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Preface

The series of mini-workshops at Bled, which started in 1987 with the workshop
on Mesonic Degrees of Freedom in Hadrons , has established its own character
of friendly but productive confrontation of ideas, and has by now become tradi-
tional. The scope of this small-scale meeting was to confront people working on
closely related problems in hadronic physics and to engage participants in critical
discussions without the time constraints of “offical” meetings. We were pleased
to see our guests invariably enjoying such a format. The Proceedings, initially
published only on the Web, have also evolved into a full-fledged serial publica-
tion.
As the town of Bled has also hosted this year’s European Conference on Few-
Body Problems in Physics (September 8–14, 2002), the population at the Mini-
Workshop was slightly reduced. However, even the ghost of the approaching big
event during our small event has not deterred us from working hard in a re-
laxed atmosphere of Villa Plemelj. The beautiful environment of Lake Bled helped
brighten up the atmosphere of the presentations while the occasional inclement
weather contributed to the patience for long afternoon discussions.

Ljubljana, November 2002 B. Golli
M. Rosina

S. Širca
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Thermal model at RHIC ?

Wojciech Broniowski and Wojciech Florkowski

H. Niewodniczański Institute of Nuclear Physics, ul. Radzikowskiego 152, 31-342
Kraków, Poland

Abstract. We show that the ratios of the abundances as well as the transverse-momentum
spectra of all hadrons measured at RHIC, including the hyperons, are described very well
in a thermal model assuming the simultaneous chemical and thermal freeze-outs. The
model calculation takes into account all hadronic resonances and uses a simple parametriza-
tion of the freeze-out hypersurface.

We present a simple model describing the abundances and the p⊥-spectra
of hadrons measured at RHIC [1,2]. Our approach is a combination of the ther-
mal model, used frequently in the studies of the relative hadron yields [3–11],
with a model of the hydrodynamic expansion of matter at freeze-out. The main
assumptions of the model [12–14] are as follows: i) the chemical freeze-out and
the thermal freeze-out occur simultaneously, which means that we neglect elastic
rescattering after the chemical freeze-out, ii) all hadronic resonances are included
in both the calculation of the hadron multiplicities and the spectra, and iii) a sim-
ple form of the freeze-out hypersurface is proposed, which is a generalization of
the Bjorken model [15] (see also [16–21]),

τ =
√

t2 − x2 − y2 − z2 = const. (1)

The hydrodynamic flow on the freeze-out hypersurface (1) is taken in the form
resembling the Hubble law,

uµ =
xµ

τ
=
t

τ

(

1,
x

t
,
y

t
,
z

t

)

. (2)

Recently, new arguments have been accumulated in favor of our first as-
sumption. The measurements of the K∗(892) states by the STAR Collaboration
[22] indicate that either the daughter particles from the decay K∗(892) → Kπ do
not rescatter or the expansion time between the chemical and thermal freeze-out
is short (smaller than the K∗(892) lifetime, τ=4 fm/c). Moreover, the measured
yield of K∗(892) fits very well to the pattern obtained from the thermal analysis

? Supported in part by the Polish State Committee for Scientific Research, grant 2 P03B
09419 and by the Scientific and Technological Cooperation Joint Project between Poland
and Slovenia, financed by the Ministry of Science of Slovenia and the Polish State Com-
mittee for Scientific Research.
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Fig. 1. The p⊥-spectra at midrapidity of π−, K−, p̄ , φ and K∗(892) in part (a), and of the
hyperonsΛ ,Ξ andΩ in part (b). The model calculation is compared to the PHENIX (filled
symbols) and STAR (open symbols) most central data [22,37,28,34,32,33,38–40] from Au +
Au collisions at

√
sNN = 130 GeV. Both the data and the theoretical curves are absolutely

normalized (they include full feeding from the weak decays).

of the ratios of hadron abundances. This fact suggests again a short expansion
time between the two freeze-outs. The assumption about the single freeze-out
also solves the antibaryon puzzle [24]. Since the annihilation cross section for pp̄
pairs is much larger than the elastic cross section, most of the protons would an-
nihilate with antiprotons during the long way from the chemical to the thermal
freeze-out. Such effect is not seen. In addition, let us mention that the single-
freeze-out scenario is natural if the hadronization process occurs in such a way
that neither elastic or inelastic processes are effective. An example here is the
sudden-hadronization model of Ref. [25].

Our model has two thermodynamic and two geometric (expansion) param-
eters. The two thermodynamic parameters, T = 165 MeV and µB = 41 MeV, were
obtained from the analysis of the ratios of the hadron multiplicities measured at
RHIC [11]. In this calculation the grand-canonical ensemble was used without the
strangeness suppression factor (γs=1). Since the particle ratios depend weakly on
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Model Experiment

Fitted thermal parameters

T [MeV] 165±7
µB [MeV] 41±5
µS [MeV] 9
µI [MeV] -1
χ2/n 0.97

Ratios used for the fit

π−/π+ 1.02 1.00± 0.02 [26], 0.99± 0.02[27]
p/π− 0.09 0.08± 0.01 [28]

K−/K+ 0.92
0.88± 0.05 [29], 0.78± 0.12 [30]
0.91± 0.09 [26], 0.92± 0.06 [27]

K−/π− 0.16 0.15± 0.02 [29]
K∗

0/h
− 0.046 0.060± 0.012 [29,31]

later: 0.042± 0.011 [23]
K∗

0/h
− 0.041 0.058± 0.012 [29,31]

later: 0.039± 0.011 [23]

p/p 0.65
0.61± 0.07 [28], 0.54± 0.08 [30]
0.60± 0.07 [26], 0.61± 0.06 [27]

Λ/Λ 0.69 0.73± 0.03 [29]
Ξ/Ξ 0.76 0.82± 0.08 [29]

Ratios predicted

φ/h− 0.019 0.021± 0.001 [32]
φ/K− 0.15 0.1 – 0.16 [32]
Λ/p 0.47 0.49± 0.03 [33,34]
Ω−/h− 0.0010 0.0012± 0.0005 [35]
Ξ−/π− 0.0072 0.0085± 0.0020 [36]
Ω+/Ω− 0.85 0.95± 0.15 [35]

Table 1. Optimal thermal parameters, ratios dNi/dy

dNj/dy

∣

∣

∣

y=0
used for the fit, and further pre-

dicted ratios. The preliminary experimental numbers for K∗(892) [31] have changed [23],
and better agreement with the model followed.

the centrality of the collision, we treat the thermodynamic parameters as the uni-
versal parameters (independent of centrality).

The results for the particle abundances are collected in Table I.
The two geometric parameters are τ of Eq. (1) and ρmax. The parameter ρmax

determines the transverse size of the firecylinder at the freeze-out,

ρ =
√

x2 + y2 ≤ ρmax. (3)

In the natural way, the values of τ and ρmax depend on the considered centrality
class of events. For the minimum-bias data, which average over centralities, we
find: τ = 5.55 fm and ρmax = 4.50 fm, whereas for the most central collisions we
find: τ = 7.66 fm and ρmax = 6.69 fm [12]. The calculation of the spectra (and
determination of the geometric parameters) is based on the standard Cooper-
Frye formalism. The details of our method, especially of the technical problems
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concerning the treatment of the resonances, are given in the Appendix of Ref.
[13].

In Fig. 1 we show our results for the most central collisions. In the upper
part (a) we show the spectra of pions, kaons, antiprotons, the φ mesons, and
the K∗(892) mesons. In the lower part (b) we show the spectra of the hyperons
Λ,Ξ and Ω. The model calculation agrees very well with the data. Note, e.g.,
the convex shape of the pion spectrum, crossing of the pion and the antiproton
spectra at p⊥ ∼ 2 GeV, and the good reproducing of the Ω spectrum. The good
agreement between the model calculation and the data supports strongly the idea
of thermalization of the hadronic matter produced at RHIC. Let us emphasize
that the expansion parameters were fitted in Ref. [12] to the spectra of pions,
kaons and protons only. The spectra of other particles were calculated with the
same values of the parameters, hence, they are predictions of our model. In view
of this fact, the good agreement of theΩ spectrum, predicted before the data were
available, is highly non-trivial, especially in the context of the SPS results [14].

A characteristic feature of our approach is a rather high decoupling tempera-
ture T ∼ 165 MeV. However, the (inverse) slope parameters corresponding to this
temperature are lowered by the decays of the resonances [11]. This “cooling” of
the spectrum by the decays of the resonances explains the difference between the
high temperature of the chemical freeze-out and a smaller “apparent” tempera-
ture inferred from the shape of the spectra. We note that a similar high decou-
pling temperature has been found in the full hydrodynamic calculation of Ref.
[41], where also a complete set of hadronic resonances is employed. It remains
a challenge to check whether our particular freeze-out conditions (shape of the
freeze-out hypersurface and Hubble flow) may be obtained as the final stage of
hydrodynamic evolution. First steps in this direction have been already made
[42].

Let us make a few comments about the size of our geometric parameters.
Translated to the measured HBT radii, Rout and Rside, they turn out to be too small.
This problem can be circumvented by the inclusion of the excluded-volume cor-
rections [6] which affect only the overall normalization of the spectra. If we rescale
τ and ρmax by about 30%, we obtain a satisfactory agreement with the HBT data.
On the other hand, the ratio Rout/Rside is close to unity in our model, indepen-
dently of the excluded-volume corrections. The approximate equality of these
two radii follows in our model from the fact that the time extension of our system
at freeze-out is much shorter than its space extension.

