© Strojni{ki vestnik 47(2001)12,688-696 © Journal of Mechanical Engineering 47(2001)12,688-696 ISSN 0039-2480 ISSN 0039-2480 UDK 629.373.3:629.3.023.11 UDC 629.373.3:629.3.023.11 Izvirni znanstveni ~lanek (1.01) Original scientific paper (1.01) Optimizacija konstrukcije okvira za terensko tovorno vozilo Optimum Frame for an Off-Road Truck Bo{tjan Harl - Momir Lazovi} - Marko Kegl Prispevek opisuje postopek optimalnega projektiranja okvira terenskega tovornega vozila. Namen raziskave je minimizirati tezo sedanjega okvira. Pri tem zahtevamo, da mora togost okvira ostati približno enaka, medtem ko lahko parametre prerezov spreminjamo znotraj predpisanih mej z namenom, da bi zmanjšali težo. Upoštevali smo več ločenih obremenitvenih primerov, ki simulirajo različne situacije obremenjevanja okvira. Optimizacijsko nalogo smo formulirali v obliki standardnega problema matematičnega programiranja. Ta problem smo nato rešili z uporabo gradientne optimizacijske metode. Okvir vozila smo diskretizirali z uporabo zelo natančnih končnih elementov - nosilcev. © 2001 Strojniški vestnik. Vse pravice pridržane. (Ključne besede: vozila terenska, okviri vozil, optimiranje konstrukcij, primeri obremenitveni) We present an approach for the optimum design of a frame for an off road truck. The objective was to minimize the weight of an existing frame. The stiffness of the frame had to remain approximately the same, while the cross-sectional parameters could be varied in some specified range in order to minimize the weight. Multiple load cases were taken into account simultaneously in order to consider different loading situations. The design problem was formulated in the form of a standard problem of mathematical programming. This problem was then solved using a gradient-based approximation method. The frame of the truck was discretized by employing highly accurate beam finite elements. © 2001 Journal of Mechanical Engineering. All rights reserved. (Keywords: off-road vehicles, vehicle frames, construction optimization, load cases) 0 UVOD V zadnjem desetletju je optimizacija postala skoraj obvezen sestavni del sodobnega postopka projektiranja mehanskega sistema. Če se omejimo na črtne konstrukcije, je morda najbolj obetaven postopek tisti, ki temelji na uporabi tehnike projektnih elementov ([1] in [2]) in zelo kakovostnih končnih elementov - nosilcev. V tem primeru lahko projekt konstrukcije opišemo v odvisnosti od relativno majhnega števila Nb parametrov (projektnih spremenljivk), zbranih v vektorju beRNb . Na tej podlagi lahko praktično vsak problem optimalnega projektiranja zapišemo v splošni obliki nelinearnega problema P matematičnega programiranja: minf0 kjer simbol f0 = f0 (b) pomeni namensko funkcijo, fi= fi (b), i ^ 1 so omejitvene funkcije, N pa je njihovo skupno število. Pri tem smo simbol (") uporabili za ločevanje imena funkcije od pripadajoče odvisne spremenljivke. Ta dogovor bo veljal v celotnem prispevku. 0 INTRODUCTION In the last decade optimization has become an almost obligatory part of the modern design process for mechanical systems. If we restrict our interest to just skeletal structures, the most promising approach seems to be that based on the design-element technique ([1] and [2]) and the use of highly accurate beam finite elements. Using this approach the design of the structure can usually be described in terms of a relatively small number Nb of parameters (design variables) assembled in the vector beRN b . By adopting this arrangement, virtually any problem relating to optimum design can usually be formulated in the standard form of a non-linear problem P of mathematical programming 1 < i < N (1), f where the symbol f0 = f0 (b) denotes the objective function, f= f (b), i > 1 are the constraint functions and Nf is the total number of these constraint fuctions. Here the symbol (") was used to distinguish between the name of a function and the name of the dependent variable - we shall use this notation throughout the paper. 