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Za tok podzemne vode in prenos snovi v kraškem vodonosniku 
s kanali je bil razvit model sklopljenega toka v zveznem poro
znem sredstvu in v ceveh (CCPF). Podzemni tok v kanalih je bil 
simuliran z modelom toka v cevi, tok skozi razpoklinsko matri-
co pa opisuje Darcyjev zakon. Masna izmenjava vode med dve-
ma domenama je bila modelirana z metodo hitrosti masne iz-
menjave prvega reda. V tej študiji smo preizkušali matematično 
dobro postavitev modela CCPF (matematični izraz, ki izraža 
obstoj rešitve in njeno edinstvenost), razvili dokončno osno
vno metodo za numeričnen približek matematičnemu modelu 
ter proučili ujemanje z numerično metodo. Rezultati študije 
dokazujejo, da je modelarski pristop dobro postavljen in se 
numerično ujema. Da bi ugotovili natančnost modela CCPF, 
smo nedavno razviti Stokes-Darcyjev model (SD) in model 
CCPF primerjali z rezultati laboratorijskega eksperimenta. 
Ugotovljeno je bilo, da se simulacije modela SD dobro ujemajo 
z rezultati poskusa in da model CCPF precenjuje piezometrično 
višino v matrici, še posebej na območju meje med kanalom in 
matrico. Slednji model tudi podcenjuje prenos snovi v kanalu 
in se ne ujema dobro s porazdelitvijo koncentracij raztopine 
v matrici. V primerjavi z modelom SD zahteva CCPF dodatni 
parameter hitrost masne izmenjave prvega reda. Ta parameter 
pa navadno pridobimo z inverzno metodo prileganja krivulje. 
Metoda SD lahko omogoči pristop k neposrednemu izračunu 
vrednosti tega parametra.
Ključne besede: kraški vodonosnik, sklopljen tok v zve
znem poroznem sredstvu in v ceveh, Stokes-Darcyjev model, 
matematično dobra postavitev modela, hitrost masne izme
njave.
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Abstract	 UDC  556.33
Bill X. Hu: Examining a Coupled Continuum Pipe-Flow 
Model for Groundwater Flow and Solute Transport in a Karst 
aquifer
A coupled continuum pipe-flow (CCPF) model has been de-
veloped for groundwater flow and solute transport in a karst 
aquifer with conduits. Groundwater flow in conduits is simu-
lated through a pipe flow model and flow in fissured matrix 
rock is described by Darcy’s law. Water mass exchange between 
the two domains is modeled by a first-order exchange rate 
method. In this study, we investigate mathematical well-posed-
ness (mathematical term, which means solution existence and 
uniqueness) of the CCPF model, develop a finite elementary 
method to numerically approximate the mathematical model 
and study the convergence of the numerical method. The study 
results prove the modeling approach is mathematically well 
posed and numerically converged. To study the accuracy of the 
CCPF model, a recently developed Stokes-Darcy (SD) model 
and CCPF model are compared with laboratory experimental 
results. It was found that the SD model simulations match well 
with experimental results, but the CCPF model overestimates 
the hydraulic head in the matrix, especially around the matrix 
and conduit interface. The model underestimates solute trans-
port in the conduit and does not capture the plume distribution 
in the matrix. In comparison with the SD model, the CCPF 
model requires an additional parameter, the first-order mass 
exchange rate, and the parameter is normally obtained through 
inverse method curve fitting. The SD method may provide an 
approach to directly estimate the parameter value. 
Keywords: karst aquifer, continuum pipe-flow model, Stokes-
Darcy model, mathematical well-posedness, mass exchange 
rate.
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Karst aquifers supply about 25% of the world population 
with water (Ford & Williams 1989), including nearly all 
the drinking water to certain regions, e.g., 90% of Flori-
da’s drinking water (Paulson et al. 1990). The presence 
of conduits is unique to karst aquifers. Phreatic conduits 
are connected, water-saturated tubes located below the 
water table. These conduits largely control groundwater 
flow and contaminant transport within the aquifer (Katz 
et al. 1998). The water-saturated matrix rock surround-
ing the conduits comprises most of the aquifer volume 
and hence most of the storage (Worthington 2007). It has 
been observed in field sites that during a high-flow event, 
the water pressure in the conduits is larger than that in 
the ambient matrix so that conduit-borne contaminants 
can be driven into the matrix. During a low-flow event, 
the pressure differential reverses and contaminants se-
questered in the matrix can be released into the free flow 
in the conduits and exit through springs into surface 
water systems (e.g., Martin & Dean 1999, 2001; Li et al. 
2008). This retention and release phenomenon induces 
an environmental issue in that sequestered contaminants 
may influence the quality of underground water sources 
for a long time and thus significantly decrease quality wa-
ter availability.  