In conclusion, we want to stress that a simple thermal model (with altogether
four parameters) reproduces the abundances and the transverse-momentum spec-
tra of all hadrons which have been measured so far at RHIC. This fact brings
strong evidence for thermalization of hadronic matter at RHIC and, possibly, in-
dicates that a thermalized system of quarks and gluons was formed at the earlier
stages of the collisions.
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Effective UA(1) symmetry breaking interactions

V. Dmitrašinović

Vinča Institute of Nuclear Sciences, P.O.Box 522, 11001 Beograd, Yugoslavia

Abstract. We review the phenomenological consequences of various effectiveUA(1) sym-
metry breaking interactions. In particular we look at the baryon spectra. We comment on
the recent conjecture that the chiral symmetry might be restored in the higher regions of
hadron spectra in the light of our results for scalar mesons and the spectral sum rules.

The so-called “UA(1) problem” consists of (i) the fact that the sum of the
eighth and ninth pseudoscalar meson η(550), η

′

(960) masses lies (far) above the
flavour SU(3) mass relations prediction of two kaon masses (2 mK) and (ii) that
their mixing angle is far from being the ”ideal” one. These two facts imply a large
explicit UA(1) symmetry breaking, that is believed to be induced by instantons
in QCD. These instanton effects can be described by ’t Hooft’s UA(1)-symmetry
breaking quark flavour determinant effective interaction [1]

L(6)

tH = −KtH
[

det
(

ψ̄(1+ γ5)ψ
)

+ det
(

ψ̄(1− γ5)ψ
)]

= −2KtH<e
(

detψ̄(1+ γ5)ψ
)

. (1)

Phenomenological consequences of the determinant effective interaction in spin-
less meson channels of either parity have been studied in Ref. [2], where new
effects for the scalar mesons were reported. In the same place the strength K of
the ’t Hooft interaction was also fixed in terms of the pseudoscalar (PS) meson
properties as

−12KtH〈q̄q〉3 = f2η
[

m2η ′ +m2η − 2m2K
]

. (2)

Equivalent results for scalar mesons have been reported in Ref. [3] using directly
the instanton-induced (II) interaction with a finite spatial range.

There is another UA(1) symmetry breaking effective interaction that is pro-
portional to the squared imaginary part of the determinant

L(12)

VW = KVW
[

det
(

ψ̄(1+ γ5)ψ
)

− det
(

ψ̄(1− γ5)ψ
)]2

= −4KVW
(

=mdetψ̄(1+ γ5)ψ
)2
. (3)

as well as the analogues of the above two with antisymmetric Pauli tensors in-
serted between the Dirac spinors [4].
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1 Mesons

The role ofUA(1) symmetry breaking in meson spectra has been extensively stud-
ied over the past 10 years [2–7]; a brief review of the field can be found in Ref.
[8]. There scalar meson spectra and the V - A spectral sum rules were discussed.
Considering the fact that the recent parity-doubling/chiral symmetry restoration
(χSR) conjecture [9] uses several methods and/or results obtained or used in the
aforementioned studies, this seems like a good place to make several comments
of direct relevance to this conjecture, rather than to review again some established
facts. This is by no means to be understood as a polemic, but rather as a part of
an academic dialogue: It is an observation on matters not discussed by Glozman
that could potentially have serious implications for the viability of this idea.

1. An explicit counterexample to the claim that asymptotic restoration of chi-
ral SUL(Nf) × SUR(Nf) symmetry implies parity doubling in meson spectra
is the original form of the second Weinberg sum rule: Even with as strong
an assumption as the vanishing of the zeroth moment of the spectral den-
sity difference (that later proved to be false in QCD), Weinberg still had to
assume another (“KSFR”) relation (connecting the widths of the vector and
axial-vector states) before he could turn his assumption into a prediction of
the vector/axial-vector meson mass ratio (that turned out to be 1/

√
2 rather

than unity, as conjectured by Glozman!). Now, one may object that these are
only the ground state mesons, that are not subject of the χSR conjecture. But,
as one increases the number of states in the spectra, the number of new “ra-
dially excited state KSFR” relations, that are necessary to calculate the V/A
mass ratios, also grows. Clearly, more is necessary for parity doubling of vec-
tor (V) and axial-vector (A) mesons than mere asymptotic equality of spec-
tral functions. If that were not enough, it has been shown [4] that the second
spectral sum rule is not only sensitive to SUL(Nf) × SUR(Nf) chiral symme-
try breaking (χSB), but rather to nonconservation of the “larger” (enveloping)
UL(2Nf) ×UR(2Nf) current algebra. Thus, one may have χSR and still have a
nonvanishing second spectral sum. In other words, spectral functions do not
depend only on chiral symmetry, as assumed by Glozman, but also on higher
current algebras.

2. Technical objections to the way UA(1) symmetry breaking was treated. (i)
UA(1) symmetry breaking depends (sensitively) on the number of (light) fla-
vours, c.f. Ref. [2]. Glozman uses two-flavour mass formulas for “realistic”
purposes (to compare with experimental spectra), instead of the three flavour
ones. This is inadmissible and only hides other shortcomings of this scheme:
(a) Too few flavour singlets are predicted: some observed states must be as-
signed to glueballs, so it is not clear which states are radial excitations; (b) not
all of the suggested mass differences may serve as measure of UA(1) symme-
try breaking: In this regard we have shown in Ref. [6] that the scalar meson
mass difference may vanish even with ’t Hooft force turned on, depending
on the strength of the vector/axial-vector interaction, i.e. on the admixing of
pseudo-vector component to the pseudoscalar mesons. (ii) An oversimplified
assignment of mesons to chiral symmetry irreducible representations (irreps)
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has been made in Ref. [9]: mixings of pseudoscalar (PS) and axial vector (A),
scalar (S) and vector (V), V and tensor (T), A and pseudotensor (PT) have been
ignored. As we have shown in Ref. [6], mixing of PS and A mesons substan-
tially changes the scalar meson mass difference that was used as a measure
of UA(1) symmetry restoration by Glozman. Indeed the said mass difference
can be made arbitrarily close to zero, even in the presence ofUA(1) symmetry
breaking interaction, by means of changing the amount of the PS-A mixing.
Other mixings, mentioned above, may well have similarly dramatic effects.

3. Objections to the identification procedure for chiral multiplets. Even if the
experimental interpretation in Ref. [9] were correct, the conclusion that chiral
symmetry restoration-induced parity doublets have already been observed
would still be invalid. Rather, the “observed” parity doubling would be purely
accidental. This is so because members of different chiral multiplets have been
compared (see below) in Glozman’s putative scheme [9]. That is, of course, in-
admissible: chiral restoration implies parity doubling within the same chiral
multiplet, not among members of two different multiplets (which doubling
may indeed occur, but only due to random coincidence) [10]. In a logically
consistent check of chiral restoration one must first positively identify the
purported members of chiral multiplets going from the bottom up, i.e. start-
ing with the ground state and then matching corresponding excited states.
One must not start at some high-lying set of (accidental) parity doublets and
then move down until one arbitrarily declares victory and all states lying be-
low that arbitrary line as being beyond the reach of the conjecture, as was
done in Ref. [9]. As one moves down in mass from the alleged parity doubled
chiral partners in Glozman’s proposed scheme, one finds that some chiral
multiplets are incomplete: for example, the (well established) π(1300) state
does not have a scalar partner in the observed spectrum, according to Gloz-
man’s scheme. This proves that a misidentification of chiral multiplets has
taken place, which fact negates all claims relating to chiral symmetry restora-
tion in meson spectra at high masses.

2 Baryons

More recently, significant effects due to the instanton-induced interaction have
been reported in baryon spectroscopy [11]. In this note we wish to give a simple
explanation of the ’t Hooft quark flavour-determinant effective interaction’s ef-
fects in baryon spectroscopy. We confirm the results of earlier studies [11], with
one distinction: we have no free parameters to adjust in our calculation because
we take the value of the ’t Hooft coupling constant K as constrained above by the
meson spectra.

The effective two-body ’t Hooft interaction leads to the following two-quark
potential

V12 = 4K〈q̄q〉0P3̄12
(

1+ γ5
1γ

5
2

)

δ(r1 − r2)

P3̄12 =

[

1

3
−
1

4
λ1 · λ2

]

. (4)
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The flavour dependence of this potential is proportional to the 3̄ projection oper-
ator P3̄12, i.e., it only operates in the flavour antisymmetric state. Note, however,
that in the qq̄ channels the same flavour factor is not exactly a flavour singlet pro-
jector any more.

The ’t Hooft interaction also leads to the following three-quark potential

V123 = 12KP1123



1+

3∑

i<j

γ5
iγ

5
j



 δ(r1 − r2)δ(r3 − r2)

12P1123 =





4

9
−
1

3

3∑

i<j

λi · λj + dabcλa1λ
b
2λ
c
3



 . (5)

As can be seen from Eq. (5) the flavour dependence of the ’t Hooft three-quark
potential is just the flavour SU(3) singlet projection operator P1123 [8] for three
quarks. Thus the ’t Hooft three-quark potential contributes only in the flavour
singlet q3 channel, as already noticed in Ref. [11]. As the lowest lying flavour
singlet is necessarily a P-wave state (due to the Pauli principle) and the spatial
part of the three-body potential Eq. (5) contains two Dirac delta functions, its
matrix element is zero.

