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Abstract

We describe the adjacency matrix and the distance matrix of the wreath product of two
complete graphs, and we give an explicit computation of their spectra. As an application,
we deduce the spectrum of the transition matrix of the Lamplighter random walk over a
complete base graph, with a complete color graph. Finally, an explicit computation of the
Wiener index is given.
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1 Introduction
The construction of new graphs starting from smaller factor graphs is a very natural and
fruitful technique, largely developed in literature for its theoretical interest in several bran-
ches of Mathematics – Algebra, Combinatorics, Probability, Harmonic Analysis – but
also for its practical applications. Among the standard products we find, for instance,
the Cartesian product, the direct product, the strong product, the lexicographic product
[22, 23, 30, 31]. More recently, the zig-zag product was introduced [29], in order to pro-
duce expanders of constant degree and arbitrary size; in [10, 14], some combinatorial and
topological properties of such products, as well as connections with random walks, have
been investigated.

It is worth mentioning that many of these constructions play an important role in Ge-
ometric Group Theory, since it turns out that, when applied to Cayley graphs of two finite
groups, they provide the Cayley graph of an appropriate product of these groups (see [1],
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where this correspondence is shown for zig-zag products, or [15], for the case of wreath
and generalized wreath products).

Spectral properties of graph products have been object of an intensive study in the
last decades, both for their algebraic and combinatorial interest, and for applications to
Probability, Computer Science, and Mathematical Chemistry. The spectrum of a graph is
defined as the spectrum of its adjacency matrix; similarly, the distance spectrum of a graph
is defined to be the spectrum of its distance matrix (see Section 2). The reader can refer,
for instance, to the monograph [5] for an exhaustive treatment of spectra of graphs. We
also want to mention the papers [24, 25, 34], where the distance spectrum of some graph
compositions has been studied.

A related topic of research is the Wiener index, which is defined as the sum of the dis-
tances between all the unordered pairs of vertices of the graph. This index was introduced
by Wiener [36] and, due to the wide range of applications, it is nowadays largely stud-
ied. In particular, it is one of the most frequently used topological indices in mathematical
chemistry, as molecules can be represented by means of undirected graphs. For this rea-
son, it has a strong correlation with many physical and chemical properties of molecular
compounds, whose properties do not only depend on their chemical formula, but also on
their molecular structure [13]. There exists a wide range of fields such as communication,
facility location, cryptology, architecture where the Wiener index of a graph is of great
interest. A large number of papers is devoted to the study of the Wiener index of graphs,
sequences of graphs, products of graphs. In [12] the Wiener index of trees is investigated.
In [16] the Wiener index and the related Hosoya polynomial are studied for a family of
circulant graphs. See also the paper [9], where the Wiener index is studied on an increasing
sequence of finite graphs, introduced in [6], and whose limit graphs have been studied in
[7], which approximates the Sierpiński carpet fractal. In [17, 18] the study of Wiener index
is developed for some graph compositions.

In the present paper, we focus our attention on a different kind of graph product known
in literature, namely the wreath product of two graphs (see Definition 2.1). This con-
struction is nowadays largely studied, and different generalizations have been introduced
[15, 19]. Notice that this construction is interesting not only from an algebraic and combi-
natorial point of view, but also for its connection with Geometric group theory and Prob-
ability, via the notions of Lamplighter group and Lamplighter random walk (see, for in-
stance, [3, 21, 32, 33, 37]). Notice that in a previous paper joint with D. D’Angeli [8],
we introduced a matrix operation, called wreath product of matrices (recalled in Defini-
tion 2.2), which is a matrix analogue of the wreath product of graphs, since it provides
the adjacency matrix of the wreath product of two graphs, when applied to the adjacency
matrices of the factors (Theorem 2.3 below).

Let us denote byKn the complete graph on n vertices. In this paper, the wreath product
Kn o Km is studied. In Proposition 3.1, we describe in detail distances in Kn o Km, and
we deduce its diameter in Corollary 3.2. Moreover, in Proposition 3.4 we show that the
graph Kn oKm is not distance-regular. After describing in detail the adjacency matrix of
the wreath product Kn o Km of two complete graphs, we are able to explicitly compute
its spectrum by using a reduction argument, allowing to reduce our computations to the
study of the spectrum of smaller matrices, whose size is the cardinality of the vertex set
of the first graph (Theorem 3.7); we then deduce the spectrum of the transition matrix of
the Lamplighter random walk with base graph Kn and color graph Km (Corollary 3.9). In
Proposition 3.10, we provide the distance matrix ofKnoKm, and its spectrum is determined
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in Theorem 3.11 by means of a second reduction argument. Finally, in Theorem 3.13, the
Wiener index of the graph Kn oKm is computed.

Notice that the spectrum considered in the present paper concerns the “walk or switch”
Lamplighter random walk. The analogous question for the so called “switch-walk-switch”
Lamplighter random walk has been solved in [26, 27]. A common framework for such
computations has been established in [20].

2 Preliminaries
Let G = (V,E) be a finite undirected graph, where V denotes the vertex set, and E is the
edge set consisting of unordered pairs of type {u, v}, with u, v ∈ V . If {u, v} ∈ E, we
say that the vertices u and v are adjacent in G, and we use the notation u ∼ v. A path in
G is a sequence u0, u1, . . . , u` of vertices such that ui ∼ ui+1, for each i = 0, . . . , ` − 1.
We say that such a path has length `. The graph is connected if, for every u, v ∈ V , there
exists a path u0, u1, . . . , u` in G such that u0 = u and u` = v. For a connected graph
G, we will denote by d(u, v) the geodesic distance between the vertices u and v, that is,
the length of a minimal path in G joining u and v. The diameter of G is then defined as
diam(G) = maxu,v∈V {d(u, v)}.

