
Also available at http://amc-journal.eu
ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 12 (2017) 301–314

Search for the end of a path in the
d-dimensional grid and in other graphs

Dániel Gerbner ∗

Hungarian Academy of Sciences, Alfréd Rényi Institute of Mathematics,
P.O.B. 127, Budapest H-1364, Hungary

Balázs Keszegh †

Hungarian Academy of Sciences, Alfréd Rényi Institute of Mathematics,
P.O.B. 127, Budapest H-1364, Hungary

Dömötör Pálvölgyi ‡

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, UK

Günter Rote §

Freie Universität Berlin, Institut für Informatik,
Takustraße 9, 14195 Berlin, Germany

Gábor Wiener ¶

Department of Computer Science and Information Theory, Budapest University of
Technology and Economics,

Műegyetem rkp. 3., H-1111, Budapest, Hungary

Received 29 December 2014, accepted 30 August 2016, published online 21 January 2017

∗Supported by the National Research, Development and Innovation Office – NKFIH, grant no. PD 109537
and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.
†Supported by the National Research, Development and Innovation Office – NKFIH, grant no. PD 108406,

NN 102029 (EUROGIGA project GraDR 10-EuroGIGA-OP-003), NK 78439, K 116769, by the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences, and DAAD.
‡Supported by the National Research, Development and Innovation Office – NKFIH, grant no. PD 104386 and

NN 102029 (EUROGIGA project GraDR 10-EuroGIGA-OP-003), the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences, and by the Marie Skłodowska-Curie action of the EU, under grant IF 660400.
§Supported by the ESF EUROCORES programme EuroGIGA-VORONOI, Deutsche Forschungsgemeinschaft

(DFG): RO 2338/5-1.
¶Supported by the National Research, Development and Innovation Office – NKFIH, grant no. 108947, and

the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/

302 Ars Math. Contemp. 12 (2017) 301–314

Abstract

We consider the worst-case query complexity of some variants of certain PPAD-
complete search problems. Suppose we are given a graph G and a vertex s ∈ V (G).
We denote the directed graph obtained from G by directing all edges in both directions
by G′. D is a directed subgraph of G′ which is unknown to us, except that it consists of
vertex-disjoint directed paths and cycles and one of the paths originates in s. Our goal is to
find an endvertex of a path by using as few queries as possible. A query specifies a vertex
v ∈ V (G), and the answer is the set of the edges of D incident to v, together with their
directions.

We also show lower bounds for the special case when D consists of a single path. Our
proofs use the theory of graph separators. Finally, we consider the case when the graph G
is a grid graph. In this case, using the connection with separators, we give asymptotically
tight bounds as a function of the size of the grid, if the dimension of the grid is considered
as fixed. In order to do this, we prove a separator theorem about grid graphs, which is
interesting on its own right.

Keywords: Separator, graph, search, grid.

Math. Subj. Class.: 90B40, 05C85

1 Introduction
This paper deals with the following search problem. We are given a simple, undirected,
connected graph G and a vertex s ∈ V (G). We denote the directed graph obtained from
G by directing all edges in both directions by G′. Let D be a directed subgraph of G′,
which is the vertex-disjoint union of a directed path starting at s and possibly some other
directed paths and cycles. D is unknown to us, and our goal is to identify an endvertex of a
directed path. We may query a vertex v, and as an answer, we learn the edges ofD incident
to v together with their directions. In particular, if the answer is only one incoming edge,
then we know that v is an endvertex. We analyze the minimum number of queries that are
necessary in the worst case.

We give lower bounds in the more restrictive model where we know D is one directed
path. Note that if instead of looking for an endvertex, we look for an ending or a starting
vertex of a path (different from s), then this model still gives a lower bound for this easier
problem. In Section 4 we mention some additional models.

Denote by h(G) the minimum number of queries needed to find an endvertex in the
worst case for any s ∈ G. If we know that D is one directed path, denote this quantity by
hP (G).

Biseparators and multiseparators. To state some of our results we need to define sepa-
rators of graphs. This notion can be defined in two different ways and both definitions are
widely used. Here we distinguish between the two definitions.

E-mail addresses: gerbner.daniel@renyi.mta.hu (Dániel Gerbner), keszegh.balazs@renyi.mta.hu (Balázs
Keszegh), dom@cs.elte.hu (Dömötör Pálvölgyi), rote@inf.fu-berlin.de (Günter Rote), wiener@cs.bme.hu
(Gábor Wiener)

D. Gerbner et al.: Search for the end of a path in the d-dimensional grid and in other graphs 303

Definition 1.1.

1. Given a graph G = (V,E), a subset S ⊆ V is called an α-biseparator of G if V \ S
can be divided into two parts, A and B, such that there are no edges between A and
B, and both have cardinality at most α|V |.

2. Given a graph G = (V,E), a subset S ⊆ V is called an α-multiseparator of G if
every connected component of V \ S has cardinality at most α|V |.

Note that A or B in the definition of a biseparator can be empty: we do not require
V \ S to be disconnected. Small biseparators make sense only for α ≥ 1/2.

