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Abstract

The thickness of a graph is the minimum number of planar subgraphs into which the
graph can be decomposed. Determining the thickness for the complete bipartite graph is an
unsolved problem in graph theory for over fifty years. Using a new planar decomposition
for Kyx—4.41(k > 4), we obtain the thickness of the complete bipartite graph K, ,, 14, for
n > 1.
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1 Introduction

In this paper, all graphs are simple. A graph G is denoted by G = (V, E) where V (G) is the
vertex set and F(G) is the edge set. A complete graph is a graph in which any two vertices
are adjacent. A complete graph on n vertices is denoted by K,,. A complete bipartite graph
is a graph whose vertex set can be partitioned into 2 parts, such that every edge has its ends
in different parts and every two vertices in different parts are adjacent. We use K, 5, to
denote a complete bipartite graph in which the i part contains p; vertices, for i = 1, 2.
The thickness t(G) of a graph G is the minimum number of planar subgraphs into
which G can be decomposed [14]. It is a classical topological parameter of a graph and
has many applications, for instance, to graph drawing [12] and VLSI design [1]. Since
deciding the thickness of a graph is NP-hard [9], it is very difficult to get the exact number
of thickness for arbitrary graphs. Battle, Harary and Kodama [3] in 1962 and Tutte [13]
in 1963 independently showed that the thickness of Kg and K;g equals 3. Beineke and
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Harary [4] determined the thickness of complete graph K, for n # 4 (mod 6) in 1965, the
remaining case was solved in 1976, independently by V.B. Alekseev and V.S. Gonchakov
[2] and by J.M. Vasak [15].

For complete bipartite graphs, the problem has not been entirely solved yet. By con-
structing a planar decomposition of K, , when m is even, Beineke, Harary and Moon [5]
determined the thickness of K, ,, for most values of m, n in 1964.

Theorem 1.1. [5] For m < n, the thickness of the complete bipartite graph K, ,, is

HKppn) = {2(%7—12—2)—‘ : (1.1)
except possibly when m and n are both odd and there exists an integer k satisfying n =
|2um|

We recall that the thickness of K, ,, is also obtained in 1968 by Isao and Ozaki [11]
independently. The following open problem is adapted from [7] by Gross and Harary.

Problem 1.2. [See Problem 4.1 of [7]] Find the thickness of K, ,, for all m, n.

Beineke, Harary and Moon [5] also pointed out that the smallest complete bipartite
graph whose thickness is unknown is K7 21. From Euler’s Formula, the thickness of
K721 is at least 5.

From Theorem 1.1, we need to determine the thickness of K, ,, for odd m, n. Since the
difference between the two odd numbers is even, we only need to determine the thickness of
Ky .nt2k for odd n and k£ > 0. In this paper, we start to calculate the thickness of K, 42k
for some small values of k. Indeed, we determine the thickness of K, ,, 4.

Theorem 1.3. The thickness of K, yy4 is

L ifn<2
(K, =
(Ennte) {["Iﬂ , otherwise.
The following corollary follows from Theorem 1.3.
Corollary 1.4. The thickness of K1721 is 5.

We may refer the reader to [6, 10, 16] for more background on graph thickness.

2 The thickness of K, ,, 14

To begin with, we define two special graphs called the pattern graph and the k‘"-order nest
graph. Then, we prove a new planar decomposition of Ky4j_4 45. Finally, we prove the
thickness of Ku;—3 arp+1 and Ky, 5 14.

2.1 The pattern graph

Let U = {u1,us} and X, be a set of n vertices. A graph is said to be a pattern graph of
order n + 2, denoted by Gu; X, us], if it can be constructed by the following two steps.

1. Arrange the n vertices in a row, and put vertices w1, us on the above and below of n
vertices, respectively.
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2. Join both u; and us to the n vertices using straight lines.

From the definition above, the pattern graph is a planar straight-line graph. Figure 1 illus-
trates the pattern graph Gluy X, us).

Remark 2.1. Unless explicitly mentioned, we always join vertices using straight lines in
the drawings of the following proofs.

ui

u2

Figure 1: The pattern graph Gluy X, us].

2.2 The kt"-order nest graph

Let U, = {uil,ui27 . >'U/ik}7 Vi = {’l)jl,ﬂj27 . ,’Ujk} and Wypyo = {wll,le, RN
Wiy, ., }, we define a k*"-order nest graph G[Uy,, Vi, Woy 2] as follows:

1. Arrange 2k + 2 vertices wy, , wy,, . - in a row.

> Wigp o
2. For 1 < m < k, place vertices u;,, and v; , on the above and below of the row,

respectively, and join them to wy, , Wiy, s Wiy, i1 Wigpy o

Figure 2 illustrates a third-order nest graph G[Us, V3, Wg], where Us = {uq, u2,us},
Vg = {1)1,’02,’1_)3} and Wg = {wl,w% o ,’wg}.