Recall now that the adjacency matrix of an undirected graph G = (V,E) is the square
matrix A = (au,v)u,v∈V , indexed by the vertices of G, whose entry au,v equals the number
of edges connecting u and v. As the graph G is undirected, A is a symmetric matrix and
so all its eigenvalues are real. The spectrum of G is then defined as the spectrum of its
adjacency matrix. The degree of a vertex u ∈ V is defined as deg(u) =

∑
v∈V au,v . In

particular, we say that G is regular of degree d, or d-regular, if deg(u) = d, for each u ∈ V .
In this case, the normalized adjacency matrix A′ of G is obtained as A′ = 1

dA.
We recall now the definition of wreath product of graphs.

Definition 2.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two finite graphs. The wreath
product G1 o G2 is the graph with vertex set V V1

2 × V1 = {(f, v) | f : V1 → V2, v ∈ V1},
where two vertices (f, v) and (f ′, v′) are connected by an edge if:

(1) (edges of type I ) either v = v′ =: v and f(w) = f ′(w) for every w 6= v, and
f(v) ∼ f ′(v) in G2;

(2) (edges of type II ) or f(w) = f ′(w), for every w ∈ V1, and v ∼ v′ in G1.

It follows from the definition that, if G1 is a regular graph on n1 vertices with degree d1
and G2 is regular graph on n2 vertices with degree d2, then the graph G1 o G2 is a (d1 +d2)-
regular graph on n1nn1

2 vertices.
It is a classical fact (see, for instance, [37]) that the simple random walk on the graph

G1 oG2 is the so called Lamplighter random walk, according to the following interpretation:
suppose that at each vertex of G1 (the base graph) there is a lamp, whose possible states
(or colors) are represented by the vertices of G2 (the color graph), so that the vertex (f, v)
of G1 o G2 represents the configuration of the |V1| lamps at each vertex of G1 (for each
vertex u ∈ V1, the lamp at u is in the state f(u) ∈ V2), together with the position v of
a lamplighter walking on the graph G1. At each step, the lamplighter may either go to a
neighbor of the current vertex v and leave all lamps unchanged (this situation corresponds
to edges of type II in G1 o G2), or he may stay at the vertex v ∈ G1, but he changes the state
of the lamp which is in v to a neighbor state in G2 (this situation corresponds to edges of
type I in G1 o G2). For this reason, the wreath product G1 o G2 is also called the Lamplighter
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graph, or Lamplighter product, with base graph G1 and color graph G2. Also notice that the
model described above is often called “walk or switch” Lamplighter random walk.

It is worth mentioning that the wreath product of graphs represents a graph analogue
of the classical wreath product of groups [28], as it turns out that the wreath product of
the Cayley graphs of two finite groups is the Cayley graph of the wreath product of the
groups, with a suitable choice of the generating sets. In the paper [15], this correspondence
is proven in the more general context of generalized wreath products of graphs, inspired
by the construction introduced in [2] for permutation groups. Also notice that in [19] a
different notion of generalized wreath product of graphs is presented.

In the paper [8], the following matrix construction involving wreath products is intro-
duced. LetMm×n(C) denote the set of matrices withm rows and n columns over the com-
plex field, and let In be the identity matrix of size n. We recall that the Kronecker product of
two matrices A = (aij)i=1,...,m;j=1,...,n ∈ Mm×n(C) and B = (bhk)h=1,...,p;k=1,...,q ∈
Mp×q(C) is defined to be the mp× nq matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

We denote by A⊗
n

the iterated Kronecker product A⊗ · · · ⊗A︸ ︷︷ ︸
n times

, and we put A⊗
0

= 1.

Definition 2.2 ([8]). Let A ∈ Mn×n(C) and B ∈ Mm×m(C). For each i = 1, . . . , n, let
Ci = (chk)h,k=1,...,n ∈Mn×n(C) be the matrix defined by

chk =

{
1 if h = k = i
0 otherwise.

The wreath product of A and B is the square matrix of size nmn defined as

A oB = I⊗
n

m ⊗A+

n∑
i=1

I⊗
i−1

m ⊗B ⊗ I⊗
n−i

m ⊗ Ci.

In [8] the following theorem, which shows the correspondence between wreath products
of matrices and wreath products of graphs, is proven.

Theorem 2.3. Let A′1 be the normalized adjacency matrix of a d1-regular graph G1 =
(V1, E1) and let A′2 be the normalized adjacency matrix of a d2-regular graph G2 =

(V2, E2). Then the wreath product
(

d1
d1+d2

A′1

)
o
(

d2
d1+d2

A′2

)
is the normalized adjacency

matrix of the graph wreath product G1 o G2.

For a finite connected graph G = (V,E), the distance matrix D = (du,v)u,v∈V of G
is, by definition, the square matrix indexed by the vertices of G, such that du,v = d(u, v).
The matrix D is symmetric by definition, so that its spectrum is real. The spectrum of D is
usually called the distance spectrum of the graph G.

We complete this preliminary section by recalling the definition of Wiener index of a
finite connected graph G = (V,E). The Wiener index of G is defined as the sum of the
distances between all the unordered pairs of vertices, i.e.,

W (G) =
1

2

∑
u,v∈V

d(u, v),
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where d(u, v) denotes the usual geodesic distance between u and v.
In Section 3, we will construct the adjacency matrix and the distance matrix of the

graph Kn o Km, and we will compute their spectra. Finally, we will provide an explicit
computation of the Wiener index of Kn oKm.

