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Abstract

In this paper, we first establish the very close link between stability of graphs, a con-
cept first introduced by Marušič, Scapellato and Zagaglia Salvi and studied most notably
by Surowski and Wilson, and two-fold automorphisms. The concept of two-fold isomor-
phisms, as far as we know, first appeared in Zelinka’s work on isotopies of digraphs and
later studied formally by the authors with a greater emphasis on undirected graphs. We then
turn our attention to the stability of graphs which have every edge on a triangle, but with the
fresh outlook provided by TF-automorphisms. Amongst such graphs are strongly regular
graphs with certain parameters. The advantages of this fresh outlook are highlighted when
we ultimately present a method of constructing and generating unstable graphs with large
diameter having every edge lying on a triangle. This was a rather surprising outcome.
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1 General Introduction and Notation
Let G and H be simple graphs, that is, undirected and without loops or multiple edges.
Consider the edge {u, v} to be the set of arcs {(u, v), (v, u)}. A two-fold isomorphism or
TF-isomorphism fromG toH is a pair of bijections α, β: V (G)→ V (H) such that (u, v) is
an arc ofG if and only if ((α(u), β(v)) is an arc ofH . When such a pair of bijections exist,
we say that G and H are TF-isomorphic and the TF-isomorphism is denoted by (α, β).
The inverse of (α, β), that is, (α−1, β−1) is a TF-isomorphism from H to G. Furthermore,
if (α1, β1) and (α2, β2) are both TF-isomorphisms from G to H then so is (α1α2, β1β2).
When α = β, the TF-isomorphism can be identified with the isomorphism α.
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Figure 1: G and H are two non-isomorphic TF-isomorphic graphs.

The two graphs G, H in Figure 1, which have the same vertex set V (G) = V (H),
are non-isomorphic and yet they are TF-isomorphic. In fact (α, β) where α = (2 5) and
β = (1 4)(3 6) is a TF-isomorphism from G to H .

The concept was first studied by Zelinka [15, 16] in the the context of isotopy of di-
graphs. We shall extend it further to the case of mixed graphs (see next section).

Some graph properties are preserved by a TF-isomorphism. Such is the case with
the degree sequence, as illustrated by Figure 1. We also know that two graphs are TF-
isomorphic if and only if that they have isomorphic canonical double covers [4]. Al-
ternating paths or A-trails, which we shall define in full below, are invariant under TF-
isomorphism. For instance, the alternating path 5 −→ 6 ←− 1 −→ 2 in G is mapped by
(α, β) to the similarly alternating path 2 −→ 3←− 1 −→ 2 which we shall later be calling
“semi-closed”.

2 Notation
A mixed graph is a pair G = (V (G), A(G)) where V (G) is a set and A(G) is a set of
ordered pairs of elements of V (G). The elements of V (G) are called vertices and the ele-
ments of A(G) are called arcs. When referring to an arc (u, v), we say that u is adjacent
to v and v is adjacent from u. Sometimes we use u −→ v to represent an arc (u, v) ∈
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V (G). The vertex u is the start-vertex and v is the end-vertex of a given arc (u, v). An arc
of the form (u, u) is called a loop. A mixed graph cannot contain multiple arcs, that is, it
cannot contain the arc (u, v) more than once. A mixed graph G is called bipartite if there
is a partition of V (G) into two sets X and Y , which we call colour classes, such that for
each arc (u, v) of G the set {u, v} intersects both X and Y . A set S of arcs is self-paired
if, whenever (u, v) ∈ S, (v, u) is also in S. If S = {(u, v), (v, u)}, then we consider S to
be the unordered pair {u, v}; this unordered pair is called an edge.

