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Abstract. This is a discussion on fermion fields, the internal degrees of freedom of which are
described by either the Grassmann or the Clifford anticommuting ”coordinates”. We prove
that both fields can be second quantized so that their creation and annihilation operators
fulfill the requirements of the commutation relations for fermion fields. However, while
the internal spins determined by the generators of the Lorentz group of the Clifford objects
Sab and S̃ab (in the spin-charge-family theory Sab determine the spin degrees of freedom
and S̃ab the family degrees of freedom) are half integer, the internal spin determined by
Sab (expressible with Sab + S̃ab) is integer. Nature ”made” obviously the choice of the
Clifford algebra, at least in the so far observed part of our universe. We discuss here the
quantization — first and second — of the fields, the internal degrees of freedom of which are
functions of the Grassmann coordinates θa and their conjugate momenta, as well as of the
fields, the internal degrees of freedom of which are functions of the Clifford γa. Inspiration
comes from the spin-charge-family theory ([1,2,9,3], and the references therein), in which
the action for fermions in d-dimensional space isequal to

∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c.,

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα. We write the

basic states as products of those either Grassmann or Clifford objects, which allow second
quantization for fermion fields, and look for the action and solutions for free fields also in the
Grassmann case in order to understand why the Clifford algebra ”wins in the competition”
for the physical (observable) degrees of freedom.

Povzetek. Avtorja obravnavata razliko med fermionskimi polji, katerih interne prostostne
stopnje opišemo bodisi z Grassmannovimi bodisi s Cliffordovimi antikomutirajočimi “ko-
ordinatami”. Dokažeta, da lahko v obeh primerih poiščemo kreacijske in anihilacijske
operatorje, ki zadoščajo komutacijskim relacijam za fermionska polja v drugi kvantizaciji.
Obe vrsti opisa fermionskih polj se vseeno bistveno razlikujeta: notranji spini, določeni
z generatorji Lorenztove grupe Cliffordovih objektov Sab in S̃ab (v teoriji spinov-nabojev-
družin določajo Sab spinsko kvantno število ter s tem spine in naboje kvarkov in leptonov,
S̃ab pa določajo družinska kvantna števila), imajo polštevilčen spin, medtem ko je notanji
spin, ki ga določajo Sab (izrazljivi z Sab + S̃ab), celoštevilčen. Narava je očitno “izbrala”
Cliffordovo algebro (vsaj v opazljivem delu vesolja). Avtorja obravnavata prvo in drugo
kvantizacijo polj, katerih notranje prostostne stopnje opišeta s funkcijami Grassmannovih

? This article is the expanded part of the talk presented by N.S. Mankoč Borštnik at the
21st Workshop ”What Comes Beyond the Standard Models”, Bled, 23 of June to 1 of July,
2018.
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176 N.S. Mankoč Borštnik and H.B.F. Nielsen

koordinat θa in ustreznih konjugiranih momentov, pa tudi polja, katerih notranje prostostne
stopnje so opisane s funkcijami Cliffordovih koordinat γa. Uporabo za opis fermionov
v Grassmannovem prostoru je navdihnila teorija spinov-nabojev-družin ([1,2,9,3], in refer-
ence v njih), v kateri akcijo v d-razsežnem prostoru opiše eden od avtorjev (N.S.M.B.) z∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c., s kovariantnim odvodom p0a = fαap0α + 1

2E
{pα, Ef

α
a}−,

p0α = pα−
1
2
Sabωabα−

1
2
S̃abω̃abα. Bazna stanja iščeta kot produkt bodisi Grassmannovih

bodisi Cliffordovih ”koordinat”, ki dopuščajo drugo kvantizacijo, ponudita akcijo za prosta
polja tudi v primeru Grassmannovih koordinat, da bi bolje razumela, zakaj je v tekmi za
fizikalne prostostne stopnje “zmagala” Cliffordova algebra.

Keywords: Second quantization of fermion fields, Spinor representations, Kaluza-
Klein theories, Discrete symmetries, Higher dimensional spaces, Beyond the stan-
dard model
PACS:11.30.Er,11.10.Kk,12.60.-i, 04.50.-h

9.1 Introduction

This paper is to look for the answers to the questions: Why our universe ”uses” the
Clifford rather than the Grassmann coordinates, although both lead in the second
quantization procedure to the anti-commutation relations required for fermion
degrees of freedom? Is the answer that the Clifford degrees of freedom offer the
appearance of families, the half integer spin and the charges as observed so far for
fermions, while the Grassmann coordinates offer the groups of (isolated) integer
spin states with the charges in the adjoint representations and no families? Can the
choice of the Clifford degrees of freedom explain why the simple starting action of
the spin-charge-family theory of one of us (N.S.M.B.) [9,3,5,8,4,6,7] is doing so far
extremely well in manifesting the observed properties of the fermion and boson
fields in the observed low energy regime?

The questions are too demanding that this paper could offer the answers. We
are trying only to make first steps towards understanding them.

Our working hypothesis is that ”nature knows all the mathematics”, accordingly
therefore also both — the Grassmann and the Clifford ”coordinates”. In a trial to
understand why Grassmann space ”was not the choice of nature” to describe the
internal degrees of freedom of fermions, we see that γa’s and γ̃a’s of the spin-
charge-family theory enable to describe not only the spin and charges of fermions,
but also the existence of families of fermions (in the first and second quantized
theory of fields).

This work is a part of the project of both authors, which includes the fermion-
ization procedure of boson fields or the bosonization procedure of fermion fields,
discussed in Refs. [11,12,14] for any dimension d (by the authors of this contri-
bution, while one of them, H.B.F.N. [13], has succeeded with another author to
do the fermionization for d = (1 + 1)), and which would hopefully help to better
understand the content and dynamics of our universe.

In the spin-charge-family theory [9,3,5,8,4,6,7] — which offers explanations
for all the assumptions of the standard model, with the appearance of families, the
scalar higgs and the Yukawa couplings included, offering also the explanation for
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9 Why Nature Made a Choice of Clifford and not Grassmann Coordinates? 177

the matter-antimatter asymmetry in our universe and for the appearance of the
dark matter — a very simple starting action for massless fermions and bosons in
d = (1 + 13) is assumed, in which massless fermions interact with only gravity,
the vielbeins fαa (the gauge fields of moments pa) and the two kinds of the spin
connections (ωabα and ω̃abα, the gauge fields of the two kinds of the Clifford
algebra objects γa and γ̃a, respectively).

A =

∫
ddx E

1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (9.1)

with p0a = fαap0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα and

R = 1
2
{fα[afβb] (ωabα,β − ωcaαω

c
bβ)} + h.c., R̃ = 1

2
{fα[afβb] (ω̃abα,β −

ω̃caα ω̃
c
bβ)}+ h.c.. The two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ ,

{γa, γ̃b}+ = 0 . (9.2)

anticommute (γa and γ̃b are connected with the left and the right multiplication of
the Clifford objects, there is no third kind of the Clifford operators). One kind of the
objects, the generators Sab = i

4
(γa γb − γb γa), determines spins and charges of

spinors of any family, another kind, S̃ab = i
4
(γ̃a γ̃b−γ̃b γ̃a), determines the family

quantum numbers. Here 1 fα[afβb] = fαafβb− fαbfβa. There are correspondingly
two kinds of infinitesimal generators of the Lorentz transformations in the internal
degrees of freedom — Sab for SO(13, 1) and S̃ab for S̃O(13, 1) — arranging states
into representations.

The scalar curvatures R and R̃ determine dynamics of the gauge fields — the
spin connections and the vielbeins, which manifest in d = (3+ 1) all the known
vector gauge fields as well as the scalar fields [5] which explain the appearance
of higgs and the Yukawa couplings, provided that the symmetry breaks from the
starting one SO(13, 1) to SO(3, 1)× SU(3)×U(1).

The infinitesimal generators of the Lorentz transformations for the gauge
fields — the two kinds of the Clifford operators and the Grassmann operators —
operate as follows, Eq. (9.25)

{Sab, γe}− = −i (ηae γb − ηbe γa) ,

{S̃ab, γ̃e}− = −i (ηae γ̃b − ηbe γ̃a) ,

{Sab, θe}− = −i (ηae θb − ηbe θa) ,

{Mab, Ad...e...g}− = −i (ηaeAd...b...g − ηbeAd...a...g) , (9.3)

1 fαa are inverted vielbeins to eaα with the properties eaαfαb = δab, e
a
αf
β
a = δβα, E =

det(eaα). Latin indices a, b, ..,m, n, .., s, t, .. denote a tangent space (a flat index), while
Greek indices α, β, .., µ, ν, ..σ, τ, .. denote an Einstein index (a curved index). Letters from
the beginning of both the alphabets indicate a general index (a, b, c, .. and α, β, γ, .. ),
from the middle of both the alphabets the observed dimensions 0, 1, 2, 3 (m,n, .. and
µ, ν, ..), indexes from the bottom of the alphabets indicate the compactified dimensions
(s, t, .. and σ, τ, ..). We assume the signature ηab = diag{1,−1,−1, · · · ,−1}.
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where Mab are defined by a sum of Lab plus either Sab or S̃ab, in the Grassmann
case Mab is Lab + Sab, which appear to be Mab= Lab + Sab + S̃ab, as presented
later in Eq. (9.26).

We discuss in what follows the first and the second quantization of the fields,
the internal degrees of freedom of which are determined by the Grassmann coor-
dinates θa, as well as of the fields, the internal degrees of freedom of which are
determined by the Clifford coordinates γa (or γ̃a) in order to understand why
”nature has made a choice” of fermions of spins and charges (describable in the
spin-charge-family theory by subgroups of the Lorentz group expressible with the
generators Sab) in the fundamental representations of the groups (which interact
in the spin-charge-family theory through the boson gauge fields — the vielbeins
and the spin connections of two kinds), rather than of fermions with the integer
spins and charges. We choose correspondingly either θa’s or γa’s (or γ̃a’s, either
γa’s or γ̃a’s [6,7,9]) to describe the internal degrees of freedom of fields.

In all these cases we treat free massless fields; masses of the fields in d =

(3+ 1) are in the spin-charge-family theory due to their interactions with the grav-
itational fields in d > 4, described by the scalar vielbeins or spin connection
fields [[1,2,9,3,5,8,4,6,7], and the references therein].

9.2 Observations helping to understand why Clifford algebra
manifests in the observable d = (3+ 1)

We present in this section properties of fields with the integer spin in d-dimensional
space, expressed in terms of the Grassmann algebra objects, and the spinor fields
with the half integer spin, expressed in terms of the Clifford algebra objects. Since
the Clifford algebra objects are expressible with the Grassmann algebra objects
(Eqs. (9.17, 9.18)), the norms of both are determined by the integral in Grassmann
space, Eqs. (9.28, 9.31) 2.

a. Fields with the integer spin in Grassmann space

A point in d-dimensional Grassmann space of real anticommuting coordinates
θa, (a = 0, 1, 2, 3, 5, . . . , d), is determined by a vector

{θa} = (θ0, θ1, θ2, θ3, θ5, . . . , θd).

A linear vector space over the coordinate Grassmann space has correspondingly
the dimension 2d, due to the fact that (θai)2 = 0 for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

Correspondingly are fields in Grassmann space expressed in terms of the
Grassmann algebra objects

B =

d∑
k=0

aa1a2...ak θ
a1θa2 . . . θak |φog > , ai ≤ ai+1 , (9.4)

2 These observations might help also when fermionizing boson fields or bosonizing fermion
fields.
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9 Why Nature Made a Choice of Clifford and not Grassmann Coordinates? 179

where |φog > is the vacuum state, here assumed to be |φog >= |1 >, so that
∂
∂θa

|φog >= 0 for any θa. The Kalb-Ramond boson fields aa1a2...ak are antisym-
metric with respect to the permutation of indexes, since the Grassmann coordinates
anticommute

{θa, θb}+ = 0 . (9.5)

The left derivative ∂
∂θa

on vectors of the space of monomials B(θ) is defined as
follows

∂

∂θa
B(θ) =

∂B(θ)
∂θa

,{
∂

∂θa
,
∂

∂θb

}
+

B = 0 , for all B . (9.6)

Defining pθa = i ∂
∂θa

it correspondingly follows

{pθa, pθb}+ = 0 , {pθa, θb}+ = i ηab , (9.7)

The metric tensor ηab (= diag(1,−1,−1, . . . ,−1)) lowers the indexes of a vector
{θa}: θa = ηab θ

b, the same metric tensor lowers the indexes of the ordinary vector
xa of commuting coordinates.

Defining 3

(θa)† =
∂

∂θa
ηaa = −i pθaηaa , (9.8)

it follows

(
∂

∂θa
)† = ηaa θa , (pθa)† = −iηaaθa . (9.9)

Making a choice for the complex properties of θa, and correspondingly of ∂
∂θa

, as
follows

{θa}∗ = (θ0, θ1,−θ2, θ3,−θ5, θ6, ...,−θd−1, θd) ,

{
∂

∂θa
}∗ = (

∂

∂θ0
,
∂

∂θ1
,−

∂

∂θ2
,
∂

∂θ3
,−

∂

∂θ5
,
∂

∂θ6
, ...,−

∂

∂θd−1
,
∂

∂θd
) , (9.10)

it follows for the two Clifford algebra objects γa = (θa + ∂
∂θa

), and γ̃a = i(θa −
∂
∂θa

), Eqs. (9.17, 9.18), that γa is real if θa is real, and imaginary if θa is imaginary,
while γ̃a is imaginary when θa is real and real if θa is imaginary, just as it is
required in Eq. (9.23).

