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Abstract

We discuss the multiple integral of a multivariate exponential taken with respect either
to the Lebesgue measure or to the discrete uniform Bernoulli measure. In the first case
the integral is linked to Euler’s everywhere divergent power series and its generalizations,
while in the second case the integral is linked to a one-dimensional model of spin systems
as encountered in physics.
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1 Introduction
Consider the integral (N ≥ 1)

ZN (x) =

∫
RN

exp

−H
 N∑
j=1

uj

− x N∏
j=1

uj

µ

 N∏
j=1

duj

 (1.1)
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If µ is the Lebesgue measure on (0,∞)
N and H = 1, the integral is linked to the series∑

n≥0

(−1)n(n!)N−1xn

which, for N = 2, is attributed to Euler. If N = 1 the series reduces to (1 + x)−1

(convergent for |x| < 1) and for N ≥ 2 it diverges for all x 6= 0.
If on the other hand, µ is the Bernoulli measure on the set {−1, 1}N then the integral

reads

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

− x N∏
j=1

uj


and could represent a certain spin system described in Section 6.

2 Euler’s divergent series
If µ is the Lebesgue measure on (0,∞)

N , we suppose that H > 0 and x ≥ 0. There is
no loss of generality in the choice H = 1 in Formula 1.1; take new variables vj = Huj .
Integrate

ZN (x) =

∫
(0,∞)N

exp

−
 N∑
j=1

uj

− x N∏
j=1

uj

 N∏
j=1

duj

with respect to duN to obtain

ZN (x) =

∫
(0,∞)N−1

exp
(
−
(∑N−1

j=1 uj

))
1 + x

∏N−1
j=1 uj

N−1∏
j=1

duj .

Suppose N ≥ 2 since the case N = 1 is trivial. ZN converges for all complex x outside

the negative real axis (−∞, 0). Expand
(

1 + x
∏N−1
j=1 uj

)−1
into a formal power series

ZN (x) =

∫
(0,∞)N−1

exp

−N−1∑
j=1

uj

∑
n≥0

(−1)nxn
N−1∏
j=1

uj
n
N−1∏
j=1

duj .

If we accept to permute the summation with the integral, then

ZN (x) =
∑
n≥0

(−1)nxn
N−1∏
j=1

∫
(0,∞)

unj exp(−uj)duj =
∑
n≥0

(−1)n(n!)N−1xn.

What happens if N = 1 or 2? The case N = 1 is trivial yet interesting,

Z1(x) =

∫ ∞
0

exp(−u− xu)du =
1

1 + x
·

Expanding the integral with respect to xwe obtain Z1(x) =
∑
n≥0 (−1)nxn and for x = 1

we rediscover the well-known “equality”
∑
n≥0 (−1)n = 1

2 ·
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∫ ∞
0

exp(−u)

1 + u
du = 0.5963 . . .

and therefore concluded ∑
n≥0

(−1)nn! = 0.5963 . . .

a most astonishing equality! In his beautiful book G. H. Hardy [2] discusses in detail this
case N = 2.

Remark 2.1. The constant
∫∞
0

exp(−u)
1+u du = 0.5963 . . . is called the Euler or the Euler-

Gompertz constant (see [3], [1, Section 6.2], and in particular [1, Section 6.2.4] for the
name “Gompertz”). Among the numerous results related to this constant we do not resist
to write the following continued fraction expansion:∫ ∞

0

exp(−u)

1 + u
du =

1

2−
1

4−
4

6−
9

8−
. . .

This continued fraction expansion is sometimes attributed to Stieltjes, but in [8] Stieltjes
indicated that it was studied by Laguerre. We found indeed in [5, p. 154] that Laguerre con-
sidered e times the Prym function1 eQ(α) =

∫∞
1
e1−xxα−1dx and obtained as consecutive

approximations of eQ(0) the sequence

4

7
,

20

34
,

124

209
,

920

2546
,

7940

13327
, . . .

which are exactly the values of the first few truncatures of the above continued fraction
(also see Laguerre [4, p. 77]). Of course eQ(0) =

∫∞
0

exp(−u)
1+u du = Z2(1): it would thus

be interesting to obtain such nice continued fraction expansions for the quantities ZN (1).
More generally, a formula given by Tannery in [9, p. 1699] or an easy rewriting of a

formula given by Laguerre in [4, end of Page 75] reads

ex
∫ ∞
x

e−t

t
dt =

1

x+ 1−
1

x+ 3−
4

x+ 5−
9

x+ 7−
. . .

