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Abstract

In this paper we characterize all bipartite graphs with at most six non-zero eigenvalues.
We determine the eigenvalues of bipartite graphs that have at most four non-zero eigenval-
ues.
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1 Introduction and Main Results
Throughout this paper we will consider only simple graphs. A graph with no isolated
vertices is called reduced ( also called canonical in the literature) if no two non-adjacent
vertices have the same neighborhood. It is well known that the number of vertices of
reduced graphs are bounded by some functions of the rank, see [7]. It is not hard to see if
a reduced graph has exactly m non-zero eigenvalues, then G has at most 2m − 1 vertices.
Therefore the number of non-isomorphic reduced graphs with a given number m of non-
zero eigenvalues ( counted by their multiplicities) is finite. So it is natural to look for a
classification of reduced graphs with a given number of non-zero eigenvalues. Note that
the number of non-zero eigenvalues of a graph is equal to the rank of the graph which by
definition is the rank of the adjacency matrix of the graph. It is not hard to characterize the
reduced graphs with rank r, for r ≤ 3. The classification of reduced graphs of rank 4 and
rank 5 can be found in [8] and also in [1] and [2], respectively. Thus it is natural to classify
all reduced graphs of rank 6 ( see [8] for a characterization according to minimal subgraphs
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of nullity one). Recently, in [9], triangle-free graphs of rank 6 are claimed to be classified
in Theorem 4.1. But we find that the graphs G2 and G3 in the main result in [9], have
rank 8. On the other hand, the main step to find a classification for triangle-free graphs
of rank 6 is first to classify bipartite graphs of the same rank (see [9]). In this paper, in a
different way from [5] and [9], we completely characterize all bipartite graphs with rank r,
where r ∈ {2, 4, 6}. In other words, we find all bipartite graphs with at most six non-zero
eigenvalues. Also we find the eigenvalues of bipartite graphs of rank 4.

2 Notation and Preliminaries
Let G = (V,E) be a graph. The order of G denotes the number of vertices of G. For
two graphs G1 = (V1, E1) and G2 = (V2, E2), the disjoint union of G1 and G2 denoted
by G1 + G2 is the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2. The graph rG
denotes the disjoint union of r copies of G. Let u and v be two vertices of a graph G. By
uv we mean an edge between u and v. For every vertex v ∈ V , the open neighborhood
of v is the set N(v) = {u ∈ V : uv ∈ E}. An independent set in a graph is a set of
pairwise non-adjacent vertices. For every vertex v ∈ V (G), the degree of v that is denoted
by deg(v) is the number of edges incident with v. We denote by Kn, Km,n, Cn, and Pn,
the complete graph of order n, the complete bipartite graph with part sizes m,n, the cycle
of order n, and the path of order n, respectively.

If {v1, . . . , vn} is the set of vertices of a graph G, then the adjacency matrix of G,
A(G) = (aij), is an n× n matrix where aij is 1 if vi is adjacent to vj , otherwise aij = 0.
Thus A(G) is a symmetric matrix with zeros on the diagonal and all the eigenvalues of
A(G) are real. By [v] we mean the column of A(G) that correspond to a vertex v of G, that
is the vector of neighbors of v. By the eigenvalues of G we mean those of its adjacency
matrix. The multiset of eigenvalues of G is denoted by Spec(G). We let Spec(G) =
{λ1, . . . , λn}, where λ1 ≥ · · · ≥ λn are the eigenvalues of G. The rank of G, denoted by
rank(G), is the rank of A(G). In fact, rank(G) is the number of all non-zero eigenvalues
of G. We consider the rank of graphs over the field of real numbers. Let H be a bipartite
graph with parts X and Y . Suppose that X = {u1, . . . , um} and Y = {v1, . . . , vn}. By
B(G) = (bij) we mean the (0, 1) matrix of size m × n such that bij = 1 if and only if ui
and vj are adjacent, otherwise bij = 0. We note that the rank of any bipartite graph is even.
More precisely:

Remark 2.1. LetH be a bipartite graph with partsX and Y . LetB = B(H), as mentioned
above. Then we have rank(H) = 2 rank(B).

