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In this paper, an investigation was made to evaluate the effectiveness of the different classifiers suitable 

to predict the probability of a cyber-threat or fraudulent intent applicant during the Mobile Money Service 

on-boarding or service activation process, with the goal of determining the best machine learning model 

for the predictive model solution. Experimental work was carried out by formulating cyber threat 

predictive models using six supervised machine learning algorithms: Logistic regression(LR), Naïve 

Bayes, Shallow Neural Network (SNN), Deep Neural Network (DNN), Classification and Regression Trees 

(CART) and Random Forest (RF) of different configurations. Each model was simulated with both 

Synthetic Minority Operation Techniques (SMOTE) and without SMOTE (No-SMOTE) on 25,000 records 

of mobile money applicants. Twenty-four (24) different configurations of the formulated predictive models 

were simulated and evaluated using the Python programming language. Simulation results of the 

predictive models proved that the Random Forest model multiclass configurations with the SMOTE 

dataset outperformed all other configurations. The results also showed that the multiclass experiments 

with SMOTE had better performance than the binary configurations with NO-SMOTE in the predictive 

models. The study concluded that using the Random Forest-based predictive machine learning model will 

increase the security level of the Mobile Money solution by detecting and preventing anomalous customer 

registrations during the unbanked onboarding process. 

Povzetek: Napovedovanje kibernetskih groženj mobilnega denarja z uporabo algoritmov strojnega 

učenja. 

 

1 Introduction 
Modern economies are today inspired mostly by 

digital currency, and the widespread usage of mobile 

devices has opened up a new market for digital financial 

services in emerging countries [1]. These developments 

have made it easier for the underprivileged people in these 

nations to access financial services [2–5]. In Africa, there 

is currently a great deal of demand for promoting financial 

inclusion, premised on the willingness of the nations to 

adopt financial inclusion action plans in order to eradicate 

poverty and boost their economies [6–8]. 

Unbanked financial services such as Mobile Money 

Services (MMS) typically function using smartphone 

applications that are backed by mobile operators or 

banking institutions. Despite the mobile money sector's 

expansion and its enormous prospects, research indicates 

that the adoption of Mobile Financial Services (MFS) is 

still low in sub-Saharan Africa [8]. The widespread use of 

mobile devices has significantly increased the number of 

people who have access to the Internet. As mobile money 

adoption continues to gain ground, fraudsters are now 

focusing on this new money transfer route [9–10]. 

 

As a result, this advancement has inadvertently ushered in 

a brand-new age of crime: cybercrime. Financial fraud has 

evolved and become more complex in recent years as a 

result of the widespread use of advanced technology. 

Consumers now accept mobile money as one of the latest 

means of getting access to financial services that offer 

quality, affordability, and ease of use. Meanwhile, 

criminals have discovered new ways to move their illicit 

funds or fund criminal activities covertly. Therefore, it is 

commonly acknowledged that the frequency of crime 

driven by the economy in many societies poses a serious 

danger to the growth and stability of the global economy. 

Fraud is a global financial concern that endangers the 

viability of MMS. The likelihood of cybercrime in MMS 

is rising and becoming more pervasive [11]. If financial 

crime aimed at various stakeholders, mobile money 

agents, and Mobile Network Operator (MNO) systems is 

not properly addressed, it may deter people from using 

MMS, potentially undoing years of progress towards 

financial inclusion [12]. It was observed that due to the 

exclusion of inclusive development, inadequate security 

standards by both service providers, and the resulting 

restrictions and behaviour of mobile end users, Africa as a 
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continent lag behind all the other continents in financial 

inclusion [13]. With the increasing usage of MMS in these 

countries, it is critical to develop a comprehensive scheme 

for mobile money security that would alleviate security 

vulnerabilities and mitigate fraud, as several mobile 

money service providers have suffered huge losses in 

revenues due to this emerging threat. 

It is impossible to overstate the importance of humans 

in successful cyberattacks against MFS transactions. They 

could be the attack's instigator, medium, or real 

perpetrator [13]. The administration of human 

stakeholders is highly essential to the mobile money 

security system. From platforms to platforms, internal and 

external users, and more especially the customer 

management strategy or practises employed to set up, 

update, and activate the users by the operators. 

As a result, the risks posed by the human factor in the 

intensification of cybercrime on mobile money initiatives 

must be predicted and avoided through robust and 

intelligent countermeasures [14]. The existing 

methodology employs rule-based algorithms and manual 

eyeballing for the identification and blocking of fraudulent 

customer registrations [13]. This methodology is 

frequently time-consuming for the agents, uneconomical, 

and ineffective for detecting cyber-threats. Fraudsters are 

encouraged by the MMT services' quick proliferation, and 

MNOs that offer these services are required to identify ML 

activity. It is crucial that the tools for detection be effective 

at detecting threats and simple to use [15]. 

There have previously been a variety of methods used 

to address financial transaction fraud. These techniques 

included rule-based and related statistical techniques. The 

rule-based technique has a high proportion of false-

positive outcomes and is time-consuming and expensive. 

However, these techniques are gradually losing their 

effectiveness as criminal behaviour patterns and operating 

procedures get more sophisticated [16]. The emphasis has 

shifted away from conventional, rule-based approaches to 

more advanced computational methods. 

Applications of Artificial Intelligence (AI), data 

mining, and Machine Learning (ML) models have been 

discovered to reduce fraud in high-risk mobile payments 

and decrease false declines. Researchers have 

demonstrated the effectiveness of these methods in 

predicting the cyber threat to MMS and financial crimes 

[17]. ML addresses the problems associated with 

conventional approaches by allowing computers to adapt 

to data and generate predictions. When incorporated into 

MMS, ML is utilised to deliver automatic detection of 

potentially fraudulent activities. A collection of 

transactions that have been presumed to be fraudulent 

would be used to train an ML algorithm. The algorithm 

could be adjusted to identify impending fraudulent 

transactions based on learned experience by identifying 

patterns that match those in the training data. ML 

algorithms proactively detect suspicious transactions in 

real-time, swiftly identify and block transactions that may 

be fraudulent, minimise the number of fraudulent 

transactions, and consequently eliminate the need for 

significant human engagement. 

Various pre-processing procedures or data 

transformation methods have been employed to enhance 

the data quality and, subsequently, the classification 

accuracy of the Financial Inclusion dataset [18]. ML 

algorithms are increasingly being used to predict 

fraudulent transactions. These algorithms, whether 

supervised or unsupervised, including logistic regression 

(LR), K-nearest neighbor (KNN), Support Vector 

Machines (SVM) and Naive Bayes, are trained with 

datasets and utilised to categorise and classify mobile 

financial transactions into valid and suspicious ones. 