Given these definitions, when we write separator, it can mean either a biseparator or
a multiseparator, as in many cases it makes no difference. In the literature, the notation
f(n)-separator can also be found, where f(n) is an upper bound on the cardinality of S in
terms of the number n of vertices. In this paper it is more straightforward to fix α and then
look for the smallest α-separator. Therefore, we let sbiα (G) be the minimum cardinality of
an α-biseparator in G and smα (G) be the minimum cardinality of an α-multiseparator in G.

It follows from the definitions that every α-biseparator is an α-multiseparator, and thus
sbiα (G) ≥ smα (G). In many cases they are of the same order of magnitude. In particular,
if we have a bound smα (G) ≤ O(nc) for a class of graphs which is closed under taking
subgraphs for some c < 1 and for some arbitrary α < 1, we get the same asymptotic bound
on sbi1/2(G), by iteratively separating one of the components. However, there are cases
when multiseparators are much smaller than biseparators. For example, if G consists of
three disjoint cliques of equal size, all connected to a degree-three vertex, then sm1/2(G) = 1

but sbi1/2(G) = dn/6e. For any tree, sm1/2(G) = 1 but it is not hard to show that for a
complete ternary tree, sbi1/2(G) = Θ(log n), see Appendix A. Finally, if we consider a
class of graphs closed under taking subgraphs, by repeatedly refining the separation, then it
is obvious that smα (G) and smα′(G) have the same order of magnitude for any two constants
α and α′.

Results. Our main result establishes a connection between the biseparators and the search
complexity for general graphs.

Theorem 1.2. For any connected graph G with at least 2 vertices, we have sbi1/2(G) ≤
hP (G) ≤ h(G).

We can prove an upper bound of the same order of magnitude, if every subgraph has
small multiseparators. Note that when bounding h(G), sbi(G), the larger of the separators,
gives the lower bound and sm(G), the smaller one, gives the almost matching upper bound,
which implies that indeed for a large class of graphs sbi(G) and sm(G) have the same order
of magnitude.

Theorem 1.3. Let 0 < α, β < 1 be constants, let f be a monotone function, and let G be a
graph such that any subgraph H of G has an α-multiseparator of size at most f(|V (H)|).
If f(αx) ≤ βf(x) for all x > 0, then

hP (G) ≤ h(G) ≤ f(|V (G)|)
1− β

.

304 Ars Math. Contemp. 12 (2017) 301–314

The condition on f could be interpreted as having “at least polynomial growth”. The
condition is fulfilled by the function f(x) = const · xc if and only if c ≥ logα β. To put it
differently, if α and c > 0 are given, the theorem applies with β := αc.

We also study the search problem for the special case of grid graphs.

Definition 1.4. Let d be a positive integer and (n1, . . . nd) a sequence of positive integers.
The d-dimensional grid graph of side length (n1, . . . nd), denoted by Gd(n1, . . . nd), has
vertex set×i

{0, 1, 2, . . . , ni − 1}, and there is an edge between two vertices if and only if
they differ in exactly one coordinate and the difference is 1. If n1 = n2 = · · · = nd, then
we simply write Gd(n).

We estimate the search complexity of grid graphs as follows.

Theorem 1.5. Ω(nd−1/
√
d) ≤ hP (Gd(n)) ≤ h(Gd(n)) ≤ O(nd−1).

As a tool, we will prove a bound on the cardinality of separators of grid graphs, using
classic results from the theory of vertex isoperimetric problems and cube slicing.

Theorem 1.6. The smallest 1/2-biseparator of the grid graph Gd(n) has cardinality

sbi(Gd(n)) = Θ(nd−1/
√
d).

We note that when considering grid graphs, one could also study the related problem
that the path starting at s is monotone, i.e., if u and v are on the path and u ≤ v (according
to the usual partial order of the vectors), then the edge between u and v (if it exists) is
directed towards v. In this case the needed number of queries reduces dramatically. Indeed,
the trivial algorithm which follows the path uses at most dn queries. In two dimensions we
could improve slightly this upper bound, yet there is a more significant improvement by
Xiaoming Sun (personal communication), who proved that 8n/5 queries are enough in two
dimensions. From below, at least n − 2 queries are needed regardless of d [7, Lemma 6].
This problem resembles the pyramid-path search problem (but it is not exactly the same),
where also a lower bound of n is proved for the two-dimensional case [5].

Motivation. Hirsch, Papadimitriou and Vavasis [7] have proved worst-case lower bounds
for finding Brouwer fixed points for algorithms using only function evaluation. They
showed a lower bound that is exponential in the dimension, disproving the conjecture
that Scarf’s algorithm is polynomial. In our language, they have (implicitly) proved that
h(Gd(n)) = Ω(nd−2/d2) [7, Lemma 16]. Our Theorem 1.5 is an improvement of their
result, although we do not use the continuous setting but rather focus only on the discretiza-
tion of the problem.

Later, Papadimitriou [10] considered similar complexity search problems in great de-
tail and defined corresponding complexity classes PPA, PPAD, etc. In his model, an
exponential-size graph is given by a succinct representation, i.e., by the description of a
Turing-machine T . The vertices of the graph correspond to binary sequences of length n
and if we input such a sequence to T , it outputs all the neighbors of the corresponding
vertex in polynomial time (thus the degrees are bounded by a polynomial). Therefore, in
his model, instead of considering query cost, one can work with the classical running time
of the algorithm that gets T as input. If the algorithm uses T as a black box, we get back
the query-cost model.