We use the constituent quark model [12] with the harmonic oscillator Hamil-
tonian to calculate the basic effects of the ’t Hooft interaction. This model is clearly
rather simple, but should be adequate for the purpose of identifying the qual-
itative features and making first estimates of the ’t Hooft interaction effects in
baryons. In the following we shall keep only the leading-order (O(1)) terms in
the nonrelativistic [NR] expansion, i.e. we do not keep the spin dependent parts.
In this spirit we have also neglected the strong-hyperfine (“Breit”) interaction in
the constituent quark Hamiltonian [12], that is believed to be an important part of
the (extended) constituent quark model, but that also suffers from several short-
comings, an excessively large coupling constant being one. We shall show that
some of the best known effects associated with the strong Breit force are repro-
duced by the ’t Hooft interaction.

With these assumptions we can calculate the three-quark system spectra in
different flavour channels. But as the ’t Hooft potential is a contact term, one can-
not separate the resulting Schrödinger equation exactly. So, we must use some
approximate method, e.g. perturbation theory. We find the following ’t Hooft po-
tential flavour space matrix elements

〈V〉1 = 12K〈q̄q〉0〈δ(r1 − r2)〉1 (6)

〈V〉8 = 6K〈q̄q〉0〈δ(r1 − r2)〉8 (7)

〈V〉10 = 0 (8)

The reason for the last line is that the flavour singlet 1 three-quark system can-
not have a completely symmetric spin-spatial wave function, the way the ground
state octet and decimet do, due to the Pauli principle and the complete antisym-
metry of the singlet’s flavour- and colour wave functions.
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Fig. 1. Baryon mass spectrum as calculated in the nonrelativistic quark model with har-
monic oscillator confinement without (K = 0) and with (K 6= 0) ’tHooft interaction for the
two lowest lying shells (N = 0,1); the prediction for the Roper resonance (N = 2) is not
shown. Also shown are the observed baryon states (expt).

In the first approximation with all spin-spin interactions neglected,

〈ΨS(N = 0)|δ(r1 − r2)|ΨS(N = 0)〉 = 〈δ(r1 − r2)〉8⊂56 = 〈δ(r1 − r2)〉10⊂56

≡ I =
(mqω√

2π

)3/2

(9)

〈ΨP(N = 1)|δ(r1 − r2)|ΨP(N = 1)〉 = 〈δ(r1 − r2)〉1⊂70 =
1

2

∑

M

〈ψλ1M|δ(r1 − r2)|ψλ1M〉

=
1

2
I =

1

2

(mqω√
2π

)3/2

(10)

〈Ψ ′

S(N = 2)|δ(r1 − r2)|Ψ
′

S(N = 2)〉 = 〈δ(r1 − r2)〉8⊂56

=
5

4
I =

5

4

(mqω√
2π

)3/2

, (11)

where ω= 500 MeV is the oscillator frequency in the model, and the constituent
quark mass,mq = 313MeV , is approximately one third of the nucleon’s. Thus we
find the following energy shifts

δE1⊂70(N = 1) = δE8⊂56(N = 0) = 6K〈q̄q〉0I (12)
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δE8⊂70(N = 1) = 3K〈q̄q〉0I (13)

δE8⊂56(N = 2) =
15

2
K〈q̄q〉0I (14)

δE10 = 0. (15)

Inserting into Eq. (2) the experimental value for the ps meson masses and decay
constants, as well as the quark condensate 〈q̄q〉 = −(225MeV)3, the ’t Hooft cou-
pling constant becomes K = 390GeV−5, we find the baryon spectrum shown in
Fig. 1. The second radially excited state (the Roper resonance) mass moves down
by about 130MeV, but is still too large to be visible in Fig. 1. There one can see that
about one third of the observed positive parity ground state 8 − 10 mass splitting
and about one half of the observed negative parity 1−10 mass splitting are repro-
duced by ’t Hooft interaction. Admittedly, one cannot describe the fine structure
(LS splitting) of the spectra (as yet), but that ought to be possible with the inclu-
sion of spin-dependent forces. In particular these results show that ’t Hooft’s in-
teraction causes a significant part (at least a half) of the Λ0(1405) and Λ0(1520)’s
mass shifts to anomalously low masses compared with other P-wave baryons.
[Remember that N∗(1535) and N∗(1520) ought to be about 130 MeV lighter than
the corresponding Λ0’s, due to one strange quark in the latter, in the absence of
’t Hooft’s interaction.] This mass shift was first pointed out in Ref. [11]. Finally,
the mystery of the Roper resonance’s abnormally low mass now seems within the
reach of rational explanation starting from QCD.
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2. V. Dmitrašinović, Phys. Rev. C 53, 1383 (1996).
3. E. Klempt, B. C. Metsch, C. R. Münz, and H. R. Petry, Phys. Lett. B 361, 160 (1995).
4. V. Dmitrašinović, Phys. Rev. D 56, 247 (1997).
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7. V. Dmitrašinović, Phys. Rev. D 62, 096010(8) (2000).
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11. U. Löring, B.Ch. Metsch, and H.R. Petry,Eur. Phys. J. A 10, 395 (2001); ibid.A 10, 447

(2001).
12. A. Le Yaouanc, L L. Oliver, O. Pène and J.-C. Raynal, Hadron Transitions in the Quark

Model, (Gordon and Breach, New York, 1988).



BLED WORKSHOPS
IN PHYSICS
VOL. 3, NO. 3

Proceedins of the Mini-Workshop
Quarks and hadrons (p. 13)

Bled, Slovenia, July 7-14, 2002

Clustering, colour SU(3) symmetry and confinement
in the q2q̄2 system

V. Dmitrašinović
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Abstract. We examine the clustering properties, or “colour saturation” of the q2q̄2 sys-
tem in the presence of SU(3) symmetric two- and three-quark interactions proposed to
enforce confinement (Phys. Lett. B 499, 135 (2001)). We assume the most general SU(3)
transformation properties of the four-quark interaction and then show that at least some
four-quark interaction is necessary to ensure clustering of the q2q̄2 system into two qq̄
mesons, though that also leads to a breakdown of confinement, and vice versa.

The SU(3) colour degree of freedom was introduced in the mid-60’s with the
intention of alleviating the need for quark (rank-3) para-statistics [1,2]. The work-
ing assumption has been that confinement allows only colour singlet states to
exist, or put differently, that the colour singlet states would be the lowest ones in
energy, perhaps with an infinitely, or at least very large energy gap to the coloured
states. In few-quark systems with the number of constituent quarks + antiquarks
larger than three (n ≥ 4), however, there are multiple colour singlets, that have
not been experimentally observed (as yet). Thus, it appears that the above work-
ing assumption is insufficient to explain the paucity of observed states, i.e. we
may have to look for an additional selection rule or a new dynamical principle.

In a recent attempt to ensure confinement of quarks with general SU(3) sym-
metric colour dynamics, we were forced to modify the usual Fi · Fj two-quark
interaction and to introduce a new three-quark one [3]. This new interaction en-
sures that the colour singlets are the lowest energy states in both the qq̄ and the
q3 systems in addition to confinement of these systems. In the q2q̄2 system this
three-quark force splits the energies of the two colour singlet states, as it does in
the q6 system [4]. That is, however, not enough to make this dynamics viable: it
has to allow for the observed clustering of quarks and antiquarks into mesons
(and baryons) at asymptotic center-of-mass (CM) separations. 1

We shall start here the study of clustering in the simplest nontrivial system:
q2q̄2 ought to cluster into two qq̄mesons. Clustering is automatic with the Fi ·Fj
two-quark interaction, but the new colour-independent two-body interaction is
additive, i.e. it does not saturate. The new three-quark interaction introduced in
Ref. [3] does saturate, indeed it vanishes entirely in the two-meson colour-singlet
state [4]. Thus, we must look for other ways to cancel the additive two-quark force

1 This property sometimes goes by the name of “colour saturation”, for historical reasons,
named after similarity to the nuclear interaction saturation.
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in this channel. Several possibilities arise: 1) a non-saturating three-quark force,
which, however, would spoil the good confinement properties of the q3 system,
or 2) a non-saturating four-quark force. We shall focus here on the latter.

In the q2q̄2 system, there are two linearly independent colour singlets. One
can separate them according to their symmetry properties under the interchange
of the two quark/antiquark indices: one state (|6126̄34〉) is symmetric, another
(|3̄12334〉) antisymmetric. The asymptotic “two meson” colour singlet state is a

linear combination of the two: |113124〉 = 1√
3
|3̄12334〉 +

√

2
3
|6126̄34〉. Clustering

means that “two meson” colour singlet state expectation value of the (total) po-
tential must be proportional to the sum of two two-body potentials in the limit of
asymptotically large CM separations:

lim
R→∞

(

〈V〉11 ≡ 〈113124|V |113124〉
)

' V13 + V24 (1)

where

V = V2b + V3b + V4b (2)

V2b =

4∑

i<j

Vij, (3)

V3b =

4∑

i<j<k

Vijk, (4)

V4b = V1234 . (5)

In order to verify the clustering condition Eq. (1) in QCD, one must know the
exact forms of the two-, three- and four-body potentials, which is impossible at
this stage, both empirically and theoretically. In Ref. [3] we made some simple
Ansätze for the two- and three-quark potentials, and constrained them by the
requirement of confinement in the qq̄ and q3 systems. Thus we found

Vij =
∑

α

CαijVij =

[

c1 +
4

3
+ Fi · Fj

]

Vij (6)

Vijk =
∑

α

CαijkVijk = cdabcFai Fbj FckVijk . (7)

where c1 and c are constants. With the Ansatz

Vijk =

k ′

∑

i<j

Vij ≡ Vij + Vjk + Vik, (8)

and the harmonic oscillator form for the potential Vij, they are constrained to be
c1 > 0, usually taken as c1 = 1, or 4

3
, and 2

5
> c > −3

2
. Straightforward evaluation

of the two- and three-quark parts of the potential yield

〈V〉2b+3b
11 = 〈113124|V2b + V3b|113124〉

=

(

c1 +
4

3

) 4∑

i<j

Vij −
4

3
(V13 + V24) . (9)
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This potential manifestly does not satisfy the clustering condition, Eq. (1), except
when c1 = −4

3
, which is excluded by the requirement of confinement in the qq̄

sector. Thus we must conclude that either some modification of the three-quark
potential, or a (new) four-quark potential is necessary. The former would spoil the
confinement of the q3 system, see Ref. [3], so the latter is left as our only choice.