Artificial Neural Networks (ANNs) and Convolutional 

Neural Networks (CNNs), among other deep learning 

techniques, have additionally been utilised to find 

anomalies in financial transactions. A significant degree 

of prediction accuracy has been exhibited by these deep 

learning and ML systems [19]. 

All indications point to the conclusion that ML 

models are useful for automating and modelling cyber-risk 

assessment in MMS. However, there is a need to 

investigate the performance of various machine learning 

classification models that can anticipate malicious 

customers having cyber-threat risks during the on-

boarding procedures for MMS in the developing world. 

The main objective of this investigation is to evaluate 

the effectiveness of several classifiers that can predict an 

applicant's likelihood of being a cyber-threat or having 

fraudulent intentions during the MMS onboarding or 

service activation process in order to discover the most 

accurate predictive ML model. 

 

2 Related works 
A significant chunk of past research in the field of 

mobile money focused on the best way to use MMS 

effectively while reducing fraud and financial concerns. 

These studies examine the variables that influence the 

successful application of mobile money. Most research on 

fraud prediction and detection using AI, data mining, and 

other statistical techniques that has been conducted in the 

domain of finance has focused on credit card fraud 

detection. 

A state-of-the-art survey on the security issues of 

MMS identified some conventional methods that have 

been employed to improve the security of MMS [20–22]. 

These techniques include biometric methods [23], 

quantitative analysis of subject matter [24], two-factor 

authentication [25], structural equation modelling [26], 

case-based reasoning [27], and a variety of others. It was, 

however, noted that these conventional methods for 

combating fraud in MMS are ineffective due to the 

problems of cybercrime [28]. There are many difficulties 

with the procedures, rules, and measures for MMS to offer 

tools for curbing cybercrime threats because no practical 

solution has been offered, particularly in the context of 

developing countries, as demonstrated by the survey 

conducted in [29]. 

Investigation and research into various models and 

methodologies have become necessary due to the 

necessity of building a plan for managing the significant 
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risk of mobile money fraud detection. Any dataset on 

financial transactions, like MMS, has a relatively small 

fraction of transactions that are fraudulent (positive class) 

as opposed to valid (negative class). Because of this, the 

datasets are really imbalanced [30], and ML algorithms 

that use this data to make predictions are biased in favour 

of valid transactions, which has the long-term impact of 

making predictions based on this data potentially false. 

Credit card transactions have a very imbalanced class 

distribution because fraud typically accounts for less than 

1% of total transactions. Different computational 

sampling approaches have been used to address the issue 

of imbalanced data, such as K-means clustering and 

genetic algorithms [31], a hybrid model based on genetic 

algorithms [32], and kernel principal component analysis 

[33], which were used as feature selection methods with 

some chosen ML algorithms to detect fraud. Despite being 

a straightforward solution to the issue of data skewness, 

random undersampling or oversampling still introduces 

uninformative or unhelpful sub-structures in datasets. 

The suitability of several machine learning models for 

fraud detection and classification techniques has been 

examined [34–35]. Methods of supervised learning are 

widely applied in the investigation of fraud. These models 

were used to predict the likelihood of credit card fraud 

based on a certain number of transactions. Some of the 

experimental works are SVM and Back Propagation 

Networks [36]; Weighted Support Vector Machine [37]; 

Naive Bayes, LR, SVM, and KNN [38]; KNN, Random 

Forest (RF), LR, Decision Tree, and Naive Bayes 

classifiers [39]; and comparison of various machine 

learning models for binary categorization of imbalanced 

credit card fraud data [34–35]. These applications of these 

approaches were assessed based on their accuracy, 

precision, specificity, and sensitivity. The results provide 

optimal accuracy for the classifiers supported by LR, 

SVM, Naive Bayes, and KNN, as shown in the summary 

in Table 1. Results from databases of credit card 

transactions demonstrate the effectiveness and efficiency 

of these ML algorithms in the fight against financial 

transaction fraud. 

However, the majority of supervised learning 

techniques for fraud detection have typically been 

established with the presumption that the mobile money 

ecosystem is relatively harmless, i.e., that there are no 

enemies attempting to defeat MMS. Meanwhile, the MMS 

is now bedevilled by attacks. Given this situation, 

potential fraudster behaviours were taken into account in 

MMS using ML techniques [19, 28, 40–41]. Utilization of 

graph-theoretical methods to identify fraud schemes that 

result in long-term changes in the typical behaviour of 

MMS customers [42]. Additionally, ML models were 

employed to anticipate the adoption of mobile money [43–

44]. 

Recently, a prediction model using a LR classifier was 

developed and assessed in order to identify and mitigate 

suspicious clients with the ability to commit cybercrime 

during the onboarding processes for MMS in emerging 

regions. Employing binary and multiclass setups, with or 

without Synthetic Minority Oversampling Technique 

(SMOTE or No-SMOTE), the model's performance in 

identifying and categorising fraudulent MMS application 

intentions was examined [13]. Among the different 

configurations of the experiments using LR, the results 

showed that the LR classifier with the SMOTE application 

achieved the highest classification accuracy. 

Also, in order to categorise and forecast fraud in 

mobile money transactions, investigations were carried 

out on how well the LR classifier performed by 

experimenting with various undersampling, weighting, 

and oversampling strategies [19]. The findings 

demonstrated that manually adjusting the class weights for 

false positives and false negatives was the most effective 

model for these tests. 

In most of the investigations conducted, the LR 

classifier and random forest model have been recognised 

as having the most exceptional performance among all 

measures, while other classifiers were highly beneficial in 

predicting suspicious transactions. Among all the 

classifiers, these two models were the most reliable and 

effective because they could be modified to reach high 

precision and successfully learn from data with multiple 

features. Despite the fact that LR and random forest 

classifiers are effective ML techniques for detecting fraud, 

more research is still required to examine how well other 

ML classification models perform in predicting suspicious 

customers with the potential for cyber threats during the 

on-boarding process for MMS in developing countries and 

produce a more conclusive result. 

 

3 Methodology 
The goal of this investigation is to develop and 

evaluate a reliable model for predicting fraudulent mobile 

money transactions. The work employed supervised 

learning algorithms to construct an effective prediction 

system for MMS, using known normal and fraud cases to 

train the models and uncover their properties. 