D. Gerbner et al.: Search for the end of a path in the d-dimensional grid and in other graphs 305

Papadimitriou considered the problem when the maximum degree of the graph is 2, i.e.,
it consists of vertex disjoint paths and cycles and we are also given, as part of the input,
a degree-one vertex, s, and our goal is to output another degree-one vertex. This search
problem is denoted by LEAF, and the complexity class PPA is defined such that LEAF
is complete for PPA. (PPA stands for “Polynomial Parity Argument”.)

Papadimitriou introduced another variant, where the underlying graph is directed (T
outputs both the in- and out-neighbors of its input in this case), the in- and out-degree of
every vertex is at most one, and we are given a starting vertex s with in-degree zero and
out-degree one. Therefore, the resulting digraph is the vertex-disjoint union of a directed
path starting at s and possibly some other directed paths and cycles, exactly like in the
problem that we study. Here our goal can be either to output an in-degree one, out-degree
zero vertex (called LEAFDS problem) or an in-degree plus out-degree equals one vertex
(called LEAFD problem), which means the end of a path, just like in the problem we study.
Thus, the query-cost of LEAFD is exactly h(K2n).

The complexity classes for which the problems LEAFDS and LEAFD are complete
are denoted, respectively, by PPADS and PPAD. It is easy to see that PPAD is con-
tained in both PPA and PPADS, while an oracle separation is known for the two latter
classes [2]. Nowadays PPAD enjoys huge popularity, as several problems, among them
finding an ε-approximate Nash-equilibrium, turned out to be PPAD-complete. This is
why this paper focuses on h(G), the query-cost version of PPAD, though most of our
results would also hold for the other variants.

An extensive list of PPAD-complete problems can be found on Wikipedia.

2 Upper bounds
Claim 2.1. Suppose that the connected components ofG\S are Y1, . . . , Yk. If every vertex
of S has been queried, we know a Yi which contains an endvertex (or that an endvertex is
in S, hence already identified).

Proof. The answers clearly show how many times we enter and leave S from each com-
ponent Yi. If we enter a component Yi more times than we leave it, then Yi must contain
an endvertex. If there is no such component, the component containing s must contain an
endvertex.

This simple observation is crucial for our upper bounds and it does not hold if the
answers would contain only the edges leaving the queried vertex.

Proof of Theorem 1.3. Let us choose an α-multiseparator S1 with |S1| ≤ f(|V (G)|) which
cuts G into parts Y1, . . . , Yk, and query all vertices of S1. By Observation 2.1 we know
a part Yj which contains an endvertex. Let G1 be G restricted to Yj and choose an α-
multiseparator S2 of size at most f(|V (G1)|), which cuts G1 into parts Z1, . . . , Zl.

Then S1 ∪ S2 is a separator of G, which cuts it into parts Y1, . . . , Yj−1, Yj+1, . . . , Yk,
Z1, . . . , Zl. Thus, by again using Observation 2.1 after asking every vertex of S1 ∪ S2 we
know which part Zi contains an endvertex.

After this we can continue the same way, defining G2 and asking S3, defining G3 and
asking S4 and so on, until an endvertex is in some Si. As |V (Gj)| ≤ α|V (Gj−1)| for
any j, one can easily see that |V (Gj)| ≤ αj |V |. By the assumptions on f , f(|Sj |) ≤
f(|V (Gj−1)|) ≤ f(αj−1|V |) ≤ βj−1f(|V |). Altogether at most

∑∞
j=1 β

j−1f(|V |) ≤
f(|V |)/(1− β) questions were asked.

306 Ars Math. Contemp. 12 (2017) 301–314

A celebrated theorem of Lipton and Tarjan [8] states that planar graphs have 2/3-
separators of size at most

√
8 ·
√
|V |. Thus we have the following corollary.

Corollary 2.2. If G is planar, then h(G) = O(
√
|V |).

Now, let us look at d-dimensional grid graphs. Miller, Teng and Vavasis [9] introduced
the so-called overlap graphs for every d and proved that every member G of the class has
separator of size O(|V (G)|(d−1)/d). They mention that any subset of the d-dimensional
infinite grid graph belongs to the class of overlap graphs. The polynomial function f(x) =
cx(d−1)/d satisfies the assumption of Theorem 1.3. Since |V (Gd(n))| = nd, this implies
that h(G) = O(nd−1). Here we show that the multiplicative constant is less than 3.

Theorem 2.3. h(Gd(n)) ≤ (2 + 1
2d−1−1)nd−1.

Proof. We follow the proof of Theorem 1.3, but the cuts we use are always axis-aligned
hyperplanes, which cut the current part into two smaller grid graphs. More precisely, for
any i let j ≡ i mod d, 0 ≤ j ≤ d − 1; now Si is a hyperplane perpendicular to the jth

coordinate axis, and it cutsGi−1 into two parts of size at most |V (Gi−1)|/2. One can easily
see that this is possible and |Si+1| ≤ |Si|/2, except if j = 0, in which case |Si+1| ≤ |Si|.
This means that there are at most

nd−1(1 + 1/2 + 1/4 + . . .+ 1/2d−1)(1 + 1/2d−1 + 1/22(d−1) + . . .)