But

Z2(x) =

∫ ∞
0

exp(−u)

1 + xu
du =

1

x

∫ ∞
0

e−u

1
x + u

du =
1

x
e1/x

∫ ∞
1/x

e−t

t
dt.

1Note that there seems to be a misprint in the formula given by Laguerre, where e1−x is replaced by e−x, see
the original definition by Prym [7, p. 169].
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Hence

Z2(x) =
1

1 + x−
x2

1 + 3x−
4x2

1 + 5x−
9x2

1 + 7x−
. . .

3 The Borel operator
The sequence ZN can be defined recursively by means of the so-called Borel operator

B : f 7→
∫ ∞
0

exp(−u)f(ux)du.

The Borel operator applies the series
∑
n≥0 f

(n)(0)x
n

n! onto
∑
n≥0 f

(n)(0)xn.
Using the relation Z0(x) = exp(−x) and ZN+1 = BZN , we see that the integral ZN

is therefore the N th iterate BN of x 7→ exp(−x), or equivalently the (N − 1)st iterate
BN−1 of x 7→ (1 + x)−1.

4 The Abel-Plana summation and the Γ function
In this section we study the behavior of ZN when N goes to infinity. Note that for real
x ≥ 0, the sequence N 7→ ZN (x) is bounded from above by 1 and furthermore it is
increasing. Indeed let ∆N (x) = ZN+1(x)− ZN (x) and ΠN (x) = x

∏N
j=1 uj . Then

∆N (x) =

∫
(0,∞)N

exp

− N∑
j=1

uj

( 1

1 + ΠN (x)
− exp (−ΠN (x))

) N∏
j=1

duj .

Since 1
1+t − exp(−t) ≥ 0, ZN+1(x) ≥ ZN (x) as claimed. Therefore ZN (x) tends to a

limit which we now compute.

Theorem 4.1. For all real x ≥ 0, we have lim
N→∞

ZN (x) = 1.

Proof. Since the result is trivial for x = 0, we may assume x > 0. We note that ZN (x)
can be written as a diverging series

ZN (x) =
∑
n≥0

(−1)nfN (n)

where fN : s 7→ Γ(1 + s)N−1xs is an analytic function on the half-plane <(s) > −1.
By blindly applying the Abel-Plana Formula (see [6, III, formula X]) to this series, we

get

ZN (x) = −
∫ −1/2+i∞
−1/2−i∞

Γ(1 + z)N−1xz

2i sin(πz)
dz

=

∫ +∞

−∞

Γ(1/2 + it)N−1x−1/2+it

2 cosh(πt)
dt
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or by displacing the integration contour,

ZN (x) = 1−
∫ 1/2+i∞

1/2−i∞

Γ(1 + z)N−1xz

2i sin(πz)
dz (4.1)

= 1−
∫ +∞

−∞

Γ(3/2 + it)N−1x1/2+it

2 cosh(πt)
dt (4.2)

The convergence of the integrals is provided by the fact the Γ function decreases like
exp(−π2 |z|) as z goes to−1/2±i∞ (resp. 1/2±i∞), and sin(πz) increases like exp(π|z|).

Strictly speaking, the Abel-Plana Theorem only applies forN = 0. However, by apply-
ing the Borel operator to the right-hand side and interverting the summations by Fubini’s
Theorem, we find that

FN (x) =

∫ +∞

−∞

Γ(1/2 + it)N−1x−1/2+it

2 cosh(πt)
dt

satisfies the same recursion as ZN (x). Indeed,

BFN (x) =

∫ ∞
0

exp(−u)

∫ +∞

−∞

Γ(1/2 + it)N−1(xu)−1/2+it

2 cosh(πt)
dtdu

=

∫ +∞

−∞

Γ(1/2 + it)N−1x−1/2+it

2 cosh(πt)

∫ ∞
0

u−1/2+it exp(−u)dudt.

From the identity Γ(1/2 + it) =
∫∞
0
u−1/2+it exp(−u)du, it follows

BFN (x) =

∫ +∞

−∞

Γ(1/2 + it)Nx−1/2+it

2 cosh(πt)
dt = FN+1(x)

therefore FN = ZN .
Now since |Γ(3/2 + it)| ≤

√
π
2 < 1 for all t ∈ R, the integral (4.2) converges to 0

when N goes to infinity for all real x ≥ 0, thus we have proved:

lim
N→∞

ZN (x) = 1.