In this study, machine learning models for cyber 

threat detection and prevention were developed. 

Analytical models were employed to ascertain the validity 

of incoming registration or activation record details from 

Mobile Money applicants. Supervised learning algorithms 

were used for the model building as follows: 

Six (6) machine learning algorithm models were used 

for modelling the prediction of cyber-threat during MMS 

activation via customer on-boarding or SIM registration 

processes, namely LR, SNN, DNN, Naive Bayes, 

Decision Trees (Cart-Classification and Regression 

Trees), and RF. To avoid class imbalance, the length of 

the positive class was oversampled with synthetic data 

using the Synthetic Minority Oversampling Technique 

(SMOTE). 

The algorithms were developed with a broad range of 

configurations determined by two variants: one based on 

balancing the dataset using SMOTE or not, and two based 

on binary and multiclass configurations of the algorithms, 

leveraging the experimental work done in [13]. This 

brought about the six (6) supervised learning algorithms 

having four different variants based on the configurations, 

finally resulting in a total of twenty-four (24) algorithms 
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as shown in Table 2. The historical SIM registration data 

set for new applications and current customers served as 

the training dataset for the models. To train the model, 

numerous iterations of this were done. 

 

Table 1: Literature review summary table 

  

Table 2:  Rules for classifying records of mobile money applicants 

 

Research 
work 

Problems addressed and Techniques used Dataset Distribution  Feature 
Classification 

Results 

[13] Using logistic regression to create a prediction model to 
identify suspicious customers with potential cyber-threats 

SMOTE Binary and 
Multiclass  

LR gives good results 

[33] Analysed the effectiveness of naive bayes, KNN, and LR on data 
from credit card fraud that is incredibly imbalanced. 

oversampling and  
under-sampling 

Binary  KNN performs better  

[34] Compare LR, RF, Naive Bayes and Multilayer Perceptron  
models for detection of fraud data 

SMOTE Binary  RF algorithm gives the best results 

[35] To investigate SVM-S and Back Propagation Networks (BPN) for 
building models representing normal and abnormal customer 
behavior 

Random under-
sampling 

Binary  SVM-S have better prediction 
performance than Back 
Propagation Networks (BPN) 

[36] To judge the veracity of the LR, SVM, and RF algorithm in Credit 
Card Fraud Detection  

random under-
sampling 

Binary  A weighted SVM model 
methodology perform best 

[37] To examine highly skewed data on credit card fraud using SVM, 
Naive Bayes, LR, and KNN 

random under-
sampling 

Binary  LR was the most accurate  

[38] Exploring the use of KNN, Naive Bayes, Decision Trees, LR, and 
RF models to forecast the likelihood that a fraudulent credit 
card transaction would occur . 

Imbalanced Dataset Binary 
classification 

Decision Tree Model is 
the best approach  
 

 Algorithms Description 

A Logistics Regression   

1 LR Binary-No SMOTE Logistic Regression with Binary feature configuration and NO-SMOTE application to Dataset 

2 LR Binary-SMOTE Logistic Regression with Binary feature configuration and with SMOTE application to Dataset 

3 LR Multiclass-No SMOTE Logistic Regression with Multiclass feature configuration and No-SMOTE application to Dataset 

4 LR Multiclass-SMOTE  Logistic Regression with Multiclass feature configuration and with SMOTE application to Dataset 

B Shallow Neural Network   

5 SNN Binary-No SMOTE Shallow Neural Network with Binary feature configuration and No-SMOTE application to Dataset 

6 SNN Binary-SMOTE Shallow Neural Network with Binary feature configuration and with SMOTE application to Dataset 

7 SNN Multiclass-No SMOTE Shallow Neural Network with Multiclass feature configuration and No-SMOTE application to Dataset 

8 SNN Multiclass-SMOTE  Shallow Neural Network with Multiclass feature configuration and with SMOTE application to Dataset 

C Deep Neural Network   

9 DNN Binary-No SMOTE Deep Neural Network with Binary feature configuration and No-SMOTE application to Dataset 

10 DNN Binary-SMOTE Deep Neural Network with Binary feature configuration and with SMOTE application to Dataset 

11 DNN Multiclass-No SMOTE Deep Neural Network with Multiclass feature configuration and No- MOTE application to Dataset 

12 DNN Multiclass-SMOTE  Deep Neural Network with Multiclass feature configuration and with SMOTE application to Dataset 

D Naïve Bayes(NB)   

13 NB Binary-No SMOTE Naïve Bayes(NB) with Binary feature configuration and No-SMOTE application to Dataset 

14 NB Binary-SMOTE Naïve Bayes(NB) with Binary feature configuration and with SMOTE application to Dataset 

15 NB Multiclass-No SMOTE Naïve Bayes(NB) with Multiclass feature configuration and No-SMOTE application to Dataset 

16 NB Multiclass-SMOTE  Naïve Bayes(NB) with Multiclass feature configuration and with SMOTE application to Dataset 

E Decision Tree(CART)   

17 CART Binary-No SMOTE Decision Tree(CART) with Binary feature configuration and No-SMOTE application to Dataset 

18 CART Binary-SMOTE Decision Tree(CART) with Binary feature configuration and with SMOTE application to Dataset 

19 CART Multiclass-No SMOTE Decision Tree(CART)with Multiclass feature configuration and No-SMOTE application to Dataset 

20 CART Multiclass-SMOTE  Decision Tree(CART) with Multiclass feature configuration and with SMOTE application to Dataset 

F Random Forest(RF)   

21 RF Binary-No SMOTE Random Forest(RF) with Binary feature configuration and No-SMOTE application to Dataset 
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4 Results and discussions 
The Python 3.7 programming language software was used 

for data analysis, which supports ML methods and data 

conversion and transformation capabilities. The 

simulation of the predictive model for detecting and 

preventing mobile money cyber-attacks was conducted at 

the time of registering the mobile money applicants' cyber 

threat intent prediction based on the applicant's biodata 

registration details to identify an applicant with malicious 

intentions while on-boarding in order to choose the ideal 

machine learning model for the outcome. Performance 

evaluation parameters and metrics were also defined for 

performance measures. 

 

4.1 Result analysis by experiment grouping 

The experiments were performed according to [13]. 