≤ nd−1(2− 1/2d−1)
1

1− 1/2d−1
= nd−1

(
2 +

1

2d−1 − 1

)
queries.

3 Lower bounds
Before proving Theorem 1.6 which claims that any 1/2-separator in the grid graph Gd(n)
has cardinality Ω(nd−1/

√
d), we present a slightly weaker result, as it has a short proof not

using results from the theory of isoperimetric problems.

Claim 3.1. Any α-multiseparator in the grid graph Gd(n) has cardinality at least (1 −
α)nd−1/d for α ≥ 1/2.

Proof. We use induction on d. The claim is trivial for d = 1. Let us denote by S an
α-multiseparator.

Let us choose an arbitrary axis, and denote by L the nd−1 parallel lines in the grid
which go in that direction. Let L′ ⊂ L be the set of those lines which intersect S. Note
that every other element of L contains vertices only from one component of G \ S. If
|L′| ≥ (1− α)nd−1/d, then we are done. Hence we can suppose |L′| < (1− α)nd−1/d.

Elements ofL′ cover less than (1−α)nd/d points, hence for any componentC ofG\S,
the other components together contain at least ((1 − α)d − (1 − α))nd/d vertices, which
are not covered by elements of L′. This means that there are at least (1−α)(d−1)nd−1/d
elements of L which contain only vertices not in C. Now consider a hyperplane in the grid,
orthogonal to the direction of the lines of L, and denote by H the vertices of Gd(n) that
belong to the hyperplane. Clearly,H contains at least (1− α)(d− 1)nd−1/d elements not
in C, hence S ∩H is an α′-multiseparator ofH (with α′ := 1− (1− α)(d− 1)/d) and so
we can apply induction on each of these (d− 1)-dimensional hyperplanes.

By induction, there are at least (1−α)(d−1)nd−2/d(d−1) elements of S in every such
hyperplane, which gives at least n(1−α)nd−2/d = (1−α)nd−1/d elements in total.

D. Gerbner et al.: Search for the end of a path in the d-dimensional grid and in other graphs 307

Before proving the stronger version of this result, we need to introduce some notations
and results.

Let A be an arbitrary set of vertices. The set of vertices that are not in A, but are
connected to some vertex of A is called the boundary of A, denoted by ∂A. Following
the notations of Bollobás and Leader [3], we define an order on the vertices, the simplicial
order, by setting x < y if

∑
xi <

∑
yi, or

∑
xi =

∑
yi and for some j we have xj > yj

and xi = yi for all i < j. This coincides with the lexicographic order according to the
vector (

∑
xi,−x1,−x2, . . . ,−xn).

Theorem 3.2 (Bollobás and Leader [3]). In Gd(n), among sets of vertices of a given size,
the initial segment of the simplicial order has the smallest boundary.

The special case n = 2, i.e., the hypercube, was previously treated by Harper [6], while
the unbounded case of n = ∞ was solved by Wang and Wang [13]. We note that in the
paper of Bollobás and Leader the definition of boundary is different: they also include A
in ∂A.

We will also need some results about the volume of slices of a cube, i.e., intersections
of the cube with specific hyperplanes. For a contemporary approach to this area we refer to
[14]. In the next theorem Hd(t) denotes the following set in the d-dimensional unit cube
Id: Hd(t) = {x ∈ Id |

∑
xi = t }; Voli denotes the i-dimensional volume of some set of

dimension i.

Theorem 3.3 ([11, 14]). limd→∞Vold−1
(
Hd(d/2+s

√
d)
)

=
√

6
π e
−6s2 , for each fixed s.

Let Lk denote the k-th layer of Gd(n): the set of all vertices in Gd(n) whose coordi-
nates sum to k. The layer range from 0 to (n−1)d. We define the size of the “middle-most”
layers Zn,d by

Zn,d :=

{
|L((n−1)d−1)/2| = |L((n−1)d+1)/2|, for (n− 1)d odd,
min{|L(n−1)d/2−1|, |L(n−1)d/2|, |L(n−1)d/2+1|}, for (n− 1)d even.

Zmax
n,d :=

{
|L((n−1)d−1)/2| = |L((n−1)d+1)/2| = Zn,d, for (n− 1)d odd,
|L(n−1)d/2|, for (n− 1)d even.

In the even case, we actually know that the middle level L(n−1)d/2 is the largest of the
three levels in the definition of Zn,d, as the levels decrease symmetrically in size from the
middle to the ends [4]. From discretizing the above theorem, one can obtain the following
bound on Zn,d. Its proof can be found in Appendix B.

Corollary 3.4. For every d, there exists a constant Cd such that

Zn,d = Cd/
√
d · nd−1 ±O(nd−2) and

Zmax
n,d = Cd/

√
d · nd−1 ±O(nd−2).

Cd →
√

6/π as d→∞.

Now we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. We start with the lower bound. Let us denote by S a 1/2-biseparator
which separates the vertex set A and B (such that V = A ∪ B ∪ S). If |S| ≥ Zn,d we are

308 Ars Math. Contemp. 12 (2017) 301–314

done. Thus we suppose that |S| < Zn,d. Denote byA′ the vertex set of size |A| which is an
initial segment of the simplicial order. By Theorem 3.2 we know that |S| ≥ |∂A| ≥ |∂A′|.

