GEOLOGIJA 62/2, 189-218, Ljubljana 2019 https://doi.org/10.5474/geologija.2019.009 © Author(s) 2019. CC Atribution 4.0 License Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins (eastern Slovenia) Provenienca in morfostratigrafija pliocensko-kvartarnih sedimentov v Celjskem in Dravsko-Ptujskem bazenu (vzhodna Slovenija) Eva MENCIN GALEa'b d, Petra JAMŠEK RUPNIKa, Mirka TRAJANOVAa, Luka GALEa' c> Miloš BAVECa, Flavio S. ANSELMETTIb & Andrej ŠMUCc aGeološki zavod Slovenije, Dimičeva ulica 14, SI-1000 Ljubljana, Slovenija bUniverza v Bernu, Institute of Geological Sciences and Oeschger Centre for Climate Change Research, Baltzerstrasse 1+3, 3012 Bern, Švica cUniverza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za geologijo, Aškerčeva c. 12, SI-1000 Ljubljana, Slovenija dUniverza v Ljubljani, Fakulteta za gradbeništvo in geodezijo, Jamova c. 2, SI-1000 Ljubljana, Slovenija e-mails: eva.mencin-gale@geo-zs.si, petra.jamsek@geo-zs.si, mirka.trajanova@geo-zs.si, milos.bavec@geo-zs.si, flavio.anselmetti@geo.unibe.ch, andrej.smuc@geo.ntf.uni-lj.si Prejeto / Received 19. 9. 2019; Sprejeto / Accepted 19. 11. 2019; Objavljeno na spletu / Published online 24. 12. 2019 Key words: Quaternary sedimentology, intramountane, geomorphology, river terrace, clast lithological analysis Ključne besede: sedimentologija kvartarja, medgorski bazen, geomorfologija, rečna terasa, litološka analiza klastov Abstract This study presents the results of the first systematic morphostratigraphic and provenance analyses of the Pliocene-Quaternary fluvial sediments in the Celje and Drava-Ptuj intramontane basins. Based on the degree of terrace preservation, the dip of the terrace surfaces and fans, and the composition and degree of weathering of the sediments, low-, middle- and high-level terrace groups were constrained and tentatively attributed to Late Pleistocene, Middle Pleistocene and Plio-Early Pleistocene, respectively. The provenance analysis focused on the sediments from the high-level terrace (Plio-Early Pleistocene) and encompassed clast lithological analysis and microfacies analysis of the clasts. The results indicate a local provenance with relatively short transport, which is consistent with the morphology of the clasts. The source rocks of the Plio-Early Pleistocene deposits in the Celje Basin are attributed to the formations outcropping in the southern Pohorje Massif and the Upper Savinja River Valley corresponding to the paleo-Savinja. The possibility of resedimentation of the clasts from Miocene clastic sedimentary rocks located north of the Celje Basin also needs to be considered. The sediments of the Drava-Ptuj Basin originate from the Pohorje Massif, the Kozjak mountain range, and the area south of the Pohorje Massif which were deposited by the paleo-Drava and paleo-Dravinja rivers. Our study indicates that the drainage systems of the paleo-Savinja, paleo-Drava and paleo-Dravinja during the Plio-Early Pleistocene roughly correspond to those of the present day. Izvleček Predstavljamo prve sistematične analize morfostratigrafije in provenience pliocensko-kvartarnih rečnih sedimentov na območju Celjskega in Dravsko-Ptujskega medgorskega bazena. Na podlagi stopnje ohranjenosti morfologije teras, naklona terasnih površin in sestave ter stopnje preperelosti sedimentov so bili opredeljeni trije terasni nivoji in interpretirane starosti teras in vršajev. Spodnjemu terasnemu nivoju je bila interpretativno določena poznopleistocenska starost, srednjemu terasnemu nivoju srednjepleistocenska, zgornjemu terasnemu nivoju pa plio-zgodnjepleistocenska starost. Analiza provenience je bila osredotočena na sedimente višjega terasnega nivoja (pliocen-zgodnji pleistocen) in je temeljila na litološki analizi klastov in analizi mikrofaciesov klastov. Rezultati nakazujejo, da gre za lokalno provenienco proda, kar dodatno potrjujejo sedimentološka opazovanja morfologije klastov. Izvor plio-zgodnjepleistocenskih sedimentov v Celjskem bazenu so domnevno formacije, ki izdanjajo na območju južnega Pohorja in Zgornjesavinjske doline, pri čemer pa moramo upoštevati 190 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC možnost resedimentacije nekaterih litologij iz miocenskih klastičnih sedimentnih kamnin, ki se nahajajo severno od bazena. Prod v Dravsko-Ptujskem bazenu pa verjetno prihaja z območja Pohorja, Kozjaka in območja južno od Pohorja. Ugotovljeno je bilo, da je plio-zgodnjepleistocenska rečna mreža generalno sovpadala z današnjo. Tako lahko rečemo, da so se plio-zgodnjepleistocenski sedimenti na območju Celjskega bazena odlagali s paleo-Savinjo in njenimi pritoki, sedimenti na območju Dravsko-Ptujskega bazena pa s paleo-Dravo, paleo-Dravinjo in njunimi pritoki. Introduction The Slovenian territory is located at the junction of the Alps, Dinarides and Pannonian Basin (Placer, 2008). The Cenozoic tectonic activity responsible for uplift of the Alps and Dinarides resulted in a morphologically diverse landscape and the formation of intramontane basins. These basins were rapidly filled due to intensive post-Neogene erosion related to the eustatic sea-level changes and Quaternary compression of the area. Plio-Early Pleistocene ("Plio-Quaternary" according to e.g. Buser, 2010 and other Slovenian authors) sediments mark the onset of the youngest terrestrial sedimentation active up to now in the area of South, East and Central Slovenia (Fig. 1A). According to current interpretations, these sediments represent informal stratigraphic unit named "Plio-Quaternary" comprised by i) the sediments that were filling the Pannonian Lake, ii) terrestrial sediments of intramontane basins and iii) sediments resulted from weathering of host rock and their subsequent resedimentation (Markič, 2009, and references within). Plio-Early Pleistocene sediments of intramontane basins in the wider area of Maribor, Slovenj Gradec, Velenje, Nazarje, Celje, Črnomelj, Kočevje and Krško are composed of interlayered beds of gravel, sand, silt and clay (Mioč, 1978; Buser, 1979; Šikic et al., 1979; Premru, 1983; Bukovac et al., 1984; Mioč & Žnidarčič, 1989; Verbič, 2004) deposited in fluvial, swamp, and lacustrine environments. The gravel clasts are composed of igneous, metamorphic and sedimentary rocks. Rare previous provenance research points to i) local origin (Mioč, 1978), ii) non-local origin, sediments were transported by paleo-flows of current rivers (i.e. paleo-Sava; Verbič, 2004). Based on the relative and numeric data, the age of these sediments was defined only in the area of Velenje and Krško. In the Velenje Basin, a Plio-Early Pleistocene age of 2,6 to 3,5 million years (Villafranchian, mammal zone MN16: Debeljak, 2017) was determined based on the finding of fossil mastodonts (Drobne, 1967; Rakovec, 1968) and palaeontological findings in coal (Brezigar, 1987; Brezigar et al., 1987; Markič & Sachenhofer, 2010). In the Krško Basin, a Plio-Early Pleistocene age was determined Uvod Območje Slovenije leži na stičišču Alp, Di-naridov in Panonskega bazena (Placer, 2008). V obdobju kenozoika se je zaradi tektonskih procesov, ob katerih so se med drugim dvigale Alpe in Dinaridi, oblikovala reliefno razgibana pokrajina. Intenzivna poznoneogenska erozija, povezana tudi z evstatičnimi spremembami višine morske gladine, in kvartarna kompresija, sta znatno prispevali k povečani sedimentaciji v nastalih medgorskih bazenih. Plio-zgodnjeplei-stocenski (»pliokvartarni« v npr. Buser, 2010 ter v ostali dosedanji literaturi slovenskih avtorjev) sedimenti označujejo začetek najmlajše, še danes potekajoče terestrične sedimentacije na območju današnje osrednje, južne in vzhodne Slovenije (sl. 1A). Po trenutnih interpretacijah neformalno enoto »pliokvartar« tako predstavljajo: i) nanosi sedimentov, ki so zasipavali Panonski bazen, ii) terestrični sedimenti odloženi v medgorskih bazenih ter iii) sedimenti nastali s preperevanjem matične kamnine in njihovo kasnejšo resedimen-tacijo (Markič, 2009 z referencami). Plio-zgodnjepleistocenske sedimente (»pliokvartar« po npr. Buser, 2010) medgorskih bazenov na širšem območju Maribora, Slovenj Gradca, Velenja, Nazarij, Celja, Črnomlja, Kočevja in Krškega predstavlja menjavanje nesprijetega proda, peska, melja in gline (Mioč, 1978; Buser, 1979; Šikic et al., 1979; Premru, 1983; Bukovac et al., 1984; Mioč & Žnidarčič, 1989; Verbič, 2004), ki so se odlagali v rečnih, močvirskih in jezerskih okoljih. Med prodniki najdemo različke magmatskih, metamorfnih in sedimentnih kamnin. Redke predhodne raziskave provenience kažejo, da so sedimenti lokalnega izvora (Mioč, 1978), oziroma prineseni s paleotokovi današnjih rek (npr. paleo-Sava; Verbič, 2004). Starost sedimentov je bila na podlagi relativnih in numeričnih metod določena le na območju Velenja in Krškega. V Velenjskem bazenu je starost plio-zgodnjeplei-stocenskih sedimentov določena na podlagi najdbe mastodonta (Drobne, 1967; Rakovec, 1968) in paleontoloških raziskav premoga (Brezigar, 1987; Brezigar et al., 1987; Markič & Sachenhofer, 2010) ter znaša od 2,6 do 3,5 milijona let (biokronološka enota spodnji villafranchij, sesalska cona MN 16; Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 191 based on paleontological correlations (Šikic et al., 1979), morphostratigraphy (Verbič, 2008) and numerical dating (Cline et al., 2016), indicating a minimal age of 1,79 million years. Only few studies exsist on poorly investigated Plio-Early Pleistocene sediments in the area of Slovenia (Pleničar & Ramovš, 1954; Štern & Lapajne, 1974; Brezigar, 1987; Brezigar et al., 1987; Kralj, 2001; Markič & Rokavec, 2002; Verbič, 2004). The reasons are lack of outcrops and subsurface data, degraded and poorly preserved Plio-Early Pleistocene terraces and the fact that the sediments are usually strongly weathered. Therefore, the knowledge of Plio-Early Pleistocene sedimentary evolution represents a scientific gap not only in the area of Slovenia but also in a wider pan-Alpine realm. This study focuses on composition and provenance of the Celje (CB) and Drava-Ptuj (DPB) basins (Fig. 1B). The study is based on systematic approach using morphostratigraphic and sedi-mentological methods established in the field of Quaternary geology. The aim of this research is to determine morphostratigraphy of terrace systems, to define provenance of Plio-Early Pleistocene sediments and to interpret the evolution of the fluvial system in the Plio-Early Pleistocene. Geological Setting Celje Basin (CB) The CB is located north of the Sava Hills, east of the Menina planina and Dobrovlje, and south of the Vitanje-Konjice part of the Karavanke Mountains. The present-day fluvial system is governed by the river Savinja, originating in the Logarska Valley in the Kamnik-Savinja Alps, and running in a northwest-southeast direction. In addition to the river Savinja, smaller streams drain into the basin from the northern and southern rims. The northwestern rim of the CB borders the Smreko-vec volcanic complex of Oligocene age (Kralj, 1996; Pamic & Balen, 2001; Premru, 1983). The wider area also comprises Carboniferous siliciclastic rocks, Permian carbonates, Triassic carbonate and volcanic rocks, Jurassic and Cretaceous carbonate rocks, as well as Neogene carbonate and siliciclas-tic sediments and sedimentary rocks (Buser, 2010). The mentioned Paleozoic and Mesozoic rocks structurally belong to the Southern Alps and the Dinarides, while sediments and rocks of Oligocene and Miocene age were deposited near the margins of the Pannonian Basin (Placer, 1999; 2008; Kovač et al., 2007). The Pliocene-Quaternary sediments of the CB comprise the 35 m thick "Plio-Quater- Debeljak, 