They were grouped into two for each algorithm, with two 

experiments per group, making a total of four experiments 

performed per algorithm. These experiments were done 

with or without rebalancing of the imbalanced dataset 

using SMOTE with the aim of seeking the best performing 

algorithm for the Mobile Money on-boarding process 

cyber threat predictions into multiple classes of 

applicants’ details as compliant, class 0, low risks, class 1, 

and high risks, class 2. 

For Group I experiments, the classifiers were tested 

with their default binary classification capability for 

classifying the classifiers' ability to categorise the 

applicants' records into compliant (zero) and bi-level 

illegitimate registration categories: low risk (1) and high 

risk (2). Before running the algorithms, the dataset was 

treated in two ways after the required preprocessing of 

string and categorical variables with bag of words and 

label and one-hot encoding, respectively. The dataset was 

unbalanced in the distribution of target classifications; 

each algorithm was run on the dataset, and after applying 

SMOTE and No-SMOTE, the dataset was rebalanced. The 

non-application of SMOTE constitutes experiment I, 

while the application of SMOTE before running the 

dataset constitutes experiment II of group I. The dataset 

was divided into a 70% training and 30% testing set. The 

results obtained are shown in Table 3 for Group I 

simulation experiments. 

Overall, the outcome indicated that the dataset's 

balancing properties had a significant impact on the 

findings when the two scenarios were compared for all 

twelve experiments conducted in groups for different 

variants of the six algorithms simulated. Also, datasets 

with SMOTE performed better than when the SMOTE 

operation was not performed on the dataset before running 

the algorithm, except in the case of LR, where a binary 

feature No-SMOTE (accuracy = 0.72, MCC = 0.16) 

performed better than one with SMOTE (accuracy =0.42,  

 

MCC = 0.15), as in Table 3. However, a closer look at the 

confusion matrix for the classification showed that the LR 

just completed a binary classification and not into multiple 

classes of compliant (0), low risk (1), and high risk (2). 

For Group II experiments, as shown in Table 4, these 

experiments test the multi-classification performance of 

the algorithms when the dataset was used with No-

SMOTE and when SMOTE was applied to the unbalanced 

dataset for rebalancing. Again, the multiclass algorithm 

ran on a balanced dataset after the SMOTE application and 

performed better than those with No-SMOTE. In group II 

experiments, Random Forest has the highest performance 

indicator of mcc (0.88), accuracy (0.91), and 

misclassification rate of 0.05. Thus, the overall 

performance of the algorithms was better with the 

multiclass feature enabled and when SMOTE was applied 

to the dataset before algorithm training and testing. The 

ability of the classifiers to classify the dataset showed the 

reliability of the pre-processing processes used by the bag 

of words to string features in the dataset and SMOTE 

applications. Due to the underperformance of the binary 

algorithms, the multiclass feature of the algorithms also 

aids in better performance. 

 

4.2  Result analysis by individual predictive 

machine learning algorithm models  

Each classifier was trained with different 

configurations of the classifiers, such as binary or 

multiclass with the integration of SMOTE and No-

SMOTE for MM applicant fraudulent intent detection and 

classification. For each algorithm, the classifier was 

trained to build the analytical model, and the results 

discussion for each was presented subsequently. Each 

classifier was run five times, and the average of the 

accuracy metrics was taken. 

 

A. Logistics regression (LR) experiments  

Evaluating the classification capability of LR in terms 

of its accuracy and the Mathews Correlation Coefficient 

(MCC) with unbalanced (No-SMOTE) and balanced 

(SMOTE) datasets shows marked differences. The results 

are described as follows: 

 

(i.) Accuracy and MCC: With unbalanced datasets, a 

deceptively high prediction accuracy of 0.72 was 

observed with the default binary classification feature 

of the algorithm for the classified applicant’s dataset 

(into compliant (class 0) and the two categories of 

cyber-threat risks: low risks (class 1) and high risks 

(class 2) in Experiment I of Group I, while with 

balanced datasets, the accuracy dropped to 0.42 in 

Experiment II of Group II, thus showing the true 

algorithm classification performance. This showed 

22 RF Binary-SMOTE Random Forest(RF) with Binary feature configuration and with SMOTE application to Dataset 

23 RF Multiclass-No SMOTE Random Forest(RF) with Multiclass feature configuration and No-SMOTE application to Dataset 

24 RF Multiclass-SMOTE  Random Forest(RF) with Multiclass feature configuration and with SMOTE application to Dataset 
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that the default feature of LR was to do binary 

classification and not a good multi-class classifier as 

the confusion matrix revealed that the classification 

with an unbalanced dataset of 0.72 accuracy only 

classified the dataset into two classes: class 0 and 

class 2. However, when multi-class configuration was 

used with the LR classifier, the performance was 

better with SMOTE and NO-SMOTE as the datasets 

were classified into the three classes: class 0, class 1, 

and class 2. The classification accuracy was high for 

both No-SMOTE (0.71) and SMOTE (0.72). When 

including SMOTE, accuracy (0.72) was the same as 

when there was no SMOTE using the binary logistics 

feature, but with SMOTE, the classifier did classify  

 

Table 3: Machine learning algorithm binary features for cyber threat prediction experiments
 

  
 

MCC Accurac

y 

F1-Score Precisio

n 

Mis-

classificatio
n Rate 

AUC TNR(Sp

ecificity
) 

FPR TPR(Sen

sitivity) 

Runtime 

(min) 

G
ro

u
p

 I
 E

x
p

er
im

en
t 

 I
I 

LR Binary-

SMOTE 

0.15 0.42 0.47 0.59 0.57 0.64 0.71 0.29 0.42 0.0256 

SNN 

Binary-

SMOTE 

0.53 0.67 0.69 0.77 0.33 0.87 0.83 0.17 0.67 0.0117 

DNN 

Binary-

SMOTE 

0.19 0.43 0.49 0.73 0.57 0.64 0.72 0.28 0.43 0.03 

NB Binary-
SMOTE 

0.31 0.54 0.53 0.55 0.46 0.72 0.77 0.23 0.54 0.01 

CART 
Binary-

SMOTE 

0.53 0.68 0.69 0.71 0.32 0.77 0.84 0.16 0.68 0.02 

RF Binary-
SMOTE 

0.86 0.90 0.90 0.92 0.10 0.98 0.95 0.05 0.90 0.18 

G
ro

u
p

 I
 E

x
p

er
im

en
t 

I 

LR Binary-

No SMOTE 

0.16 0.72 0.79 0.92 0.29 0.62 0.76 0.24 0.48 0.0115 

SNN 

Binary-No 

SMOTE 

0.25 0.62 0.63 0.7 0.39 0.69 0.76 0.24 0.49 0.2444 

DNN 
Binary-No 

SMOTE 

0.2 0.71 0.81 0.96 0.29 0.56 0.69 0.31 0.39 0.1400 

NB Binary-

No SMOTE 

0.18 0.69 0.75 0.83 0.31 0.64 0.71 0.29 0.41 0.0100 

CART 

Binary-No 

SMOTE 

0.34 0.74 0.78 0.85 0.26 0.64 0.75 0.25 0.51 0.3900 

RF Binary-

No SMOTE 

0.50 0.79 0.86 0.96 0.21 0.78 0.77 0.23 0.56 0.5300 

 