Figure 2: The third-order nest graph G[Us, V3, Ws].

2.3 A new planar decomposition of K53 4541, for k > 4

In this subsection, we shall construct a planar decomposition for the complete bipartite
graph K4j,_3 a5+1 with k planar subgraphs G, Go, . .., G. Suppose that the vertex parti-
tion of Kyk—3ak+11s (X,Y), where X ={z1, 22, ..., 2053}, Y ={Y0, Y1, Y2, - - - , Yar }-
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2.3.1 The planar decomposition for Kz 4 4%

Let the vertex partition of Kap_4 45 be (X1,Y7), where X7 = {1, 22, ..., Zap—a},¥1 =
{Y0, 91, .., Yak—1}. In this subsection, all subscripts in y; are taken mod 4k.

1. In the graph G; (1 < ¢ < k), we arrange 4k vertices in a row, and divide the 4k
vertices into two subsets Lop and Ry such that each subset contains 2k vertices
according to the following steps.

2. In the graph G; (1 < i < k — 1), we choose four vertices x4;_3, T4;—2, Ta;—1, Ta;
from X; and construct two pattern graphs Gx4;—3Logx4;—1] and Gz4;—oRaj x4
Then we join both x4;_3 and x4;_1 to the first vertex and the last vertex in Roy. Fi-
nally, we label the vertices in Loy and Rag as y1, Y3, Ys, - - - , Yak—1 and Y246, Y2i+8,
Y2i+10s - - - s Y2i+4k+4 10 turn, respectively.

3. In the graph Gy, we label the vertices in Loy and Ry as y1,Ys, s, - - - Yaxp—1 and
Y2, Y4, - - -, Yak—2, Yo, respectively. First, we construct a (k — l)th-order nest graph
GUk-1, Vik—1, Wayi], where U_1 = {x2,%6,%10,--.,%Tak—6} , Vi1 = {T4, T8,
T12, ..., Tap—a, } and Wop = {y1,¥3, Y5, ..., Yar—1}. We join x4;_3 to yo; and
Y2i42, for 1 < i < k—1. Second, we construct a union of paths, if k is even, we join
Z4i—1 t0 Y242k and Yo, 4242k, for 1 < i < k — 1; otherwise k is odd, we join x4;_1
t0 Y2i42k—2 and Yook, for 1 <i < k — 1.

4. Ineach graph G; (1 < j < k — 1), we put x4;_2, T4; in the quadrangle x4, _3y4 41
T45—1Y4j+3, and join them to y4;41 and y4;43, for 1 < ¢ < j. We put the vertices
Z4i—2,T4; in the quadrangle T4;_3Y4j—1T4j—1Y45+1, and join both x4;_o and x4,
t0 Y451 and y4;41, for j < i@ < k — 1. Next, we put x4,_3 in the quadrangle
Taj2Y4j—2i+4T4;Y45—2i+6, and join T4; 3 1O Yaj 244, Yaj2i+6, for 1 < i < 7.
We put x4;_3 in the quadrangle T4j—2Y4j—2i+4kT4jYdj—2i+4k+25 and join x4;_3 to
Ydj—2itak, Yaj—2i+ak+2, for j <i <k —1.

Foreachi (1 < i < k—1), wedefineaset M; = {i+1,i+2,...,i+k—2}.
Suppose that m € M;,if m < k — 1, we let j = m; otherwise, j = m — k + 1.

() kiseven. Ifi+1 <m < i—&—%, we put £4;_1 in the quadrangle z4; _oY4m—2i+4
T45Y4m—2i4+6, A0d JOIN T4; 1 10 Yarm—2i+4, Yam—2it6- i+ 552 +1 <m < itk—2,
we put r4;—1 in the quadrangle T4j—2Y4m—2i+8T4jYdm—2i+105 and join T4i—1 tO
Y4am—2i+85 Y4m—2i4-10-

(i) kisodd. If i+1 < m < i+ %, we put 4,1 in the quadrangle x4; _oY4m—2i+4
T45Yam—2i+6, and JOIN T4i—1 10 Ym—2i44, Yam—2i+6. Hi+E72+1 <m < i4k—2,
we pllt Ta5—1 in the quadrangle T4j—2Yam—2i4+8TL45Y4m—2i+10, and join Tai—1 tO
Y4m—2i+8, Y4m—2i+10-

Theorem 2.2. Let Gy, G, . .., Gy, be the planar subgraphs obtained from steps 1, 2, 3 and
4 above, then {G1, G, ..., Gy} is a planar decomposition of K j,—4 aj;.

Proof. From the constructions above, we have E(G;) N E(G,) = 0,for1 < i # j < k.
In order to prove that {G1, Gs, ..., Gy} is a planar decomposition of K4j_4 45, we need
to show that F(G1) U E(G2) U --- U E(Gy) = E(K4k—4,4x). We denote dg, (v) as the
degree of v in G;, for 1 < i < k.
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By the construction above, Step 2 contributes to the degrees of v4;_3, v4;—1, V4;—2, and
vy; in G; by terms 2k + 2, 2k 4 2, 2k + 1 and 2k + 1, respectively. In other words, we have
da, (’1}4,‘,3) =dg, (’U4i,1) =2k+2and dg, (U4i,2) =dg, (U4i) =2k +1.