The dual character of a karst flow system is widely 
recognized and stems from the existence of different po-
rosities within a karst aquifer (Ford 2003; Worthington 
2003). The porosity difference determines the type of 
flow prevailing in the aquifer (Ford & William 1989; Bau-
er et al. 2000). Similar to the dual-porosity/permeability 
model widely used for fractured media (e.g., Gerke & 
van Genuchten 1993a, b), the coupled continuum pipe-
flow (CCPF) model has been proposed to describe the 
flow and solute transport in karst aquifers (Chen & Bian 
1988; MacQuarrie & Sidicky 1996; Kiraly 1998; Bauer et 
al. 2000, 2003; Taylor & Greene 2001; Birk et al. 2003). 
The CCPF model is a dual flow system consisting of a 
matrix representing the bulk mass of permeable lime-
stone and a conduit system representing the karst con-
duit network. Flow exchange between the two systems 
is controlled by differences in hydraulic heads as well as 
the hydraulic conductivity and the geometric setting. In 
the CCPF model, groundwater flow in the matrix is de-
scribed by Darcy’s law, and flow in the conduit is mod-
eled by a pipe-flow model. The water mass exchange flow 

rate between the two systems, qex, is described by a first-
order mass exchange model. The exchange flow rate is as-
sumed to be linearly proportional to the head difference 
between the two systems (Barenblatt et al. 1960; Cao et 
al. 1988; Sauter 1992; Teutsch 1989). The exchange rate 
coefficient is a lumped parameter.  Its value will depend 
on many factors including: hydraulic conductivity in the 
matrix, the exchange surface between the conduit and 
matrix, and conduit geometry (Barenblatt et al. 1960; 
Liedl et al. 2003). The value of the exchange rate parame-
ter is not usually obtained from measurements but rather 
through curve-fitting. Based on the CCPF model, a new 
numerical method has been developed and has become 
part of the new MODFLOW software (Shoemaker et al. 
2008). However, the suitability and validity of the CCPF 
model as a model for groundwater flow in a karst aqui-
fer, especially for the flow exchange between matrix and 
conduits, has not been well studied. In addition, deter-
mination of the value of the exchange rate parameter is 
also an issue that needs attention.

Recently, Faulkner et al. (2009) developed a nu-
merical model to simulate groundwater flow and solute 
transport in a karst aquifer based on a dual-regional 
conceptual model. The karst aquifer is divided into two 
regions, the limestone matrix and the conduits. Ground-
water flow in the matrix is still assumed to satisfy Darcy’s 
law, but conduit flow is described by the Stokes equa-
tions. The renowned empirical Beavers-Joseph interface 
condition (Beavers & Joseph 1967) and its simplified 
version, the Beavers-Joseph-Saffman condition (Saffman 
1971), are used to model the flow exchange at the inter-
face between the matrix and the conduit. Faulkner et al. 
(2009) also conducted a sandbox experiment to simulate 
groundwater flow and solute transport in a karst aquifer 
with a single conduit. The experiment results match well 
with the Stokes-Darcy simulations. 

In this study, we will first introduce the CCPF mod-
el, mathematically investigate its well-posedness (mathe-
matical term, means solution existence and uniqueness) 
and regularity, develop a numerical finite elementary 
method for a special case, and evaluate the numerical 
convergence of the model. The CCPF and SD numerical 
simulations will then be compared with the experimen-
tal results by Faulkner et al. (2009). 