Table 4: Machine learning algorithm multiclass features for cyber threat prediction experiments                                                        

  
 

MCC Accuracy F1-

Score 

Precisio

n 

Mis-

classificat

ion Rate 

AUC TNR 

(Specifi

city) 

FPR TPR 

(Sensiti

vity) 

Runtime 

(min) 

G
ro

u
p

 I
I 

E
x
p

er
im

en
t 

 I
I 

LR Multiclass-

SMOTE  

0.58 0.72 0.72 0.72 0.28 0.84 0.86 0.14 0.72 0.0857 

SNN Multiclass-

SMOTE  

0.59 0.72 0.72 0.73 0.28 0.87 0.86 0.14 0.72 1.8200 

DNN Multiclass-

SMOTE  

0.43 0.61 0.65 0.76 0.39 0.87 0.80 0.20 0.61 1.3100 

NB Multiclass-

SMOTE  

0.34 0.56 0.56 0.58 0.44 0.74 0.78 0.22 0.56 0.0200 

CART Multiclass-

SMOTE  

0.82 0.88 0.88 0.88 0.12 0.89 0.94 0.06 0.88 0.3300 

RF Multiclass-

SMOTE  

0.88 0.91 0.91 0.93 0.09 0.99 0.95 0.05 0.90 0.400 

G
ro

u
p

 I
I 

E
x
p

er
im

en
t 

I 

LR Multiclass-No 

SMOTE 

0.27 0.69 0.71 0.74 0.31 0.71 0.75 0.25 0.48 0.0156 

SNN Multiclass-

No SMOTE 

0.3 0.72 0.76 0.84 0.28 0.69 0.74 0.26 0.47 1.0100 
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DNN Multiclass-

No SMOTE 

0.3 0.73 0.81 0.92 0.27 0.69 0.72 0.28 0.45 0.5400 

NB Multiclass-No 

SMOTE 

0.24 0.72 0.78 0.88 0.28 0.66 0.72 0.28 0.42 0.0100 

CART Multiclass-

No SMOTE 

0.392 0.733 0.763 0.807 0.267 0.63 0.79 0.21 0.59 1.7400 

RF Multiclass-No 

SMOTE 

0.51 0.79 0.86 0.96 0.21 0.78 0.77 0.23 0.56 1.7000 

  

into distinct three classes, which made the 

performance better in the context of the multi-

classification of cyber threat risks. For a clear 

performance evaluation, MCC was also used to 

substantiate the evaluation. 

The MCC gave a very clear distinction and better 

performance measurements; hence, the LR 

experiment with the best classifier configuration was 

the configuration with Multiclass with SMOTE 

among the four LR experiments performed, which 

had the highest MCC of 0.58 when compared with 

other experiments MCCs of 0.27, 0.15, and 0.16, as 

shown in Table 5 and Figure 1. 

 

(ii.) Precision, recall and F1-score: If the dataset was 

fairly balanced, accuracy as an evaluation metric 

would suffice for a sound conclusion; however, 

precision, recall, and F1 score are good for evaluating 

an imbalanced dataset. The fraud detection dataset 

was unbalanced; hence, to evaluate the effectiveness 

of such a model, examining the precision and recall is 

very important. As presented in Table 5, the precision 

or specificity for the LR binary with No-SMOTE 

classification experiment was 0.76, and the recall or 

sensitivity was 0.48 when compared with the 

multiclass classification logistic regression model 

specificity of 0.86 and sensitivity of 0.72. 

 

(iii.) ROC and predicted probabilities:  The Receiver 

Operating Characteristics (ROC) Area Under Curve 

(AUC) for multiclass LR of 0.84 was also higher than 

for all other LR experiments. This further buttresses 

the fact that the LR classifier (including the SMOTE 

application) provides the best classification 

performance among the various configurations of LR 

experiments performed. The ROC AUC value is 

presented in Table 5 and Figure 2. Thus, SMOTE 

improves the performance of the LR classifiers, 

although the multiclass with LR gave the best 

performance. 

 

 

B. Shallow neural network (SNN) experiments  

Evaluating the classification capability of SNN in 

terms of its accuracy and Mathews Correlation Coefficient 

(MCC) with the unbalanced (No-SMOTE) and balanced 

(SMOTE) dataset shows marked differences, as presented 

in Table 6, Figures 3 and 4. The results are described as 

follows: 

 

(i.) Accuracy and MCC: The accuracy of both 

multiclass experiments remains the highest and 

equal 0.72 among the four experiments performed 

for SNN; however, the MCC value revealed the best 

algorithm with a value of 0.59 for multiclass 

configuration with SMOTE and 0.3 for multiclass 

configuration with No-SMOTE. The MCC thus 

revealed the algorithm configuration with the 

optimal efficiency among the different 

configurations of the SNN experiments for the 

classification into classes 0, 1, and 2. 

 

(ii.) Precision, recall and F1-score: The performance 

parameters of the multi-class with SMOTE 

configuration of the SNN experiments were the 

highest, with a specificity of 0.86, a sensitivity of 

0.72, and an F1-Score of 0.72, which implies it has 

the best performance among the other SNN 

experiment configurations. 

 

(iii.) ROC and predicted probabilities:  The Receiver 

Operating Characteristics (ROC) Area Under 

Curve (AUC) of 0.87 for multiclass SNN was the 

highest for the dataset with the SMOTE 

application, and this was the same for the binary 

configurations. This was the most successful of the 

experiments with No-SMOTE. 

 

 

Figure 1: Different LR configuration results by 

performance parameters. 
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Figure 2: LR performance results for different configurations. 