Definition 2.2. A graph G is called reduced or canonical if it has no isolated vertex and
for any two non-adjacent vertices u and v, N(u) 6= N(v). Equivalently, any row of the
adjacency matrix is non-zero and no two rows of the adjacency matrix of G are equal.

Definition 2.3. LetG be a graph. We sayG is neighbor-reduced ifG has no isolated vertex
and there are no three vertices u, v and w satisfying all the following conditions:

1) {u, v, w} is an independent set.

2) N(u) ∩N(v) = ∅.

3) N(w) = N(u) ∪N(v).

Equivalently, any row of the adjacency matrix is non-zero and no row of the adjacency
matrix of G is the sum of two other rows.
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Definition 2.4. A graphG is called strongly reduced, ifG is reduced and neighbor-reduced.

We note that there is no connection between Definitions 2.2 and 2.3. For example the
path P5 is reduced but it is not neighbor-reduced while the cycle C4 is not reduced but
it is neighbor-reduced. The cycle C6 is reduced and neighbor-reduced graph, that is C6 is
strongly reduced. Also the graphH which is shown in Figure 1 is neither reduced ( because
it has a duplicate vertex) nor neighbor-reduced ( because it has P5 as an induced subgraph
( Table 1 of [8])).

H

Figure 1: A non-reduced and non-neighbor-reduced bipartite graph.

P6

x1 y1 x2 y2 x3 y3

P6 ⊕ {x1,x3}

x1 y1 x2 y2 x3 y3

x4

(P6 ⊕ {x1,x3}) ? y3

x1 y1 x2 y2 x3 y3

x4 y4

Figure 2: Three bipartite graphs with rank 6 obtained from P6 with operations ? and ⊕.

Let G be a graph and v be a vertex of G. Suppose that N(v) = {v1, . . . , vk}. By
G ? v, this operation is well known in the literature as adding a duplicate vertex, we mean
the graph obtained by adding a new vertex w and new edges {wv1, . . . , wvk} to G. Thus
in G ? v, N(w) = N(v), that is G ? v is not reduced ( see Figure 2). Let S be an inde-
pendent set of G which is ordered as S = {u1, . . . , ut} and t ≥ 2. We inductively define
G ? S as (G ? u1) ? S \ {u1}. We note that the operation has the effect of adding even
cycles and no odd cycles to the graph; thereforeG is bipartite if and only ifG?v is bipartite.

Suppose that u and v are non-adjacent vertices of G such that N(u) ∩N(v) = ∅. By
G ⊕ {u, v} we mean the graph obtained by adding a new vertex w to G and new edges
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{wx : x ∈ N(u)} ∪ {wy : y ∈ N(v)}. Thus in G⊕ {u, v}, N(w) = N(u) ∪N(v). See
Figure 2. It is easy to prove the following theorem:

Theorem 2.5. Let G be a graph and u and v be two non-adjacent vertices of G. Then

rank(G) = rank(G ? v) = rank(G⊕ {u, v}).

Theorem 2.5 shows that for classifying the graphs of rank r it is sufficient to classify
the reduced graphs ( or the neighbor-reduced graphs) of rank r. Thus in sequel we consider
the reduced graphs.

3 Graphs of Rank 2
In this section we characterize all graphs with rank 2. We note that rank(G) = 0 if and
only if G = nK1, for some natural number n. By the fact that the sum of all eigenvalues
of a graph is zero, there is no graph with rank 1.

Remark 3.1. LetG be a graph of rank 2. Thus Spec(G) = {α, 0, . . . , 0, β}, for some non-
zero real numbers α and β. Since for any graph H ,

∑
λ∈Spec(H) = 0, we obtain β = −α.

Thus G is bipartite ( see Theorem 3.11 of [4]). In the other words, any graph of rank 2 is
bipartite.