2017). V Krškem bazenu je bila starost plio-zgodnjepleistocenskih sedimentov določena na podlagi paleontoloških korelacij (Šikic et al., 1979), morfostratigrafije (Verbič, 2008) in nume-ričnih datacij (Cline et al. 2016). Slednje kažejo na minimalno starost 1,79 milijona let. Plio-zgodnjepleistocenski sedimenti so na območju Slovenije sorazmerno slabo raziskani oziroma študije, ki se nanašajo nanje, tematiko opisujejo le obrobno (Pleničar & Ramovš, 1954; Štern & Lapajne, 1974; Brezigar, 1987; Brezigar et al., 1987; Kralj, 2001; Markič & Rokavec, 2002; Verbič, 2004). Temu botruje dejstvo, da so izdanki in globinski podatki redki, plio-zgodnjepleistocenske terase so pogosto slabo ohranjene in močno degradirane, sedimenti pa so pogosto močno prepereli. Slaba raziskanost zato predstavlja vrzel v kvartarni geologiji ne le na območju današnje Slovenije, temveč tudi v širšem predalpskem prostoru. V tej študiji smo se osredotočili na sestavo in provenienco plio-zgodnjepleistocenskih sedimentov v Celjskem (CB) in Dravsko-Ptu-jskem bazenu (DPB) (sl. 1B). Raziskava temelji na sistematičnem pristopu z uporabo ustreznih morfostratigrafskih in sedimentoloških metod uveljavljenih v kvartarni geologiji, s katerimi smo opredelili morfostratigrafijo sistema teras, ovrednotili izvorna območja plio-zgodnjepleisto-censkih sedimentov ter interpretirali razvoj rečne mreže v obdobju plio-pleistocena. Geologija območja Celjski bazen (CB) CB se nahaja na severno od Posavskega hribovja, vzhodno od Menine planine in Dobrovelj ter južno od Vitanjsko-Konjiških Karavank. Današnja rečna mreža CB je pogojena z njenim glavnim vodotokom, Savinjo, ki izvira v Logarski dolini v Kamniško-Savinjskih Alpah in teče v smeri severozahod-jugovzhod. Poleg tega se v bazen drenirajo njeni manjši pritoki iz severnih in južnih obronkov kotline. Severozahodno obrobje bazena meji na Smrekovški vulkanski kompleks oligocenske starosti (Kralj, 1996; Pamic & Balen, 2001; Premru, 1983). Na širšem območju se nahajajo še karbonske klastične kamnine, perm-ske karbonatne kamnine, triasne karbonatne in vulkanske kamnine, kredne in jurske karbonatne kamnine ter neogenske karbonatne in klastične kamnine ter sedimenti (Buser, 2010). Omenjene paleozojske in mezozojske kamnine strukturno pripadajo Južnim Alpam in Dinaridom, oligo-censke in miocenske kamnine pa so se odložile v robnih delih Panonskega bazena (Placer, 1999, 192 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC Fig. 1. Research area. (A) The area of Slovenia with geotectonic units marked (modified after Placer, 2008), and the spatial distribution of the Plio-Early Pleistocene sediments (so-called "Plioquaternary"). (B) Geological map of the Celje (1) and Drava-Ptuj (2) intramontane basins (modified after Buser, 2010). Abbreviations: MS: Magdalensberg series, SVC: Smrekovec volcanic complex, LF: Lavantall fault, ŠF: Šoštanj fault, CF: Celje fault, PF: Periadriatic fault, LJF: Ljutomer fault, DF: Donat fault. Sl. 1. Območje raziskave. (A) Območje Slovenije z glavnimi geotektonskimi enotami (prirejeno po Placer, 2008) in pojavnostjo plio-zgodnjepleistocenskih sedimentov (t.i. »pliokvartarja«). (B) Geološka karta širšega območja Celjskega (1) in Dravsko-Ptujskega (2) medgorskega bazena (prirejeno po Buser, 2010). Na karti so označena glavna izvorna območja kamnin. Okrajšave: MS: Štalenskogorska serija, SVC: Smrekovški vulkanski kompleks, LF: Labotski prelom, ŠF: Šoštanjski prelom, CF: Celjski prelom, PF: Periadriatski prelom, LJF: Ljutomerski prelom, DF: Donački prelom. Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 193 nary" non-carbonate gravel, while the younger, Quaternary gravel deposits reach up to 25 m in thickness (Buser, 1979). The "Plio-Quaternary" deposits lie on Oligocene and Triassic basement (Fig. 1b; Buser, 1979). CB represents structurally the northernmost part of the Sava compressive wedge (Placer, 1998a, 1998b), which is reflected in the folding of its pre-Pliocene basement (the Celje syncline sensu Buser, 1977). The syncline's axis runs in an east-west direction, indicating post-Miocene compression in the north-south direction (Buser, 1977; Placer, 1998). According to Vrabec and Fodor (2006), the CB lies within the still active Periadriatic dextral transpressive fault system, experiencing local transtension between the faults running along the basin's margin. Drava-Ptuj Basin (DPB) The Drava-Ptuj Basin (DPB) is situated southeast of the Pohorje Massif and north of the Sava Hills. Its present-day fluvial system comprises the main river Drava, running in a north-northwest-south-southeast direction, and numerous smaller tributaries, following the direction of the Drava river, or generally flowing from the (north)west to the (south)east. The pre-Quaternary basement of the DPB belongs to several geological units (Fig. 1b). West to northwest of the DPB lies the Pohorje Massif built of low-, medium-, to (ultra) high-metamorphic rocks of the Pohorje metamor-phic complex, overthrusted by very low-grade metamorphic rocks of the Magdalensberg series, unconformably overlain by Permo-Triassic, Cretaceous, and Miocene rocks and sediments (Mioč, 1978; Hinterlechner-Ravnik, 1971, 1973, 1982; Janak et al., 2004; Janak et al., 2005; Vrabec et al., 2012). The central part of the Pohorje Massif is formed of a pluton and sub-volcanic varieties of granodioritic to tonalitic composition, emplaced during the Miocene (Zupančič, 1994a, 1994b; Altherr et al., 1995; Fodor et al., 2008; Trajanova et al., 2008; Trajanova, 2013). From the structural point of view, the pre-Neogene rocks belong to the Eastern Alps. Miocene sediments and sedimentary rocks of the Maribor subbasin near the western margin of the Central Paratethys sea, filling the depression of the Pannonian Basin (Jelen & Rife-lj, 2011; Trajanova, 2013). The deposition of Plio-Early Pleistocene sediments in this area started after the final regression of the Central Paratethys (Markič, 2009). According to Mioč and Žnidarčič (1989), the Plio-Early Pleistocene sediments in the DPB reach thickness up to 65 m, while the Quaternary deposits are only 30 m thick. The latter comprise four river terraces (Mioč & Žnidarčič, 2008; Kovač et al., 2007). Pliocensko-kvartarni sedimenti v CB obsegajo »pliokvartarni« nekar-bonatni prod v skupni debelini 35 m, medtem ko mlajši, karbonatni kvartarni prod dosega debeline do 25 m (Buser, 1979). Podlago »pliokvar-tarja« v sami kotlini predstavljajo oligocenske in triasne kamnine (sl. 1b; Buser, 1979). V ožjem strukturnem smislu je po nekaterih interpretacijah kotlina še del Savskega kompresijskega klina (Placer, 1998a, 1998b), na kar kaže sinklinalna upognjenost predpliocenskih kamnin in sedi-mentov (Celjska sinklinala po Buser, 1977). Os sinklinale, ki poteka v smeri vzhod-zahod, kaže na post-miocensko kompresijo v smeri sever-jug (Buser, 1977; Placer, 1998). Po aktualnejših interpretacijah se kotlina nahaja znotraj aktivnega desno transpresivnega Periadriatskega sistema prelomov, kjer se odvija rotacija strižnih leč, pri čemer je območje CB verjetno podvrženo lokalni transtenziji med posameznimi prelomi, ki ga obkrožajo (Vrabec in Fodor, 2006). Dravsko-Ptujski bazen (DPB) DPB se nahaja jugovzhodno od Pohorja in severno od Posavskega hribovja. Rečna mreža današnjega DPB obsega glavni vodotok Dravo, ki teče v smeri sever-severozahod-jugovzhod, ter številne manjše pritoke, ki sledijo smeri glavnega toka ali tečejo generalno v smeri (severo)za-hod-(jugo)vzhod. Predkvartarna podlaga DPB obsega več različnih geoloških enot (sl. 1b). Zahodno do severozahodno od DPB se nahaja Pohorje, ki je sestavljeno iz nizko, srednje do (ultra) visoko-metamorfnih kamnin Pohorskega kompleksa, na katere so narinjene zelo šibkometa-morfozirane kamnine Štalenskogorske serije in diskordantno odložene permo-triasne, kredne ter miocenske kamnine in sedimenti (Mioč, 1978; Hinterlechner-Ravnik, 1971, 1973, 1982; Janak et al., 2004; Janak et al., 2005; Vrabec et al., 2012). V osrednjem delu Pohorja se nahajajo pluton in subvulkanski različki granodioritne do tonalitne sestave, ki so bili vtisnjeni v miocenu (Zupančič, 1994a, 1994b; Altherr et al., 1995; Fodor et al., 2008; Trajanova et al., 2008; Trajanova, 2013). V strukturnem smislu predneogenske kamnine uvrščamo k Vzhodnim Alpam. Miocenske kamnine in sedimenti Mariborskega podbazena so se odlagali na zahodnem robu Centralne Paratetide (sistem Panonskega bazena) (Jelen & Rifelj, 2011; Trajanova, 2013). Usedanje plio-zgodnjepleisto-censki sedimentov na tem območju se je pričelo odlagati po končnem umiku Centralne Parateti-de (Markič, 2009). Na snovi predhodnih podatkov so v DPB debeli do 65 m, kvartarni sedimenti pa 194 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC 1989). In a structural sense, the DPB coincides with the Ptuj-Ljutomer syncline, which is bounded by the Ormož-Selnica anticline to the south (Mioč & Markovič, 1998). The later formed due to tectonic activity within the Donat fault zone. The most important faults of the latter are the dextral transpressive Donat fault and the reverse Ljutomer fault (Fodor et al., 1998, 2002). Methods The methodology for investigating the Plio -Early Pleistocene sediments was following guidelines from Stokes et al. (2012). Field observations were supported with geomorphological, sedimentological and microfacies analyses. Geo-morphological analyses itself focused not only on Plio-Early Pleistocene sedimentary bodies, but also other younger sedimentary bodies from Pliocene-Quaternary succession. The spatial extent of Plio-Early Pleistocene unit was constrained from Basic Geological Map, sheets Celje and Maribor (Buser, 1977; Žnidarčič & Mioč, 1988) and modified by analyzing the high -resolution digital elevation model derived from lidar data (Ministry of the Environment and Spatial Planning, Slovenian Environment Agency, 2011). Units mapped by means of remote sensing were field checked at the selected locations. Ge-omorphological analysis was carried out in GIS environment and encompassed analysis of topographic profiles, shaded relief map, topographic contours with 1 m equidistance, slope degree and slope aspect maps. Results of analysis are presented on two geomorphological maps, showing Plio-Early Pleistocene and other Quaternary terraces and fans in the studied basins (Figs. 2, 3). Geomorphological maps present the spatial extent of preserved surfaces of sedimentary bodies (surface forms). Therefore, oldest sediments are mostly occurring in greater spatial extent than their geomorphologically mapped present surface form (terrace or fan), i.e. the sediments at the surface occur also in the areas where their surface form is not preserved and mapped. Seven sedimentary sections were logged: in CB these were Miklavž (MI), Šešče (SE) and Griže (GR), and in DPB Nova vas (NV), Hoče (HO), Radana vas (RA) and Škalce (SKA). Classification of lithofacies by Evans and Benn (2004) was used for logging. Sections height range from 1.5 to 5.5 m. Clasts from individual sections were sieved to 16-63 mm fraction. This fraction was chosen because it is appropriate for macroscopic identification of lithotypes of individual clasts, as well as for preparation of thin-sections. 