 

 

Table 5: Performance metrics for LR with (SMOTE)/without SMOTE (No-SMOTE) 
Logistics 

Regression 

MCC 

(-1+1) 

Accurac

y 

F1-

Score 

Precisio

n 

Mis-

Classific
ation 

Rate 

ROC 

AUC 

Specifici

ty 

(TNR) 

FPR Sensitivi

ty 
(TPR) 

FNR Runtime 

(min) 

LR 

Binary-No 
SMOTE 

0.16 0.72 0.79 0.92 0.29 0.62 0.76 0.24 0.48 0.52 0.0115 

LR 
Binary-

SMOTE 

0.15 0.42 0.47 0.59 0.57 0.64 0.71 0.29 0.42 0.58 0.0256 

LR 
Multiclass-

No 

SMOTE 

0.27 0.69 0.71 0.74 0.31 0.71 0.75 0.25 0.48 0.52 0.0156 

LR 

Multiclass-

SMOTE  

0.58 0.72 0.72 0.72 0.28 0.84 0.86 0.14 0.72 0.28 0.0857 

 

Table 6: Performance metrics for SNN with (SMOTE)/without SMOTE (No-SMOTE) 

 

 

 

Shallow Neural 

Network(SNN) 

MCC Accur

acy 

F1-

Score 

Precis

ion 

Mis-

classificati

on Rate 

AUC Specific

ity 

(TNR) 

FPR Sensitiv

ity 

(TPR) 

FNR Runtime 

(min) 

SNN Binary-

No SMOTE 

0.25 0.62 0.63 0.7 0.39 0.69 0.76 0.24 0.49 0.51 0.2444 

SNN Binary-

SMOTE 

0.53 0.67 0.69 0.77 0.33 0.87 0.83 0.17 0.67 0.33 0.0117 

SNN 

Multiclass-No 

SMOTE 

0.3 0.72 0.76 0.84 0.28 0.69 0.74 0.26 0.47 0.53 1.0100 

SNN 

Multiclass-

SMOTE  

0.59 0.72 0.72 0.73 0.28 0.87 0.86 0.14 0.72 0.28 1.8200 
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Figure 3: Different Shallow Neural Network (SNN) configuration results by performance parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Shallow Neural Network (SNN) performance results for different configurations. 

 

C. Deep neural network (DNN) experiments  

Evaluating the classification capability of the DNN 

in terms of its accuracy and the Mathews Correlation 

Coefficient (MCC) with unbalanced (No-SMOTE) and 

balanced (SMOTE) datasets shows marked 

differences, as presented in Table 7 and Figures 5 and 

6. The results are described as follows: 

 

(i.) Accuracy and MCC: For the DNN, the 

classifier's performance was poorer than that of the 

SNN in all scenarios tested. This was evident from 

the accuracy metrics, with the highest accuracy of 

0.71 for the binary and No-SMOTE configurations 

for the classifier, and the algorithm classified the 

dataset into two of the three classes. The multiclass 

with SMOTE configuration had the best 

performance among the DNN experiments 

performed, as revealed by the MCC value of 0.43 

(but with an accuracy of 0.61), which is the highest 

among all the experiments. However, the overall 

performance is weak. 

 

(ii.) Precision, recall and F1-score: The performance 

of the DNN was poorer than that of the SNN when 

compared with SNN performance parameters. The 

multi-class with SMOTE configuration of the 

DNN experiments had a specificity of 0.80, a 

sensitivity of 0.61, and an F1-Score of 0.65, which 

clearly showed a lower performance. 

   

(iii.) ROC and predicted probabilities:  The Receiver 

Operating Characteristics (ROC) Area Under 

Curve (AUC) of 0.87 for multiclass DNN with 

SMOTE was also the same as that of the SNN 

configurations in the multiclass experiment with 

SMOTE. 
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D. Naïve Bayes experiments  

Evaluating the classification capability of Naïve 

Bayes in terms of its accuracy and the Mathews 

Correlation Coefficient (MCC) with unbalanced (No-

SMOTE) and balanced (SMOTE) datasets shows marked 

differences, as presented in Table 8, Figures 7 and 8. The 

results are described as follows: 

 

(i.) Accuracy and MCC: The No-SMOTE 

experiments for Naïve Bayes experiments 

performed better than with SMOTE application in 

terms of accuracy (0.69 and 0.71 for the binary 

No-SMOTE and multiclass with SMOTE, 

respectively); however, the MCC (0.31 and 0.34 

for the binary with SMOTE and multiclass with 

SMOTE, respectively) and confusion matrix 

distributions showed that the multiclass performed 

better for the experiments. This still reinforces the 

fact that accuracy may not always be the best 

performance metric for evaluation. In general, 

Naïve Bayes performed poorly by performance 

metrics; however, it was the fastest algorithm in 

all the experiments performed, taking less than 2 

seconds to run. 

 

(ii.) Precision, recall and F1-score: The specificity 

of 0.78 and the sensitivity of 0.56 reinforce the 

fact that the multiclass configuration with the 

SMOTE application had the best performance out 

of all the Naïve Bayes experiments. 

 

(iii.) ROC and predicted probabilities:  The 

Receiver Operating Characteristics (ROC) Area 

Under Curve (AUC) of 0.74 for multiclass Naïve 

Bayes also highlights that multiclass with SMOTE 

application revealed that the multiclass performed 

the best for Naïve Bayes. 

 

E. Decision tree (classification and regression   

tress- CART) experiments  

 

The CART performed second best overall in the overall 

simulation for MMS cyber threat detection. Evaluating 

the classification capability of the CART algorithm in 

terms of its performance metrics with SMOTE and NO-

SMOTE applied to the dataset for experimenting with the 

performance of CART to classify mobile money 

applicants showed marked differences, as presented in 

Table 9 and Figures 9 and 10. The results are described 

as follows: 

 

(i.) Accuracy and MCC: Decision Tree algorithm 

performed very well with SMOTE application to the 

dataset, with an accuracy of 0.53 for binary and 0.88 

for multiclass configurations within a very reasonable 

time. The multiclass configuration performed overall 

best among the four experiments performed for the 

algorithm, with an MCC of 0.82, which was far above 

any of the experiments for the algorithmic CART. 

The MCC thus further confirms the authority of the 

algorithm's performance. 

 

(ii.) Precision, recall and F1-score: The specificity and 

sensitivity also gave interesting results for CART as 

a high-performing classifier in the research modelling 

scenario for a multiclass CART configuration with 

SMOTE. The specificity was 0.94 and the sensitivity 

was 0.88, which was the highest for the decision tree 

(CART) experiment performed. 