Introduction
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Conventionally, hydraulic interaction between the fis-
sured system and the conduit network has been simu-
lated by employing three types of modeling approaches 
(Liedl et al. 2003; Birk et al. 2003; Faulkner et al. 2009). 
First, multiple sets of fractures may be coupled to each 
other in order to represent the different hydraulic prop-
erties of the fissured and the conduit system. Alterna-
tively, double-continuum or multi-continuum models 
may be applied where the cross-flow between the flow 
systems depends on the corresponding pressure differ-
ences via linear exchange terms. As a third approach, 
discrete networks of flow paths may be coupled to a 
continuum in order to model the dualistic flow patterns 
in karst systems.

The last one of the three approaches is the most 
popular among hydrologic studies, called the coupled 
continuum pipe flow model. As the name implies, this is 
a coupled system consisting of a continuum, the matrix, 
with a pipe flow conduit imbedded inside. It has been 
used successfully to study groundwater flow in karst 
aquifers and the genesis of karst aquifers (e.g., Bauer 
et al. 2003; Liedl et al. 2003; Birk et al. 2003). In this sec-
tion, we will develop a three-dimensional version of this 
model. 

For conduit flow, the discharge can be related to the 
head difference in the tube by applying the Darcy-Weis-
bach equation (Bobok 1993):

	
(1)

where τ is the tangential unit vector along the 1D pipe 
conduit, d is the pipe diameter,  is the av-
erage velocity, and g is the earth’s gravitational accel-
eration. Here, Q is the total discharge in the pipe. The 
friction factor, λ, depends on the velocity in the pipe 
via the Reynolds number , with ν the kin-
ematic viscosity of water. For a low flow velocity, lami-
nar flow is assumed and the Hagen Poiseuille equation 
can be applied. The friction factor for laminar flow is 

calculated as . Plugging the above relations into 

(1), we have . 

Since , we have

	
(2)

The fissured matrix and the conduit system are cou-
pled at common nodes by a quasi-steady-state exchange 
term (Barenblatt et al. 1960),

	 (3)

Where αex > 0 is the water mass exchange coefficient. This 
equation indicates that the process in the conduit is con-
trolled by groundwater flow in the fissured matrix. The 
exchange coefficient is the key parameter, into which, 
unfortunately, most of the uncertainties are lumped. A 
detailed discussion of the conventional wisdom in deter-
mining αex will be presented later.

In the steady-state case, we have the following linear 
system, which is essentially two coupled Poisson equa-
tions in different domains.

	

(4)

where , f and g denote the external forces, and

Ωm;  Ωc denote the regions for the fissured continuum 
and pipe conduit, respectively.

Continuum Pipe Flow Model 

Well-posedness and regularity

The time dependent version of equation (4) has been used 
to study karst aquifer genesis (Bauer et al. 2000, 2003; 
Bauer et al. 2003). The model was originally used for cou-

pling non-linear Richard’s equation and pipe flow, which 
studies variably saturated media (MacQuarrie & Sudicky 
1996). The mathematical model is solved by the Carbon-
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ate Aquifer Void Evolution (CAVE) program (Clemens 
et al. 1996). CAVE solves the flow in the fissured matrix 
by a finite difference scheme using MODFLOW (Har-
baugh 2005) and the conduit flow by a non-linear finite 
difference discretization (The non-linearity only occurs 
for the turbulent case. Since we are only considering 
laminar flow in the conduit, a non-linear solver is not 
necessary). The coupling exchange condition is reached 
by iteratively solving equations in the matrix and conduit 
regions until convergence. The exchange of fluid is only 
allowed at discrete nodal points. No rigorous mathemati-
cal theory was presented therein to show well-posedness 
or guarantee convergence.

Here, the problem is simplified. We study a station-
ary case with linear conduit flow. It is then worthwhile to 
systematically present the mathematical theory behind 
the model. We assume the following geometrical setting 
for our problem. The fissure continuum is assumed to 
occupy the unit square Ωm = (0,1) × (–1/2, 1/2)  R2 and 
the one dimensional conduit pipe lies in the middle 
Ωc = (0,1) × {0}, i.e., a horizontal straight pipe in the 
middle of the unit square matrix. Then equation (4) be-
comes

           

(5)

where δ(y) is the Dirac delta function in y. In addition, 
we use the following Dirichlet boundary conditions for 
both domains.

