High-level synthesis and optimization of video signal processing IP

Tadej Skuber, Andrej Trost, Andrej Zemva

Faculty of Electrical Engineering, University of Ljubljana, Slovenia
E-mail: ts7305@student.uni-lj.si

Abstract. Experiment described in the paper stud-
ies design methodology by implementing image rotation
with bilinear interpolation. Algorithm is firstly coded and
tested in high level language (C). Code is than converted
to RTL design using special commands (directives). To
reach desired result latency and small circuit size, code
style and directives are experimented with. Effects of dif-
ferent fixed-point decimal places is also analyzed.

1 Introduction

Advanced designs used in today’s increasingly complex
electronic products are stretching the boundaries of den-
sity and performance. They create a challenge for design
teams to hit a target release window within their allo-
cated budget. A productive methodology for addressing
these design challenges is one where more time is spent
at higher levels of abstraction, where verification time is
faster and productivity gain is the greatest [1].

The main goal of this paper is to use High Level Syn-
thesis (HLS) to find algorithm with optimal performance,
from the choice of multiple versions of known algorithm
for image rotation, evaluating performance and resource
use. The usage of HLS enables us a fast way of checking
both criteria without much coding effort.

Image rotation and translation are widely used oper-
ations in image processing with possible parallelism po-
tential. The only problem is a need for additional resam-
pling algorithm.

In computer vision and image processing, bilinear in-
terpolation is one of the basic resampling techniques. It
can be used where perfect image transformation with pixel
matching is impossible, so that one can calculate and as-
sign appropriate intensity values to pixels. Unlike other
interpolation techniques, such as nearest-neighbor inter-
polation and bicubic interpolation, bilinear interpolation
uses values of only the 4 nearest pixels, located in diag-
onal directions from a given pixel, in order to find the
appropriate color intensity values of chosen pixel [2].

2 Rotation and bilinear interpolation

Used algorithm iterates over resulting image in x’ and 3’
direction. For every pixel (z’,y’) it looks where does it
mirror in original image (z,y) (Fig. 1). Algorithm uses

ERK'2018, Portoroz, 17-20 17

the following formula:

- (] -n)as [o

_lagop aio| _ | cos(@) sin(h)
A= {am an] B {— sin(6) cos(&)} 2)
[t] [OIn/2 -t
=)= lona] o

Matrix 7T translates original image for ¢14 pixels in
x direction and for to4 pixels in y direction. Rotation is
handled by matrix A, which rotates image for for angle ¢
in anti-clock wise direction. Il and Iy, are constants
that represent original image (Input Image or I7) width
and height. Constants Oy and Oy represent width
and height of Output Image (O1).

Getting values from source

Figure 1: Representation of algorithm operation [3].

Image transformation does not result in integer co-
ordinates values of the pixels. Therefore bilinear inter-
polation is used to find appropriate pixel values at given
coordinates. Pixel color value f(z,y) is calculated us-
ing the four neighbor pixels color values (Fig. 2) by the
following formula:

e == [fin) [@

Values f(0,0), f(1,0), f(0,1), f(1,1) are neighbor
pixel color values. Variables x and y are distances of cal-
culated (, y) from the nearest integer coordinate value.

Formula is applied to each of three RGB (Red, Green
and Blue) pixel colors, giving three f(z,y) result values
that are combined in one piece of data.

(0,0) (1,0)
O o

x,v)

0 o
(0,1) (1,1)
® =0 +0 +

o] +0

Figure 2: Geometric visualization of bilinear interpola-
tion [2].

2.1 Ccode

The following code (Lst. 1) was firstly used to test the al-
gorithm and asses performance of HLS (High Level Syn-
thesis).

1 | typedef int cnt_t;

2 | typedef ap_fixed <32, 16> fix_t;

3 | typedef ap_uint <24> col_t;

4

5 | void bilinear (

6 | col_t input_image[II_H*II_-W],

7 | col_t output_.image[OI_HxOI.W],

8 | fix_-t A[4],

9 | fix-t T[2]){

10 | ...