We define here the commuting object γaG, which will be useful to find the
action for Grassmann fermions, Eq. (9.37), and the appropriate discrete symmetry
operators for this purpose — (CG , TG , PG) in ((d− 1) + 1)-dimensional space-time

3 In Ref. [2] the definition of θa† was differently chosen. Correspondingly also the scalar
product needed a (slightly) different weight function in Eq. (9.28).
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and (CN , TN , PN ) in (3+ 1) space-time — while following the definitions of the
discrete symmetry operators in the Clifford algebra case [21]

γaG = (1− 2θaηaa
∂

∂θa
)

= −iηaa γaγ̃a ,

{γaG, γ
b
G}− = 0 . (9.11)

Index a is not the Lorentz index in the usual sense. γaG are commuting operators —
{γaG, γ

b
G}− = 0 for all (a, b) — as expected. They are real and Hermitian.

γa†G = γaG , (γaG)
∗ = γaG . (9.12)

Correspondingly it follows: γa†G γ
a
G = I, γaGγ

a
G = I. I represents the unit operator.

By introducing [2] the generators of the infinitesimal Lorentz transformations
in Grassmann space as

Sab = (θapθb − θbpθa) ,

(9.13)

one finds

{Sab,Scd}− = i{Sadηbc + Sbcηad − Sacηbd − Sbdηac} ,

Sab† = ηaaηbbSab . (9.14)

The basic states in Grassmann space can be arranged into representations with
respect to the Cartan subalgebra of the Lorentz algebra as presented in Ref. [2,15].
The state in d-dimensional space, for example, with all the eigenvalues of the
Cartan subalgebra of the Lorentz group of Eq. (9.84) equal to either i or 1 is:
(θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|φog >, with |φog >= |1 >. All the
states of the representation, which start with this state, follow by the application
of those Sab, which do not belong to the Cartan subalgebra of the Lorentz algebra.
S01, for example, transforms (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|φog >
into (θ0θ3+ iθ1iθ2)(θ5+ iθ6) · · · (θd−1+ iθd)|φog >, while S01− iS02 transforms
this state into (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|φog >.

b. Fermion fields with the half integer spin and the Clifford objects

Let us present as well the properties of the fermion fields with the half integer
spin, expressed by the Clifford algebra objects

F =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc > , ai ≤ ai+1 , (9.15)

where |ψoc > is the vacuum state. The Kalb-Ramond fields aa1a2...ak are again in
general boson fields, which are antisymmetric with respect to the permutation of
indexes, since the Clifford objects have the anticommutation relations, Eq. (9.2),

{γa, γb}+ = 2ηab . (9.16)
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A linear vector space over the Clifford coordinate space has again the dimension
2d, due to the fact that (γai)2 = ηaiai for any ai ∈ (0, 1, 2, 3, 5, . . . , d).

One can see that γa are expressible in terms of the Grassmann coordinates
and their conjugate momenta as

γa = (θa − i pθa) . (9.17)

We also find γ̃a

γ̃a = i (θa + i pθa) , (9.18)

with the anticommutation relation of Eq. (9.16) for either γa and γ̃a

{γ̃a, γ̃b}+ = 2ηab , {γa, γ̃b}+ = 0 . (9.19)

Taking into account Eqs. (9.8, 9.17, 9.18) one finds

(γa)† = γaηaa , (γ̃a)† = γ̃aηaa ,

γaγa = ηaa , γa(γa)† = I , γ̃aγ̃a = ηaa , γ̃a(γ̃a)† = I , (9.20)

where I represents the unit operator. Making a choice for the θa properties as
presented in Eq. (9.10), it follows for the Clifford objects

{γa}∗ = (γ0, γ1,−γ2, γ3,−γ5, γ6, ...,−γd−1, γd) ,

{γ̃a}∗ = (−γ̃0,−γ̃1, γ̃2,−γ̃3, γ̃5,−γ̃6, ..., γ̃d−1,−γ̃d) , (9.21)

All three choices for the linear vector space — spanned over either the coordi-
nate Grassmann space, or over the vector space of γa, as well as over the vector
space of γ̃a — have the dimension 2d.

We can express Grassmann coordinates θa and momenta pθa in terms of γa

and γ̃a as well 4

θa =
1

2
(γa − iγ̃a) ,

∂

∂θa
=
1

2
(γa + iγ̃a) . (9.22)

It then follows ∂
∂θb

θa|1 >= ηab|1 >.
Correspondingly we can use either γa or γ̃a instead of θa to span the vec-

tor space. In this case we change the vacuum from the one with the property
∂
∂θa

|φog >= 0 to |ψoc >with the property [2,7,9]

< ψoc|γ
a|ψoc > = 0 , γ̃a|ψoc >= iγ

a|ψoc > , γ̃aγb|ψoc >= −iγbγa|ψoc > ,

γ̃aγ̃b|ψoc > |a 6=b = −γaγb|ψoc > , γ̃aγ̃b|ψoc > |a=b = ηab|ψoc > . (9.23)

4 In Ref. [28] the author suggested in Eq. (47) a choice of superposition of γa and γ̄a, which
resembles the choice of one of the authors (N.S.M.B.) in Ref. [2] and both authors in
Ref. [16,17] and in present article.
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This is in agreement with the requirement

γa F(γ) |ψoc >:=

(a0 γ
a + aa1 γ

a γa1 + aa1a2 γ
a γa1γa2 + · · ·+ aa1···ad γa γa1 · · ·γad ) |ψoc > ,

γ̃a F(γ) |ψoc >:= ( i a0γ
a − i aa1γ

a1 γa + i aa1a2γ
a1γa2 γa + · · ·+

i (−1)d aa1···adγ
a1 · · ·γad γa ) |ψoc > . (9.24)

We find the infinitesimal generators of the Lorentz transformations in Clifford
space

Sab =
i

4
(γaγb − γbγa) , Sab† = ηaaηbbSab ,

S̃ab =
i

4
(γ̃aγ̃b − γ̃bγ̃a) , S̃ab† = ηaaηbbS̃ab , (9.25)

with the commutation relations for either Sab or S̃ab of Eq. (9.14), if Sab is replaced
by either Sab or S̃ab, respectively, while

Sab = Sab + S̃ab ,

{Sab, S̃cd}− = 0 . (9.26)

The basic states in Clifford space can be arranged in representations, in which
any state is the eigenstate of the Cartan subalgebra operators of Eq. (9.84). The
state, for example, in d-dimensional space with the eigenvalues of either S03, S12,
S56, . . . , Sd−1d or S̃03, S̃12, S̃56, . . . , S̃d−1d equal to 1

2
(i, 1, 1, . . . , 1) is (γ0−γ3)(γ1+

iγ2)(γ5 + iγ6) · · · (γd−1 + iγd), where the states are expressed in terms of γa. The
states of one representation follow from the starting state by the application of
Sab, which do not belong to the Cartan subalgebra operators, while S̃ab, which
operate on family quantum numbers, cause jumps from the starting family to the
new one.

9.2.1 Norms of vectors in Grassmann and Clifford space

Let us look for the norm of vectors in Grassmann space

B =

d∑
k=0

aa1a2...ak θ
a1θa2 . . . θak |φog >

and in Clifford space

F =

d∑
k=0

aa1a2...ak γ
a1γa2 . . . γak |ψoc >,

where |φog > and |φoc > are the vacuum states in the Grassmann and Clifford
case, respectively. In what follows we refer to Ref. [2].

a. Norms of the Grassmann vectors
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Let us define the integral over the Grassmann space [2] of two functions of
the Grassmann coordinates < B|C >, < B|θ >=< θ|B >†, by requiring

{dθa, θb}+ = 0,

∫
dθa = 0 ,

∫
dθaθa = 1 ,∫

ddθ θ0θ1 · · · θd = 1 ,

ddθ = dθd . . . dθ0 ,

ω = Πdk=0(
∂

∂θk
+ θk) , (9.27)

with ∂
∂θa

θc = ηac. We shall use the weight function ω = Πdk=0(
∂
∂θk

+ θk) to
define the scalar product < B|C >

< B|C > =

∫
dd−1xddθa ω < B|θ >< θ|C >=

d∑
k=0

∫
dd−1xb∗b1...bkcb1...bk ,

(9.28)

where, according to Eq. (9.8), follows:

< B|θ >=< φog|
d∑
p=0

(−i)p a∗a1...app
θap ηapap · · ·pθa1 ηa1a1 .

The vacuum state is chosen to be |φog >= |1 >, as taken in Eq. (9.4).
The norm < B|B > is correspondingly always nonnegative.

b. Norms of the Clifford vectors

Let us look for the norm of vectors, expressed with the Clifford objects
F =

∑d
k aa1a2...ak γ

a1γa2 . . . γak |ψoc >, where |φog > and |ψoc > are the two
vacuum states when the Grassmann and the Clifford objects are concerned, respec-
tively. By taking into account Eq. (9.20) it follows that

(γa1γa2 . . . γak)† = γakηakak . . . γa2ηa2a2γa1ηa1a1 , (9.29)

since γa γa = ηaa.
We can use Eqs. (9.27, 9.28) to evaluate the scalar product of two Clifford

algebra objects< γ|F >=< (θa−ipθa)|F > and equivalently for< (θa−ipθa)|G >.
These expressions follow from Eqs. (9.17, 9.18, 9.20)). We must then choose for
the vacuum state the one from the Grassmann case — |ψoc >= |φog >= |1 >. It
follows

< F|G > =

∫
dd−1xddθa ω < F|γ >< γ|G >=

d∑
k=0

∫
dd−1xa∗a1...akbb1...bk .

(9.30)

{Similarly we obtain, if we express F̃ =
∑d
k=0 aa1a2...ak γ̃

a1 γ̃a2 . . . γ̃ak |φoc >

and G̃ =
∑d
k=0 bb1b2...bk γ̃

b1 γ̃b2 . . . γ̃bk |φoc > and take |ψoc >= |φog >= |1 >,
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the scalar product

< F̃|G̃ > =

∫
dd−1xddθa ω < F̃|γ̃ >< γ̃|G̃ >=

d∑
k=0

∫
dd−1xa∗a1...akab1...bk .}

(9.31)

Correspondingly we can write∫
ddθa ω(aa1a2...ak γ

a1γa2 . . . γak)†(aa1a2...ak γ
a1γa2 . . . γak) =

a∗a1a2...ak aa1a2...ak . (9.32)

The norm of each scalar term in the sum of F is nonnegative.
c. We have learned that in both spaces — Grassmann and Clifford — norms of

basic states can be defined so that the states, which are eigenvectors of the Cartan
subalgebra, are orthogonal and normalized using the same integral.

Studying the second quantization procedure in Subsect. 9.2.3 we learn that
not all 2d states can be represented as creation and annihilation operators, either
in the Grassmann or in the Clifford case, since they must — in both cases — fulfill
the requirements for the second quantized operators, either for states with integer
spins in Grassmann space or for states with half integer spin in Clifford space.

9.2.2 Actions in Grassmann and Clifford space

Let us construct an action for free massless particles in which the internal degrees
of freedom will be described: i. by states in Grassmann space, ii. by states in
Clifford space. In the first case the internal degrees of freedom manifest the integer
spin, in the second case the internal degrees of freedom manifest the half integer
spin.

While the action in Clifford space is well known since long [22], the action in
Grassmann space must be found. We shall represent it here. In both cases we look
for actions for free massless states in ((d − 1) + 1) space 5. States in Grassmann
space as well as states in Clifford space will be organized to be — within each of
the two spaces — orthogonal and normalized with respect to Eq. (9.27). We choose
the states in each of two spaces to be the eigenstates of the Cartan subalgebra
— with respect to Sab in Grassmann space and with respect to Sab and S̃ab in
Clifford space, Eq. (9.84).

In both spaces the requirement that states are obtained by the application of
creation operators on the vacuum states — b̂θi obeying the commutation relations
of Eq. (9.48) on the vacuum state |φog >= |1 > in Grassmann space, and b̂αi
obeying the commutation relation of Eq. (9.60) on the vacuum states |ψoc >,
Eq. (9.67), in Clifford space — reduces the number of states, in Clifford space more
than in Grassmann space. But while in Clifford space all physically applicable
states are reachable by either Sab (defining family members quantum numbers)

5 In (3 + 1) space the mass is due to the interaction of particles with the scalar fields, with
which the particles interact in ((d − 1) + 1) space.
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or by S̃ab (defining family quantum numbers), the states in Grassmann space,
belonging to different representations with respect to the Lorentz generators, seem
not to be connected.

a. Action in Clifford space

In Clifford space the action for a free massless object must be Lorentz invariant

A =

∫
ddx

1

2
(ψ†γ0 γapaψ) + h.c. , (9.33)

pa = i ∂
∂xa

, leading to the equations of motion

γapa|ψ
α > = 0 , (9.34)

which fulfill also the Klein-Gordon equation

γapaγ
bpb|ψ

α
i > = papa|ψ

α
i >= 0 ,

(9.35)

for each of the basic states |ψαi >. Correspondingly γ0 appears in the action since
we pay attention that

Sab† γ0 = γ0 Sab ,

S†γ0 = γ0S−1 ,

S = e−
i
2
ωab(S

ab+Lab) . (9.36)

We choose the basic states to be the eigenstates of all the members of the
Cartan subalgebra, Eq. (9.84). Correspondingly all the states, belonging to different
values of the Cartan subalgebra — they differ at least in one value of either the
set of Sab or the set of S̃ab, Eq. (9.84) — are orthogonal with respect to the scalar
product defined as the integral over the Grassmann coordinates, Eq. (9.27), for
a chosen vacuum state. Correspondingly the states generated by the creation
operators, Eq. (9.65), on the vacuum state, Eq. (9.67), are orthogonal as well (both
last equations will appear later).

b. Action in Grassmann space

We define here the action in Grassmann space, for which we require — simi-
larly as in the Clifford case — that the action for a free massless object

A =
1

2
{

∫
ddx ddθ ω (φ†(1− 2θ0

∂

∂θ0
)
1

2
(θapa + ηaaθa†pa)φ} , (9.37)

is Lorentz invariant. We use the integral also over θa coordinates, with the weight
functionω from Eq. (9.27). Requiring the Lorentz invariance we add after φ† the
operator γ0G (γaG = (1 − 2θa ∂

∂θa
)), which takes care of the Lorentz invariance.