	
(6)

where gm and gc are given functions. We remark that we 
may also consider a three dimensional fissured matrix 
coupled with two dimensional free flow plane or one 
dimensional free flow pipe. The well-posedness proof 
would remain the same, while the regularity and numeri-
cal analysis could be treated in a very similar fashion, al-
though the results slightly differ.

In the following analysis, we only consider the ho-
mogeneous case, i.e., we assume that gm  0 and gc  0. 
The non-homogeneous boundary case can be converted 
to the homogeneous case through a standard proce-
dure. First, we formulate the variational form for equa-
tion (6). To this end, we define a bilinear from  on 

 as follows.

For h = (hm, hc) and v = (vm, vc) in ,

	 7

We say that h ∈  is a weak solution of equation 
(6) if

	 (8)

If we assume that ƒ H–1(Ωm) and g H–1(Ωc), then 
weak solution of (6) exists and is unique. We will prove 
that the bilinear form a(•,•) is continuous and coercive in 

. The existence and uniqueness then follow from Lax-
Milgram theorem. The continuity follows directly from 
the trace theorem. For h  ,

  

which implies the coercivity.

Let h = (hm, hc) be the weak solution of (6). As-

sume that  and . Then 

, where . This can be 

easily proven. The fact that  is obvious. For,  

 by the trace theorem, we have

Thus . By equation (6) we 

conclude that .

Bill X. Hu
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Now we construct finite element approximations for the 
weak solution of equation (6). Let Ωm

h and Ωc
h be a quasi-

uniform triangulation of Ωm and Ωc, respectively. We 
construct the conforming finite element spaces Hmh and 
Hch as piecewise continuous quadratic function spaces 
of H0

1(Ωm) and H0
1(Ωc), respectively, where h is the mesh 

size. The finite element approximation for the weak solu-
tion h of equation (6) is to seek hh=(hm

h , hc
h)∈Hm

h × Hc
h 

such that

	
(9)

By the regularity result and a standard argument for fi-
nite element approximations, we have the following error 
estimate. Equation (9) admits a unique solution hh=(hm

h , 

hc
h)∈Hm

h × Hc
h. Moreover, for , there exists a con-

stant C(ε), which is independent of h such that

To study the convergence of the numerical solution, 
we set all parameters to one. We adjust the forcing f and 
g in matrix and conduit, respectively, such that the fol-
lowing solution is exact.

	

(10)

We have the following convergence rate as is sum-
marized in Tab. 1. The better-than-predicted convergence 
rate is because we have the edges of the elements in Ωm

h 
to lie exactly on Ωc

h, i.e., we 
do not have any of Ωc

h to in-
tersect the interior of the ele-
ments in Ωm

h . Furthermore, it 
is speculated that h has piece-
wise higher regularity.

The velocity determined 
from the CCPF system is 
used in the governing equa-
tion for the solute evolution 
in the matrix:

	
(11)

where Cm denotes the solute concentration in ma-
trix and D is dispersion coefficient. 

Introduction of Stokes and Darcy Model

Finite element approximations and Convergence

Faulkner et al. (2009) developed a SD model to simulate 
groundwater flow and solute transport in a karst aquifer 
with a conduit in matrix. Here we would like to briefly in-
troduce the method for the completeness of the paper. If 
interested, the reader could find the detailed description 
of the method from Faulkner et al. (2009). 

The flow in the matrix �Ωm is governed by the Darcy 
system

 in  Ωm,	 (12)

 
where qm denotes the specific discharge, which can be 
expressed as qm = nvm, where vm denotes the seepage 

Tab. 1: Convergence rate for steady state CCPF.

h || hc − hc
h ||0 || hm − hm

h ||0 | hc − hc
h |0 | hm − hm

h |0

2−3 3.047E-2 1.644E-2 7.888E-1 6.906E-2

2−4 3.907E-3 2.092E-3 2.025E-1 1.517E-2

2−5 4.915E-4 2.628E-4 5.096E-2 3.582E-3

2−6 6.150E-5 3.290E-5 1.276E-2 8.818E-4

2−7 7.694E-6 4.114E-6 3.191E-3 2.198E-4

rate of conv. 2.989 2.992 1.987 2.070

Examining a Coupled Continuum Pipe-Flow Model for Groundwater Flow and Solute Transport in ...
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velocity and n the effective porosity, S the storage co-
efficient, K the hydraulic conductivity tensor, and fm 
represents sink/source term. The hydraulic head hm is 

defined by
 

, where pm denotes the pressure,
 

ρ the water density, g the gravity acceleration, and z the 
position head.