3 The wreath product Kn o Km

From now on, we will focus our attention on the wreath product Kn o Km, where Kn =
(Vn, En) is the complete graph on n vertices, that is, the graph on n vertices in which every
pair of distinct vertices is connected by a unique edge. Notice that Kn is a regular graph

of degree n − 1, with diameter 1, where d(u, v) =

{
0 if u = v
1 if u 6= v

for each pair u, v of

vertices.

Figure 1: The complete graph K6.

In particular, the adjacency matrix ofKn is given byAdn = Jn−In, where Jn denotes
the uniform square matrix of size n, whose entries are all equal to 1. Moreover, it follows
from Theorem 2.3 that the adjacency matrix of the graph Kn oKm is the matrix

Adn oAdm = I⊗
n

m ⊗Adn +

n∑
i=1

I⊗
i−1

m ⊗Adm ⊗ I⊗
n−i

m ⊗ Ci, (3.1)

with Ci as in Definition 2.2. Notice also that, by definition, Kn o Km is an (n + m −
2)-regular graph on nmn vertices. A vertex of Kn o Km will be usually denoted by
(y1, . . . , yn)xi, where yj ∈ Vm, for each j = 1, . . . , n, and xi ∈ Vn. In the lamplighter
interpretation, we can think that the lamp placed at the j-th vertex xj of Kn has color yj ,
with yj ∈ Vm, and the lamplighter is in position xi.

Moreover, it follows from the definition of wreath product of graphs that two vertices
u = (y1, . . . , yn)xi and v = (y′1, . . . , y

′
n)xk have distance 1 if either there exists a unique

index j ∈ {1, . . . , n} such that yj 6= y′j and xi = xk; or yj = y′j for each j, and xi 6= xk
(observe that xi ∼ xk in Kn if and only if xi 6= xk, as the graph Kn is complete).

We are going to develop an explicit analysis of the variability of the distances between
two vertices in the graph Kn oKm. Let u = (y1, . . . , yn)xi and v = (y′1, . . . , y

′
n)xk be two

vertices of Kn oKm. Put J = {1, 2, . . . , n} and define the partition J = J0
u,v t J1

u,v by

J0
u,v = {j ∈ J : yj = y′j} J1

u,v = {j ∈ J : yj 6= y′j}. (3.2)

Note that the cardinality |J1
u,v| can be interpreted as the Hamming distance between the

“lamp strings” (y1, . . . , yn) and (y′1, . . . , y
′
n). The following proposition holds.
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Proposition 3.1. Let u = (y1, . . . , yn)xi and v = (y′1, . . . , y
′
n)xk be two vertices of Kn o

Km and let J0
u,v and J1

u,v as in (3.2). Then

d(u, v) =

{
0 if i = k
1 if i 6= k

if J1
u,v = ∅;

d(u, v) =

 1 if i = k = j∗
3 if i 6= j∗ 6= k
2 if i = j∗ 6= k; or i 6= j∗ = k

if J1
u,v = {j∗}.

More generally, for 2 ≤ |J1
u,v| ≤ n:

d(u, v) =


2|J1

u,v|+ 1 if k, i ∈ J0
u,v

2|J1
u,v| if i ∈ J0

u,v, k ∈ J1
u,v; or i ∈ J1

u,v, k ∈ J0
u,v

2|J1
u,v| − 1 + δik if i, k ∈ J1

u,v

with δik =

{
1 if i = k
0 if i 6= k.

Proof. First of all observe that, if J1
u,v = ∅, we have yj = y′j for each j ∈ J , so that u and

v coincide if i = k, whereas they are adjacent, by an edge of type II in Kn oKm, if i 6= k.
Suppose now J1

u,v = {j∗}. In the first case, the vertices u = (y1, . . . , yj∗ , . . . , yn)xj∗
and v = (y1, . . . , y

′
j∗
, . . . , yn)xj∗ , with yj∗ 6= y′j∗ , are adjacent in Kn oKm. In the second

case, when i 6= j∗ 6= k, the path

(y1, . . . , yj∗ , . . . , yn)xi ∼ (y1, . . . , yj∗ , . . . , yn)xj∗ ∼ (y1, . . . , y
′
j∗ , . . . , yn)xj∗ ∼

∼ (y1, . . . , y
′
j∗ , . . . , yn)xk

is a path of minimal length joining u and v. In the third case, when i = j∗ 6= k, the path

(y1, . . . , yj∗ , . . . , yn)xj∗ ∼ (y1, . . . , y
′
j∗ , . . . , yn)xj∗ ∼ (y1, . . . , y

′
j∗ , . . . , yn)xk

is a path of minimal length joining u and v; the case i 6= j∗ = k is similar.
Now let 2 ≤ |J1

u,v| = h ≤ n, with J1
u,v = {j1, . . . , jh}. In other words, the n-tuples

(y1, . . . , yn) and (y′1, . . . , y
′
n) differ exactly in h places, indexed by the elements j1, . . . , jh

of J1
u,v . In the first case, the path

(y1, . . . , yj1 , . . . , yn)xi ∼ (y1, . . . , yj1 , . . . , yn)xj1 ∼ (y1, . . . , y
′
j1 , . . . , yn)xj1 ∼