Namely

Sab† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)Sab ,

S† (1− 2θ0
∂

∂θ0
) = (1− 2θ0

∂

∂θ0
)S−1 ,

S = e−
i
2
ωab(L

ab+Sab) , (9.38)
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while θa, ∂
∂θa

and pa transform as Lorentz vectors. The equation of motion follow
from the action, Eq. (9.37),

1

2
[(1− 2θ0

∂

∂θ0
) θa + ((1− 2θ0

∂

∂θ0
) θa)†] pa |φ

θ
i > = 0 , (9.39)

as well as the Klein-Gordon equation

{(1− 2θ0
∂

∂θ0
)θapa}

† θbpb|φ
θ
i > = papa|φ

θ
i >= 0 , (9.40)

for each of the basic states |ψαi >.
c. We learned:
In both spaces — in Clifford and in Grassmann space — there exists the action,

which leads to the equations of motion and to the corresponding Klein-Gordon
equation for free massless particles. In both cases we use the operator, which does
not change the Clifford or Grassmann character of states.

We shall see that, if one identifies the creation operators in both spaces with
the products of odd numbers of either θa (in the Grassmann case) or γa (in
the Clifford case) and the annihilation operators with their Hermitian conjugate
operators, the creation and annihilation operators fulfill the anticommutation
relations, required for fermions. The internal parts of states are then defined by the
application of the creation operators on the vacuum state. But while the Clifford
algebra defines spinors with the half integer eigenvalues of the Cartan subalgebra
operators of the Lorentz algebra, the Grassmann algebra defines states with the
integer eigenvalues of the Cartan subalgebra.

9.2.3 Second quantization of Grassmann vectors and Clifford vectors

States in Grassmann space as well as states in Clifford space are organized to be
— within each of the two spaces — orthogonal and normalized with respect to
Eq. (9.27). All the states in each of spaces are chosen to be eigenstates of the Cartan
subalgebra — with respect to Sab in Grassmann space, and with respect to Sab

and S̃ab in Clifford space, Eq. (9.84).
In both spaces the requirement that states are obtained by the application

of creation operators on vacuum states — b̂θi obeying the commutation relations
of Eqs. (9.42, 9.48) on the vacuum state |φog >= |1 > for Grassmann space, and
b̂αi obeying the commutation relation of Eq. (9.60) on the vacuum states |ψoc >,
Eq. (9.67), for Clifford space — reduces the number of states arranged into the
representations of the Lorentz group. The reduction of degrees of freedom depends
on whether d = 2(2n+1) or d = 4n,n is a positive integer. The second quantization
procedure with creation operators expressed by the product of Grassmann or
Clifford objects requires that the product has an odd number of objects.

We shall pay attention in this paper almost only to spaces with d = 2(2n+1) 6.

6 The main reason that we treat here mostly d = 2(2n + 1) spaces is that one Weyl
representation, expressed by the product of the Clifford algebra objects, manifests in
d = (1 + 3) all the observed properties of quarks and leptons, if d ≥ 2(2n + 1), n = 3.
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We define in Grassmann space creation operators by an odd number of factors
of superposition of θa’s and annihilation operators by Hermitian conjugation of the
corresponding creation operators. In Clifford space we define creation operators by
an odd number of factors of superposition of γa’s and the annihilation operators
by Hermitian conjugate creation operators. Each basic state is a product of factors
chosen to be eigenstates of the Cartan subalgebra of the Lorentz algebra.

But while in Clifford space all physically applicable states are reachable
either by Sab or by S̃ab, the states, belonging to different groups with respect to
the Lorentz generators, in Grassmann space two different representations of the
Lorentz group are not connected by the Lorentz operators.

Let us construct creation and annihilation operators for the cases that we use
a. Grassmann vector space, b. Clifford vector space. We shall see that from 2d

states in either of these two spaces there are reduced number of states generated
by the creation operators, which fulfill the requirements for the creation and their
Hermitian conjugate annihilation operators.

a. Quantization in Grassmann space

There are 2d states in Grassmann space, orthogonal to each other with respect
to Eq. (9.27). To any coordinate there exists the conjugate momentum. We pay
attention in what follows mostly to spaces with d = 2(2n+1), although also spaces
with d = 4nwill be treated. In d = 2(2n+1) spaces there are d!

d
2
!d
2
!

states, Eq. (9.51),
divided into two separated groups of states, all states of one group reachable from
a starting state by Sab. These states are Grassmann odd products of eigenstates
of the Cartan subalgebra. We use these products to define the creation operators
and their Hermitian conjugate operators as the annihilation operators, fulfilling
requirements of Eq. (9.41, 9.42). Let us see how it goes.

If b̂θ†i is a creation operator, which creates a state in the Grassmann space
when operating on a vacuum state |ψog > and b̂θi = (b̂θ†i )† is the corresponding an-
nihilation operator, then for a set of creation operators b̂θ†i and the corresponding
annihilation operators b̂θi it must be

b̂θi |φog > = 0 ,

b̂θ†i |φog > 6= 0 . (9.41)

We first pay attention on only the internal degrees of freedom — the spin.
Choosing b̂θa = ∂

∂θa
it follows

b̂θ†a = θa ,

b̂θa =
∂

∂θa
,

{b̂θa, b̂
θ†
b }+|φog > = δab|φog > ,

{b̂θa, b̂
θ
b}+|φog > = 0 ,

{b̂θ†a , b̂
θ†
b }+|φog > = 0 ,

b̂†θa |φog > = θa|φog > ,

b̂θa |φog > = 0 . (9.42)
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The vacuum state |φog > is in this case |1 >.
The identity I (I† = I) can not be taken as a creation operator, since its

annihilation partner does not fulfill Eq. (9.41).
We can use the products of superposition of θa’s as creation and products

of superposition of ∂
∂θa

’s as annihilation operators provided that they fulfill
the requirements for the creation and annihilation operators, Eq. (9.48), with the
vacuum state |φog >= |1 >. In general they would not. Only an odd number of θa

in any product would have the required anticommutation properties.
It is convenient to take products of superposition of vectors θa and θb to

construct creation operators so that each factor is the eigenstate of one of the Cartan
subalgebra member of the Lorentz algebra (9.84). We can start with the creation
operators as products of d

2
states b̂θ†aibi =

1√
2
(θai ±εθbi). Then the corresponding

annihilation operators have d
2

factors of b̂θaibi = 1√
2
( ∂
∂θai

± ε∗ ∂
∂θbi

), ε = i, if

ηaiai = ηbibi and ε = −1, if ηaiai 6= ηbibi .
In d = 2(2n+ 1), n is a positive integer, we can start with the state

|φθ11 > = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd)|1 > . (9.43)

The rest of states, belonging to the same Lorentz representation, follows from the
starting state by the application of the operators Scf, which do not belong to the
Cartan subalgebra operators.

Let us add that in d = 4nwe should start with the state

|φθ11 > |4n =

(
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd|1 > . (9.44)

Again the rest of states, belonging to the same Lorentz representation, follow from
the starting state by the application of the operators Scf, which do not belong to
the Cartan subalgebra operators.

i. Taking into account Eqs. (9.8, 9.9, 9.43) one can propose the following
starting creation operator and the corresponding annihilation operator

b̂θ1†i = (
1√
2
)
d
2 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ1i = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
−

∂

∂θ3
) ,

for d = 2(2n+ 1) ,

b̂θ1†i = (
1√
2
)
d
2
−1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,

b̂θ1i = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ0
−

∂

∂θ3
) ,

for d = 4n . (9.45)

The rest of the creation operators belonging to this group in either d = 2(2n+1) or
in d = 4n follows by the application of all the operators Sef, which do not belong
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to the Cartan subalgebra operators. The corresponding annihilation operators
follow by the Hermitian conjugation of a particular creation operator. One finds,
for example for d = 2(2n+ 1),

b̂θ1†j = (
1√
2
)
d
2
−1 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ1j = (
1√
2
)
d
2
−1 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ3
∂

∂θ0
− i

∂

∂θ2
∂

∂θ1
) .

· · · (9.46)

For d = 4n one finds equivalently

b̂θ1†j = (
1√
2
)
d
2
−2 (θ0θ3 + iθ1θ2)(θ5 + iθ6) · · · (θd−3 + iθd−2) θd−1θd ,

b̂θ1j = (
1√
2
)
d
2
−2 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ3
∂

∂θ0
− i

∂

∂θ2
∂

∂θ1
) .

· · · (9.47)

It was taken into account in the above two equations that S01 transforms ( 1√
2
)2(θ0−

θ3)(θ1 + iθ2) into 1√
2
(θ0θ3 + iθ1θ2) and that any Sac (a 6= c), which does not be-

long to Cartan subalgebra, Eq.(9.82), transforms ( 1√
2
)2(θa + iθb)(θc + iθd) (a 6= c

and a 6= d, b 6= c and b 6= d, ηaa = ηbb) into 1√
2
(θaθb + θcθd). The states are

normalized and the simplest phases are chosen.
One finds that Sab(θa ± εθb) = ∓i ηaa

ε
(θa ± εθb), ε = 1 for ηaa = 1 and

ε = i for ηaa = −1, while either Sab or Scd, applied on (θaθb ± εθcθd), gives
zero.

Although all the states, generated by creation operators, which include one
(I ± εθaθb) or several (I ± εθa1θb1) · · · (I ± εθakθak), are orthogonal with re-
spect to the scalar product, Eq.(9.28), their Hermitian conjugate values include
I†, which, when applying on the vacuum state |φog >= |1 >, does not give zero.
Correspondingly such creation operators do not have appropriate annihilation
partners, which would fulfill Eqs. (9.41, 9.42).

However, creation operators which are products of several θ’s, let say n with
n = 2, 4 . . . d

2
−1— always of an even number of θ’s, since Sab is a Grassmann even

operator, θa1 · · · θan (factors θaθb can be ”eigenstates” of the Cartan subalgebra
operators provided that Sab belong to the Cartan subalgebra: Sabθaθb|1 >= 0)
— can appear in the expression for a creation operator, provided that the rest of
expression has an odd number of factors (d

2
− n (with ”eigenvalues” either (+1 or

−1) or (+i or −i), as can be seen in the states of Eqs. (9.45, 9.46, 9.47)). Then such
creation and annihilation operators fulfill the relations, we skip the index 1 in b̂θ1i
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and in b̂θ1†i

{b̂θi , b̂
θ†
j }+|φog > = δij |φog > ,

{b̂θi , b̂
θ
j }+|φog > = 0 |φog > ,

{b̂θ†i , b̂
θ†
j }+|φog > = 0 |φog > ,

b̂θ†j |φog > = |φj >

b̂θj |φog > = 0 |φog > . (9.48)

It is not difficult to see that states included into a representation, which started
with b̂θ†i as presented in Eq. (9.45) for d = (2n + 1)2 and 4n spaces, have the
properties, required by Eq. (9.48):

i.a. In any d-dimensional space the product ∂
∂θa1

· · · ∂
∂θak

, with all different
ai (also if all or some of them are equal, since ( ∂

∂θa
)2 = 0), if applied on the vacuum

|1 >, is equal to zero. Correspondingly the second equation and the last equation
of Eq. (9.48) are fulfilled.

i.b. In any d space the product of different θas — θa1θa2 · · · θak with all
different θa’s (ai 6= aj) for all ai and aj — applied on the vacuum |1 > is different
from zero. Since all the θ’s, appearing in Eqs. (9.45, 9.46, 9.47) are different, forming
normalized states, the fourth equation of Eq. (9.48) is fulfilled.

i.c. The third equation of Eq. (9.48) is fulfilled provided that there is
an odd number of θs in the expression for a creation operator. Then, when in
the anticommutation relation different θa’s appear (like in the case of d = 6

{θ0θ3θ5, θ1θ2θ6}+), such a contribution gives zero. When two or several equal θ’s
appear in the anticommutation relation, the contribution is zero (since (θa)2 = 0).

i.d. Also for the first equation in Eq. (9.48) it is not difficult to show that it is
fulfilled only for a particular creation operator and its Hermitian conjugate: Let us
show this for d = 1+3 and the creation operator 1√

2
(θ0−θ3) θ1θ2 and its Hermitian

conjugate (annihilation) operator: 1√
2
{ ∂
∂θ2

∂
∂θ1

( ∂
∂θ0

− ∂
∂θ3

), 1√
2
(θ0 − θ3) θ1θ2}+.

