s±1
1 , s1s2, s

−1
2 s−1

1 } =
{s, sf}. Clearly, the 3-regular Cay(D2i, {s±1

1 , s±1
2 }) is not isomorphic to the 2-regular

multigraph Cay(D2i, {s±1
1 , s1s2, s−1

2 s−1
1 }).

The next theorem is Theorem 4.4.2 in [16].

Theorem 5.6 ([16]). Let P be the set of all prime numbers, then {Cay(PSL(2,Z/pZ),
{S±1

2 , S±1
3 }); p ∈ P} is an expander family.

As a consequence, we have the following.

Corollary 5.7. Let P be the set of all prime numbers, then {Cay(PSL(2,Z/pZ); {S±1
2 ,

S2S3, S
−1
3 S−1

2 }); p ∈ P} is an expander family.

Corollary 5.8. Let P be the set of all prime numbers, then {PSL(2,Z/pZ); p ∈ P} is a
Cay-expander family.

Remark 5.9. The order of S2 and S2S3 are 4 and 3 respectively. Let L = {S2, S2S3}
and W = {S2, S

2
2 , S2S3}, then we see that max{|L∗|, |W ∗|} ≤ 7. Using Corollaries 4.2

and 5.7, we deduce that {Cay(PSL(2,Z/pZ), L∗}); p ∈ P} and {Cay(PSL(2,Z/pZ),
W ∗}); p ∈ P} are all expander families. Now by Theorem 1.1, we are able to directly
construct several expander families of G-graphs.

Thus, we can conclude the following.
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Theorem 5.10. Let P be the set of all prime numbers. Then the G-graphs families given
by

1.
{

Φ̃(PSL(2,Z/pZ), {S2, S2S3}); p ∈ P
}
,

2.
{

Φ̃(PSL(2,Z/pZ), {S2, S
2
2 , S2S3}); p ∈ P

}
.

are expanders.

Remark 5.11.

1. Using Corollary 2.9, it is easy to check that the first expander family given in Theo-
rem 5.10 is formed of simple graphs, while the second one is not. By Proposition 2.6,
we also deduce that the multigraphs in both families are semiregular; in otherwords
the above two expander families are irregular.

2. Each {Cay(Gi, S
∗
i ); i ∈ N+} expander family enables us to construct several ex-

pander families of G-graphs depending on the choice of Si in S∗i with the possibility
that some of these families may be isomorphic. For example, the following expander
families {Φ̃(PSL(2,Z/pZ), {S2, S

−1
3 S−1

2 }); p ∈ P}, {Φ̃(PSL(2,Z/pZ), {S−1
2 ,

S2S3}); p ∈ P
}

, and {Φ̃(PSL(2,Z/pZ), {S−1
2 , S−1

3 S−1
2 }); p ∈ P} are all isomor-

phic to {Φ̃(PSL(2,Z/pZ), {S2, S2S3}); p ∈ P
}

. Similarly, the expander families
{Φ̃(PSL(2,Z/pZ), {S2, S

2
2 , S

−1
3 S−1

2 }); p ∈ P}, {Φ̃(PSL( 2,Z/pZ), {S−1
2 , S2

2 ,
S2S3}); p ∈ P}, and {Φ̃(PSL(2,Z/pZ), {S−1

2 , S2
2 , S

−1
3 S−1

2 }); p ∈ P} are all
isomorphic to {Φ̃(PSL( 2,Z/pZ), {S2, S

2
2 , S2S3}); p ∈ P}.

Table 2: Comparison of some graph invariants between Cay(G,S∗) and Φ̃(G,S) for S =
L and S = W .

Cay(G,L∗) Φ̃(G,L)

Order |G|
∑

s∈S
|G|
o(s) = 7

12 |G|

Degree 5-regular multigraph d(u) = 4 for all u ∈ VS2

d(v) = 3 for all v ∈ VS2S3

Size 5
2 |G| |G|

Cay(G,W ∗) Φ̃(G,W )

Order |G| 13
12 |G|

Degree 6-regular multigraph d(u) = 8 for all u ∈ VS2

d(v) = 6 for all v ∈ VS2S3

d(w) = 4 for all w ∈ VS2
2

Size 3|G| 3|G|

3. Let G be the projective special linear group, that is G = PSL(2,Z/pZ). In Table 2,
we compare the order, the degree, and the size of the following expander family of
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Cayley graphs {Cay(G,L∗), p ∈ P} (resp. {Cay(G,W ∗), p ∈ P}) with their corre-
sponding ones in the G-graphs family {Φ̃(G,L); p ∈ P} (resp. {Φ̃(G,W ); p ∈ P})
(see Theorem 5.10). Form the preceding table, it is easy to see that the infinite ex-
pander family of G-graphs Φ̃(G,L) is sparser than the original expander family of
the 4-regular graphs Cay(G,L±1) and the 5-regular graphs Cay(G,L∗). The same
can be said concerning the infinite expander family of G-graphs Φ̃(G,W ) and the
Cayley graph one Cay(G,W ∗).

We close this section by the following corollary which can be easily obtained by using
Theorem 5.10 and Corollary 3.6.

Corollary 5.12. Let P be the set of all prime numbers. Then the family of G-graphs given
by

{ ˜̃Φ(PSL(2,Z/pZ), {S2, S
2
2 , S2S3}); p ∈ P}

is an expander family.
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