∼ (y1, . . . , y
′
j1 , . . . , yn)xj2 ∼ · · · ∼ (y1, . . . , y

′
j1 , . . . , y

′
jh−1

, . . . , yn)xjh ∼
∼ (y1, . . . , y

′
j1 , . . . , y

′
jh−1

, . . . , y′jh , . . . , yn)xjh ∼
∼ (y1, . . . , y

′
j1 , . . . , y

′
jh−1

, . . . , y′jh , . . . , yn)xk

is a minimal path joining u and v, and it has length 2h + 1. In the second case, when
i ∈ J0

u,v, k ∈ J1
u,v , we can assume, without loss of generality, because Kn is complete,

that jh = k, so that the last step is not necessary, and a path of minimal length connecting
u and v has length 2h; a similar argument works in the case i ∈ J1

u,v, k ∈ J0
u,v . Finally,

if i 6= k and i, k ∈ J1
u,v , we can assume that j1 = i and jh = k. Now, a path of minimal
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length joining u and v is given by

(y1, . . . , yj1 , . . . , yn)xj1 ∼ (y1, . . . , y
′
j1 , . . . , yn)xj1 ∼ (y1, . . . , y

′
j1 , . . . , yn)xj2 ∼

∼ (y1, . . . , y
′
j1 , . . . , y

′
j2 , . . . , yn)xj2 ∼ · · · ∼

∼ (y1, . . . , y
′
j1 , . . . , y

′
j2 . . . , y

′
jh−1

, . . . , yn)xjh−1
∼

∼ (y1, . . . , y
′
j1 , . . . , y

′
j2 . . . , y

′
jh−1

, . . . , yn)xjh ∼
∼ (y1, . . . , y

′
j1 , . . . , y

′
jh−1

, . . . , y′jh , . . . , yn)xjh

and has length 2h − 1. In the special case i = k, we need one more step in order to reach
the final vertex xk = xi, by means of an edge of type II in Kn oKm.

Corollary 3.2. The diameter of the graph Kn oKm is 2n.

Proof. It follows from the proof of Proposition 3.1 that the maximal distance d(u, v) be-
tween two vertices u and v of Kn oKm is equal to 2n, and it is obtained when the vertices
u, v have the form

u = (y1, . . . , yn)xi v = (y′1, . . . , y
′
n)xk,

with yj 6= y′j , for each j = 1, . . . , n and xi = xk. In fact, we get in this case

d(u, v) = 2|J1
u,v| − 1 + δik = 2n− 1 + 1 = 2n.

Now, for each i = 0, 1, . . . , 2n, and every vertex u of Kn o Km, we denote by Si(u)
the sphere of radius i centered at u, that is:

Si(u) = {v ∈ V (Kn oKm) : d(u, v) = i}.

Because of the complete symmetry of the graph, it is clear that the integer si = |Si(u)| does
not depend on the particular choice of the vertex u. We recall below the classical definition
of distance-regular graph (see, for instance, [4], or [5, Chapter 12] for some results about
spectral properties of distance-regular graphs, also in connection with association scheme
theory).

Definition 3.3. A connected graph G is said to be distance-regular if it is regular and, for
any two vertices u, v at distance i, there are exactly ci neighbors of v in Si−1(u) and bi
neighbors of v in Si+1(u).

If d is the diameter of G, the sequence {b0, b1, . . . , bd−1; c1, c2, . . . , cd} is usually called
the intersection array of G; notice that the integers c0 and bd are undefined.

Proposition 3.4. For every n,m, the wreath product Kn oKm is not distance-regular.

Proof. Consider two vertices of type u = (y1, . . . , yn)xi and v = (y1, . . . , yn)xj , with
j 6= i, so that d(u, v) = 1. Now, the neighbors of v having distance 2 from u are exactly
the vertices of type (y1, . . . , y

′
j , . . . , yn)xj , with y′j 6= yj : the number of such vertices is

m − 1. On the other hand, consider the vertex w = (y1, . . . , y
′
i, . . . , yn)xi, with y′i 6= yi,

so that we still have d(u,w) = 1. It is clear that the neighbors of w having distance 2
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from u are exactly the vertices of type (y1, . . . , y
′
i, . . . , yn)xj , with xj 6= xi, and they are

precisely n− 1. This implies that the coefficient b1 cannot be defined, and this is sufficient
to conclude that Kn oKm is not distance-regular.

Also in the case n = m, the graph is not distance-regular. In order to show that, it
suffices to consider the vertices u = (y1, . . . , yn−1, yn)xn and v = (y′1, . . . , y

′
n−1, yn)xn,

with y′j 6= yj for each j = 1, . . . , n − 1, so that d(u, v) = 2n − 1, according to Proposi-
tion 3.1. Now, the neighbors of v having distance 2n from u are exactly the vertices of type
(y′1, . . . , y

′
n−1, y

′
n)xn, with y′n 6= yn: the number of such vertices is n− 1.

On the other hand, consider the vertices w = (y1, . . . , yn)xi and z = (y′1, . . . , y
′
n)xj ,

with y′j 6= yj for each j = 1, . . . , n and xi 6= xj , so that we still have d(w, z) = 2n− 1. In
this case, the unique neighbor of z having distance 2n from w is the vertex (y′1, . . . , y

′
n)xi.

This implies that the coefficient b2n−1 cannot be defined, and this is sufficient to conclude
that Kn oKn is not distance-regular.