Applying ( ∂
∂θ0

− ∂
∂θ3

) on (θ0 − θ3) gives two, while ∂
∂θ2

∂
∂θ1

applied on θ1θ2

gives one.
ii. There is additional group of creation and annihilation operators which

follows from the starting state

|φθ21 > |2(2n+1) =

(
1√
2
)
1
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)(θd−1 + iθd) ,

for d = 2(2n+ 1) ,

|φθ21 > |4n =

(
1√
2
)
d
2
−1(θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2) θd−1θd ,

for d = 4n . (9.49)

These two states can not be obtained from the previous group of states, presented
in Eqs. (9.43, 9.44) by the application of Sef, since each Sef changes an even number
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of factors, never an odd one. Correspondingly both starting states form a new
group of states, the first in d = 2(2n+ 1), the second in d = 4n. All the rest states
of this new group of states in either d = 2(2n + 1) or in d = 4n follow from the
starting one by the application of Sef. The corresponding creation and annihilation
operators are

b̂θ2†01 = (
1√
2
)
d
2 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−1 + iθd) ,

b̂θ201 = (
1√
2
)
d
2 (

∂

∂θd−1
− i

∂

∂θd
) · · · ( ∂

∂θ0
+

∂

∂θ3
) ,

for d = 2(2n+ 1) ,

b̂θ2†01 = (
1√
2
)
d
2
−1 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) · · · (θd−3 + iθd−2)θd−1θd ,

b̂θ201 = (
1√
2
)
d
2
−1 ∂

∂θd
∂

∂θd−1
(

∂

∂θd−3
− i

∂

∂θd−2
) · · · ( ∂

∂θ0
+

∂

∂θ3
) ,

for d = 4n . (9.50)

As in the first case all the rest of creation operators can be obtained from the
starting one, in each of the two kinds of spaces, by the application of Sac, and
the annihilation operators by the Hermitian conjugation of the creation operators.
Also all these creation and annihilation operators fulfill the requirements for the
creation and annihilation operators, presented in Eq. (9.48).

One can choose as the starting creation operator of the second group of
operators by changing sign instead of in the factor (θ0−θ3) in the starting creation
operator of the first group in any of the rest of factors in the product. In each case
the same group will follow.

Let us count the number of states with the odd Grassmann character in
d = 2(2n+ 1).

There are in (d = 2) two creation ((θ0 ∓ θ1, for ηab = diag(1,−1)) and
correspondingly two annihilation operators ( ∂

∂θ0
∓ ∂

∂θ1
), each belonging to its

own group with respect to the Lorentz transformation operators, both fulfill
Eq. (9.48).

It is not difficult to see that the number of all creation operators of an odd
Grassmann character in d = 2(2n+ 1)-dimensional space is equal to d!

d
2
!d
2
!
.

We namely ask: In how many ways can one put on d
2

places d different
θa’s. And the answer is — the central binomial coefficient for x

d
2 1

d
2 — with all

x different. This is just d!
d
2
!d
2
!
. But we have counted all the states with an odd

Grassmann character, while we know that these states belong to two different
groups of representations with respect to the Lorentz group.

Correspondingly one concludes:There are two groups of states in d = 2(2n+ 1)

with an odd Grassmann character, each of these two groups has

1

2

d!
d
2
!d
2
!

(9.51)

members.
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In d = 2we have two groups with one state, which have an odd Grassmann
character, in d = 6we have two groups of 10 states, in d = 10we have two groups
of 126 states with an odd Grassmann characters. And so on.

Correspondingly we have in d = 2(2n+ 1)-dimensional spaces two groups
of creation operators with 1

2
d!
d
2
!d
2
!

members each, creating states with an odd
Grassmann character and the same number of annihilation operators. Creation
and annihilation operators fulfill anticommutation relations presented in Eq. (9.48).

The rest of creation operators [and the corresponding annihilation operators]
have rather opposite Grassmann character than the ones studied so far — like θ0θ1

[ ∂
∂θ1

∂
∂θ0

] in d = (1 + 1) (θ0 ∓ θ3)(θ1 ± iθ2) [( ∂
∂θ1
∓ i ∂

∂θ2
)( ∂
∂θ0
∓ ∂
∂θ3

], θ0θ3θ1θ2

[ ∂
∂θ2

∂
∂θ1

∂
∂θ3

∂
∂θ0

] in d = (3+ 1).
All the states |φθi >, generated by the creation operators, Eq. (9.48), on the vac-

uum state |φog > (= |1 >) are the eigenstates of the Cartan subalgebra operators
and are orthogonal and normalized with respect to the norm of Eq. (9.27)

< φθi |φ
θ
j > = δij . (9.52)

If we now extend the creation and annihilation operators to the ordinary
coordinate space, the relations among creation and annihilation operators at one
time read

{b̂θi (~x), b̂
θ†
j (~x ′)}+|φog > = δij δ(~x− ~x

′)|φog > ,

{b̂θi (~x), b̂
θ
j (~x
′)}+|φog > = 0 |φog > ,

{b̂θ†i (~x), b̂θ†j (~x ′)}+|φog > = 0 |φog > ,

b̂θj (~x)|φog > = 0 |φog >

|φog > = |1 > . (9.53)

Again the index 1 or 2 in (b̂θ1i , b̂θ†1i ) or in (b̂θ2i , b̂θ†2i ) is kept.

b. Quantization in Clifford space

In Grassmann space the requirement that products of eigenstates of the Cartan
subalgebra operators represent the creation and annihilation operators, obeying
the relations of Eq. (9.48), reduces the number of states from 2d (allowed in the
first quantization procedure) to two isolated groups of 1

2
d!
d
2
!d
2
!

(There is no operator
that determines the family quantum number and would connect both isolated
groups of states.)

Let us study what happens, when, let say, γa’s are used to create the basis
and correspondingly also to create the creation and annihilation operators.

Let us point out that γa is expressible with θa and its derivative (γa =

(θa + ∂
∂θa

)), Eq. (9.17), and that we again require that creation (annihilation)
operators create (annihilate) states, which are eigenstates of the Cartan subalgebra,
Eq. (9.84). We could as well make a choice of γ̃a = i(θa − ∂

∂θa
) instead of γa’s to

create the basic states 7. We shall follow here to some extent Ref. [19].
7 In the case that we would choose γ̃a’s instead of γa’s, Eq.(9.17), the role of γ̃a and γa

should be then correspondingly exchanged in Eq. (9.92).
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Making a choice of the Cartan subalgebra eigenstates of Sab, Eq. (9.84),

ab

(k):=
1

2
(γa +

ηaa

ik
γb) ,

ab

[k]:=
1

2
(1+

i

k
γaγb) , (9.54)

where k2 = ηaaηbb, recognizing that the Hermitian conjugate values of
ab

(k) and
ab

[k] are

ab

(k)

†

= ηaa
ab

(−k),
ab

[k]

†

=
ab

[k] , (9.55)

while the corresponding eigenvalues of Sab, Eq. (9.56), and S̃ab, Eq. (9.101), are

Sab
ab

(k) =
1

2
k
ab

(k) , Sab
ab

[k]=
1

2
k
ab

[k]

S̃ab
ab

(k) =
k

2

ab

(k) , S̃ab
ab

[k]= −
k

2

ab

[k] , (9.56)

we find in d = 2(2n+ 1) that from the starting state with products of odd number
of only nilpotents

|ψ11 > |2(2n+1) =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc > , (9.57)

having correspondingly an odd Clifford character 8, all the other states of the same
Lorentz representation, there are 2

d
2
−1 members, follow by the application of Scd

(which do not belong to the Cartan subalgebra) on the starting state 9, Eq. (9.84):
Scd |ψ11 > |2(2n+1) = |ψ1i > |2(2n+1).

The operators S̃cd, which do not belong to the Cartan subalgebra of Eq. (9.84),
generate states with different eigenstates of the Cartan subalgebra (S̃03, S̃12, S̃56,
· · · , S̃d−1d), we call the eigenvalues of their eigenstates the ”family” quantum
numbers. There are 2

d
2
−1 families. From the starting new member with a different

”family” quantum number the whole Lorentz representation with this ”family”
quantum number follows by the application of Sef: Sef S̃cd|ψ11 > |2(2n+1) =

|ψji > |2(2n+1). All the states of one Lorentz representation of any particular
”family” quantum number have an odd Clifford character, since neither Scd nor
S̃cd, both with an even Clifford character, can change this character.

We are interested only in states with an odd Clifford character, in order that
the corresponding creation operators defining these states when being applied
on an appropriate vacuum state, and their annihilation operators, will fulfill
anticommutation relations required for spinors with half integer spin. We shall
discuss the number of states with an odd Clifford character after defining the
creation and annihilation operators.

8 We call the starting state in d = 2(2n + 1) |ψ11 > |2(2n+1), and the starting state in d = 4n

|ψ11 > |4n.
9 The smallest number of all the generators Sac, which do not belong to the Cartan subal-

gebra, needed to create from the starting state all the other members, is 2
d
2
−1 − 1. This is

true for both even dimensional spaces – 2(2n + 1) and 4n.
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For d = 4n the starting state must be the product of one projector and 4n− 1

nilpotents applied on an appropriate vacuum state, since we again require that
the corresponding creation and annihilation operators fulfill the anticommutation
relations.

Let us start with the state

|ψ11 > |4n =
03

(+i)
12

(+)
35

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] |ψoc > , (9.58)

All the other states belonging to the same Lorentz representation follow again by
the application of Scd on this state |ψ11 > |4n, while a new family starts by the
application of S̃cd|ψ11 > |4n and from this state all the other members with the
same ”family” quantum number can be generated by SefS̃cd on |ψ11 > |4n: SefS̃cd

|ψ11 > |4n = |ψji > |4n.
All these states in either d = 2(2n+ 1) space or d = 4n space are orthogonal

with respect to Eq. (9.27).
However, let us point out that (γa)† = γaηaa. Correspondingly it follows,

Eq. (9.55), that
ab

(k)

†

= ηaa
ab

(−k), and
ab

[k]

†

=
ab

[k].
Since any projector is Hermitian conjugate to itself, while to any nilpotent

ab

(k) the Hermitian conjugated one has an opposite k, it is obvious that Hermitian
conjugated product to a product of nilpotents and projectors can not be accepted
as a new state 10.

The vacuum state |ψoc > ought to be chosen so that < ψoc|ψoc >= 1, while

all the states belonging to the physically acceptable states, like
03

[+i]
12

[+]
56

[−]
78

[−]

· · ·
d−3 d−2

(+)
d−1 d

(+) |ψoc > in d = 2(2n + 1), must not give zero for either
d = 2(2n + 1) or for d = 4n. We also want that the states, obtained by the
application of ether Scd or S̃cd or both, are orthogonal. To make a choice of the
vacuum it is needed to know the relations of Eq. (9.88). It must be

< ψoc| · · ·
ab

(k)

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

[k ′] · · · |ψoc > = δkk ′ ,

< ψoc| · · ·
ab

[k]

†

· · · | · · ·
ab

(k ′) · · · |ψoc > = 0 . (9.59)

Our experiences in the case, when states with the integer values of the Cartan
subalgebra operators were expressed by Grassmann coordinates, teach us that the
requirements, that creation and annihilation operators must fulfill, influence the
choice of the number of states, as well as of the vacuum state.

10 We could as well start with the state |ψ11 > |2(2n+1) =
03

(−i)
12

(−)
35

(−) · · ·
d−3 d−2

(−)
d−1 d

(−) |ψoc >

for d = 2(2n + 1) and with |ψ11 > |4n =
03

(−i)
12

(−)
35

(−) · · ·
d−3 d−2

(−)
d−1 d

[−] |ψoc > in the case of
d = 4n. Then creation and annihilation operators will exchange their roles and also the
vacuum state will be correspondingly changed.



i
i

“proc18” — 2018/12/10 — 11:44 — page 195 — #211 i
i

i
i

i
i

9 Why Nature Made a Choice of Clifford and not Grassmann Coordinates? 195

Let us first repeat therefore the requirements which the creation and annihila-
tion operators must fulfill

{b̂αγi , b̂βγ†k }+|ψoc > = δαβ δ
i
k|ψoc > ,

{b̂αγi , b̂βγk }+|ψoc > = 0|ψoc > ,

{b̂αγ†i , b̂βγ†k }+|ψoc > = 0|ψoc > ,

b̂αγi |ψoc > = 0|ψoc > ,

b̂αγ†i |ψoc > = |ψαγi > , (9.60)

paying attention at this stage only at the internal degrees of freedom of the states,
that is on their spins. Here (α,β, . . . ) represent the family quantum number de-
termined by S̃ac and (i, j, . . . ) the quantum number of one representation, deter-
mined by Sac and index γ is to point out that these creation operators represent
Clifford rather than Grassmann objects. In what follows we shall skip the index γ,
since either states or creation and annihilation operators carry two indexes, while
in Grassmann case there is no family quantum number.