11 | loopi: for (cnt-t i = 0; i < OL.H; i++){
12 | loopj: for (cnt_-t j = 0; j < OLW; j++){
13

14 |x = ((fix-t)(i) — OI.H.2 — T[1])*(A[0]) +
15 | ((fix-t)(j) — OLLW2 — T[0]) *=(A[1]) + II_H.2;
16 |y = ((fix_-t)(i) — OILH.2 — T[1]) *(A[2]) +
17 | ((fix_t)(j) — OLLW.2 — T[0])*(A[3]) + II.W_2;

19 |if ((x0 >= 0 && y0 >= 0) &&
20 | (x1 < II_.H && yl < I1-W)){
21 |dx = x — (fix_t)(x0);

22 |dy =y — (fix_t)(y0);

23 | dx.dy = dxx*dy;

25 | loopk: for (cnt-t k = 0; k < 3; k++){
26 | shift = k << 3;

28 | output_image[i*OLLW + j] |= ((col_t)(

29 | (fix-t)(((input-image[x0 = II.-W + y0]) &

30 | (col_t)(0xFF << (shift))) >> (shift))=*

31 | (1+dx.dy—dx—dy)+

32 | (fix-t)(((input_.image[x] = II_-W + y0]) &

33 | (col-t)(0OxFF << (shift))) >> (shift))*(dx—dx_dy) +
34 | (fix-t)(((input-image[x0 * II.-W + yl]) &

35 | (col_t)(0xFF << (shift))) >> (shift))*(dy—dx_dy) +
36 | (fix_-t) (((input_.image[x]l * II.W + yl]) &

37 | (col_t)(0OXxFF << (shift))) >> (shift))*dx_dy))<<

38 | (shift);

Listing 1: Basic unmodified C code.

Main algorithm input is 1D array input_image of size
II_H*II_W, with each 24 bit element. This array contains
2D image that is transformed into single row. Other in-
puts are matrix A and T, containing information of image
rotation and translation. Output is rotated and translated
image output_image with size OI_H*OI_W, each element
also being 24 bits in size.

The RGB color values are coded in 24 bit ap_uint type
variables with identifier type col_t, giving each color a
standard 8 bit value. Variables with identifier fix_t are of

18

type ap_fixed and are used for calculations where decimal
places are needed.

Basic algorithm implementation loops through result-
ing image with two for loops, each pixel assigned (with
coordinates (4, j)) a proper pixel value form original im-
age (with coordinates (z,y)). Pixel color calculation is
done with bilinear interpolation according to equation (4).

3 Directives

Using Vivado HLS compiler directives, we can assist it
in mapping C/C++ code to hardware [6]. In design four
directives were used, unroll, pipeline, interface and ar-
ray reshape. Unroll was used in for loop “loopk™, for
calculation of the individual RGB color value. Loops
”loopi” and “’loopj” are too large for unrolling, so direc-
tive was not used here. Directive pipeline was used on all
loops, reducing the initiation interval for loops by allow-
ing the concurrent execution of operations [5]. Directive
interface with argument ap_memory was used on func-
tion array parameters, for implementation of arguments
as standard RAM interface. Images were then conve-
niently stored in RAM. Array reshape was used for par-
allel access to data in RAM.

Algorithm synthesis settings were set for ZedBoard
using Vivado HLS 2017.4. Synthesis clock period was
set to default 10 ns, and implementation was done in C
and supports various input (II_'H being height and II_-W
width) and output (OI_H and OI_W) image sizes. For
implementation, standard test image size of 512x512 was
used.

Results of using different directives are visible in the
following table:

DIRECTIVE LATENCY/INTERVAL
/ 8127489
only pipeline and unroll 524299
all directives 524299

Table 1: Latency when using different directives.

It can be seen(Tab. 1) that it is possible to achieve la-
tency of about two clock cycles per pixel (512%512%2 =
524288), but it can also be noticed that additional direc-
tives (interface memory and array reshape) do not help to
decrease latency. Problem is that only one RAM array el-
ement can be accessed in one clock cycle. Solution would
be in loading multiple pixel data in one read cycle, and
since input data repeats when iterating true image pixels.
This can be used to lower latency to one clock cycle per
pixel (Lst. 2).