It is useful to consider two special cases of mixed graphs. A graph is a mixed graph
without loops whose arc-set is self-paired. The edge set of a graph is denoted by E(G). A
digraph is a mixed graph with no loops in which no set of arcs is self-paired. The inverse
G′ of a mixed graph G is obtained from G by reversing all its arcs, that is V (G′) =V (G)
and (v, u) is an arc of G′ if and only if (u, v) is an arc of G. A digraph G may there-
fore be characterised as a mixed graph for which A(G) and A(G′) are disjoint. Given
a mixed graph G and a vertex v ∈ V (G), we define the in-neighbourhood Nin(v) by
Nin(v) = {x ∈ V (G)|(x, v) ∈ A(G)}. Similarly we define the out-neighbourhood
Nout(v) by Nout(v) = {x ∈ V (G)|(v, x) ∈ A(G)}. The in-degree ρin(v) of a vertex
v is defined by ρin(v) = |Nin(v)| and the out-degree ρout(v) of a vertex v is defined by
ρout(v) = |Nout(v)|. When G is a graph, these notions reduce to the usual neighbourhood
N(v) = Nin(v) = Nout(v) and degree ρ(v) = ρin(v) = ρout(v).

Let G be a graph and let v ∈ V (G). Let N(v) be the neighbourhood of v. We say that
G is vertex-determining if N(x) 6= N(y) for any two distinct vertices x and y of G [8].

A set P of arcs of G is called a trail of length k if its elements can be ordered in
a sequence a1, a2, . . . , ak such that each ai has a common vertex with ai+1 for all
i = 1, . . . , k − 1. If u is the vertex of a1, that is not in a2 and v is the vertex of ak
which is not in ak−1, then we say that P joins u and v; u is called the first vertex of P
and v is called the last vertex with respect to the sequence a1, a2, . . . , ak. If, whenever
ai = (x, y), either ai+1 = (x, z) or ai+1 = (z, y) for some new vertex z, P is called an
alternating trail or A-trail.

If the first vertex u and the start-vertex v of an A-trail P are different, then P is said
to be open. If they are equal then we have to distinguish between two cases. When the
number of arcs is even then P is called closed while when the number of arcs is odd then
P is called semi-closed. Note that if P is semi-closed then either (i) a1 = (u, x) for some
vertex x and ak = (y, u) for some vertex y or (ii) a1 = (x, u) and ak = (u, y). If P is
closed then either a1 = (u, x) and ak = (u, y) or a1 = (x, u) and ak = (y, u). Observe
also that the choice of the first (equal to the last) vertex for a closed A-trail is not unique
but depends on the ordering of the arcs. However, this choice is unique for semi-closed
A-trails as this simple argument shows:
Suppose P is semi-closed and the arcs of P are ordered such that u is the unique (in that
ordering) first and last vertex, that is, it is the unique vertex such as the first and the last arcs
in the ordering in P do not alternate in direction at the meeting point u. Therefore, it is easy
to see that both ρin(u) and ρout(u) (degrees taken in P as a subgraph induced by its arcs)
are odd whereas any other vertex v in the trail has both ρin(v) and ρout(v) even. This is
because, in the given ordering, arcs have to alternate in direction at v and therefore in-arcs
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of the form (x, v) are paired with out-arcs of the form (v, y). Therefore, in no ordering of
the arcs of P can u be anything but the only vertex at which the first and last arcs do not
alternate. The same argument holds for open A-trails.

Any other graph theoretical terms which we use are standard and can be found in any
graph theory textbook such as [1]. For information on automorphism groups, the reader is
referred to [7].

Let G and H be two mixed graphs and suppose that α, β are bijections from V (G) to
V (H). The concept of TF-isomorphisms may be extended from graphs to mixed graphs.
In fact, we can say that the pair (α, β) is a two-fold isomorphism (or TF-isomorphism) from
G to H if the following holds: (u, v) is an arc of G if and only if (α(u), β(v)) is an arc
of H . We then say that G and H are TF-isomorphic and write G ∼=TF H . Note that when
α = β the pair (α, β) is a TF-isomorphism if and only if α itself is an isomorphism. If
α 6= β, then the given TF-isomorphism (α, β) is essentially different from a usual isomor-
phism and hence we call (α, β) a non-trivial TF-isomorphism. If (α, β) is a non-trivial
TF-isomorphism from a mixed graph G to a mixed graph H , the bijections α and β need
not necessarily be isomorphisms from G to H . This is illustrated by the graphs in Figure
1, examples found in [5], and also others presented below.