2 Sšnn3(aul[M]! ma stran 688 B. Harl - M. Lazovi} - M. Kegl: Optimizacija konstrukcije okvira - Optimum Frame Pod predpostavko, da so vse projektne spremenljivke zvezne in vse funkcije v (1) odvedljive glede na b, lahko problem P verjetno najučinkoviteje rešimo z uporabo ene od gradientnih metod matematičnega programiranja. Na primer, metodo KP (rekurzivno kvadratično programiranje) ali katero izmed aproksimacijskih metod ([3] in [4]) uporabljamo zelo pogosto. V splošnem je postopek reševanja P naslednji: rešitev b* problema P dobimo kot limito zaporedja aproksimacijskih rešitev {bk} , kjer je N množica nenegativnih celih števil. Pri tem je treba začetni projekt b(0) izbrati, medtem ko b(k+1) dobimo kot rešitev problema P(k), ki pomeni neko aproksimacijo problema P v točki b(k). Nalogo nastajanja in reševanja problema P(k) praviloma prevzame optimizacijski algoritem, ki ga moramo v ta namen oskrbeti s številčnimi vrednostmi za fi ter dfidb,0 2 vozlišč, stopnja integracije za izračun notranjih sil in tangentne togostne matrike pa je lahko poljubna. Odziv obremenjenega nosilca je povsem podan s 3M+9 skalarnimi spremenljivkami: šestimi pomiki obeh krajnih vozlišč, zbranih v vektorjih U1 in UM; s 3M komponentami vozliščnih rotacijskih vektorjev F1,...,FM, imenovanih tudi rotacijski psevdovektorji ter s tremi Lagrangeovimi množitelji U1, F1, V t = 0 .F2 e1» ,e2 Of course, in order to solve such a problem we have to perform N response and sensitivity analyses for each iteration of the optimization process. Thus, the computational effort increases linearly with the number of load cases considered. 3 THE EMPLOYED BEAM ELEMENT The frame of the vehicle was modeled by employing a highly accurate beam element, which is rigorously described in [2]. Therefore, in this paper only a brief outline of the beam will be offered. The employed beam is completely locking free since only the rotation vector field is approximated while the displacement vector field is given by the exact non-linear kinematic relations of the space (finite strain) beam theory. The element accounts for finite displacements and rotations as well as finite bending, extensional, shear and torsional strains where the warping deformations of the cross-section are neglected. In its undeformed configuration the element may be arbitrarily curved and its material is assumed to be linearly elastic. The element allows an accurate response analysis, even for very large displacements and rotations. The shape of the beam is given by the shape of its centroid curve r=r(t), where t e [0, 1], as well as by the orientation of the cross-section, defined by the moving frame (G1,G2,G3 ), Figure 2. The beam can have M > 2 nodes, and the degree of numerical integration of the internal forces as well as the tangent stiffness matrix can be chosen arbitrarily. The response of the loaded beam is completely specified by 3M+9 scalar variables: 6 displacements of both end-nodes assembled in displacement vectors U1 and UM; 3M components of nodal rotation vectors F1,...,FM, also called the rotational pseudovectors; G2. <•> G1 UM, FM t = 1 Sl. 2. Uporabljen nosilec: razporeditev vozlišč, odzivne spremenljivke in spremljajoči trirob glede na prerez Fig. 2 The employed beam: nodal layout, response variables and the moving frame with respect to the cross-section 2 Ssnn3(aül[M]! ma stran 692 B. Harl - M. Lazovi} - M. Kegl: Optimizacija konstrukcije okvira - Optimum Frame [2], zbranimi v vektorju V (sl. 2). Rotacijski vektor je definiran kot zasuk spremljajočega triroba iz začetne (nedeformirane) v končno (deformirano) lego, medtem ko ima vektor V fizikalni pomen negativne notranje sile v prvem vozlišču. Na koncu povejmo še to, da lahko komponente rotacijskih vektorjev &...,®M-1 in Lagrangeove množitelje V obravnavamo kot zunanje ali notranje prostostne stopnje nosilca. V slednjem primeru lahko te neznanke eliminiramo na ravni elementa, tako da nosilec vstopa v ravnovesno enačbo konstrukcije kot 2-vozliščni element z 12 prostostnimi stopnjami (pomiki in rotacije obeh krajnih vozlišč). Postopek eliminacije notranjih prostostnih stopenj je v tem primeru treba narediti tako pri analizi odziva kakor tudi pri analizi občutljivosti konstrukcije. 