From Eqs. (9.57, 9.58) is not difficult to extract the creation operator which,
when applied on the vacuum state for either d = 2(2n+ 1) or d = 4n, generates
the starting state .

i. One Weyl representation
We define the creation b̂1†1 — and the corresponding annihilation operator

b̂11 = (b̂1†1 )† — which when applied on the vacuum state |ψoc > create a vector of
one of the two equations (9.57, 9.58), as follows

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−1 d

(+) ,

b̂11 : =
d−1 d

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 2(2n+ 1) ,

b̂1†1 : =
03

(+i)
12

(+)
56

(+) · · ·
d−3 d−2

(+)
d−1 d

[+] ,

b̂11 : =
d−1,d

[+]
d−2 d−3

(−) · · ·
56

(−)
12

(−)
03

(−i) ,

for d = 4n . (9.61)

We shall call the b̂1†1 |ψoc >, when operating on the vacuum state, the starting
vector of the starting ”family”.

Now we can make a choice of the vacuum state for this particular ”family”
taking into account Eq. (9.88)

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] |0 > ,

for d = 2(2n+ 1) ,

|ψoc > =
03

[−i]
12

[−]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] |0 > ,

for d = 4n , (9.62)
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n is a positive integer, so that the requirements of Eq. (9.60) are fulfilled. We
see: The creation and annihilation operators of Eq. (9.61) (both are nilpotents,
(b̂1†1 )2 = 0 and (b̂11)

2 = 0), b̂1†1 (generating the vector |ψ11 >when operating on the
vacuum state) gives b̂1†1 |ψoc > 6= 0, while the annihilation operator annihilates the
vacuum state b̂11|ψ0 >= 0, giving {b̂11, b̂

1†
1 }+|ψoc >= |ψoc >, since we choose the

appropriate normalization, Eq. (9.54).
All the other creation and annihilation operators, belonging to the same

Lorentz representation with the same family quantum number, follow from the
starting ones by the application of particular Sac, which do not belong to the
Cartan subalgebra (9.82).

We call b̂1†2 the one obtained from b̂1†1 by the application of one of the four
generators (S01, S02, S31, S32). This creation operator is for d = 2(2n+ 1) equal to

b̂1†2 =
03

[−i]
12

[−]
35

(+) · · ·
d−1 d

(+) , while it is for d = 4n equal to b̂1†2 =
03

[−i]
12

[−]
56

(+) · · ·
d−1 d

[+] .
All the other family members follow from the starting one by the application of
different Sef, or by the product of several Sgh.

We accordingly have

b̂1†i ∝ Sab..Sefb̂
1†
1 ,

b̂1i ∝ b̂11Sef..Sab , (9.63)

with Sab† = ηaaηbbSab. We shall make a choice of the proportionality factors so
that the corresponding states |ψ11 >= b̂

1†
i |ψoc >will be normalized.

We recognize that [19]:
i.a. (b̂1†i )2 = 0 and (b̂1i )

2 = 0, for all i.

To see this one must recognize that Sac (or Sbc, Sad, Sbd) transforms
ab

(+)
cd

(+) to
ab

[−]
cd

[−], that is an even number of nilpotents (+) in the starting state is transformed
into projectors [−] in the case of d = 2(2n+ 1). For d = 4n, Sac (or Sbc, Sad, Sbd)

transforms
ab

(+)
cd

[+] into
ab

[−]
cd

(−). Therefore for either d = 2(2n + 1) or d = 4n at
least one of factors, defining a particular creation operator, will be a nilpotent. For
d = 2(2n+ 1) there is an odd number of nilpotents, at least one, leading from the

starting factor
dg

(+) in the creator. For d = 4n a nilpotent factor can also be
d−1 d

(−)

(since
d−1d

[+] can be transformed by Sed−1, for example into
d−1 d

(−) ). A square of
at least one nilpotent factor (we started with an odd number of nilpotents, and
oddness can not be changed by Sab), is enough to guarantee that the square of
the corresponding (b̂1†i )2 is zero. Since b̂1i = (b̂1†i )†, the proof is valid also for
annihilation operators.

i.b. b̂1†i |ψoc > 6= 0 and b̂1i |ψoc >= 0, for all i.
To see this in the case d = 2(2n+ 1) one must recognize that b̂1†i distinguishes

from b̂1†1 in (an even number of) those nilpotents (+), which have been transformed

into [−]. When
ab

[−] from b̂1†i meets
ab

[−] from |ψoc >, the product gives
ab

[−] back,

and correspondingly a nonzero contribution. For d = 4n also the factor
d−1 d

[+] can
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be transformed. It is transformed into
d−1 d

(−) which, when applied to a vacuum

state, gives again a nonzero contribution (
d−1 d

(−)
d−1 d

[+] =
d−1 d

(−) , Eq. (9.88)).
In the case of b̂1i we recognize that in b̂1†i at least one factor is nilpotent; that

of the same type as in the starting b̂†1 — (+) — or in the case of d = 4n it can be

also
d−1 d

(−) . Performing the Hermitian conjugation (b̂1†i )†, (+) transforms into (−),

while
d−1 d

(−) transforms into
d−1 d

(+) in b̂1i . Since (−)[−] gives zero and
d−1 d

(+)
d−1 d

[+]

also gives zero, b̂1i |ψoc >= 0.
i.c. {b̂1†i , b̂

1†
j }+ = 0, for each pair (i, j).

There are several possibilities to be discussed. A trivial one is, if both b̂1†i and
b̂1†j have a nilpotent factor (or more than one) for the same pair of indexes, say
kl

(+). Then the product of such two
kl

(+)
kl

(+) gives zero. It also happens, that b̂1†i

has a nilpotent at the place (kl) (
03

[−] · · ·
kl

(+) · · ·
mn

[−] · · · ) while b̂1†j has a nilpotent

at the place (mn) (
03

[−] · · ·
kl

[−] · · ·
mn

(+) · · · ). Then in the term b̂1†i b̂
1†
j the product

mn

[−]
mn

(+) makes the term equal to zero, while in the term b̂1†j b̂
1†
i the product

kl

[−]
kl

(+)

makes the term equal to zero. There is no other possibility in d = 2(2n + 1). In

the case that d = 4n, it might appear also that b̂1†i =
03

[−] · · ·
ij

(+) · · ·
d−1 d

[+] and

b̂1†j =
03

[−] · · ·
ij

[−] · · ·
d−1 d

(−) . Then in the term b̂1†i b̂
1†
j the factor

d−1 d

[+]
d−1 d

(−) makes

it zero, while in b̂1†j b̂
1†
i the factor

ij

[−]
ij

(+) makes it zero. Since there are no further
possibilities, the proof is complete.

i.d. {b̂1i , b̂
1
j }+ = 0, for each pair (i, j).

The proof goes similarly as in the case with creation operators. Again we treat
several possibilities. b̂1i and b̂1j have a nilpotent factor (or more than one) with the

same indexes, say
kl

(−). Then the product of such two
kl

(−)
kl

(−) gives zero. It also

happens, that b̂1i has a nilpotent at the place (kl) (· · ·
mn

[−] · · ·
kl

(−) · · ·
03

[−]) while b̂1j

has a nilpotent at the place (mn) (· · ·
mn

(−) · · ·
kl

[−] · · ·
03

[−]). Then in the term b̂1i b̂
1
j the

product
kl

(−)
kl

[−] makes the term equal to zero, while in the term b̂1j b̂
1
i the product

mn

(−)
mn

[−] makes the term equal to zero. In the case that d = 4n, it appears also that

b̂1i =
d−1 d

[+] · · ·
ij

(−) · · ·
03

[−] and b̂1j =
d−1 d

(+) · · ·
ij

[−] · · ·
03

[−]. Then in the term b̂1i b̂
1
j the

factor
ij

(−)
ij

[−] makes it zero, while in b̂1j b̂
1
i the factor

d−1 d

(+)
d−1 d

[+] makes it zero.
i.e. {b̂1i , b̂

1†
j }+|ψoc >= δij|ψoc > .

To prove this we must recognize that b̂1i = b̂1S
ef..Sab and b̂1†i = Sab..Sefb̂1.

Since any b̂1i |ψoc >= 0, we only have to treat the term b̂1i b̂
1†
j . We find b̂1i b̂

1†
j ∝

· · ·
lm

(−) · · ·
03

(−)Sef · · ·SabSlm · · ·Spr
03

(+) · · ·
lm

(+) · · · . If we treat the term b̂1i b̂
1†
i ,

generators Sef · · ·SabSlm · · ·Spr are proportional to a number and we normalize
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< ψoc|b̂
1
i b̂
1†
i |ψoc > to one. When Sef · · ·SabSlm · · ·Spr are proportional to several

products of Scd, these generators change b̂1†1 into
03

(+) · · ·
kl

[−] · · ·
np

[−] · · · , making

the product b̂1i b̂
1†
j equal to zero, due to factors of the type

kl

(−)
kl

[−]. In the case of

d = 4n also a factor
d−1 d

[+]
d−1 d

(−) might occur, which also gives zero.
We saw and proved that for the definition of the creation and annihilation operators,

Eq. (9.61), for states in Eqs. (9.57, 9.58) and further for all the rest of creation and
annihilation operators, Eq. (9.63), and for the choice of the vacuum states, Eq. (9.62),
all the requirements of Eq. (9.60) are fulfilled, provided that creation and correspondingly
also the annihilation operators have an odd Clifford character, that is that the number of
nilpotents in the product is odd.

For an even number of factors of the nilpotent type in the starting state and
accordingly in the starting b̂1†1 , an annihilation operator b̂1i would appear with all
factors of the type [−], which on the vacuum state (Eq.(9.62)) would not give zero.

ii. Families of Weyl representations
Let b̂α†i be a creation operator, fulfilling Eq. (9.60), which creates one of the

(2d/2−1) Weyl basic states of an α−th ”family”, when operating on a vacuum state
|ψoc > and let b̂αi = (b̂α†i )† be the corresponding annihilation operator. We shall
now proceed to define b̂α†i and b̂αi from a chosen starting state (9.57, 9.58), which
b̂1†1 creates on the vacuum state |ψoc >.

When treating more than one Weyl representation, that is, more than one
”family”, we must take into account that: i. The vacuum state chosen to fulfill
requirements for second quantization of the starting family might not and it will
not be the correct one when all the families are taken into account. ii. The products
of S̃ab, which do not belong to the Cartan subalgebra set of the generators S̃ab,
when being applied on the starting family ψ11, generate the starting member ψα1
of each of the remaining families. There is correspondingly the same number of
”families” as the number of vectors of one Weyl representation, namely 2d/2−1.
Then the whole Weyl representation of a particular family ψα1 follows again with
the application of Sef, which do not belong to the Cartan subalgebra of Sab on
this starting α family state.

Any vector |ψαi > follows from the starting vector, Eqs. (9.57, 9.58), by the
application of either S̃ef, which change the family quantum number, or Sgh, which
change the member of a particular family (as it can be seen from Eqs. (9.90, 9.102))
or with the corresponding product of Sef and S̃ef

|ψαi > ∝ S̃ab · · · S̃ef|ψ1i >∝ S̃ab · · · S̃efSmn · · ·Spr|ψ11 > . (9.64)

Correspondingly we define b̂α†i (up to a constant) to be

b̂α†i ∝ S̃ab · · · S̃efSmn · · ·Sprb̂
1†
1

∝ Smn · · ·Sprb̂1†1 Sab · · ·Sef . (9.65)

This last expression follows due to the property of the Clifford object γ̃a and
correspondingly of S̃ab, presented in Eqs. (9.92, 9.93).
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For b̂αi = (b̂α†i )† we accordingly have

b̂αi = (b̂α†i )† ∝ Sef · · ·Sabb̂11Spr · · ·Smn . (9.66)

The proportionality factor will be chosen so that the corresponding states |ψαi >=
b̂α†i |ψoc >will be normalized.

We ought to generalize the vacuum state from Eq. (9.62) so that b̂α†i |ψoc > 6= 0
and b̂αi |ψoc >= 0 for all the members i of any family α. Since any S̃eg changes
ef

(+)
gh

(+) into
ef

[+]
gh

[+] and
ab

[+] † =
ab

[+], while
ab

(+) †
ab

(+)=
ab

[−], the vacuum state |ψoc >

from Eq. (9.62) must be replaced by

|ψoc >=

03

[−i]
12

[−]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[+]
56

[−] · · ·
d−1 d

[−] +
03

[+i]
12

[−]
56

[+] · · ·
d−1 d

[−] + · · · |0 > ,
for d = 2(2n+ 1),

|ψoc >=

03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] +
03

[+i]
12

[+]
56

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] + · · · |0 > ,
for d = 4n, (9.67)

n is a positive integer. There are 2
d
2
−1 summands, since we step by step replace all

possible pairs of
ab

[−] · · ·
ef

[−] in the starting part
03

[−i]
12

[−]
35

[−] · · ·
d−1 d

[−] (or
03

[−i]
12

[−]
35

[−]

· · ·
d−3 d−2

[−]
d−1 d

[+] ) into
ab

[+] · · ·
ef

[+] and include new terms into the vacuum state so
that the last 2n+ 1 summands have for d = 2(2n+ 1) case, n is a positive integer,
only one factor [−] and all the rest [+], each [−] at different position. For d = 4n

also the factor
d−1 d

[+] in the starting term
03

[−i]
12

[−]
35

[−] · · ·
d−3 d−2

[−]
d−1 d

[+] changes to
d−1 d

[−] . The vacuum state has then the normalization factor 1/
√
2d/2−1.