When G = H , (α, β) is said to be a TF-automorphism and it is again called non-
trivial if α 6= β. The set of all TF-automorphisms of G with multiplication defined by
(α, β)(γ, δ) = (αγ, βδ) is a subgroup of SV (G) × SV (G) and it is called the two-fold
automorphism group of G and is denoted by AutTF(G). Note that if we identify an auto-
morphism α with the TF-automorphism (α, α), then Aut(G) ⊆ AutTF(G). When a graph
has no non-trivial TF-automorphisms, Aut(G) =AutTF(G). It is possible for an asymmetric
graph G, that is a graph with |Aut(G)| = 1, to have non-trivial TF-automorphisms. This
was one of our main results in [5].

The main theme of this paper is stability of graphs, an idea introduced by Marušič et al.
[8] and studied extensively by others, most notably by Wilson [14] and Surowski [12], [13].
LetG be a graph and let CDC(G) be its canonical double cover or duplex. This means that
V (CDC(G)) = V (G)× Z2 and {(u, 0), (v, 1)} and {(u, 1), (v, 0)} are edges of CDC(G)
if and only if {u, v} is an edge ofG. One may think of the second entry in the notation used
for vertices of CDC(G), that is 0 or 1 as colours. For the reader familiar with products of
graphs we wish to add that CDC(G) is the direct product G×K2 of G by K2. Recall that
the graph CDC(G) is bipartite and we may denote its colour classes by V0 = V ×{0} and
V1 = V ×{1} containing vertices of the type (u, 0) and (u, 1) respectively. A graph is said
to be unstable if Aut(G)×Z2 is a proper subgroup of the set Aut(CDC(G)). The elements
of Aut(CDC(G)) \Aut(G)×Z2 will be called unexpected automorphisms of CDC(G). In
other words, a graph G is unstable if at least one element of Aut(CDC(G)) is not a lifting
of some element of Aut(G). In this paper, we shall investigate the relationship between the
stability of the graph G and its two-fold automorphism group AutTF(G).
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3 Unstable Graphs and TF-automorphisms
Consider Aut(CDC(G)). Now, let Σ be the set-wise stabiliser of V0 in Aut(CDC(G)),
which of course coincides with the set-wise stabiliser of V1. Note that every σ ∈ Σ also
fixes V1 set-wise. We will show that it is the structure of Σ which essentially determines
whether CDC(G) has unexpected automorphisms which cannot be lifted from automor-
phisms of G. The following result, which is based on [9], Lemma 2.1, implies that these
unexpected automorphisms of CDC(G) arise if the action of σ on V0 is not mirrored by its
action of V1.

Lemma 3.1. Let f : Σ → Sym(V ) × Sym(V ) be defined by f : σ 7→ (α, β) where
(α(v), 0) = σ(v, 0) and (β(v), 1) = σ(v, 1), that is α, β extract from σ its action on V0
and V1 respectively. Then:

1. f is a group homomorphism;

2. f is injective and therefore f : Σ→ f(Σ) is a group automorphism;

3. f(Σ) = {(α, β) ∈ Sym(V )× Sym(V ) : x is adjacent to y in G if and only if α(x)
is adjacent to β(y) in G} that is, f(Σ) = AutTF(G) that is, (α, β) (the ordered pair
of separate actions of σ on the two classes) is a TF-automorphism of G.

Proof. The fact that f is a group homomorphism, that is, that f is a structure preserving
map from Σ to Sym(V )×Sym(V ) follows immediately from the definition since for any σ1,
σ2 ∈ Σ where f(σ1) = (α1, β1) and f(σ2) = (α2, β2), f(σ1)f(σ2) = (α1β1)(α2β2) =
(α1α2, β1β2) = f(σ1σ2). This map is clearly injective and therefore f : Σ → f(Σ) is a
group automorphism.

Consider an arc ((u, 0), (v, 1)). Since σ ∈ Σ ⊆ Aut(CDC(G)), (σ(u), 0), (σ(v), 1)) is
also an arc of CDC(G). By definition, this arc may be denoted by ((α(u), 0), (β(v), 1))
and, following the definition of CDC(G), it exists if and only if (α(u), β(v)) is an arc of
G. Hence f maps elements of Σ to (α, β) which clearly take arcs of G to arcs of G. This
implies that (α, β) is a TF-automorphism of G and hence f(Σ) ⊆AutTF(G).