4 DOLOČITEV PROBLEMA Obravnavajmo okvir, prikazan na sliki 1. Ta okvir je bil projektiran za 11-tonsko cestno vozilo in izkazalo se je, da bi bil ta okvir za terensko vozilo preveč tog. Predvsem je bilo premajhno razmerje togosti obes proti togosti okvira. Ocenili smo, da bi lahko togost okvira zmanjšali za približno 35%, pri čemer smo ciljno razmerje togosti obes proti togosti okvira postavili vrednost znotraj intervala od 2 do 3. Glede na opisane razmere smo optimizacijski problem definirali na naslednji način: zunanje izmere in razpored nosilcev okvira bodo ostali enaki, medtem ko bomo poiskali parametre prerezov posameznih delov okvira (sl. 3), tako da bo masa okvira najmanjša. Postavljeni pogoji se nanašajo na togost okvira pri različnih stanjih obremenitve, na razmerje togosti obes in okvira, kakor tudi na napetosti pri dejanski statični obremenitvi okvira. Ti omejitveni pogoji morajo biti izpolnjeni pri petih različnih obremenilnih primerih. Obravnavanih pet obremenilnih primerov (primer A do primer E, slika 4) se nanaša na naslednje teme in pogoje: - Primer A: Strižna togost okvira; omejeni so relativni vzdolžni pomiki obeh vzdolžnih nosilcev. - Primer B: Upogibna togost okvira; omejeni so maksimalni vertikalni pomiki. a a x b x c |< b »| =L c and three Lagrange multipliers [2], assembled in V, Figure 2. The vector rotation is defined so as to rotate the frame from the initial (undeformed) to the final (deformed) position, while the vector V has the physical meaning of the negative internal force at the first node. Finally, it is also worth pointing out that the components of the rotation vectors *2...,OM-1 and the Lagrange multipliers V may be considered either as external or element internal degrees of freedom. In the latter case, these unknowns are eliminated on the element level and the beam enters the structural equilibrium equation as a two-node beam element with 12 degrees of freedom (displacements and rotations of both end-nodes). The elimination procedure has to be performed for the response as well as for the sensitivity analysis. 4 FORMULATION OF THE PROBLEM Let us consider the frame shown in Figure 1. This frame was designed for an 11.0-ton on-road vehicle, and it turned out that the frame was too stiff for the off-road vehicle. In particular, the ratio of its suspension stiffness to frame stiffness was too low. It was estimated that the frame stiffness could be reduced by about 35%, while the target ratio of the suspension-to-frame stiffness was set to be within the interval 2 to 3. In accordance with the above discussion, the design problem was defined as follows: the outer dimensions and the layout of the frame will remain constant, while we have to find the cross-sectional parameters of the individual frame parts, Figure 3, so that the mass of the frame will be minimized. The imposed constraints are related to the frame stiffness in different loading situations, to the ratio of the suspension-to-frame stiffness as well as to the stresses during the actual static loading of the frame. These constraints have to be fulfilled for 5 different loading conditions. The 5 loading conditions (CaseA through CaseE, Figure 4) address the following topics and constraints: - Case A: Shear stiffness of the frame; constrained relative longitudinal displacements of both longitudinal beams. - Case B: Bending stiffness of the frame; constrained maximum vertical displacements. e x e x d e >I N e d Sl. 3. Spremenljivi parametri obeh uporabljenih tipov prerezov Fig. 3 Variable parameters of both employed cross-section types gfin^OtJJIMISCSD 01-12 stran 693 |^BSSITIMIGC B. Harl - M. Lazovi} - M. Kegl: Optimizacija konstrukcije okvira - Optimum Frame - Primer C: Diagonalna upogibna togost okvira; omejeni so največji vertikalni pomiki. Primer D: Togost obes in torzijska