4 Code modification

Code modification was done so that it does consider rep-
etition of data input [11]. That was done with 48 bit data
input instead of 24. Image data was so divided in one ar-
ray of size II_W/2*II_H. Each element of array therefore
includes 2 pixel data. This small change in code gives us
desired clock cycles per pixel. For image size 512 * 512
giving us latency of 262155 (262155/(512 x 512) ~ 1).

But this method is only applicable for images of size
2" 2™ For all other sizes latency is the same. Algorithm
with different image size inputs has latency of at least
II_H « 11 W % 2. The test with image size 650 * 975 has
latency of 2535038 (2535038/(650%975) ~ 4), or image
of size 640 x 540 has 691235 (2535038 /(640 x 540) ~ 2)
clock cycles of latency. This modification works only
when directive array reshape is applied.

basic modified

DSP48E | 64/29% 64/29%
FF 2620/2% | 3135/2%
LUT 7690/14% | 7295/13%

Table 2: Resources used by different algorithms. Both
using 32 bit fixed point numbers with 16 bits for calcula-
tions.

1

2 | if((y0 & 0x1) == (cnt-t)(0)){

3 | temp-image[0] =

4 | (color_t)(input_-image[x0 * II_-W/2 + (y0 >> 1)]);

5 | temp_-image[l] =

6 | (color_t)(input.image[x0 * II_-W/2 + (y0 >> 1)] >>
24);

7 | temp-image[2] =

8 | (color_t)(input_image[x] * II-W/2 + (y0>> 1)]);

9 | temp_-image[3] =

0 | (color_t)(input.image[x] * II_-W/2 + (y0 >> 1)] >>
24);

11 | }else{

12 | temp-image[0] =

13 | (color_t)(input-image[x0 * II-W/2 + (y0 >> 1)] >>

24);

14 | temp_image[l] =

15 | (color_t)(input_image [x0 * II_-W/2 + (yl >> 1)]);

16 | temp-image[2] =

17 | (color_t)(input-image [x1 * II-W/2 + (y0 >> 1)] >>

24);

18 | temp-image[3] =

19 | (color_t)(input_image[x]l * II-W/2 + (y1 >> 1)]);

20 |}

22 | loopk: for (cnt_-t k = 0; k < 3; k++) {

23 | shift = k << 3;

24 | temp-out[k] = ((color_t)(

25 | (fixed_-t) (((temp-image[0]) & (color-t)(0xFF << (
shift)))

26 |>> (shift))*(l+dx_.dy—dx—dy) +

27 | (fixed_t) (((temp-image[2]) & (color_t)(0xFF << (
shift)))

28 |>> (shift))*(dx—dx_dy) +

29 | (fixed_t) (((temp_image[1]) & (color_t)(0xFF << (
shift)))

30 [>> (shift))*(dy—dx_dy) +

31 | (fixed-t) (((temp-image[3]) & (color-t)(0xFF << (
shift)))

32 |>> (shift))xdx_dy))<<(shift);

Listing 2: Modified C code.

Use of resources is visible in table 2. It can be seen
that there are no major differences in use of resources
between basic and modified algorithm for image of size
512 % 512.

5 Effects of fixed point

Effects of using fixed point, instead of floating point, were
also studied. Different number of fixed point decimal bits
were used to see the effects on image quality. For assess-
ment of image quality fixed point images were compared
to floating point image. Code was only slightly changed
(Lst. 3).

19

Figure 3: Fixed point images with 1, 2, 3 and 16 decimal
bits of accuracy.

MSE =

I Oy .12
p—— ;;[I(%J) K@i, j)" 4

Results of comparison are given in Table 4. Image
comparison was done with two algorithms, Mean Squared
Error MSE) and Structural Similarity Measure (SSIM)
[6]. MSE was simply implemented according equation 5.
More complicated image assessment with SSIM [7] was
done using existing python library [9]. For simplifying

image quality estimation, gray-scale image was used.

1 | typedef int cnt_t;
2 | //typedef ap_fixed <32, 16> fix_t;
3 | typedef float fix_t;
4 | typedef ap_uint <24> col_t;
50 ...

Listing 3: Changing fixed point to floating point to
compare images.