First we shall make a general SU(3) symmetric Ansatz for the four-quark po-
tential. Then we’ll show that several kinds of a four-quark force lead to clustering
of q2q̄2. The four-quark potential can be factored into a colour part C1234 and the
spin-spatial part V1234:

V1234 =
∑

α

Cα1234V1234. (10)

We shall take only colour factors Cα1234 that are symmetric under the interchange
of any pair of indices i ↔ j. Then the corresponding spin-spatial potentials V1234
must also be symmetric under the same interchange. Then the following 4-body
SU(3) symmetric colour factors may be written down

C1234 =






a4
∑4
i<j Fi · Fj

b4
∑4
i<j<k d

abcFai Fbj Fck
c4

∑4
i<j<k<l (Fi · Fj) (Fk · Fl)

d4
∑4
i<j<k<l d

abfFai Fbj d
cdfFckFdl

(11)

where Fa = 1
2
λa is the quark colour charge, the lower index indicates the num-

ber of the quark, λa are the Gell-Mann matrices, dabc are the symmetric SU(3)
structure constants defined by the anticommutators of the Gell-Mann matrices,
and summation over repeated SU(3) indices is understood.

Only three of the four colour factors in Eq. (11) are linearly independent,
however, as the following identity holds

4∑

i<j<k<l

dabfFai Fbj d
cdfFckFdl =

1

3

4∑

i<j<k<l

(Fi · Fj) (Fk · Fl) . (12)

For this reason we may set d4 ≡ 0 without loss of generality. The remaining
three colour operators can be expressed in terms of the two Casimir operators as
follows

4∑

i<j

Fi · Fj =
1

2
C

(1)

1+2+3+4 −
8

3
(13)

4∑

i<j<k

dabcFaj Fbj Fck =
1

6

[

C
(2)

1+2+3+4 −
5

2
C

(1)

1+2+3+4 +
80

9

]

(14)

4∑

i<j<k<l

(Fi · Fj) (Fk · Fl) =
1

8

(

C
(1)

1+2+3+4

)2

−
19

24
C

(1)

1+2+3+4 −
1

4
C

(2)

1+2+3+4 +
10

9
,

(15)
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where 1 + 2 + 3 + 4 stands for the (total) colour of the four-quark state and the
two Casimir operators are defined by

C(1) = FaFa ≡ F · F ≡ F2, (16)

C(2) = dabcFaFbFc , (17)

where Fa are the SU(3) group generators and dabc are as above.
Having constructed an SU(3) symmetric four-quark potential, we turn to its

application in the q2q̄2 system and ask how it affects clustering. Taking into ac-
count the C-conjugation properties discussed in Ref. [3] we must use

C̄123 =

{
−dabcFa1Fb2 F̄c3
dabcFa1 F̄b2 F̄c3

(18)

in the definition of the colour factor

4∑

i<j<k

C̄ijk = dabc (Fa1 + Fa2 ) F̄b3 F̄c4 − dabc
(

F̄a3 + F̄a4
)

Fb1Fc2, (19)

where the anti-quark colour factor is defined by

F̄a = −
1

2
λaT = −

1

2
λa∗. (20)

Once again, we can express the three independent SU(3) invariant colour factors
in Eq. (11) in terms of the two Casimir operators. The first factor remains un-
changed:

4∑

i<j

Fi · Fj =
1

2
C

(1)

1+2+3+4 −
8

3
, (21)

whereas the second one can be evaluated using Eqs. (23) and (25) in Ref. [3], and
the third one is

4∑

i<j<k<l

(Fi · Fj) (Fk · Fl) =
1

8

(

C
(1)

1+2+3+4 −
16

3

)2

+
5

24

(

C
(1)

1+2+3+4 − C
(1)

1+2 − C
(1)

3+4

)

+
1

2

4∑

i<j<k

C̄ijk −
1

6

4∑

i<j

Fi · Fj −
2

3
(22)

where 1+ 2+ 3+ 4 stands for the (total) colour of the four-quark state. This leads
to

〈V〉11 = 〈113124|V |113124〉

=

[

c1 +
4

3

] 4∑

i<j

Vij −
4

3
[V13 + V24] +

[

−
8

3
a4 +

20

9
c4

]

V1234. (23)
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Making the Ansatz V1234 =
∑4
i<j Vij, we find the saturation condition

c1 +
4

3
−
8

3
a4 +

20

9
c4 = 0, (24)

which is the principal result of this paper. Note the consequences of Eq. (24):

1. Some four-quark interaction is necessary to achieve clustering: one cannot
satisfy Eq. (24) with a4 = c4 = 0, because c1 > 0. Note that one may have ex-
act cluster separation of the Hamiltonian at all distances, and not only asymp-
totically. That, however, would also imply absence of interaction between the
two qq̄ clusters (mesons). One may, however, modify the V1234 =

∑4
i<j Vij

Ansatz at short distances to introduce some meson-meson interaction with-
out spoiling clustering.

2. Of all the q2q̄2 states the “two-meson” colour singlet |113124〉 has the lowest
energy. Unfortunately this state is also deconfined (due to the minus sign in
Eq. (23)): each of the two independent qq̄ pairs is unbound in an “upside-
down” confining (concave) two-body potential. This problem is inevitable: if
we change the overall sign of the colour dependent two-body interaction, the
colour octet qq̄ state becomes deconfined. Thus we have found a paradox: if
both colour singlet and octet qq̄ pairs are to be confined by two-body forces,
then two colour singlet qq̄ pairs are deconfined due to the influence of the
four-quark force. If we eliminate the four-quark force, then the q2q̄2 system,
though confined, cannot cluster into two mesons. These constraints are only a
consequence of the assumed SU(3) symmetry.

3. Clearly the clustering condition Eq. (23) is met by a continuous infinity of
a4, c4 coefficients/four-body potentials. In order to narrow down this (the-
oretical) uncertainty one may play the same kind of game as with the three-
quark potential: constrain the free parameters by demanding proper ordering
of coloured states. That procedure, however, cannot solve the problem in point
2., as that depends only on the two-quark interaction.

4. Even if one had clustering in the q2q̄2 system, that would not necessarily
ensure the q4q̄ → (q3) + (qq̄) clustering, nor that of q6 → (q3) + (q3). Thus
we may have to consider the latter two cases separately and introduce a five-
and a six-quark interaction to ensure clustering.

Our results appear to be general, as they depend only on the assumption of
exact colour SU(3) symmetry and that quarks transform as the fundamental irrep.
(3) of SU(3). Thus, our results must hold in all SU(3) symmetric theories, inter
alia also in QCD, no matter what the spatial parts of the potentials may be. (The
assumption of additivity of few-quark potentials is sufficient, though perhaps not
necessary to achieve clustering.) The conflict between clustering and confinement
found here was unexpected, at least for the present author. Clearly new ideas are
necessary here.
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Abstract. The evidence and the theoretical justification of chiral and U(1)A symmetry
restoration in high-lying hadrons is presented.

It has recently been suggested that the parity doublet structure seen in the
spectrum of highly excited baryons may be due to effective chiral symmetry
restoration for these states [1]. This phenomenon can be understood in very gen-
eral terms from the validity of the operator product expansion (OPE) in QCD
at large space-like momenta and the validity of the dispersion relation for the
two-point correlator, which connects the spacelike and timelike regions (i.e. the
validity of Källen-Lehmann representation) [2,3].

Consider a two-point correlator of the current (that creates from the vacuum
the hadrons with the given quantum numbers) at large spacelike momenta Q2,
where the language of quarks and gluons is adequate and where the OPE is
valid. The only effect that chiral symmetry breaking can have on the correlator
is through the nonzero value of condensates associated with operators which are
chirally active (i.e. which transform nontrivially under chiral transformations). To
these belong 〈q̄q〉 and higher dimensional condensates that are not invariant un-
der axial transformation. At large Q2 only a small number of condensates need
be retained to get an accurate description of the correlator. Contributions of these
condensates are suppressed by inverse powers ofQ2. At asymptotically highQ2,
the correlator is well described by a single term—the perturbative term. The es-
sential thing to note from this OPE analysis is that the perturbative contribution
knows nothing about chiral symmetry breaking as it contains no chirally non-
trivial condensates. In other words, though the chiral symmetry is broken in the
vacuum and all chiral noninvariant condensates are not zero, their influence on
the correlator at asymptotically high Q2 vanishes. This is in contrast to the situa-
tion of low values of Q2, where the role of chiral condensates is crucial.

This shows that at large spacelike momenta the correlation function becomes
chirally symmetric. The dispersion relation provides a connection between the
spacelike and timelike domains. In particular, the large Q2 correlator is com-
pletely dominated by the large s spectral density. (The spectral density has the
physical interpretation of being proportional to the probability density that the
current when acting on the vacuum creates a state of a mass of

√
s.) Hence the

large s spectral density must be insensitive to the chiral symmetry breaking in
the vacuum. This is in contrast to the low s spectral function which is crucially
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dependent on the quark condensates in the vacuum. This manifests a smooth
chiral symmetry restoration from the low-lying spectrum, where the chiral sym-
metry breaking in the vacuum is crucial for physics, to the high-lying spectrum,
where chiral symmetry breaking becomes irrelevant and the spectrum is chirally
symmetric.