30 m. V slednjih so vidne štiri terase (Mioč & Žnidarčič, 1989). DPB v strukturnem smislu sovpada s Ptujsko-Ljutomersko sinklinalo, na jugu pa ga omejuje Ormoško-Selniška antiklinala (Mioč & Markovič, 1998). Dviganje slednje je pogojeno z aktivnostjo Donačke prelomne cone, v kateri sta najpomembnejša potencialno aktivna desno transpresivni Donački prelom ter reverzni Ljutomerski prelom (Fodor et al., 1998, 2002). Metode Metodologija raziskovanja plio-zgodnjeplei-stocenskih sedimentov je sledila smernicam povzetih po Stokesu in sodelavcih (2012), pri čemer so bila terenska opazovanja podprta z geomor-fološkimi, sedimentološkimi in mikrofaciesnimi analizami. Sama geomorfološka analiza je poleg analize plio-zgodnjepleistocenskih sedimenta-cijskih teles zajemala tudi mlajša sedimentacij-ska telesa iz pliocensko-kvartarnega zaporedja. Prostorska razširjenost enote plio-zgodnjeplei-stocenskih sedimentov je bila ugotovljena s pomočjo uporabe Osnovne geološke karte lista Celje in Maribor (Buser, 1977; Žnidarčič & Mioč, 1988) ter na analizi visokoločljivostnega digitalnega modela reliefa izdelanega na podlagi lidarskih podatkov (Ministrstvo za okolje in prostor, Agencija RS za okolje in prostor). Enote izdvojene z metodami daljinskega zaznavanja so bile na izbranih lokacijah preverjene s terenskim delom. Geomorfološke analize so bile izvedene v GIS okolju in so obsegale analizo topografskih profilov in kart senčenega reliefa, izohips z ekvidi-stanco 1 m, naklonov pobočij ter usmerjenosti pobočij. Izdelani sta bili geomorfološki karti, ki prikazujeta plio-zgodnjepleistocenske in ostale kvartarne terase in vršaje obravnavanih bazenov (sl. 2, 3). Geomorfološki karti prikazujeta razprostranjenost ohranjenih površin sedimen-tacijskih teles (površinske oblike). Predvsem za starejše sedimente zato velja, da je njihov obseg pojavljanja sicer večji od kartiranega obsega njihove današnje površinske oblike (terase ali vrša-ja), saj se sedimenti danes nahajajo tudi tam, kjer sama površinska oblika ni ohranjena. Posnetih je bilo sedem sedimentoloških profilov, in sicer v CB Miklavž (MI), Šešče (SE) in Griže (GR) ter v DPB Nova vas (NV), Hoče (HO), Radana vas (RA) in Škalce (SKA), pri čemer je bila uporabljena klasifikacija litofaciesov po Evans in Benn (2004). Dolžina profilov znaša od 1,5 do 5,5 m. Prodniki iz posamičnih profilov so bili presejani na frakcijo od 16 do 63 mm. Ta velikost je ustrezna za makroskopsko litološko določitev klastov in za izdelavo zbruska. Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 195 Clast lithological analysis was following guidelines from Walden (2004), Lindsey et al. (2007) and Gale and Hoare (2011), adapted for the purpose of our study. 98-299 clasts were analyzed per sample from CB and 173-346 clasts per sample from DPB. 53 thin sections were prepared and examined with a polarizing microscope. Clast lithological analysis is traditionally performed on the macroscopic level (e.g. Bridgland et al., 2012), however, during our study it turned out that identification of weathered clasts is often wrong, and that microscopic analysis of the clasts significantly increases the reliability of the results. Due to lack of data on microfacies of Tri-assic volcanic rocks in the CB area, we additionally sampled their outcrops in the vicinity. Results Pliocene-Quaternary sediments of the CB and DPB are preserved in alluvial terraces and fans, following the terrace staircase model, which is typical in areas affected by relative surface uplift and erosional base lowering (e.g. Bridgland, 2000; Bridgland & Maddy, 2002; Bridgland & Westaway, 2008a; Bridgland & Westaway, 2008b; Doppler et al., 2011; van Husen & Reitner, 2011; Westaway, 2002). The oldest sediments are preserved in the highest terraces. Pliocene-Quaternary sediments of the Celje Basin The stratigraphy of alluvial terraces and fans in the CB is shown in the profile P1 (Fig. 2B and Table 1). Based on geomorphological mapping, five Pliocene-Quaternary terrace levels were distinguished (T0, T1, T3, T4, T5). Lithofacies and lithological analysis of gravels and clasts, respectively, were focused on Plio-Early Pleistocene sediments located on western and southern side of the basin (Fig. 2). Sediments of terrace levels T4 and T5 were analyzed in detail (Figs. 2, 4). Section MI (46,2394737°, 15,0395998°, 317 m a.s.l.) and SE (46,2307163°, 15,1398659°, 278 m a.s.l.) are located on the terrace level T4, and section GR (46,2196692°, 15,1520658°, 347 m a.s.l.) on terrace level T5. Pliocene-Quaternary sediments of the Drava-Ptuj Basin The stratigraphy of alluvial terraces and fans in the DPB is shown in profile P2 and P3 (Figs. 3B, 3C and Table 2). Six Pliocene-Quaternary terrace levels were distinguished (T0, T1, T2, T3, T4, T5). Lithofacies and lithological analysis of Za litološko analizo klastov so bile upoštevane in prilagojene smernice avtorjev Walden (2004), Lindsey in sodelavcev (2007) ter Gale in Hoare (2011). V CB je bila litološka analiza izvedena na 98 do 299 klastih na vzorec, v DPB pa na 173 do 346 klastih na vzorec. Izdelanih in pregledanih je bilo 53 zbruskov klastov; 20 v CB in 33 v DPB. Tradicionalno je litološka analiza klastov izvedena makroskopsko (npr. Bridgland et al., 2012), vendar je bilo tekom študije ugotovljeno, da so napake pri identifikaciji preperelih kamnin pogoste in da mikroskopska analiza znatno pripomore k večji zanesljivosti rezultatov. Zaradi pomanjkanja podatkov o mikrofaciesu triasnih vulkanskih kamnin na območju CB, so bili dodatno vzorčeni tudi njihovi bližnji izdanki. Rezultati Pliocensko-kvartarni sedimenti CB in DPB so ohranjeni v terasah in vršajih, ki sledijo modelu inverzne terasne stratigrafije (ang. terrace staircase), ki je značilen za območja relativnega dvigovanja površja in zniževanja erozijske baze (npr. Bridgland, 2000; Bridgland & Maddy, 2002; Bridgland & Westaway, 2008a; Bridgland & Westaway, 2008b; Doppler et al., 2011; van Husen & Reitner, 2011; Westaway, 2002). Pri tem so najstarejši sedimenti ohranjeni na najvišje ležečih terasah. Pliocensko-kvartarni sedimenti Celjskega bazena Stratigrafija teras in vršajev v CB, ugotovljena s to študijo, je prikazana na profilu P1 (sl. 2B in Tabela 1). Na podlagi geomorfološkega kartira-nja je bilo ugotovljenih pet pliocenski-kvartar-nih terasnih nivojev (T0, T1, T3, T4, T5). Litofaci-esna in litološka analiza prodov in klastov je bila osredotočena le na plio-zgodnjepleistocenske sedimente, ki se nahajajo na zahodni in južni strani bazena (sl. 2). Sedimenti so bili podrobneje analizirani na terasnem nivoju T4 in T5 (sl. 2, 4). Profila MI (46,2394737°, 15,0395998°, 317 m n.v.) in SE (46,2307163°, 15,1398659°, 278 m n.v.) se nahajata na terasnem nivoju T4, profil GR (46,2196692°, 15,1520658°, 347 m n.v.) pa na terasnem nivoju T5. Pliocensko-kvartarni sedimenti Dravsko-Ptujskega bazena Stratigrafija teras in vršajev v DPB, ugotovljena s to študijo, je prikazana na profilu P2 in P3 (sl. 3B, 3C in Tabela 2) pri čemer je bilo ugotovljenih šest pliocensko-kvartarnih terasnih nivojev (T0, T1, T2, T3, T4, T5). Litofaciesna in litološka ana- I TO | Poznopleistocenske terase / | jI | Late Pleistocene terraces i—yo i Srednjepleistocenske terase in vršaji / - Middle Pleistocene terraces and fans [S Plio-zgodnjepleistocenske terase in vršaji / T5 Plio-Early Pleistocene terraces and fans Aluvialna pahljača /Alluvial fan g Pobočni sedimenti / Slope deposits Glinokop / Claypit I Jezero / Lake Smer toka reke (rekonstruiran) / River flow direction (interprétative) Nadmorska višina [m nv] / Elévation Lokacija profila / Section location Fig. 2. Geomorphological analysis of the Pliocene-Quaternary surfaces of the Celje Basin. (A) Geomorphological map of the Plio-Early Pleistocene, Middle Pleistocene, Late Pleistocene and Holocene terraces and fans with locations of the studied sections marked (MI, SE, GR). (B) Topographic profile PI with present-day elevations of the terraces and fans. SI. 2. Geomorfološka analiza pliocensko-kvartarnih površinskih oblik Celjskega bazena. (A) Geomorfološka karta plio-zgodnjepleistocenskih, srednjepleistocenskih, poznopleisto-censkih in holocenskih teras in vršajev z označenimi lokacijami profilov (MI, SE, GR). (B) Topografski profil P1 z današnjimi višinami teras in vršajev. Table 1. Basic geomorphological characteristics of the terrace system in the Celje Basin. Tabela 1. Osnovne karakteristike sistema teras v Celjskem bazenu. Terrace level/ Terasni nivo Elevation [m a.s.l.] / Višina [m n.v.] Height above the floodplain [m]/ Relativna višina nad poplavno ravnico [m] Thickness / Debelina [m] (after / po Buser, 1979) Morphology of the unit / Morfologija enote Composition of the sediments / Sestava sedimentov Age / Starost (after/po Buser, 1979) Klnorl | ¡1 i r / Poinlavna ravnica 236 - 304 / 25 Very well-preserved former channel pattern / Zelo dobro ohranjena morfologija rečnih meandrov Carbonate gravel/ Karbonatni prod Quaternary / Kvartar TO 238 - 309 2 - 5 Very well-preserved terrace morphology, rare and not well visible former channel meanders / Morfologija terase zelo dobro ohranjena, redki slabo ohranjeni rečni meandri Quaternary / Kvartar TI 279 - 308 7 - 8 35 Well-preserved terrace morphology, however the terrace surfaces are smaller and present only in a few places within the basin / Morfologija terase dobro ohranjena vendar terase ne zavzemajo velikih površin in so prisotne le na nekaj mestih znotraj bazena Identified as single "Plio- Quaternary" terrace / Identificirano kot enotna »pliokvartarna« terasa T3 245 - 324 9 - 14 Well-preserved terrace and fan morphology, present at basin boundaries / Morfologija teras in vršajev dobro ohranjena, prisotnost ob robovih bazena T4 258 - 338 15 - 22 Terrace and fan erosional remnants with degraded morphology incised by the drainage network / Morfologija teras in vršajev degradirana - erozijski ostanki teras, pogosto vrezo-vanje manjših potokov Non-carbonate gravel/ Nekarbonatni prod T5 262 - 366 42 - 124 Table 2. Basic geomorphological characteristics of the terrace system in the Drava-Ptuj Basin. Tabela 2. Osnovne značilnosti sistema teras v Dravsko-Ptujskem bazenu. Terrace level/ Terasni nivo Elevation [m a.s.l.] / Višina [m n.v.] Height above the floodplain [m]/ Relativna višina nad poplavno ravnico [m] Thickness / Debelina [m] (after / po Buser, 1979) Morphology of the unit / Morfologija enote Composition of the sediments / Sestava sedimentov Age / Starost (after / po Mioč & Žnidarčič, 1989) Floodplain / Poinlavna ravnica 216 - 266 / up to 30 m / do 30 m Very well-preserved former channel pattern / Zelo dobro ohranjena morfologija rečnih meandrov Carbonate gravel/ Karbonatni prod Quaternary / Kvartar TO 224 - 284 7 Well-preserved former channel pattern, very well-preserved terrace morphology / Dobro ohranjena morfologija rečnih meandrov, morfologija terase zelo dobro ohranjena Quaternary / Kvartar TI 228 - 288 9 - 12 Moderately-preserved former channel pattern, very well-preserved terrace morphology / Srednje dobro ohranjena morfologija rečnih meandrov, morfologija terase zelo dobro ohranjena Quaternary / Kvartar T2 232 - 278 13 - 14 Very well-preserved terrace morphology / Morfologija terase zelo dobro ohranjena Quaternary / Kvartar T3 251 - 333 15 - 23 25 - 40 Well-preserved terrace and fan morphology, but the terrace surfaces are present only in a few places within the basin / Morfologija teras in vršajev dobro ohranjena, vendar terase ohranjene le na nekaj mestih znotraj bazena Identified as single "Plio- Quaternary" terrace / Identificirano kot enotna »pliokvartarna« terasa T4 231 - 437 15 - 50 Terrace and fan remnants with degraded morphology incised by the drainage network / Morfologija teras in vršajev degradirana - ostanki teras, pogosto vrezovanje manjših potokov T5 277 - 450 40 - 100 a P a g o ►■s T3 ¡3" O SB čE' a T3 pr o Ms ? œ o' r H £ g H w a T 21 H ft > £ O O > r H X < T. O > z M H r s H H a o Table 5. Microfacies of clasts of Plio-Early Pleistocene sediments and interpretation of the provenance in the Drava-Ptuj Basin. The term