Conversely, let (α, β) ∈ AutTF(G). Define σ by σ(v, 0) = (α(v), 0) and σ(v, 1) =
(β(v), 1)), then f(σ) = (α, β). Hence, AutTF(G) ⊆ f(Σ). Therefore f(Σ)= AutTF(G).
�

Theorem 3.2. Let G be a graph. Then

Aut(CDC(G)) = AutTF(G) o Z2.

Furthermore, G is unstable if and only if it has a non-trivial TF-automorphism.

Proof. From Lemma 3.1, f(Σ) = AutTF(G) which must have index 2 in Aut (CDC(G)).
The permutation δ(v, ε) 7→ (v, ε + 1) is an automorphism of CDC(G) and δ 6∈ f(Σ).
Then Aut(CDC(G)) is generated by f(Σ) and δ. Furthermore, f(Σ) ∩ 〈δ〉 = id and
f(Σ)C Aut (CDC(G)) being of index 2.



120 Ars Math. Contemp. 8 (2015) 115–131

Since Aut(CDC(G)) = AutTF(G)oZ2, G is stable if and only if AutTF(G) = Aut(G). �

As shown in [5], Proposition 3.1, if (α, β) ∈AutTF(G) then (γ, γ−1) ∈AutTF(G) (whe-
re γ = αβ−1). This means that for any edge {x, y} of G, {γ(x), γ−1(y)} is also an edge.
A permutation γ of V (G) with this property is called an anti-automorphism. Such maps
possess intriguing applications to the study of cancellation of graphs in direct products
with arbitrary bipartite graphs, that is, the characterisation of those graphs G for which
G × C ' H × C implies G ' H , whenever C is a bipartite graph (see [2], Chapter 9).
The second part of Theorem 3.2 could be rephrased as follows: “G is unstable if and only
if it has an anti-automorphism of order different from 2”. Note that the existence of an
anti-automorphisms of order 2 does not imply instability since such a map corresponds to
a trivial TF-automorphisms.

Notice that AutTF(G) is the edge set of the graph factorial G! introduced in [2] in the
wake of investigations of anti-automorphisms. G! shares many properties with factorials of
natural numbers and is interesting per se. As CDC(G) = G×K2 one could thus rephrase
Theorem 3.2 in the language of [2] as Aut(G×K2) = E(G!) o Z2.
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Figure 2: A stable and unstable graph which are TF-isomorphic.

It is natural to ask whether it can happen that a stable graph is TF-isomorphic to an un-
stable one. The answer is yes and an example is shown in Figure 2 with the Petersen graph
being stable and the other graph which is TF-isomorphic to it being unstable. Both graphs
have the same bipartite canonical double cover since they are TF-isomorphic. If loops
are allowed, then the smallest pair of TF-isomorphic graphs, only one of which is stable
is given byG = K3 andH the path of three vertices with a loop at each of the end-vertices.

Porcu, motivated by the quest of finding pairs of co-spectral graphs, was the first to
study non-isomorphic graphs having the same canonical double cover [11], but his work
was overlooked by several mathematicians interested in these questions. Porcu was the
first author to study the example given in Figure 1. The same example was re-discovered
much later in [3]. Pacco and Scapellato [10], answering a question raised by Porcu, proved
a result giving the number of graphs having a given bipartite graph B as canonical double
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covering terms of involutions in Aut(B). A later extension of their result appeared in [2],
Theorem 9.15.

We should point out here (as noted by Surowski in [12]) that if a graph G is stable,
that is, Aut(CDC(G)) = Aut(G) o Z2, then the semi-direct product must be a direct
product because Aut(G) is normal in Aut(CDC(G)) since it has index 2 and also Z2 is
normal since its generator commutes with every element of Aut(CDC(G)), by stability.
In fact, as Surowski comments, the stability of G is equivalent to the centrality of Z2 in
Aut(CDC(G)), which is the lift of the identity in Aut(G).

a

b

c

d

e

(a,0) (a,1)

(b,0) (b,1)

(c,0) (c,1)

(d,0) (d,1)

(e,0) (e,1)

G

CDC(G)

Figure 3: An example used to show how a TF-automorphism (α, β) of G can be obtained
from an automorphism σ of CDC(G).