Microscopically this is because the typical momenta of valence quarks should
increase higher in the spectrum and once it is high enough the valence quarks
decouple from the chiral condensates of the QCD vacuum and the dynamical
(quasiparticle or constituent) mass of quarks drops off and the chiral symmetry
gets restored [1,4]. This phenomenon does not mean that the spontaneous break-
ing of chiral symmetry in the QCD vacuum disappears, but rather that the chiral
asymmetry of the vacuum becomes irrelevant sufficiently high in the spectrum.
The physics of the highly-excited states is such as if there were no chiral sym-
metry breaking in the vacuum. One of the consequences is that the concept of
constituent quarks, which is adequate low in the spectrum, becomes irrelevant
high in the spectrum.

If high in the spectrum (i.e. where the chiral symmetry is approximately re-
stored) the spectrum is still quasidiscrete, then the phenomenological manifesta-
tion of the chiral symmetry restoration would be that the highly excited hadrons
should fall into the representations of the SU(2)L×SU(2)R group, which are com-
patible with the definite parity of the states - the parity-chiral multiplets [2,3]. In
the case of baryons in the N and ∆ spectra these multiplets are either the parity
doublets ((1/2, 0) ⊕ (0, 1/2) for N∗ and (3/2, 0) ⊕ (0, 3/2) for ∆∗) that are not re-
lated to each other, or the multiplets (1/2, 1) ⊕ (1, 1/2) that combine one parity
doublet in the nucleon spectrum with the parity doublet in the delta spectrum
with the same spin.

Summarizing, the phenomenological consequence of the effective restoration
of chiral symmetry high in N and ∆ spectra is that the baryon states will fill out
the irreducible representations of the parity-chiral group. If (1/2, 0)⊕ (0, 1/2) and
(3/2, 0)⊕(0, 3/2) multiplets were realized in nature, then the spectra of highly ex-
cited nucleons and deltas would consist of parity doublets. However, the energy
of the parity doublet with given spin in the nucleon spectrum a-priori would not
be degenerate with the doublet with the same spin in the delta spectrum; these
doublets would belong to different representations , i.e. to distinct multiplets and
their energies are not related. On the other hand, if (1/2, 1) ⊕ (1, 1/2) were real-
ized, then the highly lying states in N and ∆ spectrum would have a N parity
doublet and a ∆ parity doublet with the same spin and which are degenerate in
mass. In either of cases the highly lying spectrum must systematically consist of
parity doublets. We stress that this classification is the most general one and does
not rely on any model assumption about the structure of baryons.

What is immediately evident from the empirical low-lying spectrum is that
positive and negative parity states with the same spin are not nearly degener-
ate. Even more, there is no one-to-one mapping of positive and negative parity
states of the same spin with masses below 1.7 GeV. This means that one cannot
describe the low-lying spectrum as consisting of sets of chiral partners. The ab-
sence of systematic parity doublets low in the spectrum is one of the most direct
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pieces of evidence that chiral symmetry in QCD is spontaneously broken. How-
ever, as follows from the discussion above, there are good reasons to expect that
chiral symmetry breaking effects become progressively less important higher in
the spectrum. As a phenomenological manifestation of this smooth chiral sym-
metry restoration one should expect an appearance of systematic parity-chiral
multiplets high in the spectrum.

Below we show all the known N and ∆ resonances in the region 2 GeV and
higher and include not only the well established baryons (“****” and “***” states
according to the PDG classification), but also “**” states that are defined by PDG
as states where “evidence of existence is only fair”. In some cases we will fill
in the vacancies in the classification below by the “*” states, that are defined as
“evidence of existence is poor”. We mark both the 1-star and 2-star states in the
classification below.

J =
1
2

: N+(2100) (∗), N−(2090) (∗), ∆+(1910) , ∆−(1900)(∗∗);

J =
3
2

: N+(1900)(∗∗), N−(2080)(∗∗), ∆+(1920) , ∆−(1940) (∗);

J =
5
2

: N+(2000)(∗∗), N−(2200)(∗∗), ∆+(1905) , ∆−(1930) ;

J =
7
2

: N+(1990)(∗∗), N−(2190) , ∆+(1950) , ∆−(2200) (∗);

J =
9
2

: N+(2220) , N−(2250) , ∆+(2300)(∗∗), ∆−(2400)(∗∗);

J =
11
2

: ? , N−(2600) , ∆+(2420) , ? ;

J =
13
2

: N+(2700)(∗∗), ? , ? , ∆−(2750)(∗∗);

J =
15
2

: ? , ? , ∆+(2950)(∗∗), ? .

The data above suggest that the parity doublets in N and ∆ spectra are ap-
proximately degenerate; the typical splitting in the multiplets are ∼ 200 MeV
or less, which is within the decay width of those states. Of course, as noted
above,“nearly degenerate” is not a truly well-defined idea. In judging how close
to degenerate these states really are one should keep in mind that the extracted
resonance masses have uncertainties which are typically of the order of 100 MeV.
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If the mass degeneracy between N and ∆ doublets is accidental, then the
baryons are organized according to (1/2, 0)⊕ (0, 1/2) forN and (3/2, 0)⊕ (0, 3/2)

for ∆ parity-chiral doublets. This possibility is supported by the fact that one ob-
serves systematic parity doublets in the nucleon spectrum as low as at M ∼ 1.7

GeV, while there are no doublets at this mass in the ∆ spectrum. If the mass de-
generacy between the highly-lying nucleon and delta doublets is not accidental,
then the highly lying states are organized according to (1/2, 1) ⊕ (1, 1/2) repre-
sentation. It can also be possible that in the narrow energy interval more than one
parity doublet in the nucleon and delta spectra is found for a given spin. This
would then mean that different doublets would belong to different parity-chiral
multiplets.

While a discovery of states that are marked by (?) would support the idea
of effective chiral symmetry restoration, a definitive discovery of states that are
beyond the systematics of parity doubling, would certainly be strong evidence
against it. The nucleon states listed above exhaust all states (“****”, “***”, “**”,
“*”) in this part of the spectrum included by the PDG. However, there are some
additional candidates (not established states) in the ∆ spectrum. In the J = 5/2

channel there are two other candidate states∆+(2000)(∗∗) and∆−(2350)(∗); there
is another candidate for J = 7/2 positive parity state - ∆+(2390)(∗) as well as for
J = 1/2 negative parity state ∆−(2150)(∗). Certainly a better exploration of the
highly lying baryons is needed. This task is just for the facilities like in JLAB,
BNL, SAPHIR, SPRING-8 and similar.

Recent data on the highly excited mesons give a very strong evidence of
chiral symmetry restoration in meson spectra too [4]. Consider, as example, the
pseudoscalar and scalar mesons π, f0, a0, η within the two-flavor QCD. The cor-
responding currents (interpolating fields) belong to the (1/2, 1/2) ⊕ (1/2, 1/2) ir-
reducible representation of theU(2)L×U(2)R = SU(2)L×SU(2)R×U(1)V×U(1)A
group. If the vacuum were invariant with respect to U(2)L × U(2)R transforma-
tions, then all four mesons, π, f0, a0 and η̄ would be degenerate (as well as all
their excited states). Once the U(1)A symmetry is broken explicitly through the
axial anomaly, but the chiral SU(2)L × SU(2)R symmetry is still intact in the vac-
uum, then the spectrum would consist of degenerate (π, f0) and (a0, η̄) pairs. If
in addition the chiral SU(2)L × SU(2)R symmetry is spontaneously broken in the
vacuum, the degeneracy is also lifted in the pairs above and the pion becomes a
(pseudo)Goldstone boson. Indeed, the masses of the lowest mesons are

mπ ' 140MeV, mf0
' 400− 1200MeV, ma0

' 985MeV, mη̄ ' 782MeV.

This immediately tells that both SU(2)L × SU(2)R and U(1)V × U(1)A are
broken in the QCD vacuum to SU(2)I and U(1)V , respectively.

Systematic data on highly excited mesons are still missing in the PDG tables.
We will use the recent results of the partial wave analysis of mesonic resonances
from 1.8 GeV to 2.4 GeV obtained in pp̄ annihilation at LEAR [5,6]. We note that
the f0 state at 2102 ± 13 MeV is not considered by the authors as a qq̄ state (but
rather as a candidate for glueball) because of its very unusual decay properties
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and very large mixing angle. This is in contrast to all other f0 mesons in this re-
gion, for which the mixing angles are small. Therefore these mesons are regarded
as predominantly u, d = n states. Hence, in the following we will exclude the f0
state at 2102± 13 from our analysis which applies only to nn̄ states.

The prominent feature of the data is an approximate degeneracy of the three
highest states in the pion spectrum with the three highest states in the f0 spec-
trum:

π(1801± 13) − f0(1770± 12), (1)

π(2070± 35) − f0(2040± 38), (2)

π(2360± 25) − f0(2337± 14). (3)

This can be considered as a manifestation of chiral symmetry restoration
high in the spectra. The approximate degeneracy of these physical states indicates
that the chiral SU(2)L × SU(2)R transformation properties of the corresponding
currents are not violated by the vacuum. This means that the chiral symmetry
breaking of the vacuum becomes irrelevant for the high-lying states and the phys-
ical states above form approximately the chiral pairs in the (1/2, 1/2) representa-
tion of the chiral group. The physics of the highly excited hadrons is such as if
there were no chiral symmetry breaking in the vacuum.