Example 3.5. Consider the graph K3 o K2 depicted in Figure 2, where the vertices of
K3 and K2 are identified with the sets {0, 1, 2} and {0, 1}, respectively. The adjacency
matrices of the graphs K3 and K2 are, respectively,

Ad3 =

 0 1 1
1 0 1
1 1 0

 and Ad2 =

(
0 1
1 0

)

so that the matrix wreath product

Ad3 oAd2 = I⊗
3

2 ⊗Ad3 +Ad2 ⊗ I2 ⊗ I2 ⊗ C1+

+ I2 ⊗Ad2 ⊗ I2 ⊗ C2 + I2 ⊗ I2 ⊗Ad2 ⊗ C3

is the adjacency matrix of the graph K3 oK2. The graph K3 oK2 is regular of degree 3, and
its diameter is 6.

3.1 Spectrum of the graph Kn o Km

In this section, we will give an explicit description of the spectrum of the graph Kn o
Km which is, by definition, the spectrum of its adjacency matrix Adn o Adm described in
Equation (3.1). In order to develop our analysis, we need to recall the definition of circulant
matrix. A (complex) circulant matrix C of size m is a square matrix with m rows and m
columns, of type

C =



c0 c1 · · · · · · cm−1

cm−1 c0 c1
...

...
. . . . . . . . .

...
...

. . . . . . c1
c1 · · · · · · cm−1 c0


with ci ∈ C,∀i = 0, . . . ,m− 1. (3.3)

The reader can refer to [11] as an exhaustive monograph on circulant matrices.
The following theorem has been proven in [8], by using the spectral analysis developed

in [35] for block circulant matrices.
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Figure 2: The graph K3 oK2.

Theorem 3.6. Let A be a square matrix of size n, and let B be a circulant matrix of size
m as in (3.3). Then the spectrum Σ of the matrix A o B is obtained by taking the union of
the spectra Σi1,...,in of the mn matrices of size n given by

M̃ i1,i2,...,in = A+

n∑
t=1

m−1∑
i=0

ciρ
iitCt,

where ij ∈ {0, 1, . . . ,m− 1}, for every j = 1, . . . , n, and ρ = exp
(
2πi
m

)
.

In particular, Theorem 3.6 can be applied in order to determine the spectrum of the
adjacency matrix

Adn oAdm = I⊗
n

m ⊗Adn +

n∑
i=1

I⊗
i−1

m ⊗Adm ⊗ I⊗
n−i

m ⊗ Ci,

since the matrixAdm is a circulant matrix, with c0 = 0 and ci = 1, for each i = 1, . . . ,m−
1. When listing eigenvalues and their multiplicities in the next theorem, and in the rest of
the paper, we will write λh to say that the eigenvalue λ has multiplicity h; the multiplicity
will be omitted when it is equal to 1. We obtain the following result.

Theorem 3.7. The spectrum Σ of the graph Kn oKm is Σ =
⋃n
k=0 Σ

(n
k)·(m−1)n−k

k , with

Σ0 =
{

(−2)n−1; n− 2
}

Σk =

{
(m− 2)k−1; (−2)n−k−1;

m+n−4±
√

(m−n)2+4km

2

}
, k = 1, . . . , n− 1
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and

Σn =
{

(m− 2)n−1; m+ n− 2
}
.

Proof. By virtue of Theorem 3.6, the spectrum of Kn oKm is obtained by taking the union
of the spectra Σi1,...,in of the matrices

M̃ i1,i2,...,in = Adn +

n∑
t=1

m−1∑
i=0

ciρ
iitCt,

where ij ∈ {0, 1, . . . ,m − 1}, for each j = 1, . . . , n, and ρ = exp
(
2πi
m

)
. Notice that

c0 = 0 and ci = 1 for each i = 1, . . . ,m− 1. Moreover, the following identity holds:

m−1∑
i=1

(
ρit
)i

=

{
m− 1 if it = 0
(ρit)

m−1
ρit−1 − 1 = −1 if it 6= 0

since ρ is an m-th root of unity. Therefore, the matrix M̃ i1,i2,...,in can be rewritten as

M̃ i1,i2,...,in = Adn +
∑
t:it=0

(m− 1)Ct −
∑
t:it 6=0

Ct

= Jn − In +
∑
t:it=0

(m− 1)Ct −

 ∑
t:it 6=0

Ct +
∑
t:it=0

Ct

+
∑
t:it=0

Ct

= Jn − 2In +m
∑
t:it=0

Ct.

By using iterated conjugations with appropriate elementary permutation matrices, it can
be shown that the spectrum of the matrix M̃ i1,i2,...,in only depends on the number k of
indices equal to 0 in the n-tuple (i1, i2, . . . , in), but it is independent of the particular
position of such indices. As a consequence, for each k = 0, 1, . . . , n, we can reduce
to investigate the spectrum of the matrix M̃0,...,0,ik+1,...,in , corresponding to the n-tuple
(0, . . . , 0︸ ︷︷ ︸
k times

, ik+1, . . . , in), with ij 6= 0 for each j = k + 1, . . . , n. We have:

M̃0,...,0,ik+1,...,in =



−1 +m 1 · · · · · · · · · 1

1
. . . 1

...

1 1 −1 +m 1 · · ·
...

... −1 1

... 1
. . .

...
1 · · · · · · · · · 1 −1


.

Then we can write M̃0,...,0,ik+1,...,in = Jn + Q, where Q = m
∑k
t=1 Ct − 2In is the
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diagonal matrix

Q =



−2 +m
. . .

−2 +m
−2

. . .
−2


.