 
(iii.) ROC and predicted probabilities:  The ROC AUC 

of 0.89 for multiclass CART also confirms a 

relatively high performance for decision trees.  

 

 

F. Random forest (RF) experiments  

Random Forest performed the best overall for the 

predictive model. The ensemble classifier, Random 

Forest (RF), performance evaluation with SMOTE and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Different deep neural network (DNN) configuration results by performance parameters. 
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Figure 6: Deep neural network (DNN) performance results for different configurations. 

 

 

 

Table 7: Performance metrics for deep neural network (DNN) with (SMOTE)/without SMOTE (No-SMOTE) 

 
Deep Neural 

Network 
MCC Accur

acy 
F1-

Score 
Precisi

on 
Mis-

classification 

Rate 

AUC Specific
ity(TN

R) 

FPR TRP(Sensit
ivity) 

FNR Runti
me(mi

n) 

DNN Binary-
No SMOTE 

0.2 0.71 0.81 0.96 0.29 0.56 0.69 0.31 0.39 0.61 0.14 

DNN Binary-

SMOTE 

0.19 0.43 0.49 0.73 0.57 0.64 0.72 0.28 0.43 0.57 0.03 

DNN 

Multiclass-No 

SMOTE 

0.3 0.73 0.81 0.92 0.27 0.69 0.72 0.28 0.45 0.55 0.54 

DNN 

Multiclass-

SMOTE  

0.43 0.61 0.65 0.76 0.39 0.87 0.80 0.20 0.61 0.40 1.31 

 

 

 

Table 8: Performance metrics for naïve bayes (NB) with (SMOTE)/without SMOTE (No-SMOTE) 

Naïve 

Bayes(NB) 

MCC Accura

cy 

F1-

Score 

Precisio

n 

Mis-

classification 

Rate 

ROC 

AUC 

TNR(S

pecificit

y) 

FPR TRP(Sens

itivity) 

FNR Runti

me(mi

n) 

NB Binary-No 

SMOTE 

0.18 0.69 0.75 0.83 0.31 0.64 0.71 0.29 0.41 0.59 0.01 

NB Binary-

SMOTE 

+0.31 0.54 0.53 0.55 0.46 0.72 0.77 0.23 0.54 0.46 0.01 

NB Multiclass-

No SMOTE 

+0.24 0.72 0.78 0.88 0.28 0.66 0.72 0.28 0.42 0.58 0.01 

NB Multiclass-

SMOTE  

0.34 0.56 0.56 0.58 0.44 0.74 0.78 0.22 0.56 0.44 0.02 
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Figure 7: Different naïve bayes algorithm 

configuration results by performance 

parameters. 

Figure 8: Naïve bayes performance results for 

different configurations. 

 

Table 9: Performance metrics for decision trees (CART with (SMOTE)/without SMOTE (No-SMOTE) 

Decision 

Tree(CART) 

MCC Accu

racy 

F1-

Score 

Precisi

on 

Mis-

classification 

Rate 

AUC TNR(Sp

ecificity

) 

FP

R 

TPR(Sensit

ivity) 

FN

R 

Runtime(

min) 

CART Binary-No 

SMOTE 

0.34 0.74 0.78 0.85 0.26 0.64 0.75 0.2

5 

0.51 0.4

9 

0.39 

CART Binary-
SMOTE 

0.53 0.68 0.69 0.71 0.32 0.77 0.84 0.1
6 

0.68 0.3
2 

0.02 

CART Multiclass-

No SMOTE 

0.39 0.73 0.763 0.807 0.267 0.63 0.79 0.2

1 

0.59 0.4

1 

1.74 

CART Multiclass-

SMOTE  

0.82 0.88 0.88 0.88 0.12 0.89 0.94 0.0

6 

0.88 0.1

2 

0.33 

 

Figure 9: Different decision trees (CART) 

algorithm configuration results by performance 

parameters. 

 

Figure 10: Decision trees (CART) performance 

results for different configurations. 

 

NO-SMOTE on the dataset, presented an interesting 

experiment as it made good on a promise for the research 

under study. The algorithm showed the best performance 

for both the binary and multiclass algorithm configuration 

capabilities for the multiclass classification problem at 

hand. It performed as the best overall experiment for the 

cyber threat predictive model for MMS applicant cyber 

threats or fraud intent detection and prevention. The 

results are as shown in Table 10, Figures 11 and 12. The 

results are described as follows: 

 

(i.) Accuracy and MCC: RF performed the best overall 

in all the simulation experiments and was 

recommended for predicting mobile money cyber 

threat detection. The algorithm had an accuracy of 

0.91 and an MCC of 0.88 for the multiclass 
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configuration, with a minimal classification error 

rate of 0.09. These are the highest in the overall 

simulation experiments conducted. 

  

(ii.) Precision, recall and F1-score: The high-

performance result for the RF algorithm for the 

predictive model was also shown by the high 

multiclass configuration sensitivity and specificity of 

0.90 and 0.95, respectively, as well as the F1-Score 

of 0.91 in the overall experiments. 

 

(iii.) ROC and predicted probabilities:  The ROC AUC 

for RF was 0.99 for multiclass configurations. This 

is also confirmation that the best algorithm for the 

Mobile Money customer onboarding predictive 

model is the RF classifier. 

4.3  Result analysis by algorithm 

performance comparison   

Comparing all the predictive models and simulation 

experiments in order of performance metrics, as shown in 

Table 11 and Figures 13 and 14, the best algorithm was 

Random Forest. The multiclass configuration of the 

algorithm with SMOTE performed overall best, while the 

binary configuration with SMOTE came in second. 

The RF with SMOTE has the overall highest MCC of 

0.88, accuracy of 0.91, precision of 0.93, the lowest 

classification error of 0.09, a ROC AUC of 0.99, 

specificity or true negative rate (TNR) of 0.95 (95%), and 

sensitivity or recall (TPR) of 0.90 (90%), while the binary 

configuration has an MCC of 0.86, accuracy of 0.90, 

precision of 0.92, the lowest classification error of 0.10, a 

ROC AUC of 0.98, specificity (TNR) of 0.95 (95%), and 

sensitivity or recall (TPR) of 0.90 (90%). However, the 

run duration for binary configuration was faster, with a 

total time of 0.18 min, than the multiclass configuration 

duration of 0.40 min. 

The implication of the narrow differences in 

performance metrics between the multiclass and binary 

configurations with SMOTE reinforced, confirmed, and  

showed that Random Forest (RF) is a default multiclass 

classifier as it was able to predict the cyber threat risk 

levels into multiple classes according to dataset labels. 