keratophyre was used in the Basic geological map (Buser, 1979; Premru, 1983) and is for this reason retained, despite being outdated. Tabela 5. Mikrofacies prodnikov plio-zgodnjepleistocenskih sedimentov in interpretacija provenience v Dravsko-Ptujskem bazenu. Izraz keratofir je povzet po terminologiji Osnovne geološke karte (Buser, 1979; Premru, 1983). Ker primerjava provenience klastov temelji na Osnovni geološki karti, smo izraz kljub zastarelosti obdržali. Lithogroup / Lito-skupina Lithotype / Litotip General description / Splošni opis Provenance interpretation / Interpretacija provenience Key feature for provenance interpretation / Ključna lastnost za določitev provenience Amfibolitna skupina (epidotno amfibolski skrilavci do amfiboliti) / Amphibolitic group (epidote amphibole schists to amphibolites) The rock consists of hornblend, epidote, clinozoisite, chlorite, feldspar and quartz (in some of the samples). Accessory minerals are rutile, titanite and opaque minerals. Some of the samples have pronounced foliation, others pronounced por-phyroclastic texture. / Kamnina je sestavljena iz rogovače, epidota, klinozoisita, kloria, redko glinenca in kremena (v nekaterih vzorcih). Akcesorni so rutil, titanit in neprosojni minerali. Nekateri vzorci imajo izraženo foliacijo, drugi pa izrazito porfiroklastično strukturo. Pohorje and Kozjak (W and N from the DPB) / Vzhodne Alpe - Pohorje in Kozjak (Z in S od DPB) Typical facies of the Pohorje metamorphic complex / Značilen facies pohorskega metamorfnega kompleksa (Hinterlechner Ravnik 1971, 1973) Mica schists / Blestniki in muskovitni skrilavci The rock consists of muscovite, quartz, garnet (mostly its relicts), chlorite, rare bi-otite (in parts chloritized), zoisite/clinozoisite, traces of accessory zircon, titanite, rutile, and opaque minerals). Schistose structure with pronounced foliation is present. / Kamnino sestavljajo muskovit, kremen, granati (večinoma njihovi relikti), klorit, redek biotit (mestoma kloritiziran), zoisit/klinozoisit, sledovi akcesornih mineralov cirkona, titanita, rutila in neprosojnih mineralov. Tekstura je skrilava z izrazito foliacijo. Nekateri vzorci so močno prepereli. Eastern Alps (Pohorje and Kozjak area, also the surroundings of Ravne na Koroškem) (most probably eastern Pohorje and north of Maribor) / Vzhodne Alpe (najverjetneje vzhodno Pohorje in severno od Maribora) Typical facies / Značilen facies Metamorphic rocks / Metamorfne kamnine Slate / Glinast skrilavec Macroscopic texture seems massive. Microscopically, the rock has pronounced cleavage, expressed as preferred orientated sericite and chlorite. In-between them are grains of clastic quartz, feldspar, infrequent opaque minerals of primary and secondary origin, tourmaline, traces of zircon, apatite and epidote(?). Some sericite-chlorite aggregates and larger white mica flakes are oriented transverse to foliation. / Makroskopsko je kamnina videti masivna. Mikroskopsko je močno izražen klivaž poudarjen z usmerjenimi listki sericita in klorita. Vmes so zrna kremena, glinencev, redkih neprosojnih mineralov (primarnega in sekundarnega izvora), turmalina, sledovi cirkona, apatita in epidota(?). Posamezni sericitno-klo-ritni agregati in večji listki sljud so usmerjeni prečno na foliacijo. Štalenskogorska serija (Z Kozjak in/ali SZ del Pohorja)/ Magdalensberg series (W Kozjak and/or NW part of the Pohorje area) Typical facies / Značilen facies Quartzite of very low-grade metamorphism / Kvarcit zelo nizke stopnje metamorfoze The rock contains of mineral clasts of quartz, tourmaline, opaque minerals rutile, titanite and zircon. It contains infrequent lithic grains of slate and phylite. Quartz grains have undulose extinction and serrated grain boundaries with small quantity of recrystallized matrix in between. The source rock of the quartzite represents "dirty" quartz sandstone presumably formed from Carboniferous clastic rocks from the zone of stronger dynamometamorphism. / Kamnina je sestavljena iz mineralnih klastov kremena, turmalina, neprosojnih mineralov, rutila, titanita in cirkona. Redka so litična zrna glinastega skrilavca in filita. Zrna kremena valovito potemnijo in se pogosto zobčasto preraščajo med seboj in z vmesnim vezivom. Kvarcit nastal iz nečistega kremenovega peščenjaka v coni močnejših dinamome-tamorfnih sprememb, predvidoma nastal iz karbonskih klastitov. Carboniferous (Dravinja drainage, S from Slovenske Konjice) / Karbon (drenaža Dravinje, J od Slovenskih Konjic) Typical facies / Značilen facies Volcanic and volcaniclastic rocks / Vulkanske in vulkanoklastične kamnine Keratophyre / Keratofir The rock is extensively altered. The former glassy groundmass is altered to micro-crystalline quartz and phyllosilicate minerals. Phenocrysts of feldspars and mafic minerals can only be anticipated by shape remains. The rock is impregnated with Fe-oxides and hydroxides. / Kamnina je močno spremenjena. Nekdanja steklena osnova je spremenjena v mikrokristalen kremen in filosilikate. Oblika popolnoma preperelih vtrošnikov nakazuje na glinence in mafične minerale. Kamnina je popolnoma oksidirana, impregnirana z železovimi oksidi in hidroksidi. The rock does not outcrops in the today's drainage area of the sampling locality SKA (lack of detail geological map or eroded outcrops?) / Triasne vulkanske in vulkanoklastične kamnine. Visible diagenesis, compact texture of the rock, typical mineral alteration / Vidni znaki diageneze, Keratophyre tuff / Keratofirski tuf The rock consists of fragments of altered feldspars, biotite and volcanic lithic fragments. The matrix is altered to microcrystalline quartz, Fe-oxides and kaolinite. Some of the samples contain welded glass shards. / Kamnino sestavljajo fragmenti spremenjenih glinencev, biotita in vulkanskih litičnih drobcev. Osnova je spremenjena v mikrokristalen kremen, železove okside in kaolinit. Nekateri vzorci vsebujejo nataljene črepinjice stekla. Kamnina ne izdanja v današnjem drenažnem območju vzorčne lokacije SKA (manjka natančna geološka karta ali pa so izdanki popolnoma erodirani) kompaktna struktura kamnine, značilne spremembe v mineralizaciji. a P a g o ►■s ¡3" O a T3 ¡3" o r H £ g œ< H w w a T H ft > £ O £ Q > r H X < T. O > z M H r s H H a o Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 205 Fig. 6. Microfacies of the clasts in the Plio-Early Pleistocene sediments in the Celje Basin. (A) Slate with quartz and white mica as the main constituents. Rare quartz porphyroblasts are characteristic. (B) Foliated siltstone to shale with uniform preferred orientation of white mica forming continuous cleavage. (C) Fine-grained vitric (dacitic) tuff from the Oligocene Smrekovec series. (D) Glassy volcanic lithic fragment with perlitic texture in the sample of keratophyre lapilli tuff (Triassic). Some of the feldspars are extremely altered. (E) Coarse-grained (meta)tuff with incipient clevage marked with red arrow (Triassic). (F) Fine-grained tuff (Triassic). (G) Weathered (oxidized) biotite phenocryst in glassy groundmass altered to chlorite and mi-crocrystalline quartz in keratophyre (Triassic). (H) Low-grade metamorphic heterogranular quartz sandstone. (I) Authigenic growth of tourmaline in the sample of slightly metamorphosed quartz sandstone. Abbreviations: Qtz - quartz, Ms - muscovite, CG - crystal grains, y-GS - y-shaped glass shards, VRF - volcanic lithic fragment, Fsp - feldspar, M - tuffaceous matrix, Bt -biotite, g - glassy groundmass, RF - rock fragment, Tur - tourmaline, Tur(a) -authigenic tourmaline. Sl. 6. Mikrofaciesi klastov plio-zgodnjepleistocenskih sedimentov v Celjskem bazenu. (A) Filitoidni sljudnat skrilavec (peščeni metameljevec); v sestavi prevladujetakremen in muskovit. Značilni so redki porfiroklasti kremena. (B) Skrilav meljevec do glinavec s prednostno orientacijo mineralov belih sljud, ki oblikujejo kontinuiran klivaž - predvidena starost: karbon. (C) Drobnozrnat vitrični (dacitni) tuf iz Smrekovške serije oligocenske starosti. (D) Steklen vulkanski litični drobec s perlitno strukturo v vzorcu keratofirskega lapilnega tufa (trias). Nekateri K-glinenci so popolnoma prepereli. (E) Debelozrnati (meta) tuf z neizrazitim klivažem označenim z rdečo puščico (trias). (F) Drobnozrnati tuf (trias). (G) Preperel (oksidiran) vtrošnik biotita v steklasti osnovi, ki je spremenjena po kloritu in mikrokristalnem kremenu v keratofirju (trias). (H) Šibko metamorfo-riziran heterozrnat kremenov peščenjak. (I) Avtigena rast turmalina v neznatno metamorfoziranem heterozrnatem kremeno-vem peščenjaku. Okrajšave: Qtz - kremen, Ms - muskovit, CG - kristalna zrna, y-GS - črepinjice vulkanskega stekla y oblike, VRF - vulkanski litični drobec, Fsp - K-glinenec, M - tufska osnova, Bt - biotit, g - steklena osnova, RF - litični drobec, Tur - turmalin, Tur(a) -avtigeni turmalin. Discussion Sedimentary environment and morphostratigraphy Pliocene-Quaternary sediments of the CB and DPB were deposited in alluvial environment, as indicated by lithofacies analysis of sections (Figs. 4, 5 and Table 3) and geomorphological analysis of sedimentary bodies (Figs. 2 , 3). Based on the results of sedimentological and geomor- Diskusija Okolje sedimentacije in morfostratigrafija Pliocensko-kvartarni sedimenti so se na območju CB in DPB odlagali v aluvialnemokolju, kar je razvidno iz facielne analize profilov (sl. 4, 5 in Tabela 3) in geomorfološke analize sedimen-tacijskih teles (sl. 2, 3). Na podlagi rezultatov se-dimentološke in geomorfološke analize interpretiramo, da so bili na območju CB vzorčeni rečni 206 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC Fig. 7. Microfacies of the clasts in the Plio-Early Pleistocene sediments in the Drava-Ptuj Basin. (A) Lenticular and streched blasts of hornblende oriented along foliation plains in medium- to coarse-grained amphibolite. (B) Deformational lamellae in porphyroclast of hornblende embedded in fine-grained hornblende, plagioclase, epidote, quartz and opaque minerals in epido-te amphibole schist. (C) Disintegrated and chloritized garnet surrounded by muscovite and some quartz in retrograde altered (mylonitized) mica schist. (D) Sericite-chlorite aggregates oriented transverselyl to anastomosing cleavage in slate. (E) Altered glassy keratophyre (Triassic). (F) Elongated collapsed lapilli in the sample of welded keratophyre tuff (Triassic). (G) Undulose extinction of quartz in the sample of low-grade metamorphic quartz sandstone. (H) Fragment of foraminifera Cuneolina sp. in rudist packstone (Upper Cretaceous). (I) Foraminifera of the family Schwagerinidae (Paraschwagerina? sp.) in the intergranular space in breccia (lower Permian). (J) Alga Anthracoporella spectabilis Pia in a breccia clast (lower Permian). (K) Foraminifera Cuneolina (marked with the arrowhead) and undetermined foraminifera in bioclastic packstone (Upper Cretaceous). (L) Foraminifera Moncharmontia sp. in bioclastic packstone (Upper Cretaceous). Abbreviations: Qtz - quartz, Qtz(m) - microc-rystalline quartz, Hbl - hornblende, Ep - epidote, Grt - garnet, Ms - muscovite, Ser - sericite, Chl - chlorite, Chl(a) - altered chlorite, Op - opaque mineral, WGS - welded glass shards, CL - collapsed lapilli. Sl. 7. Mikrofaciesi klastov plio-zgodnjepleistocenskih sedimentov v Dravsko-Ptujskem bazenu. (A) Lečasti blasti rogovače in vlaknata rogovača vzdolž foliacije v srednje do debelozrnatem amfibolitu. (B) Deformacijske lamele v porfiroklastu rogovače obdane z drobno rogovačo, plagioklazom, epidotom, kremenom in neprosojnimi minerali v vzorcu epidotno amfibolskega skrilavca. (C) Zdrobljen in kloritiziran granat obdan z muskovitom in malo kremena v vzorcu retrogradno spremenjenega (miloni-tiziranega) blestnika. (D) Sericitno-kloritni agregati orientirani pravokotno na povijajoči klivaž v vzorcu glinastega skrilavca. (E) Preperel steklast keratofir (trias). (F) Močno razpotegnjen lapil s porušeno strukturo v vzorcu nataljenega keratofirskega tufa (trias). (G) Valovita potemnitev kremena v šibko metamorfoziranemu kremenovemu peščenjaku (H) Fragment foramini-fere Cuneolina sp. v rudistnem packstone-u (zgornja kreda). (I) Foraminifere družine Schwagerinidae (Paraschwagerina? sp.) v vezivu breče (spodnji perm). (J) Alga Anthracoporella spectabilis Pia v klastu znotraj apnenčeve breče (spodnji perm). (K) Foraminifera Cuneolina (označena velika hišica na levi) in številne druge nedoločene vrste v bioklastičnem packstone-u (zgornja kreda). (L) Foraminifera rodu Moncharmontia v bioklastičnem packstone-u (zgornja kreda). Okrajšave: Qtz - kremen, Qtz(m) - mikrokristalen kremen, Hbl - rogovača, Ep - epidot, Grt - granat, Ms - muskovit, Ser - sericit, Chl - klorit, Chl(a) - preperel klorit, Op - neprosojni mineral, WGS - nataljene črepinjice stekla, CL - lapil s porušeno strukturo. Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 207 Fig. 8. Comparison of the clast lithological analysis of the Plio-Early Pleistocene sediments in the Celje (CB) and Drava-Ptuj Basin (DPB). Lithogroups correspond to those in tables 4 and 5. Sl. 8. Primerjava litološke analize klastov plio-zgodnjepleistocenskih sedimentov v Celjskem (CB) in Dravsko-Ptujskem bazenu (DPB) pri čemer lito-skupine kamnin ustrezajo skupinam v tabelah 4 in 5. phological analyses, we interpret sediments from CB (sections GR, SE, MI) as river sediments and from DPB as river sediments (sections RA and SKA) and alluvial fan sediments (sections NV and HO). Lithofacies Bcm, Gm and Gms were deposited in river channels and alluvial fans. Sandy lithofacies Sm, Sm(d) and Sp are present in sand dunes, while the finest sediments Fm and Fm(d) are floodplain sediments and fine-grained part of alluvial fans. Coarse-grained and poorly sorted facies with subangular to well-rounded clasts suggest relatively short transport, which agrees with the results of clast provenance analysis (see the following section of the discussion). Alluvial sediments in CB and DPB were depositing simultaneously with the erosional base lowering and relative surface uplifting, as suggested by the inverse terrace staircase (Fig. 9). The floodplain surface (PR) in CB and DPB has well visible morphology with abandoned river meanders that are very well preserved indicating braided river system active prior to regulation of Savinja and Drava river channels. The estimated age of this floodplain deposits is Holocene. The age of higher terrace levels was interpreted based on traditional morphostratigraphy (Buser, 1979; Mioc & Znidarcic, 1989), comparison with other basins in the region (e.g.: Krsko Basin: Ver-bic, 2004; Velenje Basin: Drobne, 1967, and Rako-vec, 1968; Ljubljana Basin: Pavich & Vidic, 1993) and on new observations from this study. Low-level terrace group encompasses terraces T0 and T1 in CB and terraces T0, T1 and T2 in DPB, which are up to 8 m above the floodplain in sedimenti (profili GR, SE, MI), na območju DPB pa rečni sedimenti (profila RA in SKA) ter sedimenti aluvialnih pahljač (profila NV in HO). Li-tofaciesi Bcm, Gm in Gms so se odlagali v rečnih koritih ter v nanosih aluvialnih pahljač. Peščeni litofaciesi Sm, Sm(d) in Sp predstavljajo peščene sipine, najbolj drobnozrnati sedimenti Fm in Fm(d) pa sedimente poplavnih ravnic ter drob-nozrnate nanose aluvialnih pahljač. Debelozrna-ti in slabo sortirani prodnati faciesi s slabo do dobro zaobljenimi klasti nakazujejo relativno kratek transport, kar je v skladu z rezultati analize provenience klastov (glej nadaljevanje diskusije). Odlaganje aluvialnih sedimentov v CB in DPB se je odvijalo sočasno z zniževanjem erozijske baze in relativnim dvigovanjem površja, kar se odraža v inverzni stratigrafiji teras (sl. 9). Površina poplavne ravnice (PR) v CB in DPB ima jasno razvidno morfologijo in zelo dobro ohranjene opuščene rečne meandre, ki nakazujejo na prepletajoč rečni sistem Savinje in Drave pred regulacijo strug. Ocenjena starost poplavne ravnice je holocen. Višje ležečim terasnim nivojem in vršajem so pripisane interpretativne starosti na podlagi tradicionalne morfostratigrafije (Buser, 1979; Mioč & Žnidarčič, 1989), primerjave z drugimi bazeni v regiji (npr.: Krški bazen: Verbič, 2004; Velenjski bazen: Drobne, 1967; Rakovec, 1968; Ljubljanski bazen: Pavich & Vidic, 1993) ter na podlagi novih opazovanj, ki so predmet te študije. Spodnji terasni nivo obsega terasi T0 in T1 v CB ter terase T0, T1 in T2 v DPB, ki se nahajajo 208 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC Fig. 9. Schematic profile of the terrace and fan systems in the (A) Celje Basin and (B) Drava-Ptuj Basin with levels (T0, T1, T2, T3, T4 in T5) marked, together with their relative heights above the Holocene floodplain (PR). Sl. 9. Shematska profila sistema teras in vršajev v (A) Celjskem in (B) Dravsko-Ptujskem bazenu z označenimi nivoji (T0, T1, T2, T3, T4 in T5) ter njihovimi relativnimi višinami nad holocensko poplavno ravnico (PR). Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 209 Fig. 10. Interpretation of the source areas of Plio-Early Pleistocene gravel deposits in the Celje (1) and Drava-Ptuj Basins (2). Sl. 10. Interpretacija izvornih območij plio-zgodnjepleistocenskih prodnatih sedimentov v Celjskem (1) in Dravsko-Ptujskem bazenu (2). 210 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC CB and up to 14 m above the floodplain in DPB. Terrace treads and risers are very well preserved, terrace treads are typically wide and (almost) flat surfaces. Lidar data show that the terrace treads have preserved abandoned river meanders, which are common and moderate to well preserved in DPB, whereas rare and poorly preserved in CB. Terrace treads gently slope in direction consistent with the flow of present streams. Sediments of these terraces are composed of carbonate gravel exhibiting only low degree of weathering. Terrace riser's heights (e.g. between T0 and T1; between T1 and T2) are relatively low (2-5 m). Since the terraces T0, T1 and T2 have well preserved geomorphic traces of former river system, which is typical for youngest Quaternary periods (e.g. Blum & Tornqvist, 2000; Lewin & Macklin, 2003), and are older than the Holocene floodplain, we interpret the age of the low-level terrace group of Late Pleistocene. Middle-level terrace group comprises terraces and fans T3 occurring at up to 14 m above the floodplain in CB and up to 23 m above the flood-plain in the DPB. Similarly, as in low-level terrace group, their gravel is composed of carbonate clasts and exhibits low degree of weathering. Their terrace treads slope in direction consistent with the flow of present streams. In contrast with the low-level terrace group, the degree of terrace preservation is lower, and terrace treads occur in considerably less extensive surfaces in middle-level terrace group. Therefore, we interpret the terraces and fans T3 are of Middle Pleistocene age. High-level terrace group encompasses terraces and fans T4 and T5. Compared to middle-level terrace group, T4 and T5 have several levels occurring at different relative height from approximately 40 to 124 m above the floodplains. Terrace, and fan surfaces are strongly degraded. Surfaces are not flat anymore but have developed a rough relief because of degradation processes. Often the surfaces are only remnants of former morphology of sedimentary bodies, preserved in narrow, flat-crest tops. Risers are clearly visible as scarps between two terrace levels but are often strongly eroded by ephemeral and perennial streams. Risers are considerably higher than risers in low- and middle-level terrace group. The degree of weathering of sediments (clasts) in CB is significantly higher than in low- and middle-level terrace group, the prominent difference is also in lithologic composition of gravel, which is here exclusively non-carbonate. In DPB, sediments of this group are as well much more do približno 8 m nad poplavno ravnico v CB in do 14 m nad poplavno ravnico v DPB. Terase in ježe teras so zelo dobro ohranjene, pri čemer terasne ravnine zavzemajo značilno široke in ravne površine. Lidarski posnetki kažejo na površinah teras opuščene rečne meandre, ki so ponekod pogostejši in srednje dobro do dobro ohranjeni (DPB), ponekod pa redki in slabše ohranjeni (CB). Terasne površine vpadajo v smeri današnjih vodotokov. V sestavi sedimentov nastopa zgolj malo preperel karbonatni prod. Višina ježe teras med sosednje ležečimi terasami (npr. med T0 in T1; med T1 in T2) je relativno majhna (od 2 do 5 m). Glede na to, da imajo terase T0, T1 in T2 dobro ohranjene geomorfne sledove nekdanjega rečnega sistema, kar je značilno za najmlajša obdobja kvartarja (npr. Blum & Törnqvist, 2000; Lewin & Macklin, 2003), in da so starejše od holocenske PR, je interpretirana starost spodnjega terasnega nivoja pozni pleistocen. Srednji terasni nivo obsega terase in vršaje T3, ki se nahajajo do 14 m nad poplavno ravnico v CB in do 23 metrov nad poplavno ravnico v DPB. Čeprav je prod, tako kot v spodnjem te-rasnem nivoju, nepreperel in karbonatne sestave, površine pa prav tako vpadajo v smeri današnjih vodotokov, so slednje za stopnjo slabše ohranjene in obsegajo znatno manjše površine kot terase spodnjega terasnega nivoja. Zato so terase in vršaji T3 interpretirani kot srednjeple-istocenski. Zgornji terasni nivo obsega terase in vršaje T4 in T5. Za razliko od srednjega terasnega nivoja je v T4 in T5 grupiranih več nivojev površin, ki se pojavljajo na različnih relativnih višinah od približno 40 do 124 m nad poplavnimi ravnicami. Površina teras in vršajev je močno degradirana. Ni več ravna, temveč je hrapava zaradi delovanja degradacijskih procesov in pogosto omejena le na ostanke nekdanjih površinskih oblik, ohranjenih v ozkih grebenih. Ježe teras so jasno razvidne kot stopnje med dvema nivojema teras, vendar so pogosto močno prečno erodirane z občasnimi ali stalnimi potoki, višine jež pa so znatno višje kot v nižjem in srednjem terasnem nivoju. Stopnja pre-perelosti sedimentov (prodnikov) v CB je znatno višja kot v spodnjem in srednjem terasnem nivoju, izrazita pa je tudi razlika v litološki sestavi proda, ki je tu izključno nekarbonaten. V DPB so sedimenti prav tako znatno bolj prepereli, a razlike v litološki sestavi z nižjima sistemoma teras ni, kar je bilo ugotovljeno že v preteklih raziskavah (Mioč & Žnidarčič, 1989). Terase in vršaji zgornjega terasnega nivoja so bile tako v skladu s podatki Osnovne geološke karte (Buser, 1979; Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 211 weathered, but there is no difference in lithologic composition compared to lower terrace groups, as already pointed out by previous investigations (Mioc & Znidarcic, 1989). Terraces and fans of high-level terrace group were thus interpreted as Plio-Early Pleistocene, which agrees with Basic geologic map (Buser, 1979; Mioc & Znidarcic, 1989). It is important to note, however, that sediment deposition in terraces, related to strong climate changes, typical for Quaternary, as well as numerical age dating from other comparable intramountain basins in the region (Cline et al., 2016) and previous observations (e.g. Kuscer, 1993) indicate mostly Early Pleistocene and not Pliocene age. Provenance of the Plio-Early Pleistocene sediments The interpretation of the provenance of the Plio-Early Pleistocene sediments in the CB and the DPB is based on clast lithological