By substituting the second equation in (12) into the 
first one, we obtain the equation that governs the change 
of the hydraulic head:

   in  Ωm	 (13)

The boundary conditions for (13) are the Dirichlet 
boundary condition hm=H(x) along Γg, where H(x) is 
known from measurements, and the homogeneous Neu-
mann boundary condition (K∇hm) ⋅ n=0 along Γ0 that 
represents a no-flow boundary condition at the artificial 
boundary of the aquifer.

In the conduit domain, �Ωc, the other domain of the 
problem, as demonstrated by Faulkner et al. (2009), the 
Navier-Stokes equations govern the free flow,

   in  Ωc	 (14)

where vc denotes the fluid velocity, 
T(v, p)=–pcI+2νD(ν) the stress tensor, pc the kinetic fluid 
pressure, D(ν)=½(∇ν+(∇ν)T) the deformation tensor, ν 
the kinetic viscosity of the fluid, and fc a general body 
forcing term. If Re is small, the advective term (ν ⋅ ∇)ν is 
negligible and equation (14) could be simplified.

Faulkner et al. (2009) developed suitable bound-
ary conditions for the system. At the sinkhole and the 

spring, nonhomogeneous Dirichlet boundary conditions 
are applied to specify the inflow and outflow velocities, 
respectively. Specifically,

νc×n=0  and  νc ⋅ n=γsi(t)ηsi(x)=fsi on Γsi	 (15a)

νc×n=0  and  νc ⋅ n=γsp(t)ηsp(x)=fsp on Γsp	 (15b)

where γsi, γsp, ηsi and ηsp are given functions defined 
at the spring, �Γsp, and sinkhole, �Γsi. These boundary data 
are obtained from field measurements. The right column 
corresponds to the Dirichlet normal velocity. The left 
column corresponds to the Dirichlet tangential velocity 
because n��×vc×n=vc–(vc ⋅ n)n.

In addition to the boundary conditions imposed 
along the boundaries of the matrix and conduit, the 
following interface boundary conditions are used by 
Faulkner et al. (2009) to couple the solutions in the two 
nonoverlapping yet neighboring domains:

(16)

Where �Γcm denotes the conduit-matrix interface, 
τ represents the local tangent plane to �Γcm, ncm denotes 
the unit normal vector to �Γcm pointing from the conduit 
to the matrix, α denotes a constant and k represents the 
permeability, which has the following relation with the 
hydraulic conductivity, K=kg/v. It should be noticed that 
k and K differ by a factor of a constant scalar for a cer-
tain type of fluid. Thus, all assumptions on K such as the 
symmetric positive definiteness also carry over to k. 

The velocity determined from the coupled Stokes-
Darcy system is used in the governing equation for the 
tracer evolution in the matrix, equation (11). 

Comparison between modeling simulations with laboratory experi-
mental results

In our previous study (Faulkner et al. 2009), we used a 
laboratory analog experiment to simulate groundwater 
flow and solute transport in a karst aquifer with one con-
duit buried adjacent to the matrix. The experiment main-
ly focuses on the water and solute exchanges between the 
matrix and conduit. The study results will be used as the 

benchmark for numerical study. The experimental facil-
ity and procedure are described in Faulkner et al. (2009). 
Here, we just use the results to compare with the numeri-
cal simulations. 

Fig. 1 shows the experimental hydraulic head dis-
tribution and simulation results by SD (Faulkner et al. 

Bill X. Hu
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Fig. 1: Experimental (top), 
SD simulated (middle) and 
CCPF simulated (bottom) 
head distributions in the 
matrix, where experimen-
tal and SD results are from 
Faulkner et al. (2009), and 
CCPF results are new. The 
head unit is centimeter.