Theorem 3.2. Let G be a reduced graph. Then rank(G) = 2 if and only if G = P2.

Proof. Assume that rank(G) = 2. By Remark 3.1, G is bipartite. Let X and Y be the
parts of G and B = B(G). By Remark 2.1, rank(B) = 1. This shows that all columns of
B are the same. In the other words, all vertices of part X have the same neighbors. Since
G is reduced, we conclude that |X| = 1. Similarly, |Y | = 1. Thus G = P2.

Theorem 3.3. Let G be a graph. Then rank(G) = 2 if and only if G = Km,n + tK1, for
some natural numbers m and n and a non-negative integer t.

Proof. First suppose that rank(G) = 2. If G is reduced, then by Theorem 3.2, G =
P2 + tK1, for some t ≥ 0. Assume that G is not reduced. By deleting some vertices
from G, one can obtain a reduced graph H . By Theorem 2.5, rank(H) = 2. Thus by the
connected case, H = K2 + tK1. Since G = H ? S, for some independent set S of G, we
obtain that G = Km,n + tK1, for some integers m,n ≥ 1. The second part of assertion is
trivial.

4 Bipartite Graphs of Rank 4 and their Eigenvalues
In this section we investigate about the bipartite graphs with rank 4. We note that by a
different method in [5], the bipartite graphs of rank 4 are classified.

Theorem 4.1. Let G be a reduced bipartite graph. Then rank(G) = 4 if and only if
G = 2P2 or G = P4 or G = P5.

Proof. One can easily see that rank(2P2) = rank(P4) = rank(P5) = 4. It remains to
prove the other part. Suppose that G is a reduced bipartite graph. Let X and Y be the parts
of G and B = B(G). By Remark 2.1, rank(B) = 2. Let u, v ∈ Y . Suppose that [u] and
[v] are two columns of B correspondence to u and v, respectively. Assume that [u] = α[v],
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for some real α. It is trivial that α ∈ {0, 1}. If α = 0, then u is an isolated vertex, a
contradiction. Thus α = 1. This shows that N(u) = N(v), a contradiction. Therefore
very two columns of B are independent.

Let x1, x2, x3 be three vertices of X . Since rank(B) = 2 and any two columns of B
are independent, for some non-zero real numbers a and b we have

[x3] = a[x1] + b[x2]. (4.1)

By multiplying the vector j (all components are 1) to both sides of Equation 4.1, we obtain
that:

deg(x3) = a deg(x1) + b deg(x2). (4.2)

SinceN(x1) 6= N(x2), without losing the generality letN(x1) 6⊆ N(x2). Assume that
u ∈ N(x1) \N(x2). Considering the entries correspondence to u in the vectors [x1], [x2]
and [x3] in the Equality (4.1), we obtain a ∈ {0, 1}. Since a is non-zero, a = 1. Let w be a
neighbor of x2. Considering the entries correspondence to w in the Equality (4.1), we have
b ∈ {−1, 0, 1}. Since b 6= 0, b = ±1. Thus for any three columns X1, X2 and X3 of B,
one of the following holds:

X1 = X2 +X3 or X2 = X1 +X3 or X3 = X1 +X2. (4.3)

We claim that |X|, |Y | ≤ 3. By contradiction suppose that |X| ≥ 4. Let x1, x2, x3, x4
be the vertices of X with have the minimum degree among all vertices of X . Suppose
that deg(x1) ≥ deg(x2) ≥ deg(3) ≥ deg(x4). Since the sets {[x1], [x2], [x3]} and
{[x2], [x3], [x4]} are dependent, by Equations 4.2 and 4.3, we obtain [x1] = [x2] + [x3]
and [x2] = [x3] + [x4]. Therefore [x1] = 2[x3] + [x4], a contradiction ( by Equation 4.3).
Similarly, |Y | ≤ 3. Since |X|, |Y | ≤ 3, G has at most 6 vertices. It is not hard to see that
G is isomorphic to one of the graphs 2P2 or P4 or P5. The proof is complete.