There is therefore

2
d
2
−1 2

d
2
−1 (9.68)

number of creation operators, defining the orthonormalized states when applying
on the vacuum state of Eqs. (9.67) and the same number of annihilation operators,
which are defined by the creation operators on the vacuum state of Eqs. (9.67).
S̃ab connect members of different families, Sab generates all the members of one
family.

We recognize that:
ii.a. The above creation and annihilation operators are nilpotent — (b̂a†i )2 =

0 = (b̂ai )
2 — since the ”starting” creation operator b̂1†1 and annihilation operator

b̂ai are both made of the product of an odd number of nilpotents, while products
of either Sab or S̃ab can change an even number of nilpotents into projectors. Any
b̂a†i is correspondingly a factor of an odd number of nilpotents (at least one) (and
an even number of projectors) and its square is zero. The same is true for b̂ai .

ii.b. All the creation operators operating on the vacuum state of Eq. (9.67)
give a non zero vector — b̂a†i |ψoc > 6= 0 — while all the annihilation operators
annihilate this vacuum state — b̂ai |ψ0 >= 0 for any α and any i.
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It is not difficult to see that b̂ai |ψoc >= 0, for any α and any i. First we
recognize that whatever the set of factors Smn · · ·Spr appear on the right hand
side of the annihilation operator b̂11 in Eq. (9.66), it leaves at least one factor [−]

unchanged. Since b̂11 is the product of only nilpotents (−) and since
ab

(−)
ab

[−]= 0,

this part of the proof is complete.
Let us prove now that b̂α†i |ψoc > 6= 0 for any α and any i. According to

Eq. (9.65) the operation Smn on the left hand side of b̂1†1 , with (m,n, ..), which
does not belong to the Cartan subalgebra set of indices, transforms the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−] · · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

[−] · · ·
nk

[−] · · · · · ·
d−1 d

[+] ) into

the term
03

[−i]
12

[−] · · ·
lm

(+) · · ·
nk

(+) · · ·
d−1 d

[−] (or into the term
03

[−i]
12

[−] · · ·
lm

(+) · · ·
nk

(+)

· · · · · ·
d−1 d

[+] ) and b̂1†1 on such a term gives zero, since
lm

(+)
lm

(+)= 0 and
nk

(+)
nk

(+)= 0.
Let us first assume that Smn is the only term on the right hand side of b̂1†1 and
that none of the operators from the left hand side of b̂1†1 in Eq. (9.65) has the
indices m,n. It is only one term among all the summands in the vacuum state
(Eq. (9.67)), which gives non zero contribution in this particular case, namely the

term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · ·
d−1 d

[−] (or the term
03

[−i]
12

[−] · · ·
lm

[+] · · ·
nk

[+] · · · · · ·
d−1 d

[+] ).

Smn transforms the part · · ·
lm

[+] · · ·
nk

[+] · · · into · · ·
lm

(−) · · ·
nk

(−) · · · and since
lm

(+)
lm

(−)

gives ηll
lm

[+], while for the rest of factors it was already proven that such a factor
on b̂1†1 forms a b1†i giving non zero contribution on the vacuum, Eq. (9.62), the
proof is complete.

It is also proved that what ever other Sab but Smn operate on the left hand side
of b̂1†1 the contribution of this particular part of the vacuum state is nonzero. If the
operators on the left hand side have the indexesm or n or both, the contribution on
this term of the vacuum will still be nonzero, since then such a Smp will transform

the factor
lm

(+) in b̂1†1 into
lm

[−] and
lm

[−]
lm

(−) is nonzero, Eq. (9.88).
It was proven that b̂α†i operating on the vacuum |ψoc > of Eq. (9.67) gives a

nonzero contribution. The vacuum state has namely a term which guarantees a non
zero contribution for any possible set of Smn · · ·Spr operating from the right hand
side of b̂1†1 (that is for each family) (what we achieved just by the transformation

of all possible pairs of
cd

[−],
gh

[−] in the vacuum into
cd

[+],
gh

[+]). (When we speak about

[−] also
03

[−i] is understood.) It is not difficult to see that for each ”family” of 2
d
2
−1

families it is only one term among all the summands in the vacuum state |ψoc >

of Eq. (9.67), which gives a nonzero contribution, since whenever [+] appears on a

wrong position, that is on the position, so that the product of
ab

(+) from b̂1† and
ab

[+]

from the vacuum summand ”meet”, the contribution is zero.
ii.c. Any two creation operators anticommute: {b̂α†i , b̂

β†
j }+ = 0. According

to Eq. (9.65) we can rewrite {b̂α†i , b̂
β†
j }+, up to a factor, as {Smn · · ·Sprb̂1†1 Sab · · ·Sef,

Sm
′n ′ · · ·Sp ′r ′ b̂1†1 Sa

′b ′ · · ·Se ′f ′ }+. Whatever the product Sab · · ·SefSm ′n ′ · · ·Sp ′r ′

(or Sa
′b ′ · · ·Se ′f ′Smn · · ·Spr) is, it always transforms an even number of (+) in b̂1†1

into [−]. Since an odd number of nilpotents (+) (at least one) remains unchanged
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in this right b̂1†1 after the application of all the Sab in the product in front of it, or
d−1 d

[+] transforms into
d−1 d

(−) , and since the left b̂1†1 is a product of only nilpotents
(+) in d = 2(2n + 1), or an odd number of nilpotents and [+] for d = 4n, while
d−1 d

[+]
d−1 d

(−) = 0, the anticommutator for any two creation operators is zero.
ii.d. Any two annihilation operators anticommute: {b̂αi , b̂

β
j }+ = 0.According

to Eq. (9.66) we can rewrite {b̂αi , b̂
β
j }+, up to a factor, as {Sab · · ·Sefb̂11Smn · · ·Spr,

Sa
′b ′ · · ·Se ′f ′ b̂11Sm

′n ′ · · ·Sp ′r ′ }+. Whatever the product Smn · · ·SprSa ′b ′ · · ·Se ′f ′
(or Sm

′n ′ · · ·Sp ′r ′Sab · · ·Sef) is, it always transforms an even number of (−) in b̂11
into [+]. Since an odd number of nilpotents (−) (at least one) remains unchanged

in this b̂11 after the application of all the Sab in the product in front of it or
d−1 d

[+]

is transformed into
d−1 d

(−) , and since b̂11 on the left hand side is a product of
only nilpotents (−) for d = 2(2n + 1) (or an odd number of nilpotents and [+]

for d = 4n), while
ab

(−)
ab

(−)= 0 and
ab

[+]
ab

[−]= 0, the anticommutator of any two
annihilation operators is zero.

ii.e. For any creation and any annihilation operator it follows: {b̂αi , b̂
β†
j }+ |ψoc >=

δαβδij |ψoc >. Let us prove this. According to Eqs. (9.65, 9.66) we may rewrite
{b̂αi , b̂

β†
j }+ up to a factor as

{Sab · · ·Sefb̂11Smn · · ·Spr, Sm
′n ′ · · ·Sp ′r ′ b̂1†1 Sa

′b ′ · · ·Se ′f ′ }+.

We distinguish between two cases. It can be that both Smn · · ·SprSm ′n ′ · · ·Sp ′r ′
and Sa

′b ′ · · ·Se ′f ′Sab · · ·Sef are numbers. This happens when α = β and i = j.
Then we follow i.b.. We normalize the states so that < ψαi |ψ

α
i >= 1.

The second case is that at least one of products Smn · · ·SprSm ′n ′ · · ·Sp ′r ′ and

Sa
′b ′ · · ·Se ′f ′Sab · · ·Sef is not a number. Then the factors like

ab

(−)
ab

[−] or
ab

[+]
ab

(−) or
ab

(+)
ab

[+] make the anticommutator equal to zero. And the proof is completed.
Let us extend the creation and annihilation operators to the ordinary coordi-

nate space

{b̂αi (~x), b̂
β†
j (~x ′)}+|φoc > = δαβ δ

i
j δ(~x− ~x

′)|φoc > ,

{b̂αi (~x), b̂
β
j (~x

′)}+|φoc > = 0 |φoc > ,

{b̂α†i (~x), b̂β†j (~x ′)}+|φoc > = 0 |φoc > ,

b̂αj (~x)|φoc > = 0 |φoc > ,

b̂α†j (~x)|φoc > = |ψαi (~x) > , (9.69)

with the vacuum state |φoc > defined in Eq. (9.67).

c. Discrete symmetries in Grassmann space and in Clifford space in d
and in d = (3+ 1) space

Let Ψ†p[Ψp] be the creation operator creating a fermion in the state Ψp (which
is a function of ~x) and let Ψp(~x) be the second quantized field creating a fermion
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at position ~x either in the Grassmann or in the Clifford case. Then

Ψ†p[Ψp] =

∫
Ψ†p(~x)Ψp(~x)d

(d−1)x , (9.70)

describes on a vacuum state a single particle in the state Ψ

{Ψ†p[Ψp] =

∫
Ψ†p(~x)Ψp(~x)d

(d−1)x } |vac >

so that the anti-particle state becomes

{CΨ†p[Ψposp ] =

∫
Ψp(~x) (C Ψposp (~x))d(d−1)x} |vac > .

We distinguish in d-dimensional space two kinds of dicsrete operators C,P and T
operators with respect to the internal space which we use.

In the Clifford case we have [21]

CH =
∏
γa∈=

γa K ,

TH = γ0
∏
γa∈<

γa K Ix0 ,

P(d−1)
H = γ0 I~x ,

Ixx
a = −xa , Ix0x

a = (−x0,~x) , I~x~x = −~x ,

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) . (9.71)

The product
∏
γa is meant in the ascending order in γa.

In the Grassmann case we correspondingly define

CG =
∏

γa
G
∈=γa

γaG K ,

TG = γ0G
∏

γa
G
∈<γa

γaG K Ix0 ,

P(d−1)
G = γ0G I~x , (9.72)

γaG is defined in Eq. (9.11) as

γaG = (1− 2θaηaa
∂

∂θa
) , (9.73)

while Ixxa = −xa , Ix0xa = (−x0,~x) , I~x~x = −~x ,

I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) .

Let be noticed, that since γaG (= −iηaa γaγ̃a) is always real as there is γaiγ̃a,
while γa is either real or imaginary, we use in Eq. (9.72) γa to make a choice of
appropriate γaG. In what follows we shall use the notation as in Eq. (9.72).
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Let us define in the Clifford case and in the Grassmann case the operator
”emptying” [7,9] (arxiv:1312.1541) the Dirac sea, so that operation of ”emptyingN”
after the charge conjugation CH in the Clifford case and ”emptyingG” after the
charge conjugation CG in the Grassmann case (both transform the state put on
the top of either the Clifford or the Grassmann Dirac sea into the corresponding
negative energy state) creates the anti-particle state to the starting particle state,
both put on the top of the Dirac sea and both solving the Weyl equation, either in
the Clifford case, Eq. (9.34), or in the Grassmann case, Eq. (9.39), for free massless
fermions

"emptyingN" =
∏
<γa

γa K in Clifford space ,

"emptyingG" =
∏
<γa

γaG K in Grassmann space , (9.74)

although we must keep in mind that indeed the anti-particle state is a hole in the
Dirac sea from the Fock space point of view. The operator ”emptying” is bringing
the single particle operator CH in the Clifford case and CG in the Grassmann case
into the operator on the Fock space in each of the two cases. Then the anti-particle
state creation operator — Ψ†a[Ψp] — to the corresponding particle state creation
operator — can be obtained also as follows

Ψ†a[Ψp] |vac > = CH Ψ
†
p[Ψp] |vac >=

∫
Ψ†a(~x) (CH Ψp(~x))d(d−1)x |vac > ,

CH = "emptyingN" · CH (9.75)

in both cases.
The operators CH and CG

CH = "emptyingN" · CH , CG = "emptyingNG" · CG , (9.76)

operating on Ψp(~x) transforms the positive energy spinor state (which solves
the corresponding Weyl equation for a massless free fermion) put on the top of
the Dirac sea into the positive energy anti-fermion state, which again solves the
corresponding Weyl equation for a massless free anti-fermion put on the top of
the Dirac sea. Let us point out that either the operator "emptyingN" or the operator
"emptyingNG" transforms the single particle operator either CH or CG into the
operator operating in the Fock space.