It is worth noting that the ideas explored in the proof of Lemma 3.1 may be used to
extract TF-automorphisms of a graph G from automorphisms of CDC(G) which fix the
colour classes. In fact, let σ be such an automorphism. Define the permutations α and β
of V (G) as follows: α(x) = y if and only if σ(x, 0) = (y, 0) and β(x) = y if and only
if σ(x, 1) = (y, 1). Then (α, β) is a TF-automorphism of G. We remark that α and β
are not necessarily automorphisms of G as we shall show in the example shown in Figure
3. The automorphism σ is chosen so that it fixes one component of CDC(G) whilst being
an automorphism of the other component. In order to have a more concise representation,
we denote vertices of CDC(G) of the form (u, 0), that is, elements of the colour class V0
by u0 and similarly denote vertices of the form (u, 1) in V1 by u1. Using this notation,
σ = (a0)(b1)(c0)(d1)(e)(a1 e1)(b0 d0)(c1). The permutations α and β of G are extracted
from σ as described in the proof of Lemma 3.1. For instance, to obtain α, we restrict the
action of σ to the elements of V0, that is, those vertices of the form (v, 0) or v0 when using
the new notation and then drop the subscript. Similarly, the permutation β is obtained from
the action of σ restricted to V1. Therefore, α = (a)(c)(e)(b d) and β = (b)(d)(a e)(c).
Note that neither α nor β is an automorphism of G, but (α, β) is a TF-automorphism of G
which in turn can be lifted to the unexpected automorphism σ of CDC(G). This example
illustrates Lemma 3.1 since the graphG is unstable and has a non-trivial TF-automorphism.
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The result of Lemma 3.1 and the subsequent example lead us to other questions regard-
ing the nature of the permutations α and β which, as discussed in the preceding example
given in Figure 3, may not be automorphisms of G.

If (α, id) is a non-trivial TF-automorphism of a graph G, then G is not vertex-deter-
mining. In fact, since α 6= id then α(u) = v for some u 6= v and the TF-automorphism
(α, id) fixes the neighbours of u and takes u to v. Hence u and v must have the same
neighbourhood set, which implies that G is not vertex-determining.

We shall use this idea to prove some results below. An alternative way of looking at
this is to consider Lemma 3.1 and to note that a graph G is stable if and only if given
σ(v, 0) = (α(v), 0), there exists no β 6= α such that (β(v), 1)) = σ(v, 0). Hence, as
implied by Theorem 3.2 a graph G is stable if and only if f(Σ) ⊆ ∆V where ∆V is the
diagonal group of (α, β), α, β automorphisms of G, with α = β.

Proposition 3.3. If (α, β) is a non-trivial TF-automorphism of a graph G but α and β are
automorphisms of G, then G is not vertex-determining.

Proof. Since α is an automorphism of G and (α, β) is a TF-automorphism, the group
AutTF(G) must also contain (α, β)(α−1, α−1) = (id, βα−1). Since αβ−1 6= id, let u be
a vertex such that v = αβ−1(u) is different from u. Then for each neighbour w of u the
arc (w, u) is taken to the arc (w, v), so that N(u) is contained in N(v) and vice versa.
Therefore u and v have the same neighbourhood, so G is not vertex-determining. �

Proposition 3.4. If (α, β) is a non-trivial TF-automorphism of a graph G and α, β have a
different order, then G is not vertex-determining.

Proof. Let (α, β) be an element of AutTF(G) with the orders of α and β being p and q
respectively and assume without loss of generality that p < q. Since AutTF(G) is a group,
(α, β)p = (αp, βp) = (id, βp) must also be in AutTF(G). The same argument used in the
proof of Proposition 3.3 holds since βp 6= id. Hence G is not vertex-determining. �

Proposition 3.3 and Proposition 3.4 are equivalent to their counterparts in [8] in which
they are stated in terms of adjacency matrices. In [8], it is shown that if a graph G is
unstable but vertex-determining and (α, β) is a non-trivial TF-automorphism of G, then α
and β must not be automorphisms of G and must have the same order. This then gives us
information about automorphisms σ of CDC(G) which are liftings of TF-automorphisms
of G.