Let V (2P2) = {x1, y1, x2, y2} and E(2P2) = {x1y1, x2y2}. Thus P5 = 2P2 ⊕
{x1, x2}. Therefore P5 is not neighbor-reduced. Using this fact and Theorem 4.1 we
obtain the following:

Theorem 4.2. LetG be a strongly reduced bipartite graph. Then rank(G) = 4 if and only
if G = 2P2 or G = P4.

Using Theorems 2.5 and 4.1 ( similar to proof of Theorem 3.3), one can characterize all
bipartite graphs of rank 4.

Theorem 4.3 (Theorem 7.1 of [8]). Let G be a bipartite graph with no isolated vertex.
Then rank(G) = 4 if and only if G is obtained from 2P2 or P4 or P5 with the operation ?.

We finish this section by computing the eigenvalues of bipartite graphs of rank 4. First
we prove the following lemma. For other proofs, see also page 115 of [4], page 54 of [3]
and page 115 of [6].

Lemma 4.4. Let G be a bipartite graph. Let Spec(G) = {λ1, . . . , λn}. Then

λ41 + · · ·+ λ4n = 2m+ 8q + 4
∑

v∈V (G)

(
deg(v)

2

)
,

where m and q are the number of edges and the number of cycles of length 4 of G, respec-
tively.
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Proof. It is well-known that for any natural number k, λk1+ · · ·+λkn is equal to the number
of closed walks of G with length k ( page 81 of [4]). Since G is bipartite, all closed walks
of length 4 appear in the subgraphs of G that are isomorphic to P2, P3 or C4. We note
that in any P2, P3 and C4 there are 2, 4 and 8 closed walks of length 4 ( which cover all
vertices of P2, P3 and C4), respectively. On the other hand, the number of P3 in G is∑
v∈V (G)

(
deg(v)

2

)
. This completes the proof.

Theorem 4.5. Let G be a bipartite graph of rank 4. Let Spec(G) = {α, β, 0, . . . , 0,−β,
−α}. Suppose that v is a vertex ofG with deg(v) = t. Then Spec(G?v) = {γ, θ, 0, . . . , 0,
−θ,−γ}, where γ and θ are as following:

γ, θ =

√
α2 + β2 + t±

√
2(α4 + β4 + L)− (α2 + β2 + t)2

2
.

Also,

γ, θ =

√
m+ t±

√
2(m2 − 2α2β2 + L)− (m+ t)2

2
,

where L = t+ 6
(
t
2

)
+ 2

∑
w∈N(v) deg(w).

Proof. Assume that m and m′ are the number of edges of G and G ? v, respectively.
Suppose that q and q′ are the number of cycles of length 4 ofG andG?v, respectively. Thus
m′ = m+ t and q′ = q+

(
t
2

)
. Since G is bipartite, G?v is bipartite, too. By Theorem 2.5,

rank(G ? v) = 4. Therefore we have Spec(G ? v) = {γ, θ, 0, . . . , 0,−θ,−γ}, for some
non-zero real numbers γ and θ. Using Lemma 4.5 we obtain

2(γ4 + θ4) = 2(m+ t) + 8

(
q +

(
t

2

))
+ 4

∑
w∈V (G)\N(v)

(
deg(w)

2

)
+ 4

∑
w∈N(v)

(
deg(w) + 1

2

)
+ 4

(
t

2

)
. (4.4)

Since for any integer k ≥ 0,
(
k+1
2

)
=
(
k
2

)
+ k, using Lemma 4.5 we conclude that:

γ4 + θ4 = α4 + β4 + t+ 6
(
t
2

)
+ 2

∑
w∈N(v) deg(w). (4.5)

On the other hand, by the fact that for every graph H ,
∑
λ∈Spec(H) λ

2 = 2|E(H)|, we
obtain that α2 + β2 = m and γ2 + θ2 = m+ t. These equalities imply that

γ2 + θ2 = α2 + β2 + t. (4.6)

Let L = t + 6
(
t
2

)
+ 2

∑
w∈N(v) deg(w). Suppose that p = γ2 and q = θ2. Using

Equations 4.5 and 4.6 we obtain

pq =
(α2 + β2 + t)2 − (α4 + β4 + L)

2
, and p+ q = α2 + β2 + t.