A similar behaviour is observed from a comparison of the a0 and η masses
high in the spectra:

a0(2025± ?) − η(2010+35
−60). (4)

Upon examining the experimental data more carefully one notices not only
a degeneracy in the chiral pairs, but also an approximate degeneracy in U(1)A
pairs (π, a0) and (f0, η) (in those cases where the states are established). If so, one
can preliminary conclude that not only the chiral SU(2)L × SU(2)R symmetry is
restored high in the spectra, but the whole U(2)L ×U(2)R symmetry of the QCD
Lagrangian. Then the approximate (1/2, 1/2)⊕ (1/2, 1/2) multiplets of this group
are given by:

π(1801± 13) − f0(1770± 12) − a0(?) − η(?); (5)

π(2070± 35) − f0(2040± 40) − a0(2025± ?) − η(2010+35
−60); (6)

π(2360± 25) − f0(2337± 14) − a0(?) − η(2285± 20). (7)

This preliminary conclusion would be strongly supported by a discovery of
the missing a0 meson in the mass region around 2.3 GeV as well as by the miss-
ing a0 and η mesons in the 1.8 GeV region. We have to stress, that the U(1)A
restoration high in the spectra does not mean that the axial anomaly of QCD
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vanishes, but rather that the specific gluodynamics (e.g. instantons) that are re-
lated to the anomaly become unimportant there.It should also be emphasized that
the only restoration of U(1)V × U(1)A symmetry (without the SU(2)L × SU(2)R)
is impossible. This was discussed in ref. [2]. The reason is that even if the ef-
fects of the explicit U(1)A symmetry breaking via the axial anomaly vanish, the
U(1)V × U(1)A would still be spontaneously broken once the SU(2)L × SU(2)R
were spontaneously broken. This is because the same quark condensates in the
QCD vacuum that break SU(2)L × SU(2)R do also break U(1)V ×U(1)A.

The phenomenon of parity doubling and of chiral symmetry restoration high
in the spectra rules out the potential description of highly lying hadrons in the
spirit of the constituent quark model. Clearly, the chiral symmetry restoration
by itself implies that the concept of constituent quarks (whoose mass is directly
related to spontaneous chiral symmetry breaking in the vacuum) becomes in-
adequate high in the spectrum, though it is a fruitful concept for the low-lying
hadrons. That the potential description is incompatible with the parity doubling
also follows from the following simple consideration.

Within the potential description of mesons the parity of the state is unam-
biguously prescribed by the relative orbital angular momentum L of quarks. For
example, all the states on the radial pion Regge trajectory are 1S0 qq̄ states, while
the members of the f0 trajectory are the 3P0 states. Clearly, such a picture cannot
explain the systematical parity doubling as it would require that the stronger cen-
trifugial repulsion in the case of 3P0 mesons (as compared to the 1S0 ones) as well
as the strong and attractive spin-spin force in the case of 1S0 states (as compared
to the weak spin-spin force in the 3P0 channel) must systematically lead to an
approximate degeneracy for all radial states. This is very improbable.

The potential picture also implies strong spin-orbit interactions between
quarks while the spin-orbit splittings are absent or very small for excited mesons
and baryons in the u, d sector. The strong spin-orbit interactions inevitably follow
from the Thomas precession (once the confinement is described through a scalar
confining potential)1, and this very strong spin-orbit force must be practically
exactly compensated by other strong spin-orbit force from e.g. the one-gluon-
exchange interaction in this picture. In principle such a cancellation could be pro-
vided by tuning the parameters for some specific (sub)families of mesons. How-
ever, in this case the spin-orbit forces become very strong for other (sub)families.
This is a famous spin-orbit problem of constituent quark model.

This picture should be contrasted with the string description of highly ex-
cited hadrons [7]. Within the latter picture the hadrons are relativistic strings
(with the color-electric field in the string) with practically massless quarks at the
ends; these massless quarks are combined into parity-chiral multiplets. The string
picture is compatible with the chiral symmetry restoration because there always
exists a solution for the right-handed and left-handed quarks at the end of the
string with exactly the same energy and total angular momentum. Since the non-
perturbative field in the string is pure electric and the electric field is ”flavor-

1 Note also that a scalar potential explicitly breaks the chiral symmetry in contradiction
to the requirement that the chiral symmetry must be restored high in the spectra.
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blind”, the string dynamics itself is not sensitive to the specific flavor of a light
quark once the chiral limit is taken. This picture explains the empirical parity-
doubling because for every intrinsic quantum state of the string there necessarily
appears parity doubling of the states with the same total angular momentum of
hadron. Hence the string picture is compatible not only with the SU(2)L×SU(2)R
restoration, but more generally with the U(2)L × U(2)R one. In addition, there is
no spin-orbit force at all once the chiral symmetry is restored. This is because the
helicity operator does not commute with the spin-orbit operator and the motion
of the quark with the fixed helicity is not affected by the spin-orbit force.
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Abstract. It is reviewed pedagogically how a very successful description of the η–η′ mass
matrix can be achieved in the consistently coupled Schwinger-Dyson and Bethe-Salpeter
approach in spite of the limitations of the ladder approximation. This description is in
agreement with both phenomenology and lattice results.

The Schwinger-Dyson and Bethe-Salpeter (SD-BS) approach is the bound-state
approach that is chirally well-behaved. (For example, see Ref. [1–3] for recent
reviews, and references therein for various phenomenological and other appli-
cations of SD-BS approach.) Therefore, among the bound-state approaches it is
probably the most suitable one to treat the light pseudoscalar mesons. One solves
the Schwinger-Dyson (SD) equation for dressed propagators of the light u, d and
s quarks using a phenomenologically successful interaction. These light-quark
propagators are then employed in consistent solving of Bethe-Salpeter (BS) equa-
tions for various quark-antiquark (qq̄) relativistic bound states. Namely, in both
SD and BS equations we employ the same, ladder approximation, and the same
interaction due to an effective, dressed gluon exchange. In the chiral limit (and
close to it), light pseudoscalar (P) meson qq̄ bound states (P = π0,±, K0,±, η) then
simultaneously manifest themselves also as (quasi-)Goldstone bosons of dynam-
ically broken chiral symmetry. This resolves the dichotomy “qq̄ bound state vs.
Goldstone boson”, enabling one to work with the mesons as explicit qq̄ bound
states (for example, in Refs. [4–11]) while reproducing (even analytically, in the
chiral limit) the famous results of the axial anomaly for the light pseudoscalar
mesons, namely the amplitudes for P → γγ and γ? → P0P+P− [12]. This is
unique among the bound state approaches – for example, see Refs. [1,6,12] and
references therein. Nevertheless, one keeps the advantage of bound state ap-
proaches that from the qq̄ substructure one can calculate many important quan-
tities (such as the pion decay constant fπ) which are just parameters in most of
other chiral approaches to the light-quark sector. The description [5,8–10] of η–η ′

complex is especially noteworthy, as it is very successful in spite of the limitations
of the SD-BS approach in the ladder approximation.

For the description of η and η ′, the crucial issues are the meson mixing and
construction of physical meson states. They are formulated in Refs. [5,8,9] for the
? Talk delivered by D. Klabučar
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SD-BS approach, where solving of appropriate BS equations yields the eigenval-
ues of the squared masses, M2

uū,M
2
dd̄
,M2

ss̄ and M2
us̄, of the respective quark-

antiquark bound states |uū〉, |dd̄〉, |ss̄〉 and |us̄〉. The last one is simply the kaon,
and Mus̄ is its mass MK. Nevertheless, the first three do not correspond to any
physical pseudoscalar mesons. Thus, M2

uū,M
2
dd̄
,M2

ss̄ do not automatically rep-
resent any physical masses, although the mass matrix (actually, to be precise, the
non-anomalous part of the mass matrix) is simply M̂2

NA = diag(M2
uū,M

2
dd̄
,M2

ss̄)

in the basis |qq̄〉, (q = u, d, s). However, the flavor SU(3) quark model leads one
to recouple these states into the familiar octet-singlet basis of the zero-charge sub-
space of the light unflavored pseudoscalar mesons:

|π0〉 =
1√
2
(|uū〉 − |dd̄〉) , (1)

|η8〉 =
1√
6
(|uū〉 + |dd̄〉 − 2|ss̄〉) , (2)

|η0〉 =
1√
3
(|uū〉 + |dd̄〉 + |ss̄〉) . (3)

With |uū〉 and |dd̄〉 being practically chiral states as opposed to a significantly
heavier |ss̄〉, Eqs. (1–3) do not define the octet and singlet states of the exact SU(3)
flavor symmetry, but the effective octet and singlet states. However, as pointed out
by Gilman and Kauffman [13] (following Chanowitz, their Ref. [8]), in spite of this
flavor symmetry breaking by the s quark, these equations still implicitly assume
nonet symmetry in the sense that the same states |qq̄〉 (q = u, d, s) appear in both
the octet member η8 (2) and the singlet η0 (3). Nevertheless, in order to avoid the
UA(1) problem, this symmetry must ultimately be broken by gluon anomaly at
least at the level of the masses of pseudoscalar mesons.