Examining a Coupled Continuum Pipe-Flow Model for Groundwater Flow and Solute Transport in ...
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Fig. 2: Experimental (left), SD simulated (middle) and CCPF simulated (right) results for the solute concentration distribution in the 
matrix at various time instants; top to bottom: t=32.5s, t=62.5s, t=92.5s and t=122.5s, where experimental and SD results are from 
Faulkner et al. (2009), and CCPF results are new. The simulated concentration values change from 1.0, the deep purple, to 0.0, white.

2009) and CCPF models, respectively. The hydraulic 
heads from the laboratory measurements and simula-
tions by SD and CCPF at measurement points are listed 
in Tab. 2. From the Fig. 2 and Tab. 2, we can tell that the 
SD simulations are close to the experimental results; 
while the CCPF modeling generally overestimates the 
hydraulic heads in the matrix, especially at the boundary 
between the matrix and the conduit.

Fig. 2 presents the experimental results of the dye 
distributions at several time slots and simulations at 

the same time slots by the two models. The SD simula-
tions are very similar to the experimental results, but 
the CCPF modeling results are quite different. First, the 
pipe-flow modeling underestimates dye front move-
ment in the conduit as well as dye exchange at the front 
between the two domains. Second, the modeled plume 
distribution in the matrix is convex shaped and does not 
capture characteristics of the plume distribution in the 
experiment (a broad U-shaped plume with two humps at 
either end caused by end point interface). 

Bill X. Hu
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Sensitivity study on αex and α

As is pointed out and repeatedly verified in previous 
studies (Bauer et al. 2000, 2003; Birk et al. 2003), cou-
pled continuum pipe flow models are sensitive to the 
choice of the first order exchange parameter αex. The 
breakthrough time of conduit genesis may vary among 

several magnitudes as αex varies in the range of hydraulic 
conductivity. 

In this study, we use the discharge and discharge 
boundary condition for the CCPF. For this pair of 
boundary condition, the CCPF model performs rela-

tively well. Quantities such as the exchange 
of fluid along the interface and the dis-
charge in the conduit are sensitive to the 
parameter choice. In the laboratory ex-
periment, the hydraulic conductivity of the 
glass beads is, K≈7.4×10–4 (m/s). So we set 
αex in the range of [10–1, 10–4] (m/s). It is 
observable from Fig. 3 that the exchange 
flow is sensitive to the choice of αex. For a 
comparison with the SD system, the results 
are summarized in Fig. 4, where αex rang-
es between 10–4 to 10–2 (m/s). From the 
results, we see that, for conventionally sug-
gested small αex, the conduit flow is almost 

Tab. 2: Comparison of experimental hydraulic head results with SD and CCPF simulations at measurement points. 

Point location (cm)
(x, y)

Lab results 
(cm)

SD Model 
(cm)

Diff Between SD 
and Lab (cm)

CCPF 
Model (cm)

Diff Between CCPF 
and Lab (cm)

1 (55.3,13.2) 23.09 23.10  0.01 23.10 0.01
2 (47.0,6.5) 25.75 28.46  2.71 27.39 1.64
3 (47.0,13.2) 25.48 26.39  0.91 26.32 0.84
4 (47.0,19.9) 25.21 25.71  0.50 25.85 0.64
5 (37.8,6.5) 30.06 32.12  2.06 32.70 2.64
6 (37.8,13.2) 29.26 30.03  0.77 30.61 1.35
7 (37.8,19.9) 29.61 29.05    -0.56 29.63 0.02
8 (28.6,6.5) 32.29 32.96  0.67 35.14 2.85
9 (28.6,13.2) 30.95 31.58  0.63 32.94 1.99

10 (28.6,19.9) 30.15 30.81  0.66 31.84 1.69
11 (19.4,6.5) 32.67 33.03  0.36 35.15  2.48
12 (19.4,13.2) 31.13 31.85  0.72 33.17  2.04
13 (19.4,19.9) 29.75 31.26  1.51 32.24  2.49
14 (10.2,6.5) 31.17 31.81  0.64 32.44  1.27
15 (10.2,13.2) 30.56 31.02  0.46 31.54  0.98
16 (10.2,19.9) 30.11 30.73  0.62 31.14  1.03
17 (2.5,13.2) 30.20 30.21  0.01 30.21  0.01

Summation of errors T    12.68   23.97
 Summation of absolute errors    13.80   23.97

Fig. 3: Variation of normal velocity along the in-
terface as αex in the CCPF simulation.