The latter equalities show that p and q are roots of the following polynomial:

x2 − (α2 + β2 + t)x+
(α2 + β2 + t)2 − (α4 + β4 + L)

2
.

The proof is complete.
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Remark 4.6. Let f(G,λ) be the characteristic polynomial of G. Suppose that G is a
bipartite graph of order n with rank 4 and with Spec(G) = {α, β, 0, . . . , 0,−β,−α}. Let
m be the number of edges of G. Thus f(G, x) = xn−4(x4 −mx2 + α2β2). Assume that
v is a vertex of G with deg(v) = t and L = t + 6

(
t
2

)
+ 2

∑
w∈N(v) deg(w). Then by the

proof of Theorem 4.5

f(G ? v, x) = xn−3(x4 − (α2 + β2 + t)x2 +
(α2 + β2 + t)2 − (α4 + β4 + L)

2
).

5 Bipartite Graphs of Rank 6
In this section we characterize all bipartite graphs of rank 6. We note that all the singular
graphs of rank 6 are characterized in [8]. In addition the bipartite singular ( reduced) graphs
of nullity one are those corresponding to the last four lines of Table 2 in [8], that is the
graphs shown in Figure 7 in [8]. These are the graphs G8 to G12 of our paper. The graphs
G1 to G7 are non-singular and G13 has nullity two. As we mentioned in the introduction,
in [9] the authors consider the triangle-free graphs of rank 6. But we find that the graphs
G2 and G3 in Theorem 4.1 of [9], have rank 8. On the other hand, the main step to find
a classification for triangle-free graphs of rank 6 is first to classify bipartite graphs of the
same rank [9]. In this section by a different way from [9], we completely characterize
all bipartite graphs of rank 6. In other words, we find all bipartite graphs with exactly six
non-zero eigenvalues.

G1 = 3P2 G2 = P2 + P4 G3 = P6 G4 G5 = C6

G6 G7 G8 = P7 G9 G10

G11 G12 G13 = C8

Figure 3: All strongly reduced bipartite graphs of rank 6.

Theorem 5.1. LetG be a strongly reduced bipartite graph. Then rank(G) = 6 if and only
if G is one of the graphs which are shown in Figure 3.

Proof. Let X and Y be the parts of G and B = B(G). Since rank(G) = 6, by Theo-
rem 2.1, rank(B) = 3. We show that |X|, |Y | ≤ 4 ( that is G has at most 8 vertices).
Let y, y1, y2, y3 be four vertices of Y . Since rank(B) = 3, there exist some real numbers
a, a1, a2 and a3 such that a[y] + a1[y1] + a2[y2] + a3[y3] = 0. We claim that all the num-
bers a, a1, a2 and a3 are non-zero. If two coefficients are zero, for example a2 = a3 = 0,
then N(y) = N(y1), a contradiction ( because G is reduced). If one of the coefficients is
zero, say a = 0, then as we see in the proof of Theorem 4.2, one of the following holds:
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[y1] = [y2] + [y3] or [y2] = [y1] + [y3] or [y3] = [y1] + [y2], a contradiction ( since G is
neighbor-reduced). Thus the claim is proved.

Suppose that deg(y) ≥ deg(y1) ≥ deg(y2) ≥ deg(y3). One can see that N(y) 6⊆
N(yi), for i = 1, 2, 3. Let

[y] = α[y1] + β[y2] + γ[y3], where α, β, γ 6= 0. (5.1)

Since N(y) \N(y1) 6= ∅, by Equation (5.1) we obtain βl1 + γl2 = 1, where l1, l2 ∈
{0, 1}. This shows that β = 1 or γ = 1 or β + γ = 1. Similarly, since N(y) 6⊆ N(yi) for
i = 2, 3, we have α = 1 or γ = 1 or α+ γ = 1 and α = 1 or β = 1 or α+ β = 1. It is not
hard to see that the multiset {α, β, γ} is one of the following:

{1
2
,
1

2
,
1

2
}, {1, 1, 1}, {−1, 1, 1}, {−2, 1, 1}, {−1, 1, 2}, {−1,−1, 1}.