4 Triangles
In this section we shall study the behaviour of a non-trivial TF-automorphism of a graph G
acting on a subgraph ofG isomorphic toK3 with the intent of obtaining information regard-
ing the stability of graphs which have triangles as a basic characteristic of their structure.
Strongly regular graphs in which every pair of adjacent vertices has a common neighbour
are an example. The stability of such graphs has been studied by Surowski [12]. We believe
that this section is interesting because it is a source of simple examples of unstable graphs
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and also because a detailed analysis of what happens to triangles can throw more light on
TF-automorphisms of graphs.

Proposition 4.1. Let (α, β) be a TF-isomorphism from a graph G to a graph G′. The
action of (α, β) on some subgraph H ∼= K3 yields either (a) a closed A-trail of length
6 with no repeated vertices, (b) a pair of oriented A-connected triangles with exactly one
common vertex, (c) a pair of oriented triangles with exactly two common vertices or (d) an
undirected triangle as illustrated in Figure 4(a),(b),(c) and (d) respectively.

Proof. Let V (H) = {1, 2, 3}. The semi-closed A-trials 1 −→ 2 ←− 3 −→ 1 and
1 ←− 2 −→ 3 ←− 1 of H are taken by (α, β) to α(1) −→ β(2) ←− α(3) −→ β(1)
and β(1) ←− α(2) −→ β(3) ←− α(1), respectively; together, these two A-trails form a
closed A-trail consisting of six arcs.

Consider the possible equalities α(v) = β(v) for v ∈ V (H). Up to a reordering of the
vertices, we have the following four cases, corresponding to the four cases stated above:

(a) α(v) 6= β(v) for all v.

(b) α(v) 6= β(v) for v = 1, 3 but α(2) = β(2).

(c) α(v) 6= β(v) for v = 1 but α(v) = β(v) for v = 2, 3.

(d) α(v) = β(v) for all v.

For each case, the corresponding graph is shown in Figure 4. �

In general, when a TF-automorphism (α, β) acts on the arcs of G it maps any triangle
H into another triangle if α(x) = β(x) for every vertex x of the triangle or it fits one of the
other configurations described by Proposition 4.1. If a graph G in which every edge lies in
a triangle is unstable, then it must have a non-trivial TF-automorphism which follows one
of the configurations illustrated in Figure 4(a), (b) and (c).

Proposition 4.2. Let (α, β) be a TF-isomorphism fromG toG′. When the TF-isomorphism
acting onK3, a subgraph ofG, yields a closed A-trail of length 6 with no repeated vertices
as shown in Figure 4(a), either two triangles with no common vertex or a triangle and a
closed A-trail with 6 arcs are mapped to a subgraph isomorphic to C6. In the cases when
the TF-isomorphism acting on a K3 yields the images illustrated in Figure 4 (b), (c), the
pair of triangles which are either mapped to two triangles with exactly one common vertex
or to two triangles with exactly one common edge must have a common vertex.

Proof. Refer to Figure 4. In the case illustrated in Figure 4(a) the arcs of one closed A-trail
P of length 6 can be the co-domain the arcs of a triangle H . The A-trail P ′ obtained by
reversing the arcs of P can be the co-domain of another triangleK. We claim thatH andK
are vertex disjoint. In fact, suppose not and assume that the two triangles have a common
vertex u. The pair of vertices α(u) and β(u) where α(u) 6= β(u) are in both P and P ′ and
this is contradiction as the in-degree of α(u) and similarly the out-degree of β(u) must be
zero and this makes it impossible to identify arcs of P with arcs of P ′ to form the edges of
a C6. Figure 5 shows an example where setting α(3) = β(5), β(2) = α(6), α(1) = β(4),
β(3) = α(5), α(2) = β(6), β(1) = α(4) would be one way of associating one directed
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C6 with the other so that the alternating connected circuits form an undirected C6. The
other possibility is illustrated in Figure 6. In this example β(1) = α(4), α(2) = β(5),
β(3) = α(6), α(1) = β(7), β(2) = α(8) and α(3) = β(9) so that a closed A-trail of
length 6 covering a K3 is mapped to a closed A-trail of length 6 covering half of the arcs
of an undirected C6 whilst the rest of the arcs come from an A-trail of length 6 covering
half of the arcs of another subgraph isomorphic to C6. The K3 and the C6 in the domain
of the TF-isomorphism cannot have a common vertex and the proof is analogous to the one
concerning the former case.