analysis. We focused on the indicative lithologies; these are lithologies that can be attributed to certain formation with high reliability and that are outcropping on a relatively small area (Buchi, 2016). Interpretation of the possible source areas of Plio-Early Pleistocene gravel deposits in the CB and DPB is depicted in the figure 10. Celje Basin The provenance of the Plio-Early Pleistocene sediments in the CB is constrained with meta-morphic, volcanic and volcaniclastic and clastic rocks (Table 4). In the group of metamorphic rocks filitoid mica schist is the main indicative lithology, which was sampled from the sediments on the southern margin of the CB. The occurrence of this type of metamorphic rocks is limited to the area of the Eastern Alps, outcropping only north of the CB (in the area of the Hudinja spring). However, the dip of the sampled terraces is indicating the sediment supply from the south. Regarding these two contradictory arguments, we propose that ether i) these metamorphic clasts are resedimented from older (possibly Miocene; Ivancic et al., 2017) deposits from the south of the CB, which were originally deposited from the north or that ii) the present day dip of the terrace surfaces is a result of post-sedimentary tectonics and does not correspond to the direction of the drainage system in the Plio-Early Pleistocene. In the group of the volcanic and volcaniclastic rocks Triassic and Oligocene clasts were identified. The outcrops of Triassic volcanic rocks are located on the northern, western and southern Mioč & Žnidarčič, 1989) uvrščene v plio-zgodnji pleistocen. Pri tem je potrebno poudariti, da način odlaganja sedimentov v terasah, ki je pogojen z močnejšimi podnebnimi nihanji, značilnimi za obdobje kvartarja, podatki numeričnih datacij v drugih primerljivih medgorskih bazenih v regiji (Cline et al., 2016) ter predhodna opazovanja (npr. Kuščer, 1993) nakazujejo v večji meri zgo-dnjepleistocensko in ne pliocensko starost. Provenienca plio-zgodnjepleistocenskih sedimentov Provenienca plio-zgodnjepleistocenskih se-dimentov je interpretirana na osnovi litološke analize klastov. Med vsemi določenimi litotipi so za interpretacijo provenience prodnatih sedi-mentov CB in DPB pomembne tako imenovane indikativne litologije, t.j. litologije, ki se lahko z veliko stopnjo zanesljivosti pripišejo določeni formaciji in izdanjajo na relativno majhnem območju (Buchi, 2016). Današnja prostorska razširjenost formacij, ki bi lahko bile izvor indikativ-nih litologij, prepoznanih v plio-pleistocenskih prodnih sedimentih CB in DPB, je prikazana na sliki 10. Celjski bazen Provenienco plio-zgodnjepleistocenskih sedi-mentov v CB nakazujejo skupine metamorfnih, vulkanskih in vulkanoklastičnih ter klastičnih kamnin (Tabela 4). V prvi skupini je indikativna litologija filito-idni sljudnati skrilavec, najden v sedimentih na južnem robu CB. Danes izdanja v bližini izvira potoka Hudinja, severno od CB, ne pa tudi na južnih obronkih CB. Nagib vzorčenih teras sicer nakazuje pritok iz juga CB, vendar pa se izvorne metamorfne kamnine, omejene na območje Vzhodnih Alp, pojavljajo le severno od CB. Glede na nasprotujoča si argumenta se porajajo dodatne interpretacije, in sicer i) da so prodniki omenjene litologije resedimentirani iz nanosov starejših paleopritokov, ki so prihajali s severa (miocenski sedimenti?; Ivančič et al., 2017) ali pa ii), da je današnji nagib teras rezultat post-sedimentacijske tektonike in ne ustreza smeri drenaže v plio-zgo-dnjempleistocenu. V skupini vulkanskih in vulkanoklastičnih kamnin so bili ugotovljeni prodniki triasnega in oligocenskega vulkanizma. Prvi se pojavlja v manjših erozijskih ostankih na severnih, zahodnih in južnih pobočjih CB, drugi pa na širšem območju severno in zahodno od CB, kar ustreza provenienci paleo-Savinje (Buser, 2010). 212 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC hillslopes of the CB and occur as smaller erosional remnants (Buser, 2010). The outcrops of the Oligocene volcanic rocks can be found in a wider area north and west of the CB. This corresponds to the provenance of paleo-Savinja and its tributaries. The outcrops of clastic Carboniferous rocks are located on the southern, northern and northwestern hillslopes of the CB (Buser, 2010) which corresponds to the provenance of the paleo-Paka, paleo-Savinja and their tributaries. Source areas of Plio-Early Pleistocene sediments are therefore located in the vicinity of the deposits. Hence, we interpreted that the drainage system of the paleo-Savinja and its tributaries in Pliocene-Quaternary corresponds to the present one. Drava-Ptuj Basin In the DPB two indicative lithogroups were identified; metamorphic rocks are prevailing in the NV and HO samples and carbonate rocks present solely in RA and SKA samples (Table 5). Varieties of amphibolite and epidote amphibole schists originate from Pohorje Massif and Kozjak mountain range (Buser, 2010). Mica schists and schists corresponds to the lithologies that are typical for the wider area of the Eastern Alps. The clasts likely originate from the Pohorje Massif and Kozjak mountain range, however the provenance from the area between Ravne na Koroškem and Dravograd and further away from Eastern Alps in Austria cannot be excluded. Slate varieties were interpreted to originate from Magdalensberg series located on the western part of the Pohorje Massif and in Kozjak mountain range (Buser, 2010). The group of metamorphic rocks in the NV and HO samples was therefore attributed to the provenance of paleo-Drava and its tributaries. Carbonate rocks were identified solely in the RA and SKA samples which corresponds to the provenance of paleo-Dravinja and its tributaries. Permian carbonate rocks were attributed to Lower Permian Dovžanova soteska and Trog-hofel Formations that can be found in the area around Slovenske Konjice (Buser, 2010). Varieties of Triassic carbonate rocks are located in the area west and north of the Slovenjske Konjice and Zreče. Upper Cretaceous carbonate rocks were attributed to rudist limestone from Gossau group (Pleničar, 1993; Moro et al., 2016) and occupy area east and west of Zreče (Buser, 2010). Igneous rocks were, despite the immediate vicinity of the Pohorje Massif, not found in any of studied localities. Based on structural, radi- Klastične kamnine karbonske starosti se danes v primarni legi pojavljajo na južnih, severnih in severozahodnih obronkih CB (Buser, 2010), kar ustreza provenienci paleo-Pake, paleo-Savinje ter njunih pritokov. Izvorna območja plio-zgo-dnjepleistocenskih sedimentov se torej nahajajo v relativni bližini obravnavanih rečnih nanosov, rečna mreža v pliocenu-kvartarju pa je potekala v skladu z današnjo drenažo, torej s smerjo toka Savinje in manjših potokov z obronkov CB. Dravsko-Ptujski bazen V DPB sta bili ugotovljeni dve indikativni skupini kamnin, in sicer metamorfne kamnine, ki močno prevladujejo v vzorcih NV in HO in karbonatne kamnine, ki se pojavljajo izključno v vzorcih RA in SKA (Tabela 5). Različki amfibolita in epidotno amfibolske-ga skrilavca so bili pripisani območju Pohorja in Kozjaka (Buser, 2010). Značilnosti skupine blestnikov in skrilavcev ustrezajo različkom, ki se pojavljajo na širšem območju Vzhodnih Alp. Predvidevamo donos s Pohorja in Kozjaka, manj verjetno pa iz bolj oddaljenega območja med Ravnami na Koroškem in Dravogradom in seveda naprej iz avstrijskega dela Vzhodnih Alp. Skupino glinastih skrilavcev (ang. slate) smo povezali s Štalenskogorsko serijo, ki se nahaja na zahodnem Pohorju in na Kozjaku (Buser, 2010) ter jo danes erodirajo pritoki Drave. Skupini metamor-fnih kamnin v vzorcih NV in HO je bila tako pripisana drenaža paleo-Drave in njenih pritokov. Karbonatne kamnine so bile ugotovljene le v vzorcih RA in SKA, kar generalno ustreza dre-naži paleo-Dravinje in njenih pritokov. Permske karbonatne kamnine so bile pripisane spodnje-permski Dovžanosoteški in Trogkofelski formaciji, ki izdanjata v okolici Slovenskih Konjic (Buser, 2010). Pojavnost različkov triasnih karbonatnih kamnin je omejena na območje zahodno in severno od Slovenskih Konjic in Zreč. Zgor-njekredne kamnine so opredeljene kot rudistni apnenci Gossauske grupe (Pleničar, 1993; Moro et al., 2016), ki izdanjajo vzhodno in zahodno od Zreč (Buser, 2010). Kljub pričakovanjem, magmatskih kamnin s Pohorja na vzorčenih lokacijah nismo našli. Glede na dosedanje strukturne, radiometrične in pa-leomagnetne raziskave (Marton et al. 2006; Tra-janova et al. 2008; Fodor et al. 2008; Trajanova, 2013) se osnovna morfologija Pohorja, kljub levi (ccw) rotaciji bloka, v času kvartarja ni bistveno spremenila. Zato sklepamo, da je bil tudi drenaž-ni sistem podoben današnjemu. Kot je razvidno s slik 1 in 3, nobeden od današnjih vodotokov, Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 213 ometric and paleomagnetic analyses (Marton et al., 2006; Trajanova et al., 2008; Fodor et al., 2008; Trajanova, 2013) the morphology of the Pohorje Massif in the Quaternary, despite its counterclockwise rotation, did not changed significantly. Therefore, the drainage system was presumably similar as today. None of the present-day streams reach up to the granodioritic pluton. (Figs. 1, 3). Besides, the relief of its eastern part in the late Miocene is modeled to be significantly higher and gravitationally disintegrated in the latest Miocene-Pliocene (Trajanova, 2013), which would yield that erosion and transport of the granodi-orite to the DPB in the Quaternary was even less likely. The results of the provenance analysis indicate two different source areas of the Plio-Early Pleistocene sediments; paleo-Drava and paleo-Drav-inja. Moreover, the river system in the Plio-Early Pleistocene is similar to the present one, which corresponds to the previous studies in the area of the Eastern Alps (e.g. Keil and Neubauer, 2009). Enigmatic carbonate clasts in the "Plio-Quaternary" sediments? In the wider Alpine foreland area, there are several examples from Switzerland (Graf, 1993; Preusser et al., 2011), Germany (Doppler et al., 2011; Ellwanger et al., 2011) and Austria (van Husen & Reitner, 2011), where the criteria for distinguishing different terraces is the presence/ absence of carbonate clasts. A similar model is currently applied in the Krško Basin, where Plio-Early Pleistocene gravel (Globoko Alloformation, Verbič, 2008) is characterized as non-carbonate gravel (e.g. Poljak, 2017). However, several authors (Verbič, 2008; Mencin Gale, unpublished data) report an exception in the Libna locality. The absence of carbonate clasts was in the previous studies explained with i) in-situ dissolution of the carbonates (Kuščer, 1993) or with ii) dissolution of the carbonate gravel during the transport and resedimentation (Verbič, 2008). Both explanations are therefore climate-related. On the contrary, carbonate clasts were reported in several "Plio-Quaternary" basins in the region; the Velenje Basin (Mioč, 1978; Kralj et al., 2018) and DPB (Mioč & Žnidarčič, 1989; this study). Therefore, we propose an alternative explanation that the presence of the carbonate clasts in these basins is not climate-related but rather dependent from the vicinity of the carbonate source rocks and the evolution of the drainage network. ki prečijo obravnavano območje, ne sega do gra-nodioritnega plutona. Glede na model nastanka Pohorskega tektonskega bloka (Trajanova, 2013) je bil relief njegovega vzhodnega dela v času poznega miocena celo znatno višji in je gravitacijsko razpadal koncem miocena in v pliocenu. Zaradi tega je erozija in transport granodiorita na obravnavano območje še manj verjetna. Rezultati analize