Therefore [y] satisfying in one of the following equations:

L1 : 2[y] = [y1]+[y2]+[y3]. L2 : [y] = [y1]+[y2]+[y3]. L3 : [y] = [y1]+[y2]−[y3].
L4 : [y] = [y1]−[y2]+[y3]. L5 : [y] = −[y1]+[y2]+[y3]. L6 : [y] = [y1]+[y2]−2[y3].
L7 : [y] = [y1]−2[y2]+[y3]. L8 : [y] = −2[y1]+[y2]+[y3]. L9 : [y] = 2[y1]+[y2]−[y3].
L10 : [y] = 2[y1]−[y2]+[y3]. L11 :[y] = [y1]+2[y2]−[y3]. L12 :[y] = −[y1]+2[y2]+[y3].

L13 : [y] = [y1]−[y2]+2[y3]. L14 :[y] = −[y1]+[y2]+2[y3]. L15 : [y] = [y1]−[y2]−[y3].
L16 : [y] = −[y1] + [y2]− [y3]. L17 : [y] = −[y1]− [y2] + [y3].

By multiplying the vector j (all components are 1) to both sides of Equation (5.1) we
conclude that

deg(y) = αdeg(y1) + β deg(y2) + γ deg(y3). (5.2)

Suppose that y1, y2, y3 have the minimum degree among all vertices of Y . Let
deg(y1) ≥ deg(y2) ≥ deg(y3). By Equation (5.2) the cases L8, L15, L16, L17 can-
not happen. On the other hand one can see that the cases L7, L9, L10, L11 can not oc-
cur. For example suppose that L7 holds. So there exists a vertex y 6= y1, y2, y3 in
Y such [y] = [y1] − 2[y2] + [y3]. This shows that N(y2) ⊆ N(y1) ∩ N(y3). Since
deg(y2) ≥ deg(y3), N(y2) = N(y3), a contradiction ( because G is reduced).

Now we claim that |Y | ≤ 4. By contradiction let |Y | ≥ 5. Assume that y1, y2, y3
have the minimum degree among all vertices of Y and deg(y1) ≥ deg(y2) ≥ deg(y3).
Suppose that y and y0 are two vertices of Y ( distinct from y1, y2, y3). Thus [y] and [y0]
are satisfying in one of the equations L1, L2, L3, L4, L5, L6, L12, L13, L14. We show that
it is impossible. For example suppose that [y] satisfying in the equation Li and y0 in Lj .
Clearly, i 6= j. For instance let i = 3 and j = 4. That is [y] = [y1] + [y2] − [y3]
and [y0] = [y1] − [y2] + [y3]. Thus [y] + [y0] = 2[y1], a contradiction ( because every
three columns of B is independent). As other manner let i = 1 and j = 2. Thus [y0] =
−2[y]+2[y2]+2[y3], a contradiction ( because it does not appear in equationsL1, . . . , L17).
As a last manner let i = 12 and j = 14. The condition L12 implies that N(y2) ⊆ N(y1)
and N(y2) ∩ N(y3) = ∅. On the other hand L14 shows that N(y3) ⊆ N(y1). Since G
is neighbor-reduced, N(y1) 6= N(y2) ∪ N(y3). Let x ∈ N(y1) \ N(y2) ∪ N(y3). By
the equality [y] = −[y1] + 2[y2] + [y3], we find that the component correspondences to x
in [y] is −1, a contradiction. Similarly one can check the other value for i and j, where
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i, j ∈ {1, 2, 3, 4, 5, 6, 12, 13, 14}. The claim is proved. That is |Y | ≤ 4. Similarly |X| ≤ 4.
Thus G has at most 8 vertices. One can see that all of the strongly reduced graphs of rank 6
and with at most 8 vertices are given in Figure 3. The proof is complete.