togost okvira; omejeno je razmerje togosti obes proti togosti. Primer E: Upogibne napetosti pri dejanski statični obremenitvi; omejene so največje napetosti obeh vzdolžnih nosilcev. Okvir je sestavljen iz nosilcev z oblikovanim prerezom [ ali . Za profile [ so spremenljivi parametri a, b in c medtem ko lahko pri  profilu spreminjamo parametra d in e (sl. 3). Obstaja več različnih profilov [, tako da je skupno število spremenljivih parametrov prereza (projektnih spremenljivk) enako Nb=17. Za vseh 17 projektnih spremenljivk smo izbrali primerne spodnje in zgornje vrednosti, da bi s tem zajamčili tehnološko sprejemljivost končnega projekta. Izbran material je bil linearno elastičen z elastičnim modulom E=2,1 x 105 MPa in Poissonovim količnikom v=0,3. - Case C: Diagonal bending stiffness of the frame; constrained maximum vertical displacements. - Case D: The stiffness of suspension and the torsional stiffness of the frame; constrained ratio of the suspension-to-the frame stiffness. - Case E: Bending stresses at actual static load; constrained maximum stresses along the longitudinal beams. The frame consists of beam elements with either [-or -shaped cross-sectional profiles. For [ profiles the parameters, a, b and c are variable, while for the  profile the parameters d and e may be varied, Figure 3. There are several different [ profiles so that the total number of variable cross-sectional parameters (design variables) was N=17. For all 17 design variables appropriate lower and upper limits were imposed in order to guarantee that the final design would be technologically acceptable. The material chosen was linearly elastic with a elasticity modulus equal to E=2.1x105 MPa and a Poisson ratio ofv=0.3. Sl. 4. Obremenitveni primeri od A do E Fig. 4 Load cases A through E Če povzamemo, lahko optimizacijski problem opišemo tako: znotraj predpisanih mej poišči vrednosti 17 projektnih spremenljivk, tako da bo masa okvira najmanjša, hkrati pa bodo pogoji, postavljeni za obremenitvene primere od A do E, izpolnjeni. 5 REZULTATI Optimizacijski problem je bil definiran v obliki problema nelinearnega programiranja. Ta problem smo rešili za uporabo podprograma AMOPT, ki temelji na aproksimacijski metodi, predstavljeni v [3]. Podprogram aproksimira namensko in omejitvene funkcije z uporabo nelinearne aproksimacije prvega reda z dodatnim konveksnim členom [4]. To summarize, the design problem can be de-scribed as follows: within the specified limits find the values of the 17 design variables so that the mass of the frame will be minimized, and at the same time, the constraints imposed at load cases A through E will all be fulfilled. 5 RESULTS The optimum design problem was defined in the form of a non-linear programming problem. This problem was solved by employing the AMOPT subroutine based on the approximation method presented in [3]. The subroutine approximates the objective and constraint functions using a non-linear first-order approximation with an additive convex term [4]. 2 jgnnatäüllMliBilrSO | | ^SsFÜWEIK | stran 694 B. Harl - M. Lazovi} - M. Kegl: Optimizacija konstrukcije okvira - Optimum Frame Postopek reševanja je bil gladek in stabilen. Pri začetnem projektu je deloval le pogoj razmerja togosti, medtem ko je prostornina okvira znašala 30 777 cm3. Skoraj optimalen projekt smo dobili po 8 iteracijah (sl. 5). Pri končnem projektu so bili dejavni trije pogoji (povezani s strižno togostjo, diagonalno upogibno togostjo in razmerjem togosti). Prostornina končnega okvira je znašala 23 258 cm3. The solution procedure was smooth and stable. During the initial design only the constraint on the stiffness ratio was active, while the volume of the frame was 30777 cm3. A near-optimum design of the structure was obtained within 8 iterations, Figure 5. During the final design three constraints (related to shear stiffness, diagonal bending stiffness and stiffness ratio) were active. The corresponding volume of the frame was 23258 cm3. Preglednica 1. Začetne, optimalne in