provenience nakazujejo dve glavni izvorni območji plio-zgodnjepleisto-censkih sedimentov DPB, in sicer provenienci paleo-Drave in paleo-Dravinje. Nadalje, rečna mreža je v plio-zgodnjempleistocenu potekala v skladu z današnjo, kar je v skladu z drugimi opazovanji na širšem območju Vzhodnih Alp (npr. Keil and Neubauer, 2009). Enigmatični karbonatni prodniki v »pliokvartarnih » sedimentih? V širšem prostoru alpskega predgorja, kot na primer v Švici (Graf, 1993; Preusser et al., 2011), Nemčiji (Doppler et al., 2011; Ellwanger et al., 2011) in v Avstriji (van Husen & Reitner, 2011), terase pogosto ločujejo na podlagi vsebnosti karbonatnih prodnikov. Podoben kriterij za ločevanje različnih prodnatih zasipov je trenutno uveljavljen tudi v Krškem bazenu. Eden od kriterijev za ločevanje Plio-zgodnjepleistocenskih sedimentov Krškega bazena (Globoška alofor-macija; Verbič, 2004) od mlajših sedimentov je prisotnost izključno nekarbonatnega proda (npr. Poljak, 2017), čeprav Verbič (2008) navaja izjemo prisotnosti karbonatnega proda na območju Libne (potrjeno tudi z osebnimi podatki Mencin Gale). Odsotnost karbonatnih prodnikov v plio-zgodnjepleistocenskih sedimentih Krškega bazena je možno pojasniti na dva načina: i) in--situ raztapljanje že odloženega karbonatnega proda (Kuščer, 1993), ali ii) raztapljanje karbonatnega proda med večkratno resedimentacijo rečnih nanosov (Verbič, 2008). Obe razlagi torej širše gledano pogojujeta podnebno-odvisen proces. Nasprotno so bili »pliokvartarni« karbonatni prodniki dokumentirani v nekaterih drugih medgorskih bazenih v regiji, na primer v Velenjskem bazenu (Mioč, 1978; Kralj et al., 2018) in v DPB (Mioč & Žnidarčič, 1989; pričujoča študija). Ob navedenih dejstvih se tako pojavi dodatna interpretacija, da v omenjenih bazenih ne gre pogojevati vsebnosti karbonatnih prodnikov s podnebnimi procesi, temveč z bližino izvornega območja karbonatnih kamnin in razvojem rečne mreže. 214 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC Conclusions Investigation of Plio-Early Pleistocene sediments in the Celje and Drava-Ptuj basins bring new insights on the genesis, composition, mor-phostratigraphy and provenance of these sediments. Due to higher resolution obtained with detailed morphostratigraphy in this paper, we propose that the former chronostratigraphic name of the studied unit "Plio-Quaternary" is replaced with "Plio-Early Pleistocene". Plio-Ear-ly Pleistocene, Middle Pleistocene and Late Pleistocene sediments were deposited in alluvial environments and are preserved in several terrace and fan levels. Interpreted terrace and fan ages are based on several morphological and sedimen-tological criteria. The low-level terrace group encompasses terraces T0, T1 and T2 with an interpreted Late Pleistocene age. The middle-level terrace group represented by terraces and fans T3 is attributed to the Middle Pleistocene. The high-level terrace group comprised of terraces and fans T4 and T5 is interpreted to the Plio-Ear-ly Pleistocene. The provenance of Plio-Early Pleistocene sediments is attributed to local source areas, which is supported by facies analysis of sediments, suggesting short transport, and provenance analysis of clasts. Metamorphic clasts in Plio-Early Pleistocene sediments of the Celje Basin originate from the southern Pohorje Massif, while clasts of volcanic, volcaniclastic and clastic rocks originate from northern, western and southern hillslopes of the Celje Basin. This is consistent with drainage of the paleo-Savinja and its tributaries. Clasts of metamorphic rocks in Plio-Early Pleistocene deposits of the Dra-va-Ptuj Basin probably originate mostly from Pohorje Massif and Kozjak area, and carbonate clasts are presumably from surroundings of Slovenske Konjice and Zreče. The provenance of clasts from Drava-Ptuj Basin is therefore related to the drainages of paleo-Drava, paleo-Dravinja and their tributaries. Our results thus indicate that the drainage in Plio-Early Pleistocene corresponded to present one, in agreement with other observations from the Eastern Alps. Acknowledgements This work was supported by the Slovenian Research Agency (ARRS) in the frame of the Young Researchers (38184), the Regional Geology (P1-0011) and Mineral Resources (P1-0025) research programmes and was carried out at the Geological Survey of Slovenia and University of Bern, Switzerland. Zaključki Raziskave plio-zgodnjepleistocenskih sedi-mentov v Celjskem in Dravsko-Ptujskem bazenu so pokazale nova spoznanja na področju geneze, sestave, morfostratigrafije in provenience sedimentov. Zaradi višje ločljivosti, ki temelji na detajlni morfostratigrafiji v tem članku opuščamo do sedaj ustaljeno kronostratigraf-sko ime enote »pliokvartar« ter predlagamo ime plio-zgodnjepleistocenski sedimenti. Plio-zgo-dnjepleistocenski, srednjepleistocenski in pozno-pleistocenski sedimenti so se odlagali v rečnem okolju ter so ohranjeni v več terasnih in vršajnih nivojih. Interpretirane starosti teras in vršajev temeljijo na več morfoloških in sedimentoloških kriterijih. Spodnji terasni nivo obsega terase T0, T1 in T2 z interpretirano poznopleistocensko starostjo. Srednji terasni nivo obsega terase in vršaje T3, ki jim je bila pripisana srednjepleisto-censka starost. Zgornji terasni nivo obsega terase in vršaje T4 in T5 z interpretirano plio-zgo-dnjepleistocensko starostjo. Provenienca plio-zgodnjepleistocenskih sedi-mentov je bila pripisana lokalnim izvornim območjem, kar potrjuje facielna analiza sedimentov, ki kaže na krajši transport, kot tudi analiza provenience klastov. Metamorfni klasti v plio-zgodnjeple-istocenskih sedimentih v Celjskem bazenu izvirajo iz območja južnega Pohorja, klasti vulkanskih, vulkanoklastičnih in klastičnih kamnin pa s severnih, in zahodnih in južnih obronkov Celjskega bazena. Pri tem je potrebno upoštevati možnost, da so lahko nekateri klasti resedimentirani in ne odražajo smeri transporta v plio-zgodnjemplei-stocenu. Generalno pojavnost izvornih kamnin ustreza drenaži paleo-Savinje in njenih pritokov. Prodniki metamorfnih kamnin v plio-zgodnjeple-istocenskih nanosih Dravsko-Ptujskega bazena verjetno izvirajo predvsem z območja Pohorja in Kozjaka, karbonatni prodniki pa domnevno izvirajo iz okolice Slovenskih Konjic in Zreč. Izvorno območje klastov iz Dravsko-Ptujskega bazena je torej pogojeno z drenažo paleo-Drave in paleo--Dravinje ter njunih pritokov. Rezultati tako iz Celjskega kot iz Dravsko-Ptujskega bazena potrjujejo, da je bila drenaža v plio-zgodnjempleisto-cenu podobna kot danes, kar je v skladu z drugimi opazovanji na širšem območju Vzhodnih Alp. Zahvala Raziskava je bila izvedena v okviru projekta Mladi raziskovalec (38184) in programske skupine Regionalna Geologija (P1-0011) ter Mineralne surovine (P1-0025), ki jih financira Javna agencija za raziskovalno dejavnost Republike Slovenije (ARRS). Delo Provenance and morphostratigraphy of the Pliocene-Quaternary sediments in the Celje and Drava-Ptuj Basins 215 Eva Mencin Gale was additionally supported by the Swiss Government Excellence Scholarship for Foreign Scholars and Artists. The authors would like to express gratitude to Polona Kralj for petrographic analysis of the volcanic and volcaniclastic rocks and for contribution in the discussion, Dragomir Skaberne for conducting petrographic analysis of the clastic rocks, Matevž Novak for determination of the Permian fossils and Mladen Štumergar for the preparation of the samples and thin-sections. We would also like to express our thanks to two anonymous reviewers for the constructive review that significantly improved this paper. je bilo izvedeno na Geološkem zavodu Slovenije in na Univerzi v Bernu v Švici. Dodatno je bila raziskava financirana s štipendijo »Swiss Government Excellence Scholarship for Foreign Scholars and Artists« s strani švicarske vlade. Avtorji se zahvaljujejo Poloni Kralj za izvedene petrografske analize vulkanskih in vu-lkanoklastičnih kamnin ter za doprinos k diskusiji, Dragomirju Skabernetu za izvedbo petrografskih analiz klastičnih kamnin, Matevžu Novaku za določanje permskih fosilov ter Mladenu Štumergarju za pripravo vzorcev in zbruskov. Prav tako pa se zahvaljujemo dvema anonimnima recenzentoma za njune konstruktivne pripombe, ki so pripomogle k izboljšanju članka. Literatura Altherr, R., Lugovic, B., Meyer, H. P. & Majer, V. 1995: Early Miocene post-collisional cal-c-alkaline magmatism along the easternmost segment of the Periadriatic fault system (Slovenia and Croatia). Mineralogy and Petrology, 54/3-4: 225-247. https://doi. org/10.1007/BF01162863 Blum, M. D. & Tornqvist, E. T. 2000: Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology, 47: 2-48. https://doi. org/10.1046/j.1365-3091.2000.00008.x Brezigar, A. 1987: Premogova plast Rudnika lignita Velenje. Geologija, 28-29: 319-336. Brezigar, A., Kosi, G., Vrhovsek, D. & Velkovrh, F. 1987: Paleontoloske raziskave pliokvartar-ne skladovnice velenjske udorine. Geologija, 28/29: 93-119. Bridgland, D. R. 2000: River terrace systems in north-west Europe: An archive of environmental change, uplift and early human occupation. Quaternary Science Reviews, 19/13: 1293-1303. https://doi.org/10.1016/ S0277-3791(99)00095-5 Bridgland, D. R. & Maddy, D. 2002: Global correlation of long Quaternary fluvial sequeces: A review of baseline knowledge and possible methods and criteria for establishing a database. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 81/3-4: 265-281. https://doi.org/10.1017/S0016774600022605 Bridgland, D. R. & Westaway, R. 2008a: Preservation patterns of Late Cenozoic fluvial deposits and their implications: Results from IGCP 449. Quaternary International, 189/1: 5-38. https://doi.org/10.1016/j. quaint.2007.08.036 Bridgland, D. & Westaway, R. 2008b: Climatically controlled river terrace staircases: A worldwide Quaternary phenomenon. Geomorphology, 98/3-4: 285-315. https://doi.org/10.10Wj. geomorph.2006.12.032 Bridgland, D. R., Westaway, R., Romieh, M. A., Candy, I., Daoud, M., Demir, T., Galiatsatos, N., Schreve, D. C., Seyrek, A., Shaw, A. D., White, T. S. & Whittaker, J. 2012: The River Orontes in Syria and Turkey: Downstream variation of fluvial archives in different crustal blocks. Geomorphology, 165-166: 25-49. https://doi. org/10.1016/j.geomorph.2012.01.011 Bukovac, J., Poljak, M., Šušnjar, M. & Čakalo, M. 1984: Tumač za list Črnomelj: L 33-91: Osnovna geološka karta SFRJ 1: 100.000. Savezni geološki zavod, Beograd. Buser, S. 1977: Osnovna geološka karta SFRJ. L 33-67, Celje. Zvezni geološki zavod, Beograd: 69 p. Buser, S. 1979: Tolmač lista Celje: L 33-67: Osnovna geološka karta SFRJ 1: 100.000. Zvezni geološki zavod, Beograd. Buser, S. 2010: Geološka karta Slovenije 1: 250.000. Geološki zavod Slovenije, Ljubljana. Buchi, M. W. 2016: Overdeepened glacial basins as archives for the Quaternary landscape evolution of the Alps. Doktorska disertacije, Univerza v Bernu, Švica. https://doi. org/10.13140/RG.2.2.17415.80802 Cline, M. L., Cline, K. M., Jamšek Rupnik, P., Atanackov, J., Bavec, M. & Lowick, S. E. 2016: Tectonic geomorphology and geochronology supporting a probabilistic seismic hazard analysis in the Krško Basin, Slovenia: implications for a critical infrastructure. Program and short abstracts of the 7th international INQUA meeting on Paleoseizmology, Active 216 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC tectonics and Archeoseismology (PATA), Crestone, Colorado, USA, 23-26 p. Debeljak, I. 2017: Fosilni trobčarji iz Šaleške doline. Zbirka Šaleški razgledi, Zbornik (20162017): 427 p. Doppler, G., Kroemer, E., Rögner, K., Wallner, J., Jerz, H. & Grottenthaler, W. 2011: Quaternary stratigraphy of