Now we have:

det(λIn − M̃0,...,0,ik+1,...,in) = det (λIn − Jn −Q)

= det
(
(λIn −Q)

(
In − (λIn −Q)−1Jn

))
= det(λIn −Q) · det

(
In − (λIn −Q)−1Jn

)
.

It is clear that

det(λIn −Q) = (λ− (m− 2))k · (λ+ 2)n−k. (3.4)

Now it can be seen that the matrix (λIn − Q)−1Jn is the matrix of rank 1, whose first k
rows are constant, with entries all equal to 1

λ−(m−2) , whereas the remaining n−k rows are
constant, with entries all equal to 1

λ+2 . Therefore, (λIn − Q)−1Jn has n − 1 eigenvalues
equal to 0, and one eigenvalue equal to k

λ−(m−2) + n−k
λ+2 . This implies that the matrix

In − (λIn − Q)−1Jn has n − 1 eigenvalues equal to 1, and one eigenvalue equal to 1 −
k

λ−(m−2) −
n−k
λ+2 , so that:

det
(
In − (λIn −Q)−1Jn

)
= 1− k

λ− (m− 2)
− n− k
λ+ 2

. (3.5)

By gluing together (3.4) and (3.5), we obtain:

det(λIn − M̃0,...,0,ik+1,...,in) = (λ− (m− 2))k−1 · (λ+ 2)n−k−1·
· (λ2 + (4−m− n)λ+mn+ 4− km− 2n− 2m).

For the particular value k = 0, we get:

det(λIn − M̃ i1,...,in) = (λ+ 2)n−1 · (λ− (n− 2));

for the particular value k = n, we have:

det(λIn − M̃0,...,0) = (λ− (m− 2))n−1 · (λ− (m+ n− 2)).

The claim follows, if we observe that, for each k = 0, 1, . . . , n, the spectrum of Σk must be
considered

(
n
k

)
· (m − 1)n−k times, corresponding to the number of n-tuples (i1, . . . , in)

with k indices equal to 0, and the remaining indices varying in {1, . . . ,m− 1}.
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Example 3.8. Consider the graph K3 oK4, so that n = 3 and m = 4. The spectrum of the
matrix Ad3 oAd4 consists of the following eigenvalues:

5; 211; 127; (−2)81;
(

3±
√
17

2

)27
;
(

3±
√
33

2

)9
.

The corresponding matrices M̃ i1,i2,i3 of size 3, with i1, i2, i3 ∈ {0, 1, 2, 3}, have eigenval-
ues:

(a) (−2)2; 1, for k = 0. For instance, this is the case of the matrix

M̃1,1,1 = J3 − 2I3 =

 −1 1 1
1 −1 1
1 1 −1

 .

(b) −2; 3±
√
17

2 , for k = 1. For instance, this is the case of the matrix

M̃0,1,1 = J3 − 2I3 + 4C1 =

 3 1 1
1 −1 1
1 1 −1

 .

(c) 2; 3±
√
33

2 , for k = 2. For instance, this is the case of the matrix

M̃0,0,1 = J3 − 2I3 + 4(C1 + C2) =

 3 1 1
1 3 1
1 1 −1

 .

(d) 22; 5, for k = 3. This is the case of the matrix

M̃0,0,0 = J3 − 2I3 + 4(C1 + C2 + C3) = J3 + 2I3 =

 3 1 1
1 3 1
1 1 3

 .

Corollary 3.9. The spectrum Σ′ of the transition matrix of the Lamplighter random walk
with base graph Kn and color graph Km is Σ′ =

⋃n
k=0 Σ′k

(n
k)·(m−1)n−k

, with

Σ′0 =

{(
− 2
m+n−2

)n−1
; n−2
m+n−2

}
Σ′k =

{(
m−2

m+n−2

)k−1
;
(
− 2
m+n−2

)n−k−1
;
m+n−4±

√
(m−n)2+4km

2(m+n−2)

}
,

for k = 1, . . . , n− 1, and

Σ′n =

{(
m−2

m+n−2

)n−1
; 1

}
.

Proof. It suffices to take into account that the transition matrix of the Lamplighter random
walk on the base graph Kn, with color graph Km, is the normalized adjacency matrix of
the graph Kn oKm, which is a regular graph of degree m+ n− 2.
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3.2 Distance spectrum and Wiener index of the graph Kn o Km

The aim of this section is to describe the distance matrix of the graph Kn o Km, together
with its spectrum. Moreover, we will exhibit an explicit computation of the Wiener index
of the graph.

Proposition 3.10. The distance matrix of the graph Kn oKm is the matrix

D =
∑

(i1,...,in)∈{0,1}n
Adi1m ⊗Adi2m ⊗ · · · ⊗Adinm ⊗Ai1,i2,...,in , (3.6)

where we put Ad0m = Im, and the matrix Ai1,i2,...,in is the square matrix of size n, indexed
by the vertices of Kn, defined as follows. Let {i1, . . . , in} = I0 t I1, with I0 = {ij : ij =
0} and I1 = {ij : ij = 1}. Then, for any pair of vertices xi and xk of Kn:

(a) Ai1,...,in = Adn = Jn − In if I1 = ∅;

(b) Ai1,...,in(xi, xk) =

 1 if i = k = j∗
3 if i 6= j∗ 6= k
2 if i = j∗ 6= k; or i 6= j∗ = k

if I1 = {ij∗};

(c) Ai1,...,in(xi, xk) =

 2|I1|+ 1 if i, k ∈ I0
2|I1| if i ∈ I0, k ∈ I1; or i ∈ I1, k ∈ I0
2|I1| − 1 + δik if i, k ∈ I1

if 2 ≤ |I1| ≤ n, where δik =

{
1 if i = k
0 if i 6= k.