By the definition of the simplicial order, ∂A′ is contained in the union of two successive
layers k and k + 1: ∂A′ = P1 ∪ P2, where P1 ⊆ Lk and P2 ⊆ Lk+1. First we claim that
k must be very close to the middlemost layer. More precisely, if nd is odd, we can assume
k = nd−1

2 , and if nd is even, we can assume k = nd
2 − 1 or k = nd

2 .
We treat only the odd case, the even case being similar. First, we show that A′ must

reach at least level k = nd−1
2 . If A′ were disjoint from Lk, we would get

|A|+ |S| = |A′|+ |S| < |A′|+ Zn,d = |A′ ∪ Lk| ≤ n2/2,

since the last set contains only vertices in the lower half of the levels. This contradicts the
requirement fact that A ∪ S must cover at least half of the vertices. Secondly, if A′ would
contain vertices of level k+1, it would contain more than the levels 0, 1, . . . , k which make
up half of all vertices. This is again a contradiction to the 1/2-biseparator property.

By the definition ofZn,d, we have now established that each of the two central layersLk
and Lk+1 contains at least Zn,d points. To conclude the proof, we show that the separator
∂A′ which is contained in the two layers Lk and Lk+1 must have size at least Zn,d −
O(nd−2). If a vertex v = (x1, . . . , xd) of Lk+1 is not in P2, then the adjacent vertex v−

defined by v− = (x1, . . . xd−1, xd − 1) must be in P1 unless it is not a point of the grid
G(n, d) (i.e., xd = 0):

(Lk+1 \ P2)− ∩G(n, d) ⊆ P1

Since the number of vertices of Lk+1 for which xd = 0 is O(nd−2), we obtain

|Lk+1| − |P2| −O(nd−2) ≤ |P1|,

from which the bound |∂A′| = |P1|+ |P2| ≥ Zn,d −O(nd−2) follows.
For the upper bound, we simply take the central layer Lb(n−1)d/2c of size Zmax

n,d as a
biseparator.

Now we are ready to prove Theorem 1.2, that sbi1/2(G) ≤ hP (G).

Proof of Theorem 1.2. We will use an adversary argument for the lower bound on the num-
ber of queries. The adversary will try to answer the queries in such a way that the discovery
of the endvertex by the searcher is delayed as much as possible. The adversary need not
choose a path D in advance, but it is required that the answers remain consistent with some
path.

Let Q denote the vertices that have been queried so far in the search. We will show
that the adversary can achieve that after the other end of the path is found, Q becomes a
1/2-biseparator. The adversary maintains a component C of V −Q, see Figure 1. C is the
set of vertices which can possibly be the endvertex of the path. (The adversary will follow
a greedy strategy of keeping this set as large as possible.) In addition to C, the adversary
maintains a path P between s and some vertex p ∈ C, which will be part of the final path
and for which P ∩ C = {p}. The remaining components of V − Q are partitioned into
two sets V \ (Q ∪C) = A ∪B such that both A and B contain at most |V |/2 vertices and
there are no edges between A and B. Thus we always have a partition into four disjoint
sets V = Q ∪ A ∪ B ∪ C. The adversary can reveal all these data to the searcher as free
additional information. Initially, C = V , p = s and Q = A = B = ∅.

D. Gerbner et al.: Search for the end of a path in the d-dimensional grid and in other graphs 309

s

P

p

A

B

C

Figure 1: A schematic drawing of the situation maintained by the adversary. The queried
vertices, Q, are marked by squares.

p

Cnew

q
D1

D2

D3

P

p

Cnew

q
D1

D2

D3
P

pnew

C C

(a) (b)

P ′

Figure 2: Updating the set C after a query q

The strategy is the following. If the queried vertex q is in Q, the adversary repeats the
previous answer for this vertex. If q ∈ P \ {p}, the adversary answers by reporting the
ingoing and outgoing edge of P at that vertex. If q /∈ C ∪ P , then the answer is that “the
path does not pass through this vertex.” In these cases, no new information is revealed to
the searcher. The vertex p, the set C, and the path P remain unchanged; the only change is
that q is moved from A ∪B to Q.

Let us now look at the case q ∈ C. Let C \ {q} = D1 ∪D2 ∪ · · · ∪Dm be the partition
of C \ {q} into m ≥ 1 connected components. The adversary chooses a largest component
Dj , and will answer in such a way that the new set C becomes Cnew = Dj .

Therefore, if Cnew contains p, the answer is again “the path does not pass through this
vertex,” see Figure 2 (a). The current endpoint p and the path P are unchanged. If Cnew

does not contain p (including the case q = p), then choose pnew ∈ Cnew to be a neighbor
of q, see Figure 2 (b). As q was a possible endpoint of the path before this step, there is
a path P new from p to q which lies in C \ Cnew. The adversary uses P new and the edge
qpnew to extend the path P to a longer path P new. (This is the only case when the path is
updated.) The adversary reports the last arc of P new as the ingoing arc at q and qpnew as
the outgoing arc.