In the basis (1–3), the non-anomalous part of the (squared-)mass matrix of π0

and etas is

M̂2
NA =





M2
π 0 0

0 M2
88 M

2
80

0 M2
08 M

2
00



 . (4)

The η8 “mass” M88 ≡ Mη8
can be related to the kaon mass through the Gell-

Mann–Okubo (GMO) relation, although the kaon does not appear in this scheme
as it obviously cannot mix with π0 and etas, since it is strangely flavored. Equa-
tion (4) shows that also the isospin I = 1 state π0 decouples from any mixing with
the I = 0 states η8 and η0, thanks to our working in the isospin limit throughout.
Therefore, we are concerned only with the diagonalization of the 2× 2 submatrix
in the subspace of etas in order to find their physical masses and correspond-
ing qq̄ content. In the isospin limit, obviously Muū = Mdd̄, which we then can
strictly identify with our model π0 massMπ. Since in this model we can also cal-
culateM2

ss̄ = 〈ss̄|M̂2
NA|ss̄〉, this gives us our calculated entries in the mass matrix:

M2
88 ≡ 〈η8|M̂2

NA|η8〉 ≡M2
η8

=
2

3
(M2

ss̄ +
1

2
M2
π) , (5)

M2
80 ≡ 〈η8|M̂2

NA|η0〉 = M2
08 =

√
2

3
(M2

π −M2
ss̄) , (6)
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M2
00 ≡ 〈η0|M̂2

NA|η0〉 =
2

3
(
1

2
M2
ss̄ +M2

π) . (7)

The last one, M00, is the non-anomalous part of the η0 “mass” Mη0
. Namely, all

the model masses Mqq̄ ′ (q, q ′ = u, d, s) and corresponding qq̄ ′ bound state am-
plitudes are obtained in the ladder approximation, and thus (irrespective of what
the concrete model could be) with an interaction kernel which cannot possibly
capture the effects of gluon anomaly. Fortunately, the large Nc expansion indi-
cates that the leading approximation in that expansion describes the bulk of main
features of QCD. The gluon anomaly is suppressed as 1/Nc and is viewed as a
perturbation in the large Nc expansion. It is coupled only to the singlet combi-
nation η0 (3); only the η0 mass receives, from the gluon anomaly, a contribution
which, unlike quasi-Goldstone massesMqq̄ ′ ’s comprising M̂2

NA, does not vanish
in the chiral limit. As discussed in detail in Sec. V of Ref. [5], in the present bound-
state context it is thus best to adopt the standard way (see, e.g., Refs. [14,15]) to
parameterize the anomaly effect. We thus break theUA(1) symmetry, and avoid the
UA(1) problem, by shifting the η0 (squared) mass by an amount denoted by 3β (in
the notation of Refs. [8,9]). The complete mass matrix is then M̂2 = M̂2

NA + M̂2
A,

where

M̂2
A =





0 0 0

0 0 0

0 0 3β



 , (8)

and where the value of the anomalous η0 mass shift 3β is related to the topo-
logical susceptibility of the vacuum, but in the present approach must be treated
as a parameter to be determined outside of our bound-state model, i.e., fixed by
phenomenology or taken from the lattice calculations [16].

We could now go straight to the nonstrange-strange (NS-S) basis, but before
doing this, it may be instructive to rewrite for a moment the matrix (8) in the
flavor, |qq̄〉 basis, where

M̂2
A = β





1 1 1

1 1 1

1 1 1



 , (9)

since for some readers it may be the best place to introduce the effect of flavor
symmetry breaking. Namely, Eq. (9) tells us that due to the gluon anomaly, there
are transitions |qq̄〉 → |q ′q̄ ′〉; q, q ′ = u, d, s. However, the amplitudes for the
transition from, and into, light uū and dd̄ pairs need not be the same as those
for the significantly more massive ss̄. The modification of the anomalous mass
matrix (9) which allows for possible effects of the breaking of the SU(3) flavor
symmetry is then

M̂2
A = β





1 1 X

1 1 X

X X X2



 . (10)

There are arguments [8,9], supported by phenomenology, that the transition sup-
pression is estimated well by the nonstrange-to-strange ratio of respective con-
stituent masses, X ≈ Mu/Ms, or, as commented below, of respective decay con-
stants, X ≈ fπ/fss̄.
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After adding the anomalous contribution (8) to Eq. (4), pion still remains
decoupled and we obviously still can restrict ourselves to 2 × 2 submatrix in the
subspace of etas. However, when dealing with quark degrees of freedom when
the symmetry between the nonstrange (NS) and strange (S) sectors is broken as
described above, the most suitable basis for that subspace is the so-called NS-S
basis:

|ηNS〉 =
1√
2
(|uū〉 + |dd̄〉) =

1√
3
|η8〉 +

√

2

3
|η0〉 , (11)

|ηS〉 = |ss̄〉 = −

√

2

3
|η8〉 +

1√
3
|η0〉 . (12)

The η–η′ mass matrix in this basis is

M̂2 =

(

M2
ηNS

M2
ηSηNS

M2
ηNSηS

M2
ηS

)

=

(

M2
uū + 2β

√
2βX√

2βX M2
ss̄ + βX2

)

−→
φ

(

M2
η 0

0 M2
η ′

)

,

(13)
where the indicated diagonalization is given by the NS–S mixing relations1

|η〉 = cosφ|ηNS〉 − sinφ|ηS〉 , |η′〉 = sinφ|ηNS〉 + cosφ|ηS〉 , (14)

rotating ηNS, ηS to the mass eigenstates η, η ′. Now the NS–S mass matrix (13) tells
us that due to the gluon anomaly, there are transitions |ηNS〉 ↔ |ηS〉. However, the
amplitude for the transition from, and into, ηNS, need not be the same as those
for the more massive ηS. The role of the flavor-symmetry-breaking factor X is
to allow for that possibility. As remarked little earlier, there are arguments [8,9],
supported by phenomenology, that the transition suppression is estimated well
by the nonstrange-to-strange ratio of respective quark constituent masses, Mu

and Ms. Due to the Goldberger-Treiman relation, this ratio is essentially equal
[5,8,9] to the ratio of ηNS and ηS pseudoscalar decay constants fηNS = fπ and fηS =

fss̄ which are calculable in the SD-BS approach. Same as Mu and Ms, they were
found in our earlier papers, especially [5,8,9]. In other words, we can estimate the
flavor-symmetry-breaking suppression factor as X ≈ Mu/Ms, or equivalently,
as X ≈ fπ/fss̄. Our model results Mu/Ms = 0.622 and fπ/fss̄ = 0.689 are in both
cases reasonably close to Xexp ≈ 0.78 extracted phenomenologically [8,9] from
the empirical mass matrix m̂2exp featuring experimental pion and kaon masses,
or, after diagonalization, η and η ′ masses – see Eq. (7) in Ref. [9]. (In our model
calculations below, we use X = fπ/fss̄ = 0.689 to show the robustness of our
approach to slight variations. Namely, our earlier works [8,9,17] mostly presented
results based on slightly different values of X obtained with the help of ratios of
γγ amplitudes, which is yet another, but again related way of obtaining X.)

In our present notation, capital Ma’s denote the calculated, model pseu-
doscalar masses, whereas lowercase ma’s denote the corresponding empirical

1 The effective-singlet-octet mixing angle θ, defined by analogous relations where ηNS →

η8, ηS → η0, φ → θ, is related to the NS–S mixing angle φ as θ = φ − arctan
√
2 =

φ − 54.74◦. The relation between our approach and the two-mixing-angle scheme is
clarified in the Appendix of Ref. [8].
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masses. The empirical mass matrix m̂2exp can be obtained from the calculated,
model one in Eq. (13) by i) obvious substitutions Muū ≡ Mπ → mπ and Mss̄ →

mss̄, and ii) by noting that mss̄, the “empirical” mass of the unphysical ss̄ pseu-
doscalar bound state, is given in terms of masses of physical particles as m2ss̄ =

2m2K−m2π due to the Gell-Mann-Oakes-Renner (GMOR) relation. SinceMuū, ob-
tained by solving the BS equation, is identical to our model pion massMπ, it was
fitted to the empirical pion massmπ, e.g., in Ref. [8]. Similarly,Mus̄ ≡MK is fitted
to the empirical kaon mass mK. Therefore we also have M2

ss̄ ≈ 2m2K −m2π, since
our model has good chiral behavior and also satisfies the GMOR relation, thanks
to which we have M2

ss̄ = 2M2
K − M2

π in a very good approximation. We thus
see that in our model mass matrix, the parts stemming from its non-anomalous
part M̂2

NA (4) are already close to the corresponding parts in m̂2exp. We can thus
expect a good overall description of the masses in η and η ′ complex. We now
proceed to verify this expectation.

The anomalous entry β is fixed phenomenologically to be βexp ≈ 0.28 GeV2,
along with Xexp ≈ 0.78, by requiring that trace and determinant of m̂2exp have
their experimental values. But, this can be done also with our calculated, model
mass matrix M̂2. Requiring that the empirical value of the tracem2η+m2η ′ ≈ 1.22
GeV2 be fixed by Eq. (13), yields

β =
1

2+ X2
[(m2η +m2η ′)exp − (M2

uū +M2
ss̄)] (15)

where X = fπ/fss̄ = 0.689 and Muū = 0.1373 GeV and Mss̄ = 0.7007 GeV
are now our model-calculated [8] quantities, giving us β = 0.286 GeV2. Since
(M2

uū +M2
ss̄) = 2m2K holds to a very good approximation, our approach satisfies

well the first equality (from the matrix trace) in

2β+ βX2 = m2η +m2η ′ − 2m2K =
2Nf

f2π
χ , (16)

where the second equality is the Witten-Veneziano (WV) formula [18], with χ
being the topological susceptibility of the pure Yang-Mills gauge theory. Our
model values of X and β (fπ is fitted to its experimental value) thus imply χ =

(178MeV)4, in excellent agreement with the lattice result χ = (175 ± 5MeV)4 of
Alles et al. [16].