To conclude this section, we note that this formula for ZN involves a single integral
which is much more suitable for numerical computations than the original formula involv-
ing a multiple integral. Note also that N need not be an integer. . .

5 A differential equation
It might be worthwhile to mention that the function

ZN (x) =

∫
(0,∞)N

exp

−
 N∑
j=1

uj

− x N∏
j=1

uj

 N∏
j=1

duj



72 Ars Math. Contemp. 12 (2017) 67–76

is a solution of a differential equation of order N − 1 with polynomial coefficients.
Indeed, the shortest way to establish this is to introduce the linear operator U defined

by U(z) = (xz)′. Clearly U(xn) = (n+ 1)xn so that Uk(xn) = (n+ 1)kxn. Then

UN−1ZN (x) = UN−1
∑
n≥0

(−1)n(n!)N−1xn

=
∑
n≥0

(−1)n(n!)N−1(n+ 1)N−1xn

=
∑
n≥0

(−1)n((n+ 1)!)N−1xn ;

xUN−1ZN (x) =
∑
n≥0

(−1)n((n+ 1)!)N−1xn+1

= 1− ZN (x).

The function ZN (x) is thus solution of the (N − 1)-st order differential equation

xUN−1y + y = 1

with initial conditions

y(0) = 1, y′(0) = −1, . . . , y(N−2)(0) = (−1)n−2 ((N − 2)!)
N−1

.

The reader may well criticize the above proof since it involves divergent series. There
is however no problem in justifying the result by applying the operator U to the integral
representation of ZN (x); the calculations are just slightly more cumbersome.

Example 5.1. Z2(x), Z3(x), Z4(x) are respectively solution of the equations

x2y′ + (x+ 1)y = 1

x3y′′ + 3x2y′ + (x+ 1)y = 1

x4y′′′ + 6x3y′′ + 7x2y′ + (x+ 1)y = 1

The reader will recognize the numbers above as the Stirling numbers of the second kind.
This can be proved by noting that both families of numbers obey the formula

an+1,k = kan,k + an,k−1.

6 An unconventional spin system
We now assume that µ is the Bernoulli measure on {−1,+1}N :

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

− x N∏
j=1

uj

.
We interpret ZN as the partition function of a certain spin system which we describe

below. Conventional spin systems are discussed for example in C. J. Thompson [10].
Imagine an N -component particle, each component of which has a spin uj = ±1, and

which are instantaneously influenced by the N − 1 others. The “total” spin of the particle,
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i.e., its sign is
∏N
j=1 uj . A real external fieldH acts on the spins. The Hamiltonian attached

to the spin system in state u = (u1, u2, . . . , uN ) with external field −H is then given by

x

N∏
j=1

uj +H

N∑
i=1

uj .

The behavior of the spin system is controlled by the partition function, in particular by
its thermodynamical limit

lim
N→∞

logZN (x)

N
·

Theorem 6.1. For all real x ≥ 0,

ZN (x) = cosh(x) cosh(H)N − (−1)
N

sinh(x) sinh(H)N .

Proof. By using the relation exp(−t) = cosh(t)− sinh(t), we write

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

cosh(x

N∏
j=1

uj)− sinh(x

N∏
j=1

uj)

.
Since

∏N
j=1 uj = ±1, cosh is even and sinh is odd, it follows that

ZN (x) =
1

2N

∑
u∈{±1}N

exp

−H
 N∑
j=1

uj

cosh(x)− sinh(x)

N∏
j=1

uj

. (6.1)

The following two formulas are easily proved by recursion on N :

∑
u∈{±1}N

exp

H
 N∑
j=1

uj

 = (2 cosh(H))
N

∑
u∈{±1}N

exp

H
 N∑
j=1

uj

 N∏
j=1

uj = (2 sinh(H))
N
.

From Equation (6.1) it follows:

ZN (x) = cosh(x) cosh(H)N − (−1)
N

sinh(x) sinh(H)N .

Remark 6.2. Theorem 6.1 above implies that ZN (x) ∼
N→∞

cosh(H)N cosh(x), so that

lim
N→∞

logZN (x)

N
= log cosh(H)

which happens to be independent of x and which is continuous with respect to H . The
system has no critical value of the external field and therefore presents no phase transition.
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7 A disturbed Ising chain
In the preceding section we described an unconventional spin system. We now turn to the
most familiar one, namely the one dimensional Ising chain (see [10]) with Hamiltonian

H

N∑
j=1

uj + J

N∑
j=1

ujuj+1

where J is a “coupling constant”. Actually this Hamiltonian corresponds to the parameters
−H and −J but that makes no essential difference for our computation.