mejne vrednosti parametrov prereza Table 1. Initial, optimum and limit values of the cross-sectional parameters Profil (slika 1) Profile (Figure 1) [ - 1 (vzdolžni) [ - 1 (longitudinal)  - 2 [ - 3 [ - 4 [ - 5 [ - 6 [ - 7 Začetni (mm) Initial (mm) 207x65x6 209,7x59,3x5 160x40x5 220x70x7 Optimalni (mm) Spodnji (mm) Zgornji (mm) Optimum (mm) Lower (mm) Upper (mm) 90x90x4________70x70x3________70x70x3 110x110x5 120x90x5________90x40x3________90x40x3_______140x80x6 130x80x5 119,5x80x4 100x80x4 140x120x6 115x90x5 111,9x30x3 90x30x3_______140x50x6 120x90x5________140x90x4_______140x90x4 190x120x8 120x90x5 I 140x90x4 I 140x90x4 I 190x120x8 I Prostornina / Volume Največja prekoračitev / Max violation c 35.000 cm3 32.000 29.000 26.000 23.000 ----\ ^» » ¦---¦---¦---¦ 30 20 10 0 -10 01234567 Iteracije / Iterations Sl. 5. Potek namenske funkcije ter največje prekoračitve pogojev Fig. 5 Iteration history of the objective function and the maximum constraint violation Med optimizacijskim procesom smo lahko izpolnili vse postavljene pogoje, največja prekoračitev pogojev pa se je zmanjšala od skoraj 30% na nič. Hkrati smo prostornino okvira zmanjšali za približno 24 odstotkov. 6 SKLEP Povzememo lahko, da smo optimizacijo lahko uspešno uporabili za prilagoditev sedanjega okvira novim zahtevam. Pri končnem projektu so bili dejavni pogoji, ki so pripadali različnim obremenilnim primerom. Lahko rečemo, da je zmožnost hkratnega upoštevanja različnih obremenilnih primerov zelo pomembna. To še posebej drži pri praktičnih uporabah, pri katerih smo mnogokrat soočeni z mnogimi konstrukcijskimi in tehnološkimi zahtevami. By running the optimization process all of the imposed constraints could be fulfilled because the maximum constraint violation was reduced from almost 30% to zero. At the same time the volume of the frame was reduced by about 24%. 6 CONCLUSION We conclude that the optimization can be suc-cessfully applied in order to adjust our existing frame to the new requirements. During the final design, the constraints corresponding to several different load-ing cases were active. We can say that the possibil-ity of considering several load cases simultaneously is very important. This is especially true in practical applications where we are often confronted with many structural and technological requirements. gfin^OtJJlMlSCSD 01-12 stran 695 |^BSSITIMIGC B. Harl - M. Lazovi} - M. Kegl: Optimizacija konstrukcije okvira - Optimum Frame 7 LITERATURA 7 REFERENCES [1] Kegl, M., B.J. Butinar, M. M. Oblak (1995) Shape optimal design of elastic planar frames with non-linear response. Int. J. Numer. Methods Eng 38, New York, 3227-3242. [2] Kegl, M., H. Antes (1998) Shape optimal design of elastic space frames with non-linear response. Int. J. Numer. Methods Eng. 43, New York, 93-110. [3] Kegl, M., B. J. Butinar, M. M. Oblak (1992) Optimization of mechanical systems: On strategy of non-linear first-order approximation. Int. J. Numer. Methods Eng. 33, New York, 223-234. [4] Kegl, M., M. M. Oblak (1997) Optimization of mechanical systems: On non-linear first-order approximation with an additive convex term. Communications in Numerical Methods in Engineering, 13, New York, 13-20. [5] Lazovič, M., D. Kavnik (1997) Assurance of vehicles program reliability in development phase. Proceedings of the Conference and Exhibition of Innovative Automotive Technology IAT’97, Novo mesto. [6] Vide, D., M. Lazovic (1997) Development of the off road vehicle 80T40-4x4: Final report of R&D phase of the Project, Maribor. Naslova avtorjev: dr. Boštjan Harl doc.dr. Marko Kegl Fakulteta za strojništvo Univerza v Mariboru Smetanova 17 2000 Maribor dr. Momir Lazovič M.P.P. Razvoj d.o.o. Ptujska 184 2000 Maribor Authors’ Addresses: Dr. Boštjan Harl Doc.Dr. Marko Kegl Faculty of Mechanical Eng. University of Maribor Smetanova 17 2000 Maribor, Slovenia Dr. Momir Lazovič M.P.P. Development Ltd. Ptujska 184 2000 Maribor, Slovenia Prejeto: Received: 26.7.2001 Sprejeto: Accepted: 7.12.2001 2 Sšnn3(aul[M]! ma stran 696