310 Ars Math. Contemp. 12 (2017) 301–314

To maintain the invariant that |A|, |B| ≤ |V |/2, we go through the components Di 6=
Cnew one by one and add them either to A or to B (to eventually obtain Anew and Bnew),
whichever is smaller. If, for example, |A| ≤ |B|, then |A|+ |Di| ≤ |B|+ |Cnew| ≤ |V |/2
as A,Di, B,C

new are disjoint subsets of V . Therefore, the invariant is maintained.
The searcher can only identify t, the end of the path, when |C| becomes 1. By assump-

tion, the graph G has at least two vertices and is connected, and therefore Q 6= ∅. Thus, at
this point,

min{|A|, |B|} ≤ |V \ (Q ∪ C)|/2 ≤ (|V | − 1− 1)/2 = |V |/2− 1.

We can now add the singleton set C = {t} to the smaller of A and B without exceeding
the size bound |V |/2. The set Q of queried vertices forms thus a 1/2-biseparator.

Corollary 3.5. hP (Gd(n)) = Ω(nd−1/
√
d).

Theorem 1.5 summarizes the above results. The lower and upper bounds are quite
close. Specifically, if we consider d as fixed, then the theorem gives exact asymptotics in n
for the needed number of queries.

4 Concluding Remarks: Problem Variations
Here we mention three more variants of the problem.

In the first variant, we consider any directed subgraph of G′ and a vertex s with larger
out-degree than in-degree. In this version there is a vertex with higher in-degree than out-
degree, our goal is to find such a vertex. All of our algorithms work in this case, and
obviously the same lower bounds hold.

In the second variant, D consists of directed paths and cycles, but we also assume that
they cover every vertex. This is a special case of our model, hence the upper bounds hold.
However, a lower bound similar to Theorem 1.2 is not plausible, as there are graphs that
have only big separators, yet there are only a few valid choices for D. For example if G
contains a vertex of degree one, different from the source, then this vertex must be the
endvertex. But in case of grid graphs we can show that the additional assumption on D
does not make the problem much easier.

Denote by hU (G) the minimum number of queries needed to find an endvertex in the
worst-case for any s ∈ G. Now we show how to give a lower bound for hU (Gd(n)). Let
us suppose we are given an r1× r2× r3× · · · × rd grid graph G. Then let G4,4 denote the
4r1 × 4r2 × r3 × · · · × rd grid graph.

Theorem 4.1. Let G be a grid graph. Then hP (G) ≤ hU (G4,4).

The proof of this theorem can be found in Appendix C.
One can easily see that if 4 divides n and G is the n/4×n/4×n× · · · ×n grid graph,

then Gd(n) = G4,4. We need a lower bound on the size of separators in G. It is easy to see
that if we replace every vertex of G by 16 vertices to get Gd(n), an α-separator is replaced
by an α-separator, hence the same lower bound of Ω(nd−1/

√
d), divided by 16, holds for

G.

Corollary 4.2. Ω(nd−1/
√
d) ≤ hU (Gd(n)) ≤ O(nd−1).

D. Gerbner et al.: Search for the end of a path in the d-dimensional grid and in other graphs 311

In the third variant, D is undirected. Our goal is to find another endvertex and the
answer to the query is the at most two incident edges. Obviously, this is a harder problem
than the directed variant. Hence our lower bounds hold, and one can easily modify our
proofs to get the same upper bounds as well. For example, in Observation 2.1, the endvertex
is in the component Yi which is connected to S by an odd number of edges, counting an
extra edge for the component of s.

Finally, a straightforward application of our proofs gives the asymptotics to a question
recently asked on MathOverflow [1], which is the following. Given a path P1 from the
bottom-left vertex of an n × n grid to its top-right vertex, and another path P2 from its
top-left vertex to its bottom-right vertex, how many queries are needed to find a vertex
contained in both paths? The proofs of Theorems 1.2 and 2.3 can be adapted to show that
Θ(n) queries are necessary and sufficient.

Acknowledgment

We would like to thank our anonymous referee for the remarks that improved the presenta-
tion of the paper.

References
[1] A problem on chains of squares - can one find an easy combinatorial proof?, http://

mathoverflow.net/q/185003.

[2] P. Beame, S. Cook, J. Edmonds, R. Impagliazzo and T. Pitassi, The relative complexity of NP
search problems, J. Comput. System Sci. 57 (1998), 3–19, doi:10.1006/jcss.1998.1575.

[3] B. Bollobás and I. Leader, Compressions and isoperimetric inequalities, J. Combin. Theory Ser.
A 56 (1991), 47–62, doi:10.1016/0097-3165(91)90021-8.

[4] N. G. de Bruijn, C. van Ebbenhorst Tengbergen and D. Kruyswijk, On the set of divisors of a
number, Nieuw Arch. Wiskunde (2) 23 (1951), 191–193.

[5] D. Gerbner and B. Keszegh, Path search in the pyramid and in other graphs, J. Stat. Theory
Pract. 6 (2012), 303–314, doi:10.1080/15598608.2012.673885.

[6] L. H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combinatorial
Theory 1 (1966), 385–393, doi:10.1016/s0021-9800(66)80059-5.