The proof for the remaining cases may be carried over along the same lines as the above.
Refer to Figure 7. We observe that the A-trail P1 described by β(3) ←− α(2) −→ β(1),
the A-trail P2 described by α(1) −→ β(2) ←− α(3) and the A-trails P ′1 and P ′2 obtained
by reversing the arcs of P1 and P2 respectively would imply by the preservation of A-trails,
that in the pre-image of the subgraph, there are four A-trails passing through the vertex 2.
This is only possible if the triangles in the pre-image have a common vertex. �

Figure 8 shows an example to illustrate the result of Proposition 4.2 whereα(1) = β(4),
β(3) = α(5), α(3) = β(5) and β(1) = α(4). Figure 8 shows the smallest unstable graphs
which have a TF-automorphism which takes a triangle to a pair of directed triangles with a
common vertex as illustrated in Figure 4(b). Figure 9 shows the smallest graph which has a
nontrivial TF-automorphism which maps a triangle to the mixed graph illustrated in Figure
4(c).

5 Unstable graphs of arbitrarily large diameter
In this section, we present a method of constructing unstable graphs of an arbitrarily high
diameter.

IfH ,K are graphs, let [H,K] be the graph whose vertex set is the union V (H)∪ V (K)
and whose edge set is the union of E(H), E(K) plus the edges of the complete bipartite
graph with classes V (H) and V (K). More generally, if Hi are graphs, where i ∈ Zm, let
G = [H0, H1, ..., Hm−1] be the graph whose vertex set is the union of all V (Hi) and
whose edge set is the union of all E([Hi, H(i+1)]). In other words, G contains all vertices
and edges of the graphs Hi, plus all edges of the complete bipartite graph connecting two
consecutive Hi’s.

Now, assume that none of the Hi has isolated vertices. Let (αi, βi) : Hi → Hi+1 be
TF-isomorphisms as i runs over Zm. Assume that the product

(α0, β0)(α1, β1)...(αm−1, βm−1) = (id, id).

Note that the latter assumption is not a restriction, because one can always take (α0, β0) as
the inverse of the product of the remaining TF-isomorphisms.
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Theorem 5.1. With the above assumptions, let G = [H0, H1, ..., Hm−1]. Define two
permutations α, β of V (G) as follows. For v ∈ V (G), let i be such that v ∈ V (Hi); then
set α(v) = αi(v) and β(v) = βi(v).

Then the following hold:

1. (α, β) is a TF-automorphism of G;

2. if m ≥ 4, diam G = (m− e)/2, where e = 0 if m is even and e = 1 if m is odd;

3. each edge of G belongs to a triangle.

Proof. First note that if (u, v) is an arc of G and both u, v belong to the same Hi, then the
image of (u, v) is an arc of Hi+1, hence of G, because (α, β) acts like (αi, βi) in Hi. If u,
v do not belong to the same Hi, then they belong to consecutive graphs, say Hi, Hi+1, so
α(u) and β(u) belong to the consecutive graphs Hi+1, Hi+2, and are adjacent because all
the arcs between these two graphs belong to G. This proves (1).

Concerning distance, a path from u in H0 to v in Hs, where s ≤ (m − e)/2, must pass
through all graphs H1, H2, ..., Hs−1 or else Hm−1, Hm−2, ..., Hs+1. Since such a
path can be found, d(u, v) = s. For two vertices in, say, Hi and Hj with i 6= j, the same
argument shows that d(u, v) cannot exceed (m− e)/2. Finally, if u, v lie in the same Hi,
they have a common neighbour in Hi+1, then d(u, v) is less or equal than 2 (regardless to
their distance within Hi). This proves (2).