We use the Grassmann even, Hermitian and real operators γaG, Eq. (9.11), to
define discrete symmetry in Grassmann space, first in ((d+ 1) − 1) space and then
in (3+ 1) space, as we did in [21] in the Clifford case. In the Grassmann case we
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do this in analogy with the operators in the Clifford case [21]

CNG =
∏

γm
G
∈<γm

γmG K Ix6x8...xd ,

TNG = γ0G
∏

γm
G
∈=γm

K Ix0Ix5x7...xd−1 ,

P(d−1)
NG = γ0G

d∏
s=5

γsGI~x ,

CNG =
∏

γs
G
∈<γs

γsG , Ix6x8...xd ,

CNGP(d−1)
NG = γ0G

d∏
γs
G
∈=γs,s=5

γsG I~x3 Ix6x8...xd ,

CNGTNGP(d−1)
NG =

∏
γs
G
∈=γa

γaG IxK . (9.77)

Let us try to understand the Grassmann fermions in the case d = 5 + 1,
before the break, as well as after the break of d = 5+ 1 into d = 3+ 1, when the
fifth and the sixth dimension determine the charge in d = 3 + 1. There are two
decuplets in this case [15], both of an odd Grassmann character, which can be
second quantized. The two triplets in the first decuplet— (ψI1, ψI2, ψI3) and (ψI4,
ψI5, ψI6) — both solving the Eq. (9.39) for massless free fermions in Grassmann
space with the space function e−ipax

a

. The Grassmann even opoerator operator
CNGP(d−1)

NG transforms ψI1 with pa = (|p0|, 0, 0, |p3|, 0, 0) into the antiparticle state
ψI6, with the positive energy |p0| and with −|p3|, for example. Correspondingly
transforms CNGP(d−1)

NG the particle state ψI3 with the positive energy and into the
antiparticle state ψI4 with the positive energy, and the particle ψI3 into the positive
energy antiparticle state ψI4. All belong to the same representation.

Applying the Grassmann even operators on one of the states of one the de-
cuplets — CG(= γ2Gγ5G, Eq. (9.72)), CNGP(d−1)

NG (= γ1Gγ
3
Gγ

5
Gγ

6
G Ix6I~x3K, Eq. (9.72))

— one remains within the same decuplet. To get the positive energy antiparticle
states the operator emptingN in (d − 1) + 1 and emptingNG in d = (3 + 1) are
needed, Eqs. (9.74, 9.76). The reader can find more discussions in Refs. [15,21].

d. What do we learn in the second quantization procedure in Grassmann
and in Clifford space

We proved that basic states in both spaces can be written by creation operators
operating on an appropriate vacuum state. The creation and annihilation operators
fulfill in both spaces anticommutation relations as required for fermions, Eqs (9.48,
9.60).

In both spaces the creation operators are chosen to create states that are
eigenstates of the corresponding Cartan subalgebra of the Lorentz algebra, the
generators of which are Sab, Eq. (9.13), for the Grassmann case and (Sab, S̃ab),
first generating spins and the second families, Eq. (9.25), for the Clifford case.
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I decuplet S03 S12 S56

1 (θ0 − θ3)(θ1 + iθ2)(θ5 + iθ6) i 1 1

2 (θ0θ3 + iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 + θ3)(θ1 − iθ2)(θ5 + iθ6) −i −1 1

4 (θ0 − θ3)(θ1 − iθ2)(θ5 − iθ6) i −1 −1

5 (θ0θ3 − iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 + θ3)(θ1 + iθ2)(θ5 − iθ6) −i 1 −1

7 (θ0 − θ3)(θ1θ2 + θ5θ6) i 0 0

8 (θ0 + θ3)(θ1θ2 − θ5θ6) −i 0 0

9 (θ0θ3 + iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 − iθ5θ6)(θ1 − iθ2) 0 −1 0

II decuplet S03 S12 S56

1 (θ0 + θ3)(θ1 + iθ2)(θ5 + iθ6) −i 1 1

2 (θ0θ3 − iθ1θ2)(θ5 + iθ6) 0 0 1

3 (θ0 − θ3)(θ1 − iθ2)(θ5 + iθ6) i −1 1

4 (θ0 + θ3)(θ1 − iθ2)(θ5 − iθ6) −i −1 −1

5 (θ0θ3 + iθ1θ2)(θ5 − iθ6) 0 0 −1

6 (θ0 − θ3)(θ1 + iθ2)(θ5 − iθ6) i 1 −1

7 (θ0 + θ3)(θ1θ2 + θ5θ6) −i 0 0

8 (θ0 − θ3)(θ1θ2 − θ5θ6) i 0 0

9 (θ0θ3 − iθ5θ6)(θ1 + iθ2) 0 1 0

10 (θ0θ3 + iθ5θ6)(θ1 − iθ2) 0 −1 0

Table 9.1. The creation operators of the decuplet and the antidecouplet of the orthog-
onal group SO(5, 1) in Grassmann space are presented. Applying on the vacuum state
|φ0 >= |1 > the creation operators form eigenstates of the Cartan subalgebra, Eq. (9.84),
(S03,S12, S56). The states within each decouplet are reachable from any member by Sab. The
product of the discrete operators CNG (=

∏
<γs γ

s
G Ix6x8...xd ) P(d−1)

NG (= γ0G
∏d
s=5 γ

s
GI~x3 )

transforms, for example, ψI1 into ψI6, ψI2 into ψI5 and ψI3 into ψI4. Solutions of the Weyl
equation, Eq. (9.39), with the negative energies belong to the ”Grassmann sea”, with the
positive energy to the particles and antiparticles.

While in the Grassmann case the vacuum state is simple, |φog >= |1 >, in the
Clifford case the vacuum state is a sum of products of 2

d
2
−1 projectors, Eq. (9.67).

In 2(2n+1)-dimensional spaces there are in the Clifford case 2
d
2
−1 states in one

representation reachable from (any) starting state by Sab, while S̃ab transform each
of these states changing its family quantum number. There are correspondingly
2
d
2
−1 × 2d2−1 states reachable with either Sab or S̃ab. Each state is obtained by

the corresponding creation operator on the vacuum state and is annihilated by its
Hermitian conjugate operator.

In 2(2n + 1)-dimensional spaces there are in the Grassmann case two de-
coupled groups with 1

2
d!
d
2
!d
2
!

states in each representation. Each of states can be
obtained by the corresponding creation operator and is annihilated by its Her-
mitian conjugated operator. While all of 2

d
2
−1 × 2d2−1 states in Clifford space are

reachable by even Clifford objects, either Sab or S̃ab, in Grassmann space the two
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groups of representations can not be reached by an even number of Grassmann
objects.

9.3 Conclusions

We have learned in the present study that one can use either Grassmann or Clifford
space to express the internal degrees of freedom of fermions in any even dimen-
sional space, either for d = 2(2n+ 1) or d = 4n. In both spaces the creation opera-
tors and their Hermitian conjugated annihilation operators fulfill the anticommuta-
tion relation requirements, needed for fermions, provided that they are expressed
as odd products of either Grassmann (θa, (θa)† = ∂

∂θa
ηaa, Eq. (9.8)) or Clifford

objects (either γa = (θa + ∂
∂θa

), Eq. (9.17) and correspondingly γa† = γaηaa, or
γ̃a = i(θa − ∂

∂θa
), Eq. (9.18), and correspondingly γ̃a† = γ̃aηaa). But while in

the Clifford case states appear in the fundamental representations of the Lorentz
group, carrying half integer spins, the states in the Grassmann case are in adjoint
representations of the Lorentz group. The Clifford case, offering two kinds of
the Clifford objects (γa and γ̃a), enables to describe besides the spin degrees of
freedom of fermion fields also their family degrees of freedom. The Grassmann
case offers only one kind of objects. Assuming that ”nature has both choices” for
describing the internal degrees of freedom of fermion fields, the question arises
why Grassmann choice is not chosen, or better, why the Clifford choice is chosen.

In the case that spin degrees in d ≥ 5 manifest as charges in d = (3 + 1),
fermions in the Grassmann case manifest charges in the adjoint representations.
On the other hand in the Clifford case — this is used in the spin-charge-family
theory, which takes the Lorentz group SO(13, 1) — the spin and charges appear in
the fundamental representations of the corresponding groups, offering also the
family degrees of freedom.

We present in this paper the action describing free massless particles with the
internal degrees of freedom describable in Grassmann space, Eqs. (9.37, 9.38). The
action leads to the equation of motion analogous to the Weyl equation in Clifford
space, fulfilling the Klein-Gordon equation.

Since the Clifford objects γa and γ̃a are expressible with the Grassmann
coordinates θa and their conjugate moments ∂

∂θa
, either basic states in Grassmann

space, Eq. (9.4), or basic states in Clifford space, Eq. (9.15), can be normalized with
the same integral, Eq. (9.27, 9.28, 9.30).

To understand better the difference in the description of the fermion internal
degrees of freedom with either Clifford or Grassmann space, let us replace in the
starting action of the spin-charge-family theory, Eq. (9.1), using the Clifford algebra
to describe fermion degrees of freedom, the covariant momentum p0a = fαa
p0α, p0α = pα − 1

2
Sabωabα − 1

2
S̃abω̃abα, with p0α = pα − 1

2
SabΩabα, where

Sab = Sab + S̃ab, Eq. (9.26), and Ωabα are the spin connection gauge fields
of Sab (which are the generators of the Lorentz transformations in Grassmann
space!), while fαa p0α replaces the ordinary momentum when massless objects
start to interact with the gravitational field through the vielbeins and the spin
connections. Let us add that varying the action with respect to eitherωabα or ω̃abα
when no fermions are present, one learns that both spin connections are uniquely
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determined by the vielbeins ([9,3,5] and references therein) and correspondingly
in this particular caseωabα = ω̃abα .

Let us use instead of pa in the action for free massless fields using Grassmann
space to describe the internal degrees of freedom, Eq. (9.37), the above covariant
momentum p0a = fαa (pα − 1

2
SabΩabα). One finds in this case that the repre-

sentations of the Lorentz group in d = 2(2n + 1) = 13 + 1 and their subgroups
SO(7, 1), SU(3) and U(1) are all in the adjoint representations of the groups.

The spin-charge-family theory (using Clifford objects) offers the explanation
for all the assumptions of the standard model of elementary fields, fermions and
bosons, vector and scalar gauge fields, with the appearance of families included,
explaining also the phenomena like the existence of the dark matter [10], of the
matter-antimatter asymmetry [4], offering correspondingly the next step beyond
both standard models — cosmological one and the one of the elementary fields.

We do notice, however, that the Grassmann degrees of freedom do not offer the
appearance of families at all.

We also notice that the second quantization procedure allows in d = 2(2n+1)-
dimensional space for each member of a Weyl representation in Clifford space
(for each of 2

d
2
−1 ”family member”) 2

d
2
−1 ”families”, all together therefore 2

d
2
−1×

2
d
2
−1 basic states which can be second quantized, according to this paper. From 2d

Clifford objects, only those of an odd Clifford character contribute to the second
quantization — half of them as creation and half of them as annihilation operators,
2
d
2
−1 projectors from the rest of objects form the vacuum state.

We notice that in case of Grassmann space and d = 2(2n+ 1) only twice two
isolated groups of 1

2
d!
d
2
!d
2
!

states of an odd Grassmann character can be second
quantized.

To come to the low energy regime the symmetry must break, first from
SO(13, 1) to SO(7, 1)×SU(3)×U(1) and then further to SO(3, 1)×SU(3)×U(1), in
both spaces, in Grassmann and in Clifford. In Clifford case there are two kinds of
generators and correspondingly two kinds of symmetries. We learned in Refs. [23–
25] that when breaking symmetries only some of families stay massless and
correspondingly observable in d = (3+ 1).

This study is indeed to learn more about possibilities that ”nature has”. One
of the authors (N.S.M.B.) wants to learn: a. Why is the simple starting action of
the spin-charge-family theory doing so well in manifesting the observed properties
of the fermion and boson fields? b. Under which condition can more general
action lead to the starting action of Eq. (9.1)? c. What would more general action,
if leading to the same low energy physics, mean for the history of our Universe? d.
Could the fermionization procedure of boson fields or the bosonization procedure
of fermion fields, discussed in Ref. [12] for any even dimension d (by the authors
of this contribution, while one of them (H.B.F.N. [13]) has succeeded with another
author to do the fermionization for d = (1+ 1)) tell more about the ”decisions” of
the universe in the history?

Although we have not yet learned enough to be able to answer these questions,
yet we have learned at least that the description of the fermion internal degrees
of freedom in Grassmann space would not offer families, and would not be in
agreement with the spin and charges and other observations so far. We also learned
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that if there are no fermion present only one kind of dynamical fields manifests,
since eitherωabα or ω̃abα are uniquely expressed by vielbeins ([9] Eq. (C9) and
references therein), which could mean that the appearance of the two kinds of the
spin connection fields might be due to the break of symmetries.

9.4 Appenix: Lorentz algebra and representations in Grassmann
and Clifford space

The Lorentz transformations of vector components θa, γa, or γ̃a, which all could
be used to describe internal degrees of freedom of fields with the anticommutation
relations of fermions, and of vector components xa, which are real (ordinary)
commuting coordinates:

θ ′a = Λab θ
b, γ ′a = Λab γ

b, γ̃ ′a = Λab γ̃
b and xa = Λab x

b, leave forms
aa1a2...ai θ

a1θa2 . . . θai , aa1a2...ai γ
a1γa2 . . . γai , aa1a2...ai γ̃

a1 γ̃a2 . . . γ̃ai

and ba1a2...ai x
a1xa2 . . . xai , i = (1, . . . , d), invariant.

While ba1a2...ai (= ηa1b1ηa2b2 . . . ηaibi b
b1b2...bi) is a symmetric tensor

field, aa1a2...ai (= ηa1b1ηa2b2 . . . ηaibi a
b1b2...bi) are antisymmetric tensor Kalb-

Ramond fields.
The requirements: x

′a x
′bηab = xc xdηcd, θ ′aθ ′bεab = θcθdεcd, γ ′aγ ′bεab =

γcγdεcd and γ̃ ′aγ̃ ′bεab = γ̃cγ̃dεcd lead to ΛabΛcd ηac = ηbd. Here ηab (in our
case ηab = diag(1,−1,−1, . . . ,−1)) is the metric tensor lowering the indexes of
vectors ({xa} = ηabxb, {θa} = ηab θb, {γa} = ηab γb and {γ̃a} = ηab γ̃b) and εab
is the antisymmetric tensor. An infinitesimal Lorentz transformation for the case
with detΛ = 1,Λ00 ≥ 0 can be written asΛab = δab+ω

a
b, whereωab+ωba = 0.