Proof. Observe that, for each j = 1, . . . , n, the index ij ∈ {0, 1} establishes whether the
color of the lamp at the j-th vertex xj of Kn is changed. More precisely, the index ij = 0
produces the matrix Ad0m = Im as j-th term of the Kronecker product, so that we are not
changing the color of the lamp in that position; conversely, the index ij = 1 provides the
matrix Adm as j-th term of the Kronecker product, so that we are changing the color of the
lamp in that position, with any other color, asKm is the complete graph. Therefore, for any
fixed n-tuple (i1, . . . , in) ∈ {0, 1}n, the contributionAdi1m⊗Adi2m⊗· · ·⊗Adinm⊗Ai1,i2,...,in
to D must take into account the distances between vertices u, v of Kn oKm corresponding
to lamp configurations which differ exactly at the places indexed by I1. Therefore, if
the configurations of lamps corresponding to the vertices u = (y1, . . . , yn)xi and v =
(y′1, . . . , y

′
n)xk of Kn o Km differ at exactly |I1| vertices of Kn, indexed by I1, the last

contribution in the Kronecker product is an n × n matrix, whose entry (xi, xk) must be
equal to the distance d(u, v). Then the claim follows from Proposition 3.1.

As in the case of the adjacency matrix Adn oAdm, the spectrum of the matrix D can be
computed by using a reduction argument. In fact, the matrix D in (3.6) has the following
block circulant structure

D =



D0 D1 D2 · · · Dm−1

Dm−1 D0 D1
. . .

...
... Dm−1

. . . . . .
...

...
. . . . . . D1

D1 D2 · · · Dm−1 D0


(3.7)
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with

D0 =
∑

(i2,...,in)∈{0,1}n
Adi2m ⊗ · · · ⊗Adinm ⊗A0,i2,...,in

Di =
∑

(i2,...,in)∈{0,1}n
Adi2m ⊗ · · · ⊗Adinm ⊗A1,i2,...,in for each i = 1, . . . ,m− 1.

Then the spectral analysis of block circulant matrices developed in [35] ensures that the
spectrum of D can be obtained by taking the union of the spectra of the following m
matrices of size nmn−1:

D̃j1 =

m−1∑
h1=0

ρh1j1Dh1

=
∑

(i2,...,in)∈{0,1}n
Adi2m ⊗ · · · ⊗Adinm ⊗A0,i2,...,in +

+

m−1∑
h1=1

ρh1j1
∑

(i2,...,in)∈{0,1}n
Adi2m ⊗ · · · ⊗Adinm ⊗A1,i2,...,in

=
∑

(i2,...,in)∈{0,1}n
Adi2m ⊗ · · · ⊗Adinm ⊗

(
A0,i2,...,in +

m−1∑
h1=1

ρh1j1A1,i2,...,in

)
,

with j1 ∈ {0, 1, . . . ,m − 1}. Observe that each of these matrices is still a block circulant
matrix, with blocks of size nmn−2, given by

D′0 =
∑

(i3,...,in)∈{0,1}n
Adi3m ⊗ · · · ⊗Adinm ⊗

(
A0,0,i3,...,in +

m−1∑
h1=1

ρh1j1A1,0,i3,...,in

)
,

D′i =
∑

(i3,...,in)∈{0,1}n
Adi3m ⊗ · · · ⊗Adinm ⊗

(
A0,1,i3,...,in +

m−1∑
h1=1

ρh1j1A1,1,i3,...,in

)

for i = 1, . . . ,m− 1. Therefore, the same argument can be repeated, so that the spectrum
of D is obtained by taking the union of the spectra of the following m2 matrices of size
nmn−2:

D̃j1,j2 =

m−1∑
h2=0

ρh2j2D′h2
=

=
∑

(i3,...,in)∈{0,1}n
Adi3m ⊗ · · · ⊗Adinm ⊗

(
A0,0,i3,...,in +

m−1∑
h1=1

ρh1j1A1,0,i3,...,in

)
+

+

m−1∑
h2=1

ρh2j2
∑

(i3,...,in)∈{0,1}n
Adi3m ⊗ · · · ⊗Adinm⊗

⊗

(
A0,1,i3,...,in +

m−1∑
h1=1

ρh1j1A1,1,i3,...,in

)



A. Donno: Spectrum, distance spectrum, and Wiener index of wreath products of . . . 221

=
∑

(i3,...,in)∈{0,1}n
Adi3m ⊗ · · · ⊗Adinm ⊗

(
A0,0,i3,...,in+

+

m−1∑
h1=1

ρh1j1A1,0,i3,...,in +

m−1∑
h2=1

ρh2j2A0,1,i3,...,in+

+

m−1∑
h1=1

ρh1j1

m−1∑
h2=1

ρh2j2A1,1,i3,...,in

)

with (j1, j2) ∈ {0, . . . ,m− 1}2. This reduction argument can be iterated further, until we

get blocks of size n. Once again, notice that
∑m−1
h=1 ρ

hjs =

{
−1 if js 6= 0
m− 1 if js = 0.

We

thus have proven the following theorem.