Examining a Coupled Continuum Pipe-Flow Model for Groundwater Flow and Solute Transport in ...
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Fig. 4: Comparison between Stokes-Darcy (green) and CCPF (blue) simulation results of exchange flow (left) along interface and con-
duit discharge (right) under various αex values: a) αex =10-4 m/s; b) αex =10-3 m/s; and c) αex =10-4 m/s.  

Bill X. Hu
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Fig. 5: Sensitivity study on α used in Beavers-Joseph interface condition: variations of normal velocity (left) and conduit discharge 
(right) with α change from 0.2 to 2.0.

uniformly linear and interface fluid exchange is almost 
a constant, which is far from the SD model results. The 
SD model can be regarded as the “correct model” since 
its validity is justified in Faulkner et al. (2009). The high 
sensitivity at small αex value can be understood in the 
following way. In the case of αe = 0.0 m/s, Darcy’s flow 
and pipe flow are decoupled and hence there should be 
a non-zero head difference in general. The sensitivity 
equation with respect to αex (which can be derived by 
formally differentiating the CCPF system with respect 
to α) takes the same form as CCPF but with the head 
difference serving as the forcing/source term. Since the 
hydraulic conductivity and αex are small, the response 
(the sensitivity) is expected to be large.

On the other hand, one may speculate that the 
Stokes-Darcy system is sensitive to the choice of α in the 
Beavers-Joseph interface condition as well. However, this 
is not the case. From Fig. 5, we do not observe a visible 
difference if we vary the α in the Stokes-Darcy model ac-
cording to the range suggested by Beavers and Joseph 
(Beavers & Joseph 1967). Study results indicate that the α 
in the Stokes-Darcy model with Dirichlet boundary con-
ditions is a “dummy” parameter, and simulation results 
are very insensitive to its variation. The parameter value, 
in practice, can be assumed to be “known”. 

Summary and Conclusions

This study has examined a currently used modeling ap-
proach, CCPF, for groundwater flow and solute trans-
port in a karst aquifer with conduits. We have examined 
whether the modeling system is mathematically well-
posedness, and then have developed a finite numerical 
method to solve the mathematical model and studied 
the convergence of the numerical method. The modeling 
focuses on water and solute exchanges through the ma-
trix and conduit domain interface. To study the accuracy 
of the modeling approaches, we compare the CCPF and 
SD modeling simulations with laboratory experiment 
results. We also conduct a sensitivity study on the two 
parameters, αex and α, used in the CCPF and SD models, 

respectively. Based on these studies, we make the follow-
ing conclusions: 

1. The continuum pipe-flow is mathematically well-
posed and regularized. The finite elementary approxima-
tions based on the mathematical model are numerically 
converged. 

2. In comparison with the laboratory experimental 
results, the SD model can reproduce the experimental 
results of hydraulic head distribution and plume evolu-
tion. The CCPF model overestimates the hydraulic heads 
along the interface between matrix and conduit, un-
derestimates solute transport in conduits, and does not 
completely capture the matrix plume distribution.
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3. In the CCPF model, there is a parameter, mass 
exchange rate, αex, to relate the water exchange between 
the matrix and conduit domains. The hydraulic head and 
solute distributions are very sensitive to the variation of 
the parameter. This parameter is very difficult to obtain. 
It is normally obtained through curve fitting using field 
experiments. In the SD model, there is also a parameter 
α in the Beavers-Joseph interface condition. However, 

the calculated hydraulic head and solute distributions 
in the system are not sensitive to the parameter varia-
tion, and so α is a dummy parameter. Therefore, the SD 
model does not require a parameter to describe the mass 
exchange between the two domains. The Stokes-Darcy 
modeling method can provide an independent calcula-
tion method to estimate the αex used in CCPF.
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