[7] M. D. Hirsch, C. H. Papadimitriou and S. A. Vavasis, Exponential lower bounds for finding
Brouwer fixed points, J. Complexity 5 (1989), 379–416, doi:10.1016/0885-064X(89)90017-4.

[8] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36
(1979), 177–189, doi:10.1137/0136016.

[9] G. L. Miller, S.-H. Teng and S. A. Vavasis, A unified geometric approach to graph separators,
in: 32nd Annual Symposium on Foundations of Computer Science (San Juan, PR, 1991), IEEE
Comput. Soc. Press, pp. 538–547, 1991, doi:10.1109/SFCS.1991.185417.

[10] C. H. Papadimitriou, On the complexity of the parity argument and other inefficient proofs of
existence, J. Comput. System Sci. 48 (1994), 498–532, doi:10.1016/S0022-0000(05)80063-7.

[11] G. Polya, Berechnung eines bestimmten Integrals, Math. Ann. 74 (1913), 204–212, doi:10.
1007/BF01456040.

[12] R. P. Stanley, Enumerative Combinatorics. Vol. 1, volume 49 of Cambridge Studies
in Advanced Mathematics, Cambridge University Press, Cambridge, 1997, doi:10.1017/
CBO9780511805967, corrected reprint of the 1986 original.

312 Ars Math. Contemp. 12 (2017) 301–314

[13] D. L. Wang and P. Wang, Discrete isoperimetric problems, SIAM J. Appl. Math. 32 (1977),
860–870, doi:10.1137/0132073.

[14] Y. Xu and R.-h. Wang, Asymptotic properties of B-splines, Eulerian numbers and cube slicing,
J. Comput. Appl. Math. 236 (2011), 988–995, doi:10.1016/j.cam.2011.08.003.

A Biseparators for Ternary Trees
We show that a rooted ternary tree with k + 1 complete levels has sbi1/2(G) = Θ(k). Any
root-to-leaf path is a 1/2-biseparator, establishing the upper bound. Let us turn to the lower
bound. A complete ternary tree of height h has n = (3h+1− 1)/2 vertices. It is convenient
to give each vertex a “weight” of 2. The total weight of the tree becomes 2n = 3k+1 − 1,
which is very near to a power of 3. In ternary notation, 2n = (22 . . . 2)3 with k twos, and
the ideal weight for the halves of the biseparator is 2n/2 = n = (11 . . . 1)3.

After removing a separating set, any union of components of the complement can be
represented as a sum and difference of subtrees. Here, by a subtree we mean a node together
with all its descendants. If the separator has s nodes, we must be able to group the resulting
components into a set that has between n/2−s and n/2 nodes, i.e., weight between n−2s
and n. Each separator node creates at most four new subtrees from which the sum and
difference can be formed: its own subtree and the three children subtrees. (These latter
ones exist only if the node was not a leaf.) So with s separating nodes, we get 1 + 4s
subtrees from which to form the sum and difference. Each tree has a weight of the form
3h − 1.

If we take a sum and difference of L ≤ 4s+ 1 subtrees we must fulfill the inequality

n− 2s ≤
L∑
i=1

(±(3hi − 1)) ≤ n,

which implies

n− 2s− L ≤
L∑
i=1

(±3hi) ≤ n+ L

and

n− 6s− 1 ≤
L∑
i=1

(±3hi) ≤ n+ 4s+ 1.

For any number p in the range n−6s−1 ≤ p ≤ n+4s+1, the ternary representation starts
with at least k − 1− dlog3(6s+ 1)e ones. On the other hand, one easily sees by induction
that a sum and difference of L powers of 3 has at most L ones in its ternary representation.
We thus get the relation 4s + 1 ≥ L ≥ k − 1 − dlog3(6s + 1)e, from which s ≥ Ω(k)
follows.

B Proof of Corollary 3.4
We show that for any fixed δ ≥ 0 (and then by symmetry for every δ < 0 too), whenever
(n− 1)d/2 + δ is an integer,

|L(n−1)d/2+δ| = Cd/
√
d · nd−1 ±O(nd−2).

D. Gerbner et al.: Search for the end of a path in the d-dimensional grid and in other graphs 313

We define Cd = Vold−1Hd(d/2), i.e., the volume of the middle slice of the unit
hypercube. Setting s = 0 in Theorem 3.3 establishes the convergence of Cd to

√
6/π.

The layer Lk, for k = (n−1)d/2+δ, is a discrete version of a slice of a cube. If we fix
the first d − 1 coordinates, then there is at most one vertex in Lk that has these first d − 1
coordinates. Thus |Lk| = |L′k|, where L′k is the projection of Lk along the last axis.

To estimate the size of L′k (and thus of Lk) take first the middle slice Hd(d/2) of the
continuous unit cube and project it to the first d − 1 coordinates, yielding the polytope
Hd(d/2)′. As the normal vector of the slice is (1, 1, . . . , 1), projecting it to the hyperplane
orthogonal to the last axis scales the volume by a factor of 1/

√
d:

Vold−1H
d(d/2)′ = Vold−1H

d(d/2)/
√
d.