For 1 < i < k — 1, Step 3 contributes to dg, (v4i—3), da, (V4i-1),da,, (v4i—2) and
dg, (v4;) by terms 2,2, 3, and 3, respectively.

For1 < j < k—1andi # j, Step 4 contributes to each of dg, (v4i—3),dc, (vai—1),
da, (vai—2) and dg; (vs;) a term 2.

In total, for 1 < z' < k — 1, we have

k
ZdG Vai—1) ch vii-3) = dg,(vai—3) + Y da,(vai—s) + dg, (vai—3)
1<j#i<k—1
_2k+2+2(k ) 2 =4k,
k k
and ZdG Vgi— 2 = ZdG (1}41;) = dGi (1}4,') + Z de (U4i) + de (U4i) =
j=1 1<j#i<k—1

2k+1+2(k 2) 4+ 3 = 4k.

From the discussion above, the result follows. O

2.3.2 Add the vertex x41_3
1. In the graph G;(1 < i < k — 1), put the vertex x4;_3 in the quadrangle z4;_3y4;—1
T4i—1Y4i+1, and join it t0 Ya; 1, Yait1-

2. In the graph Gy, place the vertex x4_3 below the row of 2k vertices of Ry, and
join it to y1, y4x—1 and all the 2k vertices of Roy.

2.3.3 Add the vertex y4z
1. In the graph G;(1 < i < k — 1), put the vertex y4 in the quadrangle z4; _2y4;18%4;
Yai+10, and connect it to x4;_2, T4;.

2. In the graph Gy, place the vertex 345 above the row of vertices of Roy, and join it to
L1, X5y« Lak—7> L35, X7y« -, T4k—3-

We have the following theorem.
Theorem 2.3. The thickness of Kaj,—3 ar+1 is k, for k > 4.

Proof. From Theorem 2.2, Subsection 2.3.2 and Subsection 2.3.3, a planar decomposition
of K4p,—3,45+1 With k planar subgraphs G1, G, . .., G}, is obtained. From Euler’s formula,
we have
4k — 3)(4k + 1
K ah—3,4k41) = {()()—‘ =k,

2(8k —4)
and so t(K4]€,3,4k+1) =k. O
Example 2.4. By using the procedure above, the two planar decompositions of K7 21

(k = 51s odd) and K> 25 (k = 6 is even) are shown in Appendix A (See Figures 3-7) and
Appendix B (See Figures 8-13), respectively.
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2.4 Proof of Theorem 1.3

From Theorem 1.1, the proof has two cases:
Case 1: n = 4k—3 (k > 0). When 1 < k < 3, itis routine to check that the theorem is true.
Fork > 4, | 40455220 | — |4k 4+ 1+ 525 | = 4k1, thus, the thickness of Kujs,ux.1
can not be determined by Theorem 1.1. By Theorem 2.3, we have ¢(Kyp—3 454+1) = k =
=]

|
Case 2: n = 4k — 1 (k > 0). Since 4k — 1 and 4k + 3 are both odd and 4k + 3 #
{%J (See Lemma 1 of [5] for details), the thickness of Ky;_1 4143 can be

determined by Theorem 1.1, thus

H(Kpnya) = t(kap—14043) = {2(4;4ﬁ141_)ik_~_+331 2)—‘

1 3 n+3
%+2—MJ—%+1—[4 W

Summarizing the above, the theorem follows.

3 Conclusion

In this paper, we determine the thickness for K, ;4. The proof replies on a planar decom-
position of K43 4k+1 and the Theorem 1.1 of Beineke, Harary and Moon. We observe
that our approach for the construction of a planar decomposition of K, ,,14 is the first step
in finding a solution for Problem 1.2. From Theorem 1.1, the next classes of complete
bipartite graphs whose thickness is unknown is K41 4x+7, for k& > 10. Furthermore, the
new smallest complete bipartite graph whose thickness is unknown is K9 29. We hope that
the construction here helps establish intuition and structure of the Problem 1.2.

Another way of solving the Problem 1.2 is to find a new planar decomposition of K, ,,,
for odd m, n. Actually, using a new planar decomposition of the complete tripartite graph
K 4.n and a recursive construction, we also [8] obtained the thickness of K ;, where s is

odd and t > % Now we split Problem 1.2 into the following two problems.
Problem 3.1. Find the thickness of K, ,44;, forodd n and k& > 2.

Problem 3.2. Find the thickness of K, ,, 452 for odd n and k > 0.
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B A planar decomposition {G+1, G2, Gs, G4, G5, Gg} for Ko o5

Figure 8: The graph G;.


