Theorem 3.11. The distance spectrum Σ of the graph Kn oKm is obtained by taking the
union of the spectra Σj1,...,jn of the mn matrices of size n:

D̃j1,...,jn =
∑

(i1,...,in)∈{0,1}n

n∏
s=1

(
m−1∑
hs=1

ρhsjs

)is
Ai1,...,in ,

(j1, . . . , jn) ∈ {0, . . . ,m− 1}n,

where, if we put I0 = {ij : ij = 0} and I1 = {ij : ij = 1}, we have:

A0,...,0 = Adn;

Ai1,...,in(xi, xk) =

 1 if i, k ∈ I1
3 if i, k ∈ I0
2 if i ∈ I1, k ∈ I0; or i ∈ I0, k ∈ I1

for |I1| = 1;

and

Ai1,...,in(xi, xk) =

 2|I1|+ 1 if i, k ∈ I0
2|I1| if i ∈ I0, k ∈ I1; i ∈ I1, k ∈ I0
2|I1| − 1 + δik if i, k ∈ I1

for 2 ≤ |I1| ≤ n, with δik =

{
1 if i = k
0 if i 6= k.

Example 3.12. Let us consider the explicit example K3 oK3. The distance matrix of this
graph is

D = I3 ⊗ I3 ⊗ I3 ⊗A000 + I3 ⊗ I3 ⊗Ad3 ⊗A001 + I3 ⊗Ad3 ⊗ I3 ⊗A010+

+ I3 ⊗Ad3 ⊗Ad3 ⊗A011 +Ad3 ⊗ I3 ⊗ I3 ⊗A100 +Ad3 ⊗ I3 ⊗Ad3 ⊗A101+

+Ad3 ⊗Ad3 ⊗ I3 ⊗A110 +Ad3 ⊗Ad3 ⊗Ad3 ⊗A111,

with

A000 =

 0 1 1
1 0 1
1 1 0

 A001 =

 3 3 2
3 3 2
2 2 1


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A010 =

 3 2 3
2 1 2
3 2 3

 A011 =

 5 4 4
4 4 3
4 3 4


A100 =

 1 2 2
2 3 3
2 3 3

 A101 =

 4 4 3
4 5 4
3 4 4


A110 =

 4 3 4
3 4 4
4 4 5

 A111 =

 6 5 5
5 6 5
5 5 6

 .

The spectrum of D consists of the following eigenvalues:

312; 152; 048; (−3)18; (−24± 3
√

43)6.

We have, for instance:

D̃0,2,0 = A000 + 2A001 −A010 − 2A011 + 2A100 + 4A101 − 2A110 − 4A111 =

=

 −21 −9 −18
−9 −9 −9
−18 −9 −21


whose eigenvalues are −3 and −24± 3

√
43.

Next, we pass to the computation of the Wiener index W (Kn oKm) of the graph Kn o
Km. It follows from the definition of the Wiener index thatW (KnoKm) is given by the sum
of all the entries of D, divided by 2, due to the fact that each contribution d(u, v) appears
twice, as the matrix D is symmetric. Keeping in mind the block structure of the distance
matrixD described in (3.7) and the fact that each blockDi, for i = 0, . . . ,m−1, appearing
in (3.7) can be recursively regarded as a block circulant matrix, until one gets elementary
blocks of size n represented by matrices of type Ai1,...,in , we obtain the following result.

Theorem 3.13. The Wiener index of the graph Kn oKm is

W (Kn oKm) = nmn

2 (2mnn2 − nmn − 2n2mn−1 +mn + 2nmn−1 −mn−1 −m).

Proof. First of all, for every n-tuple (i1, . . . , in) ∈ {0, 1}n, put:

di1,...,in =
∑

xi,xj∈Vn

Ai1,...,in(xi, xj).

Now observe that, by definition of the matrices Ai1,...,in , the sum di1,...,in only depends on
the cardinality of the sets I0 = {ij : ij = 0} and I1 = {ij : ij = 1}, while it is independent
from the particular position of the indices. Therefore, for every k = 0, 1, . . . , n, it makes
sense to define:

dk =
∑

xi,xj∈Vn

A1, . . . , 1︸ ︷︷ ︸
k times

,0, . . . , 0︸ ︷︷ ︸
n−k times

(xi, xj).

Moreover, by performing a direct computation which uses the explicit description of the
matrices Ai1,...,in given in Theorem 3.11, we are able to determine:
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(a) d0 = n(n− 1);

(b) d1 = 1 + 4(n− 1) + 3(n− 1)2;

(c) dk = (2k + 1)(n− k)2 + 4k2(n− k) + 2k2 + k(k − 1)(2k − 1) for 2 ≤ k ≤ n.

Now we have to establish the number of contributions of type dk toW (Kn oKm), for every
k. First of all, a factor equal to

(
n
k

)
appears, taking into account all the possible choices

of k indices equal to 1. Moreover, a second factor given by mn(m − 1)k appears, since
a fixed n-tuple (i1, . . . , in) containing k indices equal to 1 (see Equation (3.6)) produces
mn(m− 1)k blocks of size n, within the matrix D, which are equal to Ai1,...,in , due to the
fact that, when we change the color of a lamp, we have m − 1 possibilities for the choice
of the new color. This implies that

W (Kn oKm) =
mn

2

n∑
k=0

(
n

k

)
(m− 1)kdk. (3.8)

By explicitly computing the sum in (3.8), we get the claim.

Example 3.14. Consider the case of K3 oK3. Theorem 3.13 gives W (K3 oK3) = 12636,
with d0 = 6; d1 = 21; d2 = 35; d3 = 48.
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[21] R. I. Grigorchuk and A. Żuk, The lamplighter group as a group generated by a 2-state automa-
ton, and its spectrum, Geom. Dedicata 87 (2001), 209–244, doi:10.1023/a:1012061801279.
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