Now let Hd(d/2)′′ = nHd(d/2)′, i.e., we blow up Hd(d/2)′ by a factor n. Let M be
the set of grid points in this Hd(d/2)′′. As for fixed d, Hd(d/2)′′ is a factor-n blow up of
some fixed (d − 1)-dimensional convex polytope, the difference between its volume and
the number of grid points in it is O(nd−2). (This follows basically from the definition of
the volume, for details see e.g., [12, Proposition 4.6.13].) Thus,

|M | = nd−1 Vold−1H
d(d/2)′ +O(nd−2) =

= nd−1 Vold−1H
d(d/2)/

√
d+O(nd−2) = Cd/

√
d · nd−1 +O(nd−2).

Now we are left to show that |L′k| = |M | + O(nd−2). For that it is enough to show that
|L′k \M | and |M \L′k| areO(nd−2). For all of these points the sum of the d−1 coordinates
is equal to (n− 1)d/2 + i (resp. (n− 1)d/2−n+ i) for some 0 < i ≤ δ. This is O(nd−2)
points for every i, altogether 2δO(nd−2) = O(nd−2) points, which finishes the proof.

C Proof of Theorem 4.1
Suppose we are given a grid graph G and an Algorithm A which finds t in G4,4 in case
one path and some cycles cover every vertex. We show an Algorithm B which finds the
endvertex in G in case there is only a directed path. We can naturally identify every vertex
of G with a 4 × 4 grid in G4,4: the vertex v = (i1, . . . id) corresponds to the axis-parallel
4 × 4 rectangle (we call it a block) B(v) having 16 vertices, whose two opposite corners
are (4i1−3, 4i2−3, i3, . . . id) and (4i1, 4i2, i3, . . . id). We call (4i1−3, 4i2−3, i3, . . . id)
and (4i1, 4i2, i3, . . . id) the even corners and the two other corners (4i1 − 3, 4i2, i3, . . . id)
and (4i1, 4i2 − 3, i3, . . . id) the odd corners.

Consider a directed path P in G. We call a system of a directed path and some directed
cycles in G4,4 good if they cover every vertex and the path goes through exactly those
blocks which correspond to the vertices of P , in the same order.

Now we construct good systems. If a vertex v ∈ V (G) is not on the path, we cover
the corresponding block by a cycle. In case of a vertex v = (i1, . . . , id) on the path in
G, the directed path arrives at the corresponding block B(v) in some corner p1(v), and
goes straight to a neighboring corner p2(v), where it leaves. The remaining vertices form
a 4 × 3 rectangle, which can be covered by a cycle. Finally, when v is the very last vertex
on the path, we define p1(v) similarly, and cover the remaining vertices by a path starting
in p1(v).

Our good systems will satisfy an additional property. If, for a vertex v = (i1, . . . id)

of G, the coordinate sum
∑d
j=3 ij is even, then the first vertex p1(v) of the path in the

314 Ars Math. Contemp. 12 (2017) 301–314

corresponding block is an even corner, and the last vertex p2(v) is an odd corner. In case∑d
j=3 ij is odd, it is the other way round. Note that if it is true for B(s), it has to be true

for every other block as well. Indeed, when the path leaves a block at, for example, an odd
corner, it either moves in one of the first two dimensions (then it arrives at an even corner,
and

∑d
j=3 ij does not change), or in another dimension (then it arrives at an odd corner,

but the parity of
∑d
j=3 ij changes).

Note that these properties do not uniquely determine the system. We will incrementally
determine the graph as queries arrive.

Now we are ready to define Algorithm B. At every step we call Algorithm A, and then
answer such a way that at the end we get a good system. If Algorithm A would query
a vertex v in G4,4, Algorithm B queries the corresponding vertex v′ in G instead (i.e.,
the vertex v′ with v ∈ B(v′)). Using the answer for this query, we choose all the edges
incident to vertices of B(v′) and answer to Algorithm A according to this. If v′ has been
asked before, we have already determined the edges in B(v′), and answer accordingly.
Suppose that v′ has not been queried before. In case the answer is that v′ is not on the
path, choose an arbitrary cycle covering the vertices of the corresponding block B(v′) and
answer according to the edges incident to v.

In case the answer gives two arcs uv′ and v′w, we have to choose the entering vertex
p1(v′) and the exit vertex p2(v′). We will discuss this choice below. This choice will define
5 edges on the path and a cycle of length 12. One edge connects the blocks corresponding
to u and v, leaving the last vertex of the path in B(u) and arriving at the first vertex of the
path in B(v′), i.e., this edge is p2(u)p1(v′). Similarly we add the edge p2(v′)p1(w). We
also add the three edges which connect p1(v′) and p2(v′). Finally we cover the remaining
12 vertices with a cycle.

We still have to tell which one of the two possible first vertices we use as p1(v′), and
similarly for the possible last vertices. If p2(u) has already been determined, this fixes the
choice of p1(v′) as the vertex adjacent to it. If uv′ is parallel to one of the first two axes, this
also reduces the choice of the corner p1(v′) to one possibility. Otherwise we pick p1(v′)
arbitrarily among the two choices. The exiting vertex p2(v′) is determined analogously.

Even if Algorithm A would know all answers in B(v′), it does not give more infor-
mation than what Algorithm B knows after asking v′. Algorithm A does not finish before
Algorithm B finds the end vertex, thus Algorithm A needs at least as many queries as
Algorithm B (on the respective graphs), which finishes the proof.