NDB | DSP48E | FF | LUT
8 17 2423 | 2423
9 17 2467 | 5982
10 17 2696 | 6452
11 17 2724 | 6826
12 17 2778 | 7014
13 17 2836 | 7188
14 23 2894 | 7324
15 43 2820 | 7351
16 51 3092 | 7334
17 51 2916 | 7332
18 51 2964 | 7311

Table 3: Resources used when changing number of fixed
point bits. Using 10 bits for integer part and NDB for
decimal part.

As can be seen in Fig. 3 and Tab. 4, image quality
quickly becomes sufficient with the use of more than 8

decimal bits. Image distortion is visible only if a few dec-
imal bits are being used. Assessment methods used en-
able insight of image quality, revealing that use of more
bits does not significant add to image quality. But in-
creasing the number of fixed point bits has an effect on
resource use (Tab. 3), mainly on DSP48E blocks (FFs
and LUTs are not greatly effected).

NDB | MSE | SSIM
1 4782 | 0.32853
2 4556 | 0.32055
3 2202 | 0.47513
4 951 | 0.60306
5 590 | 0.68887
6 230 | 0.81405
7 98 0.90796
8 43 0.96283
9 9.77 | 0.98872
10 1.56 | 0.99701
11 0.41 | 0.99887
12 0.13 | 0.99948
13 0.06 | 0.99967
14 | 0.029 | 0.99988
15 | 0.014 | 0.99993
16 | 0.011 | 0.99994
17 | 0.005 | 0.99997
18 | 0.002 | 0.99999

Table 4: Results with different Number of Decimal
Bits(NDB). Using 10 bits for integer part.

6 CONCLUSIONS

As shown in this paper, HLS is useful at development of
digital hardware design. As demonstrated in this experi-
ment, algorithm that would take bigger effort to code in
HDL (Hardware Description Language) language such as
VHDL, can easily be implemented. Doing so with use of
only a few lines of simple C code and some directives.

Important thing to consider when using HLS tool is
that C code synthesis output does not always meet our
idea of hardware. Change of hardware design can be
made by exploiting directives. Use of directives like un-
roll or pipeline can for instance increase algorithm paral-
lelism and shorten latency. More drastic and optimized
change in hardware design usually requires slightly dif-
ferent coding style. For instance, Vivado HLS only man-
aged to reduce latency after image array elements were
grouped together.

One disadvantage of HLS is definitely unreadable HDL
language code at the end of synthesis. Regardless of rep-
resentation, the best algorithms for hardware realization
are not necessarily the same as those used in software.
While HLS tools will produce hardware for realizing the
algorithm, there may be better or more appropriate algo-
rithms [10].

20

References

[1] UltraFast High-Level Productivity Design Methodology
Guide, Xilinx, UG1197 (v2018.2) June 6, 2018.

(2]

Bilinear interpolation, Wikipedia,
https://en.wikipedia.org/wiki/Bilinear_interpolation

[3] Image Rotation With Bilinear Interpolation,
http://polymathprogrammer.com/2008/10/06/image-

rotation-with-bilinear-interpolation/

[4] SDAccel Development Environment Help, HLS Pragmas,
https://www.xilinx.com/html_docs/xilinx2018_1/sdaccel _doc/

1jd1517252127848.html/

Vivado Design Suite User Guide, High-Level Synthesis,
Xilinx, UG902 (v2014.1) May 30, 2014.

(5]

[6] Xilinx Vivado HLS Beginners Tutorial,
https://medium.com/@chathura.abeyrathne.lk/xilinx-
vivado-hls-beginners-tutorial-custom-ip-core-design-for-

fpga-59876d5a4119

How-To: Python Compare Two Images,
https://www.pyimagesearch.com/2014/09/15/python-
compare-two-images/

Zhou Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Im-
age Quality Assessment: From Error Visibility to Struc-

tural Similarity, IEEE Transactions on Image Processing,
Volume: 13, Issue: 4, April 2004.

(71

(8]

[9] Image processing in Python, http://scikit-image.org/

[10] The Advantages and Limitations of High Level Synthesis
for FPGA Based Image Processing.

[11] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer,
Parallel Programming for FPGAs, May 11, 2018.