southern Bavaria. Quaternary Science Journal, 60/23: 329-365. https://doi. org/10.3285/eg.60.2-3.08 Drobne, K. 1967: Izkopavanje mastodonta v Škalah pri Velenju. Geologija, 10: 305-312. Ellwanger D., Wielandt-Schuster U., Franz M. & Simon, T. 2011: The Quaternary of the southeast German Alpine Foreland. Quaternary Science Journal, 2-3: 306-328. Evans, D. J. A. & Benn, D. I. 2004: A practical guide to the study of glacial sediments. Hodder Education, London: 266 p. Fodor, L., Jelen, B., Marton, E., Skaberne, D., Čar, J. & Vrabec, M. 1998: Miocene-Pliocene tectonic evolution of the Slovenian Periadriatic fault: Implications for Alpine-Carpathian extrusion models. Tectonics, 17/5: 690-709. https://doi.org/10.1029/98TC01605 Fodor, L., Jelen, B., Marton, E., Rifelj, H., Kraljic, M., Kevric, R., Marton, P., Koroknai, B. & Baldi-Beke, M. 2002: Miocene to Quaternary deformation, stratigraphy and paleoge-ography in Northeastern Slovenia and Southwestern Hungary = Deformacije, stra-tigrafija in paleogeografija severovzhodne Slovenije in jugozahodne Madžarske od mi-ocena do kvartarja. Geologija, 45/1: 103-114. https://doi.org/10.5474/geologija.2002.009 Fodor, L. I., Gerdes, A., Dunkl, I., Koroknai, B., Pecskay, Z., Trajanova, M., Horvath, P., Vrabec, M., Jelen, B., Balogh, K. & Frisch, W. 2008: Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-Pannonian-Dinaridic junction, Slovenia. Swiss Journal of Geosciences, 101: 255-271. https://doi.org/10.1007/s00015-008-1286-9 Gale, S. J., Hoare, P. G. 2011: Quaternary sediments. Petrographic Methods for the Study of Unlithified Rocks. Second Edition. The Blackburn Press, Caldwell: 325 p. Graf, H. R. 1993: Die Deckenschotter der zentralen Nordschweiz. Doktorska disertacija. Eidgenössischen Technischen Hochschule Zürich, Švica. Hinterlechner-Ravnik, A. 1971: Pohorske meta- morfne kamenine. Geologija, 14: 187-226. Hinterlechner-Ravnik, A. 1973: Pohorske meta-morfne kamenine II. Geologija, 16: 245-270. Hinterlechner-Ravnik, A. 1982: Pohorski eklogit. Geologija, 25/2: 251-288. Ivančič K., Trajanova M., Skaberne D. & Šmuc A. 2017: Provenance of the Miocene Slovenj Gradec Basin sedimentary fill, Western Central Paratethys. Sedimentary Geology 375: 256-267. https://doi.org/10.1016/j. sedgeo.2017.11.002 Janâk, M., Froitzheim, N., Luptâk, B., Vrabec, M. & Ravna, E. J. K. 2004: First evidence for ultrahigh-pressure metamorphism of eclogites in Pohorje, Slovenia: Tracing deep continental subduction in the Eastern Alps. Tectonics, 23/5: TC5014. https://doi. org/10.1029/2004TC001641 Janâk, M., Froitzheim, N., Vrabec, M., Krogh Ravna, E. J. & De Hoog, J. C. M. 2005: Ultrahigh-pressure metamorp-hism and exhumation of garnet perido-tite in Pohorje, Eastern Alps. Journal of Metamorphic Geology, 24/1: 19-31. https:// doi.org/10.1111/j.1525-1314.2005.00619.x Jelen, B. & Rifelj, H. 2011: Površinska litostra-tigrafska in tektonska strukturna karta območja T-JAM projekta, severovzhodna Slovenija 1:100.000. Geološki zavod Slovenije: Ljubljana. Keil, M. & Neubauer, F. 2009: Initiation and development of a fault-controlled, orogen-parallel overdeepened valley: The Upper Enns Valley, Austria. Austrian Journal of Earth Sciences, 102/1: 80-90. Kovâč, M., Andreyeva-Grigorovich, A., Bajrakta-revic, Z., Brzobohaty, R., Filipescu, S., Fodor, L., Harzhauser, M., Nagymarosy, A., Oszczypko, N., Pavelic, D., Rogl, F., Saftic, B., Sliva, L. & Studencka, B. 2007: Badenian evolution of the Central Paratethys Sea: paleoge-ography, climate and eustatic sea-level changes. Geologica Carpathica, 58/6: 579-606. Kralj, P. 1996: Litofacialne značilnosti smrekov-ških vulkanoklastitov (severna Slovenija). Geologija, 39: 159-191. https://doi.org/10.5474/ geologija.1996.007 Kralj, P. 2001: Pliocenski klastični sedimenti zahodnega dela Goričkega. Geologija, 44/1: 7379. https://doi.org/10.5474/geologija.2001.004 Kralj, P. 2016a: Hydrothermal alteration of chlorite to randomly interstratified corrensi-te-chlorite: geological evidence from the Oligocene Smrekovec Volcanic Complex, Slovenia. Applied clay science, 134: 235-245. https://doi.org/10.1016/j.clay.2016.10.025 Kralj, P. 2016b: Hydrothermal zeolitisation controlled by host-rock lithofacies in the Badenijske in sarmatijske plasti v gradbeni jami za hidroelektrarno Brežice 217 Periadriatic (Oligocene) Smrekovec submarine composite stratovolcano, Slovenia. Journal of volcanology and geothermal research, 317: 53-65. https://doi.org/10.1016/j. jvolgeores.2016.02.009 Kralj, P., Vrabec, M., Trajanova, M., Ivančič, K. & Mencin Gale, E. 2018: Geološki razvoj ke-nozojskih sedimentacijskih bazenov v širši okolici Velenja. Vodič ekskurzij: Slovenski geološki kongres. Geološki zavod Slovenije. Ljubljana: Kuščer, D. 1993: Neotektonika Krške kotline. Predhodno poročilo. Republika Slovenija, Ministrstvo za okolje in prostor, Republiška uprava za jedrsko varnost: 28 p. Lewin, J. & Macklin. G. 2003: Preservation potential for Late Quaternary river alluvium. Journal of Quaternary Science, 18/2: 107-120. https://doi.org/10.1002/jqs.738 Lindsey, D. A., Langer, W. H. & van Gosen, B. S. 2007: Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA. Sedimentary Geology, 199/3-4: 223-232. https://doi.org/10.1016/j.sedgeo.2007.02.006 Markič, M. 2009: Pliocen in pliokvartar. In: Pleničar, M., Ogorelec, B. & Novak, M. (eds.): Geologija Slovenije. Geološki zavod Slovenije, Ljubljana: 427-464. Markič, M. & Rokavec, D. 2002: Geološka zgradba, nekovinske mineralne surovine in lignit okolice Globokega (Krška kotlina). RMZ -Materiali in geookolje: revija za rudarstvo, metalurgijo in geologijo, 49/2: 229-266. Markič, M. & Sachenhofer, R. F. 2010: The Velenje lignite - Its petrology and genesis. Geološki zavod Slovenije, Ljubljana: 218 p. Marton, E., Jelen, B., Tomljenivic, B., Pavelic, D., Poljak, M., Marton, P., Avanic, R. & Pamic, J. 2006: Late Neogene counterclockwise rotation in the SW part of the Pannonian Basin. Geologica Carpathica, 57/1: 41-46. Miall, A. 2014: Fluvial depositional system. Springer, New York: 322 p. Mioč, P. 1978: Tolmač za list Slovenj Gradec: L 3355 SFRJ, osnovna geološka karta, 1: 100.000. Zvezni geološki zavod, Beograd. Mioč, P. 1983: Tolmač za list Ravne na Koroškem: L 33-54 SFRJ, osnovna geološka karta, 1: 100.000. Zvezni geološki zavod, Beograd. Mioč, P. & Žnidarčič, M. 1989: Tolmač za lista Maribor in Leibnitz: L 33-56, L 33-44 SFRJ 1: 100.000. Zvezni geološki zavod, Beograd. Mioč, P. & Markovic, S. 1998: Osnovna geološka karta republike Slovenije in Republike Hrvaške, list Čakovec, 1: 100.000. Inštitut za geologijo, geotehniko in geofiziko, Ljubljana in Inštitut za geološka istraživanja, Zagreb, Ljubljana. Moro, A., Horvat, A., Tomic, V., Sremac, J. & Bermanec, V. 2016: Facies development and paleoecology of rudists and corals: an example of Campanian transgressive sediments from northern Croatia, northeastern Slovenia, and northwestern Bosnia. Facies, 62/3: 1-25. https://doi.org/10.1007/s10347-016-0471-y Pamic, J. & Balen, D. 2001: Tertiary shoshonite volcanic associations from the adjoining area of the South Pannonian Basin and Dinarides. Acta vulcanologica: Journal of the National Volcanic Group of Italy, 13/1-2: 117-125. https://doi.org/10.1400/19069 Pavich, M. J. & Vidic, N. 1993: Application of Paleomagnetic and 10Be Analyses to chro-nostratigraphy of alpine glacio-fluvial terraces, Sava River valley, Slovenia. In: Swart, P. K., Lohmann, K. C., McKenzie, J., Savin, S. (eds.): Climate change in continental iso-topic records (Geophysical monograph 78). American Geophysical Union, Washington: 263-275 p. Placer, L. 1998: Strukturni pomen Posavskih gub. Geologija, 41: 191-221. https://doi.org/10.5474/ geologija.1998.012 Placer, L. 1998: Prispevek k makrotektonski rajo-nizaciji mejnega ozemlja med Južnimi Alpami in Zunanjimi Dinaridi. Geologija, 41: 223255. https://doi.org/10.5474/geologija.1998.013 Placer, L. 2008: Osnove tektonske razčlenitve Slovenije. Geologija, 51/2: 205-217. https:// doi.org/10.5474/geologija.2008.021 Pleničar, M. & Ramovš, A. 1954: Geološko karti-ranje severovzhodno od Brežic. Geologija, 2: 242-253. Pleničar, M. 1993: Contribution to the nowled-ge of the Upper Cretaceous beds in Kočevje and Gorski Kotor area (NW Dinarides). Geologija, 36: 183-194. https://doi.org/10.5474/ geologija.1994.008 Poljak, M. 2017: Geološka karta vzhodnega dela Krške kotline 1:25.000, tolmač. Geološki zavod Slovenije, Ljubljana. Premru, U. 1983: Tolmač za list Ljubljana. Osnovna geološka karta SFRJ - 1: 100.000, L 33-66. Zvezni geološki zavod, Beograd. Preusser, F., Grad, H. R., Keller, O., Krayss, E. & Schluster, C. 2011: Quaternary glaciation history of northern Switzerland. Quaternary Science Journal, 2-3: 282-305. https://doi. org/10.3285/eg.60.2-3.06 218 E. MENCIN GALE, P. JAMŠEK RUPNIK, M. TRAJANOVA, L. GALE, M. BAVEC, F. S. ANSELMETTI & A. ŠMUC Rakovec, I. 1968: O mastodontih iz Šaleške doline. Razprave, 11: 299-350. Schmid, S. M., Bernoulli, D., Fugenschuh, B., Mantenco, L., Schefer, S., Schuster, R., Tischler, M. & Ustaszewski, K. 2008: The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101/1: 139-183. https://doi.org/10.1007/ s00015-008-1247-3 Šikic, K., Basch, O. & Šimunic, A., 1979: Tumač za list Zagreb. Osnovna geološka karta SFRJ 1:100.000, L 33-80. Zvezni geološki zavod, Beograd. Štern, J. & Lapajne, V. 1974: Geološke raziskave gline in kremenovega peska v Globokem. Geologija, 17: 531-533. Stokes, M., Cunha, P. P. & Martins, A. A. 2012: Techniques for analysing Late Cenozoic river terrace sequences. Geomorphology, 165-166: 1-6. https://doi.org/10.10Wj. geomorph.2012.03.022 Trajanova, M., Pecskay, Z. & Itaya, T. 2008: K-Ar geochronology and petrography of the Miocene Pohorje Mountains batholith (Slovenia). Geologica Carpathica, 59/3: 247-260. Trajanova, M. 2013: Starost pohorskega magma-tizma; nov pogled na nastanek pohorskega tektonskega bloka = Age of the Pohorje Mountains magmatism; new view on the origin of the Pohorje tectonic block. Doktorska disertacija, Univerza v Ljubljani: 183 p. van Husen, D. & Reitner, J. 2011: An outline of the Quaternary Stratigraphy of Austria. Quaternary Science Journal, 2-3: 366-387. https://doi.org/10.3285/eg.60.2-3.09 Verbič, T. 2004: Quaternary Stratigraphy and Neotectonics of the eastern Krško Basin. Part 1: Stratigraphy. Classis IV: Historia Naturalis, 45/3: 171-225. Verbič, T. 2008: Kvartarni sedimenti, stratigra-fija in neotektonika vzhodnega dela Krške kotline. Doktorska disertacija. Univerza v Ljubljani: 140 p. Vrabec, M., Janak, M., Froitzheim, N. & De Hoog, J. C. M. 2012: Phase relations during peak metamorphism and decompression of the UHP kyanite eclogites, Pohorje Mountains (Eastern Alps, Slovenia). Lithos, 144-145: 4055. https://doi.org/10.1016/j.lithos.2012.04.004 Walden J. 2004: Particle lithology (or mineral and geochemical analysis). In: Evans, D. J. A. & Benn, D. I. (eds.): A practical guide to the study of glacial sediments. Hodder Education: 145-181. Westaway, R. 2002: Long-term river terrace sequences: Evidence for global increases in surface uplift rates in the Late Pliocene and early Middle Pleistocene caused by flow in the lower continental crust induced by surface processes. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 81/3-4: 305-328. Žnidarčič, M. & Mioč, P. 1988: Osnovna geološka karta SFRJ. L 33-56 in L 33-44, Maribor in Leibnitz. Zvezni geološki zavod, Beograd. Zupančič, N. 1994a: Geokemične značilnosti in nastanek pohorskih magmatskih kamnin. Rudarsko-metalurški zbornik, 41/1-2:113-128 Zupančič, N. 1994b: Petrografske značilnosti in klasifikacija pohorskih magmatskih kamnin. Rudarsko-metalurški zbornik, 41: 101-112.