According to Eqs. (9.17, 9.18, 9.25) one finds, Eq. (9.3),

{γa, S̃cd}− = 0 = {γ̃a, Scd}− ,

{γa,Scd}− = {γa, Scd}− = i (ηacγd − ηadγc) ,

{γ̃a,Scd}− = {γ̃a, S̃cd}− = i (ηacγ̃d − ηadγ̃c) . (9.78)

Comments: In cases with either the basis θa or with the basis of γa or γ̃a the scalar
products — the norms< B|B > and< F|F > (where< θ|B >, Eq. (9.4), and< γ|F >,
Eq. (9.15), are vectors in Grassmann and Clifford space, respectively) — are non
negative and equal to

∑d
k=0

∫
dd−1xb∗b1...bkbb1...bk .

9.4.1 Lorentz properties of basic vectors

What follows is taken from Ref. [2] and Ref. [9], Appendix B.
Let us first repeat some properties of the anticommuting Grassmann coordi-

nates.
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An infinitesimal Lorentz transformation of the proper ortochronous Lorentz
group is then

δθc = −
i

2
ωabSabθc = ωcaθa ,

δγc = −
i

2
ωabS

abγc = ωcaγ
a ,

δγ̃c = −
i

2
ωabS̃

abγ̃c = ωcaγ̃
a ,

δxc = −
i

2
ωabL

abxc = ωcax
a , (9.79)

whereωab are parameters of a transformation and γa and γ̃a are expressed by θa

and ∂
∂θa

in Eqs. (9.17, 9.18).
Let us write the operator of finite Lorentz transformations as follows

S = e−
i
2
ωab(Sab+Lab) . (9.80)

We see that the Grassmann θa and the ordinary xa coordinates and the Clifford
objects γa and γ̃a transform as vectors Eq. (9.80)

θ ′c = e−
i
2
ωab(Sab+Lab) θc e

i
2
ωab(Sab+Lab)

= θc −
i

2
ωab{Sab, θc}− + · · · = θc +ωcaθa + · · · = Λcaθa ,

x ′c = Λcax
a , γ ′c = Λcaγ

a , γ̃ ′c = Λcaγ̃
a . (9.81)

Correspondingly one finds that compositions like γapa and γ̃apa, here pa are
pxa (= i ∂

∂xa
), transform as scalars (remaining invariants), while Sabωabc and

S̃ab ω̃abc transform as vectors.
Also objects like

R =
1

2
fα[afβb] (ωabα,β −ωcaαω

c
bβ)

and
R̃ =

1

2
fα[afβb] (ω̃abα,β − ω̃caαω̃

c
bβ)

from Eq. (9.1) transform with respect to the Lorentz transformations as scalars.
Making a choice of the Cartan subalgebra set of the algebra Sab, Sab and S̃ab,

Eqs. (9.13, 9.17, 9.18),

S03,S12,S56, · · · ,Sd−1 d ,
S03, S12, S56, · · · , Sd−1 d ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , (9.82)

one can arrange the basic vectors so that they are eigenstates of the Cartan sub-
algebra, belonging to representations of Sab, or of Sab and S̃ab, with ab from
Eq (9.82).
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9.5 Appendix: Technique to generate spinor representations in
terms of Clifford algebra objects

We shall briefly repeat the main points of the technique for generating spinor
representations from Clifford algebra objects, following Ref. [16]. We advise the
reader to look for details and proofs in this reference.

We assume the objects γa, Eq. (9.17), which fulfill the Clifford algebra, Eq (9.16).

{γa, γb}+ = I 2ηab, for a, b ∈ {0, 1, 2, 3, 5, · · · , d} , (9.83)

for any d, even or odd. I is the unit element in the Clifford algebra, while {γa, γb}± =

γaγb ± γbγa.
We accept the “Hermiticity” property for γa’s, Eq. (9.20), γa† = ηaaγa ,

leading to γa†γa = I. Assuming the relation of Eq. (9.17) this last relations follow.
The Clifford algebra objects Sab close the Lie algebra of the Lorentz group

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac). One finds from Eq.(9.20)
that (Sab)† = ηaaηbbSab and that {Sab, Sac}+ = 1

2
ηaaηbc.

Recognizing that two Clifford algebra objects Sab, Scd with all indexes differ-
ent commute, we select (out of many possibilities) the Cartan sub algebra set of
the algebra of the Lorentz group as follows

S0d, S12, S35, · · · , Sd−2 d−1, if d = 2n,

S12, S35, · · · , Sd−1 d, if d = 2n+ 1. (9.84)

To make the technique simple, we introduce the graphic representation [16]
as follows

ab

(k): =
1

2
(γa +

ηaa

ik
γb),

ab

[k]: =
1

2
(1+

i

k
γaγb), (9.85)

where k2 = ηaaηbb. One can easily check by taking into account the Clifford alge-
bra relation (Eq. (9.83)) and the definition of Sab (Eq. (9.25)) that if one multiplies

from the left hand side by Sab the Clifford algebra objects
ab

(k) and
ab

[k], it follows
that

Sab
ab

(k)=
1

2
k
ab

(k),

Sab
ab

[k]=
1

2
k
ab

[k] . (9.86)

This means that
ab

(k) and
ab

[k] acting from the left hand side on anything (on a
vacuum state |ψ0〉, for example) are eigenvectors of Sab.

We further find

γa
ab

(k) = ηaa
ab

[−k], γb
ab

(k) = −ik
ab

[−k],

γa
ab

[k] =
ab

(−k), γb
ab

[k] = −ikηaa
ab

(−k) . (9.87)
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It follows that Sac
ab

(k)
cd

(k)= − i
2
ηaaηcc

ab

[−k]
cd

[−k], Sac
ab

[k]
cd

[k]= i
2

ab

(−k)
cd

(−k), Sac
ab

(k)
cd

[k]=

− i
2
ηaa

ab

[−k]
cd

(−k), Sac
ab

[k]
cd

(k)= i
2
ηcc

ab

(−k)
cd

[−k]. It is useful to deduce the following
relations

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0 ,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .

(9.88)

We recognize in the first equation of the first row and the first equation of the
second row the demonstration of the nilpotent and the projector character of the

Clifford algebra objects
ab

(k) and
ab

[k], respectively.
Whenever the Clifford algebra objects apply from the left hand side, they always

transform
ab

(k) to
ab

[−k], never to
ab

[k], and similarly
ab

[k] to
ab

(−k), never to
ab

(k).
We define in Eq. (9.62) a vacuum state |ψoc > so that one finds

<
ab

(k)

†
ab

(k) >= 1 , <
ab

[k]

†
ab

[k] >= 1 . (9.89)

Taking the above equations into account it is easy to find a Weyl spinor
irreducible representation for d-dimensional space, with d even or odd. (We advise
the reader to see Ref. [16].)

For d even, we simply set the starting state as a product of d/2, let us say, only

nilpotents
ab

(k) for d = 2(2n+1), Eq. (9.57), or nilpotents and one projector, Eq. (9.58),
for d = 4n, one for each Sab of the Cartan subalgebra elements (Eq. (9.84)),
applying it on the vacuum state, Eq. (9.62). Then the generators Sab, which do not
belong to the Cartan subalgebra, applied to the starting state from the left hand
side, generate all the members of one Weyl spinor.

0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

(kd−1 d−2) |ψoc > ,

...
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

[−kd−1 d−2] |ψoc > ,

ford = 2(2n+ 1) , n = positive integer . (9.90)
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0d

(k0d)
12

(k12)
35

(k35) · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,
0d

[−k0d]
12

[−k12]
35

(k35) · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,
0d

[−k0d]
12

(k12)
35

[−k35] · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,

...
od

(k0d)
12

[−k12]
35

[−k35] · · ·
d−1 d−2

[kd−1 d−2] |ψoc > ,

ford = 4n , n = positive integer . (9.91)

9.5.1 Technique to generate ”families” of spinor representations in terms of
Clifford algebra objects

When all 2d states are considered as a Hilbert space, we found in this paper that
for d even there are 2d/2−1 ”families members” and 2d/2−1 ”families” of spinors,
which can be second quantized. (The reader is advised to se also Ref. [2,26,16,17,27,9].)
We shall pay attention on only even d.

One Weyl representation form a left ideal with respect to the multiplication
with the Clifford algebra objects. We proved in Ref. [9], and the references therein
that there is the application of the Clifford algebra object from the right hand side,
which generates ”families” of spinors.

Right multiplication with the Clifford algebra objects namely transforms
the state with the quantum numbers of one ”family member” belonging to one
”family” into the state of the same ”family member” (into the same state with
respect to the generators Sab when the multiplication from the left hand side is
performed) of another ”family”.

We defined in Ref.[17] the Clifford algebra objects γ̃a’s as operations which
operate formally from the left hand side (as γa’s do) on any Clifford algebra object
A as follows

γ̃aA = i(−)(A)Aγa , (9.92)

with (−)(A) = −1, if A is an odd Clifford algebra object and (−)(A) = 1, if A is an
even Clifford algebra object.

Then it follows, in accordance with Eqs. (9.17, 9.18, 9.19), that γ̃a obey the
same Clifford algebra relation as γa.

(γ̃aγ̃b + γ̃bγ̃a)A = −ii((−)(A))2A(γaγb + γbγa) = I · 2ηabA (9.93)

and that γ̃a and γa anticommute

(γ̃aγb + γbγ̃a)A = i(−)(A)(−γbAγa + γbAγa) = 0 . (9.94)

We may write

{γ̃a, γb}+ = 0, while {γ̃a, γ̃b}+ = I · 2ηab . (9.95)



i
i

“proc18” — 2018/12/10 — 11:44 — page 213 — #229 i
i

i
i

i
i

9 Why Nature Made a Choice of Clifford and not Grassmann Coordinates? 213

One accordingly finds

γ̃a
ab

(k): = −i
ab

(k) γa = −iηaa
ab

[k] , γ̃b
ab

(k): = −i
ab

(k) γb = −k
ab

[k] ,

γ̃a
ab

[k]: = i
ab

[k] γa = i
ab

(k) , γ̃b
ab

[k]: = i
ab

[k] γb = −kηaa
ab

(k) . (9.96)

If we define

S̃ab =
i

4
[γ̃a, γ̃b] =

1

4
(γ̃aγ̃b − γ̃bγ̃a) , (9.97)

it follows

S̃abA = A
1

4
(γbγa − γaγb) , (9.98)

manifesting accordingly that S̃ab fulfil the Lorentz algebra relation as Sab do.
Taking into account Eq. (9.92), we further find

{S̃ab, Sab}− = 0 , {S̃ab, γc}− = 0 , {Sab, γ̃c}− = 0 . (9.99)

One also finds

{S̃ab, Γ }− = 0 , {γ̃a, Γ }− = 0 , for d even ,

Γ (d) : = (i)d/2
∏
a

(
√
ηaaγa) , if d = 2n , (9.100)

where handedness Γ ({Γ, Sab}− = 0) is a Casimir of the Lorentz group, which
means that in d even transformation of one ”family” into another with either S̃ab

or γ̃a leaves handedness Γ unchanged.
We advise the reader also to read [2] where the two kinds of Clifford algebra

objects follow as two different superpositions of a Grassmann coordinate and its
conjugate momentum.

We present for S̃ab some useful relations

S̃ab
ab

(k) =
k

2

ab

(k), S̃ab
ab

[k] = −
k

2

ab

[k], S̃ac
ab

(k)
cd

(k) =
i

2
ηaaηcc

ab

[k]
cd

[k],

S̃ac
ab

[k]
cd

[k] = −
i

2

ab

(k)
cd

(k), S̃ac
ab

(k)
cd

[k] = −
i

2
ηaa

ab

[k]
cd

(k), S̃ac
ab

[k]
cd

(k) =
i

2
ηcc

ab

(k)
cd

[k] .

(9.101)

We transform the state of one ”family” to the state of another ”family” by
the application of S̃ac (formally from the left hand side) on a state of the first
”family” for a chosen a, c. To transform all the states of one ”family” into states
of another ”family”, we apply S̃ac to each state of the starting ”family”. It is,
of course, sufficient to apply S̃ac to only one state of a ”family” and then use
generators of the Lorentz group (Sab) to generate all the states of one Dirac spinor
d-dimensional space.

One must notice that nilpotents
ab

(k) and projectors
ab

[k] are eigenvectors not
only of the Cartan subalgebra Sab but also of S̃ab. Accordingly only S̃ac, which
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do not carry the Cartan subalgebra indices, cause the transition from one ”family”
to another ”family”.

The starting state of Eq. (9.90) can change, for example, to

0d

[k0d]
12

[k12]
35

(k35) · · ·
d−1 d−2

(kd−1 d−2) , (9.102)

if S̃01 was chosen to transform the Weyl spinor of Eq. (9.90) to the Weyl spinor of
another ”family”.
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