5 Conclusion 
In order to prevent mobile money fraud and deal with 

anti-money laundering compliance, machine learning 

(ML) and artificial intelligence (AI) are becoming more 

and more widely accepted as essential. The fight against 

financial crime has always involved computational 

technology, but the development of ML and AI has given 

law enforcement a potent new weapon in the fight against 

mobile money fraud. Financial institutions can better 

understand their customers' demands and risk profiles by 

using AI to spot and highlight problematic conduct, such 

as large or unexpected transactions. Financial institutions 

may greatly enhance their capacity to prevent mobile 

money fraud and handle money laundering issues by 

leveraging the power of AI. This study attempts to develop 

a fraud detection model that will identify warning signs of 

fraud and money laundering in mobile money transfers 

using ML algorithms. More specifically, a collection of 

risk-based indicators was employed in this study to 

forecast the likelihood that a transaction would be 

fraudulent. SMOTE techniques were used to create 

artificial minority class samples in order to prevent dataset 

sub-structures that were either uninformative or poorly 

informative. 

This work significantly contributes to the body of 

knowledge on how to detect suspicious activity in mobile 

money transfers in a number of ways. Theoretically, 

machine learning algorithms that rely on the more 

traditional rule-based benchmark methodology can get 

around the difficulties associated with trying to identify 

illicit transactions. The traditional rule-based benchmark 

technique uses established criteria based on mathematical 

circumstances to identify illicit transactions. 

 
 

 

 

 

Table 10: Performance Metrics for Random Forest with (SMOTE)/without SMOTE (No-SMOTE) 

 

Random 

Forest(RF) 

MCC Accu

racy 

F1-

Score 

Precisi

on 

Misclassificati

on Rate 

AUC TNR 

(Specific

ity) 

FPR TPR 

(Sensitivit

y) 

FNR Runtime 

(min) 

RF Binary-No 

SMOTE 

0.50 0.79 0.86 0.96 0.21 0.78 0.77 0.23 0.56 0.44 0.53 

RF Binary-
SMOTE 

0.86 0.90 0.90 0.92 0.10 0.98 0.95 0.05 0.90 0.10 0.18 

RF Multiclass-

No SMOTE 

0.51 0.79 0.86 0.96 0.21 0.78 0.77 0.23 0.56 0.44 1.7 

RF Multiclass-

SMOTE  

0.88 0.91 0.91 0.93 0.09 0.99 0.95 0.05 0.90 0.10 0.4 
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Figure 12: Random forest performance results 

for different configurations. 

 

 

 

 

 

 

 

 

 

Table 11: Ranking algorithm experimental performance with (SMOTE)/without SMOTE (No-SMOTE) 
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RF Multiclass-

SMOTE  

0.88 0.91 0.93 0.09 0.99 0.95 0.05 0.90 0.10 0.40 

RF Binary-

SMOTE 

0.86 0.90 0.92 0.10 0.98 0.95 0.05 0.90 0.10 0.18 

CART 

Multiclass-

SMOTE  

0.82 0.88 0.88 0.12 0.89 0.94 0.06 0.88 0.12 0.33 

SNN Multiclass-

SMOTE  

0.59 0.72 0.73 0.28 0.87 0.86 0.14 0.72 0.28 1.82 

LR Multiclass-

SMOTE  

0.58 0.72 0.72 0.28 0.84 0.86 0.14 0.72 0.28 0.09 

CART Binary-

SMOTE 

0.53 0.68 0.71 0.32 0.77 0.84 0.16 0.68 0.32 0.02 

SNN Binary-

SMOTE 

0.53 0.67 0.77 0.33 0.87 0.83 0.17 0.67 0.33 0.01 

Figure 14: All algorithm performance results for 

different configurations. 

 

Figure 11: Different random forest algorithm configuration 

results by performance parameters. 

 

Figure 13: Different experimented algorithm 

configuration results by performance parameters 

 

Figure 12: Random Forest performance results for 

different configurations 
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RF Multiclass-

No SMOTE 

0.51 0.79 0.96 0.21 0.78 0.77 0.23 0.56 0.44 1.70 

RF Binary-No 

SMOTE 

0.50 0.79 0.96 0.21 0.78 0.77 0.23 0.56 0.44 0.53 

DNN Multiclass-

SMOTE  

0.43 0.61 0.76 0.39 0.87 0.80 0.20 0.61 0.39 1.31 

CART 

Multiclass-No 

SMOTE 

0.392 0.733 0.807 0.267 0.63 0.79 0.21 0.59 0.41 1.74 

CART Binary-

No SMOTE 

0.34 0.74 0.85 0.26 0.64 0.75 0.25 0.51 0.49 0.39 

NB Multiclass-

SMOTE  

0.34 0.56 0.58 0.44 0.74 0.78 0.22 0.56 0.44 0.02 

NB Binary-

SMOTE 

0.31 0.54 0.55 0.46 0.72 0.77 0.23 0.54 0.46 0.01 

DNN Multiclass-

No SMOTE 

0.3 0.73 0.92 0.27 0.69 0.72 0.28 0.45 0.55 0.54 

SNN Multiclass-

No SMOTE 

0.3 0.72 0.84 0.28 0.69 0.74 0.26 0.47 0.53 1.01 

LR Multiclass-

No SMOTE 

0.27 0.69 0.74 0.31 0.71 0.75 0.25 0.48 0.52 0.02 

SNN Binary-No 

SMOTE 

0.25 0.62 0.7 0.39 0.69 0.76 0.24 0.49 0.51 0.24 

NB Multiclass-

No SMOTE 

0.24 0.72 0.88 0.28 0.66 0.72 0.28 0.42 0.58 0.01 

DNN Binary-No 

SMOTE 

0.2 0.71 0.96 0.29 0.56 0.69 0.31 0.39 0.61 0.14 

DNN Binary-

SMOTE 

0.19 0.43 0.73 0.57 0.64 0.72 0.28 0.43 0.57 0.03 

NB Binary-No 

SMOTE 

0.18 0.69 0.83 0.31 0.64 0.71 0.29 0.41 0.59 0.01 

LR Binary-No 

SMOTE 

0.16 0.72 0.92 0.29 0.62 0.76 0.24 0.48 0.52 0.01 

LR Binary-

SMOTE 

0.15 0.42 0.59 0.57 0.64 0.71 0.29 0.42 0.58 0.03 
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