Remark 5.2. Let bn and cn be the number of connected bipartite graphs and connected
strongly reduced bipartite graphs of order n, respectively. Then

b1 = b2 = b3 = 1, b4 = 3, b5 = 5, b6 = 17, b7 = 44, b8 = 182,

c1 = c2 = 1, c3 = 0, c4 = 1, c5 = 0, c6 = 5, c7 = 5, c8 = 36.

We note that among all connected strongly reduced bipartite graphs of order 8, the cycle
C8 is the only graph with rank 6 and the others have rank 8.

Using Theorems 2.5 and 5.1 ( similar to proof of Theorems 3.3 and 4.3) we characterize
all bipartite graphs of rank 6. See also Theorem 8.3 of [8].

Theorem 5.3. Let G be a bipartite graph with no isolated vertex. Then rank(G) = 6
if and only if G is obtained from one of the graph which is shown in Figure 3 with the
operations ? and ⊕.

Now we characterize all bipartite reduced graphs of rank 6.

Theorem 5.4. Let G be a reduced bipartite graph. Then rank(G) = 6 if and only if G is
one of the graphs which are shown in Figurer 4.

Proof. It is easy to check that all graphs of Figure 4 are reduced of rank 6. Thus it remains
to prove the other part. Let G be a reduced bipartite graph of rank 6. If G is strongly
reduced, then by Theorem 5.1, G is one of the graphs G1, . . . , G13 which are shown in
Figure 3. Otherwise, by Theorem 5.3, G is obtained from one of the graphs G1, . . . , G13

by the operations ? and ⊕. Since G is reduced, G is obtained only by the operation ⊕ from
G1, . . . , G13 ( note that if H is a non-reduced graph, then for any independent set S of H ,
H ? S is also non-reduced).

Thus to obtain G it is sufficient to apply the operation ⊕ on the graphs G1, . . . , G13.
Since there is no non-adjacent vertices u and v in G5, G6, G7, G11, G12 such that N(u) ∩
N(v) = ∅, we can not apply ⊕ on the graphs G5, G6, G7, G11, G12.

For the other graphs, one can see the following:

1) The graphs G1,1, G1,2, G1,3, G1,4, G1,5, G1,6, G1,7 and G1,8 are obtained from G1.

2) The graphs G2,1, G2,2, G2,3 and G2,4 are obtained from G2.

3) The graph G3,1 is obtained from G3.

4) The graph G4,1 is obtained from G4.

5) The graphs G8,1, G8,2, G8,3 and G8,4 are obtained from G8.

6) The graphs G9,1, G9,2 and G9,3 that are isomorphic to G1,4, G1,6 and G1,8, respec-
tively, are obtained from G9.

7) The graph G10,1 is obtained from G10.

8) The graph G13,1 is obtained from G13.
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Therefore we obtain 20 reduced graphs from G1, G2, G3, G4, G8, G9, G10 and G13. Since
G1, . . . , G13 are also reduced, there are exactly 33 bipartite reduced graphs of rank 6 ( see
Figure 4).

Similar to other theorems like Theorem 5.3 we can prove one of the main result of this
paper.

Theorem 5.5. Let G be a bipartite graph with no isolated vertex. Then rank(G) = 6
if and only if G obtained from one of the graphs which are shown in Figurer 4 with the
operation ?.

G1 = 3P2 G2 = P2 + P4 G3 = P6 G4 G5 = C6

G6 G7 G8 = P7 G9 G10 G11

G12 G13 = C8 G1,1 = P2 + P5 G1,2 G1,3

G1,4 G1,5 G1,6 G1,7 G1,8

G2,1 G2,2 G2,3 G2,4 G3,1

G4,1 G8,1 G8,2 G8,3 G8,4

G10,1 G13,1

Figure 4: All reduced bipartite graphs of rank 6.
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