What about triangles? If {u, v} is an edge of some Hi then letting w ∈ Hi+1 the vertex
w is adjacent to both u and v, hence {u, v, w} is a triangle. If {u, v} is an edge of some
[Hi, Hi+1], say with u ∈ Hi and v ∈ Hi+1, take any neighbour w of u in Hi (recall the
assumption about no isolated vertices) and get the triangle {u, v, w}. This proves (3). �

Until now, we did not mention that the concerned TF-isomorphisms are non-trivial,
so all the above would work fine for the case of isomorphisms too. But adding the hy-
pothesis that at least one of them is non-trivial, the obtained graph G has a non-trivial
TF-isomorphism, namely (α, β) as described above. Theorem 5.1 shows that there are un-
stable graphs of arbitrarily high diameter, where each edge belongs to a triangle.

Surowski [12, 13] proved various results concerning graph stability. In [12], Proposi-
tion 2.1, he claims that ifG is a connected graph of diameter d ≥ 4 in which every edge lies
in a triangle, then G is stable. However, by taking m ≥ 7 in Theorem 5.1 we get infinitely
many counterexamples to this claim by taking all the Hi isomorphic to the same vertex-
determining bipartite graph, because such a vertex-transitive graph is unstable, therefore
one can find a non-trivial TF-isomorphism from Hi to Hi+1, and since these Hi are iso-
morphic, the resulting graph G is vertex-determining, has diameter k ≥ 4, and is unstable.
One of these counterexamples is illustrated in Figure 10.

We detected one possible flaw in Surowski’s proof. It is claimed in [12] that when-
ever an automorphism of CDC(G) fixes (v, 1) it also fixes (v,−1). We have not seen a
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proof of this result. Besides, in our last example, G has a non-trivial fixed-point-free TF-
automorphism, which implies that CDC(G) has a fixed-point-free automorphism that fixes
the colour classes. This claim is also used in [12] Proposition 2.2 which states that if G is
a strongly regular graph with k > µ 6= λ ≥ 1, then G is stable. Hence, we believe that
at this point, the stability of strongly regular graphs with these parameters requires further
investigation.

6 Concluding Remarks
The use of TF-isomorphisms in the study of stability of graphs provides a fresh outlook
which allows us to view facts within a more concrete framework and also provides tools
to obtain new results. For instance, we can investigate the structure of the given graph
without actually requiring to lift the graph to its canonical double cover, but only having to
reason within the original graph. Furthermore, the insights that we already have about TF-
isomorphisms of graphs may be considered to be new tools added to a limited toolkit. In
particular, let us mention the idea of graph invariants under the action of TF-isomorphisms,
such as A-trails, a topic which we have started to study in [6]. To be able to find out
how the subgraphs of a graph are related to other subgraphs within the graph itself in the
case of unstable graphs fills a gap in our understanding of graph stability and using TF-
isomorphisms appears to be a promising approach in this sense. We believe that this paper
substantiates these claims. Furthermore, it motivates us to carry out further investigations.
Some pending questions such as those concerning the stability of certain strongly regular
graphs have already been indicated. The study of how TF-isomorphisms act on common
subgraphs such as triangles is another useful lead. Nevertheless, the more ambitious aim
would be the classification of unstable graphs in terms of the types of TF-automorphisms
which they admit.
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Figure 4: The configurations of possible images of a triangle under the action of a TF-
automorphism as described in Proposition 4.1.
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Figure 6: A triangle and one closed A-trail of length 6 covering the edges of a C6 mapped
to a C6.
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Figure 7: An example to illustrate the result of Proposition 4.2.

α(1) = β(4)

α(3) = β(5) α(4) = β(1)

α(5) = β(3)α(1) = β(4)

α(3) = β(5) α(4) = β(1)

α(2) = β(2)

α(5) = β(3)

α(2) = β(2)

Figure 8: The smallest unstable graphs where a triangle is taken to a two directed triangles
sharing a vertex.
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Figure 9: The smallest unstable graph which has a TF-automorphism taking a triangle to
the mixed graph as illustrated in Figure 4(c).
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Figure 10: A graph constructed using Theorem 5.1.
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