We consider in fact a perturbed Ising chain with the additional term x
∏N
j=1 uj . The

Hamiltonian is therefore

H(u) = H

N∑
j=1

uj + J

N∑
j=1

ujuj+1 + x

N∏
j=1

uj

and the partition function is now

YN =
1

2N

∑
u∈{±1}N

exp(−H(u))

which we propose to compute where we need to specify uN+1. Following most textbooks,
we simplify the model by assuming that the chain is cyclic: uN+1 = u1.

Theorem 7.1. Define

λ± = exp(−J) cosh(H)±
(
exp(−2J) cosh(H)2 + 2 sinh(2J)

) 1
2 ,

λ± = exp(−J) sinh(H)±
(
exp(−2J) sinh(H)2 − 2 sinh(2J)

) 1
2 .

Then

YN =
1

2N
cosh(x)(λN+ + λN− )− (−1)N

2N
sinh(x)(λ

N

+ + λ
N

− ).

Proof. Observe as in Section 6 that

YN =
coshx

2N
Y ′N −

sinhx

2N
Y ′′N

where

Y ′N =
∑

u∈{±1}N
exp

−H N∑
j=1

uj − J
N∑
j=1

ujuj+1

,
Y ′′N =

∑
u∈{±1}N

exp

−H N∑
j=1

uj − J
N∑
j=1

ujuj+1

 N∏
j=1

uj .

The classical way to compute Y ′N is to introduce the 2× 2 transfer matrix

L1 =

(
L1(1, 1) L1(1,−1)
L1(−1, 1) L1(−1,−1)

)
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where

L1(u1, u2) = exp

(
−H

2
(u1 + u2)− Ju1u2

)
.

In other words

L1 =

(
exp(−H − J) exp(J)

exp(J) exp(H − J)

)
.

Then

Y ′N =
∑

u∈{±1}N
L1(u1, u2)L1(u2, u3) . . . L1(uN , u1)

=
∑

u1∈{±1}

LN1 (u1, u1) = Trace(LN1 ) = λN+ + λN−

where λ+ and λ− are the eigenvalues of L1, i.e., the solutions of

λ2 − 2λ exp(−J) cosh(H) + exp(−2J)− exp(2J) = 0.

Therefore

λ± = exp(−J) cosh(H)±
(
exp(−2J) cosh(H)2 + 2 sinh(2J)

) 1
2 .

The computation of Y ′′N is quite similar. Let

L2 =

(
L2(1, 1) L2(1,−1)
L2(−1, 1) L2(−1,−1)

)
where

L2(u1, u2) = u1 exp

(
−H

2
(u1 + u2)− Ju1u2

)
so that

L2 =

(
exp(−H − J) exp(J)
− exp(J) − exp(H − J)

)
then

Y ′′N =
∑

u∈{±1}N
L2(u1, u2)L2(u2, u3) . . . L2(uN , u1)

=
∑

u1∈{±1}

LN2 (u1, u1) = Trace(LN2 ) = λ
N

+ + λ
N

−

where λ+ and λ− are the eigenvalues of L2, i.e., the solutions of

λ2 + 2λ exp(−J) sinh(H)− exp(−2J) + exp(2J) = 0.

Therefore

λ± = − exp(−J) sinh(H)±
(
exp(−2J) sinh(H)2 − 2 sinh(2J)

) 1
2 .

Finally

YN =
1

2N
cosh(x)(λN+ + λN− )− (−1)N

2N
sinh(x)(λ

N

+ + λ
N

− ).
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Remark 7.2. The reader will easily verify that for J = 0 we obtain the value of ZN
computed in Section 6.

Remark 7.3. It is not difficult to see that max{|λ−|, |λ−|, |λ+|} < λ+. Hence YN ∼
1
2N

cosh(x)(λN+ ) when N goes to infinity. This implies that the following limit exists, is
continuous in both variables J andH , and is independent of x (as in Remark 6.2); therefore
the system has no phase transition:

lim
N→∞

log YN
N

= log
λ+
2

= log

(
(exp(−J) cosh(H)

2
+

(exp(−2J) cosh(H)2 + 2 (sinh(2J))
1
2

2

)
.

8 Conclusion and acknowledgements
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