The mixing angle is then determined to be φ = 43.2◦ (or equivalently, θ =

−11.5◦), for example through the relation

tan 2φ =
2
√
2βX

M2
ηS

−M2
ηNS

, (17)

where

M2
ηNS

= M2
uū + 2β = M2

π + 2β = 0.592 GeV2 = (769 MeV)2 (18)

and
M2
ηS

= M2
ss̄ + βX2 = 0.627 GeV2 = (792 MeV)2 (19)
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are our calculated ηNS and ηS masses. They have reasonable values, in a good
agreement with, e.g., ηNS and ηS masses calculated in the dynamical SU(3) linear
σmodel [17].

The diagonalization of the NS-Smass matrix gives us the η and η ′ masses:

M2
η = cos2φM2

ηNS
−
√
2βX sin 2φ+ sin2φM2

ηS
(20)

M2
η ′ = sin2φM2

ηNS
+
√
2βX sin 2φ+ cos2φM2

ηS
. (21)

Plugging in the above predictions for β,X,MηNS
and MηS

, our model η and η ′

masses then turn out to be Mη = 575 MeV and Mη ′ = 943 MeV. This is in good
agreement with the respective empirical values of 547 MeV and 958 MeV.

However, the above is not all that can be said about agreement with experi-
ment and other approaches. The second thing we may point out is the reasonable
agreement we find if we insert our values of β, X andMqq̄ ′ ’s into our model mass
matrix and compare it with the η-η ′ mass matrix obtained on lattice by UKQCD
collaboration [19].

Third, Ref. [8] clearly shows that our approach and results are not in conflict,
but in fact agree very well with results in the two-mixing-angle scheme (reviewed
and discussed in, e.g, Ref. [20]). Actually, our results can also be given [8,21] in the
two-mixing-angle scheme.

Fourth, what we found from the mass matrix is consistent with what we
found in the same SD-BS approach through another route, i.e. from η, η′ → γγ

processes [5,8–10].
The above shows that the consistently coupled SD-BS approach provides a

surprisingly satisfactory description of the η-η ′ complex, especially if one recalls
that β, parameterizing the anomalous η0 mass shift, was the only new parameter.
Namely, all other model parameters were fixed already by Ref. [22] providing the
model we used in Refs. [4–10]. Nevertheless, we would like to point out that even
this one parameter, β, can be fixed beforehand. Instead of being a parameter, β
can be obtained through WV formula (16) from the lattice results on the topologi-
cal susceptibility χ. The central value of widely accepted χ = (175± 5MeV)4 [16]
would lead to β less than 7% below our model value, which is within upper error
bar anyway. Thus, we can eliminate β as a free parameter and still achieve almost
as satisfactory description as the one given above.

Acknowledgment: D. Klabučar thanks the organizers, M. Rosina, B. Golli and S.
Širca, for their hospitality and for the partial support which made possible his
participation at Mini-Workshop Bled 2002.
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Abstract. A relativistic quark model for hadrons is presented. The model is based on the
Bethe-Salpeter equation in instantaneous approximation with a linear confining potential
and a residual interaction induced by instantons. Some selected results on meson masses,
baryon masses and nucleon form factors are discussed.

Constituent quark models for hadrons should describe many different cha-
racteristics of the observed spectra at once: The mass splittings of ground-state
mesons and baryons as well as the Regge trajectories up to highly excited states
and the obvious shell structure of baryon resonances have to be accounted for.
The flavor mixing of the η and the η ′ and the occurrence of parity doublets
(mainly in the N- and Λ-spectra) must be explained. In addition to that form fac-
tors and decay observables should be reproduced, if a reasonable description of
bound states is achieved. Such an investigation will show, if the notion of the un-
derlying dynamics is reasonable, if the introduced approximations are justified,
but also if the concept of constituent quarks is applicable in the whole energy
range.

To this end a relativistic treatment is mandatory. It is known that a linear
confinement potential leads to linear Regge trajectories and the shell structure.
An additional residual interaction has to explain fine and hyperfine splittings.
A candidate for this residual interaction is the instanton-induced interaction de-
rived by ’t Hooft, which has the special feature to be effectively flavor-dependent
and, in contrast to the widely used One Gluon Exchange, solves the UA(1) prob-
lem. A constituent quark model motivated by these ideas has been developed
recently for mesons and baryons. It is based on the Bethe-Salpeter equation, a
homogeneous integral equation, written symbolically

χ = −iG0 Kχ

for the Bethe-Salpeter amplitude χ with the full propagator G0 of two or three
non-interacting quarks and an irreducible interaction kernel K. To solve this equa-
tion approximations are necessary. In our approach the propagator is substituted
by free constituent quark propagators, where the fermion self energy is parame-
terized by the effective mass of the constituent. The interaction kernel is assumed
to be instantaneous, i.e. independent of the relative energies of the quarks in
the rest-frame of the bound state. With these approximations the Bethe-Salpeter
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Fig. 1. The spectra of pseudo-scalar and isovector mesons in model A (left column) and
model B (right column) compared to the experimental values [4] (middle column).

equation reduces to the 3-dimensional Salpeter equation which is solved numer-
ically by expanding the amplitudes in a finite basis. The interaction kernel, as
anticipated above, is the sum of a linearly rising confinement potential and a
residual interaction induced by instantons. In a relativistic treatment an adequate
spinorial structure of the confinement potential has to be specified. Further de-
tails of this approach are given in the references cited below. In the following we
shall present some selected results.

The model for mesons has been described in [1]. For the spinorial structure
of the confining potential two phenomenologically motivated possibilities were
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studied, refered to as model A and B: A linear combination of scalar and time-like
vector

1

2

(

1⊗ 1− γ0 ⊗ γ0
)

(model A) ,

chosen to minimize spin-orbit splittings generated by the confinement, and the
UA(1) symmetric combination

1

2
(1⊗ 1− γµ ⊗ γµ − γ5 ⊗ γ5) (model B) .

The instanton-induced interaction leads to a short-range flavor-dependent force
in the quark-anti-quark system affecting scalar and pseudo-scalar mesons only.
Hence, the strength of this interaction (involving two parameters) is adjusted to
the pseudo-scalar ground state nonet after the masses of the constituent quarks
and the parameters of the confinement have been fitted to the Regge trajectories.
The resulting spectra for the pseudo-scalar and the isovector mesons are shown
in Fig. 1. Both models allow for a very good description of the π − K − η − η ′

splitting and the Regge trajectories. In addition to that the radial excitations are
reproduced reasonably but slightly better in model B where the splitting turns
out to be smaller. These excitations also lie on approximately linear trajectories
which has been pointed out lately by V.V. Anisovich and is shown in Fig. 2 for π
and a0.
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Fig. 2. The masses of radial excitations (in GeV2) of π and a0 compared to the experimental
values and predictions taken from [1] (see references therein).

This behavior is described nicely with the special spinorial structure of model
B while most of the states in model come out too high. Especially the low-lying
a0(980) can not be accounted for in model A. This demonstrates the relevance of
the spinorial structure of the confinement potential.
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The model for baryons was built with the meson model as a guideline and
is described in [2]. Confinement is parameterized by a linearly rising potential in
the quark pair distance with the spinorial structure

3

4

[

1I ⊗ 1I ⊗ 1I + γ0 ⊗ γ0 ⊗ 1I + cycl. perm.
]

for the offset and

1

2

[

−1I ⊗ 1I ⊗ 1I + γ0 ⊗ γ0 ⊗ 1I + cycl. perm.
]

for the slope, chosen to minimize spin-orbit splittings. The instanton-induced
force acts on flavor anti-symmetric scalar di-quarks and thus lowers the octet
baryons while the decuplet ground states and the ∆ resonances remain unaf-
fected. Hence, the quark masses and confinement parameters have been fitted to
the decuplet states and ∆ Regge trajectory before the two strengths of the resid-
ual interaction are adjusted to the octet-decuplet splitting. But also excited states
are significantly influenced by the instanton-induced force as can be seen in Fig. 3
where the effect on the nucleon spectrum is shown. It allows for an almost quanti-
tative description of the low-lying Roper resonance. Furthermore, the occurrence
of parity doublets, e.g. F15(1680) −D15(1675) and H19(2220) −G19(2250), can be
reproduced. This is possible since very selectively some states are lowered by ap-
proximately the amount of the splitting of the oscillator shells and become almost
degenerated with a state of opposite parity. It is remarkable that the strength of
the force adjusted to the octet-decuplet splitting indeed leads to this degeneracy.

The Salpeter amplitudes gained by solving the Salpeter equation are used to
calculate electromagnetic current matrix elements according to the prescription
of Mandelstam without introducing new parameters (see [3] for further details).
The results on static properties of the nucleon are shown in Tab. 1 and agree well
with the experimental data.

Calc. Exp. Calc. Exp.

µp 2.74 µN 2.793 µN µn −1.70 µN −1.913 µN
√

〈r2〉pE 0.82 fm 0.847 fm 〈r2〉nE 0.11 fm2 0.113± 0.004 fm2

√

〈r2〉pM 0.91 fm 0.836 fm
√

〈r2〉nM 0.86 fm 0.889 fm

gA 1.21 1.2670± 0.0035
√

〈r2〉A 0.62 fm 0.61± 0.01 fm

Table 1. Static properties of the nucleon. Experimental data is taken from [4] for the mag-
netic moments and gA and from [5] for the mean square radii.

For the calculation of form factors, e.g. the magnetic form factors shown in
Fig. 4, a correct boost prescription as provided by our relativistic approach is
mandatory. We find rather good agreement with the data below a momentum
transfer ofQ2 ≈ 0.5GeV2 but above that value the calculated form factors fall off
too fast compared to the experiment.

Hence, in summary we find a very successful description of hadron masses
in the frame-work of a relativistic quark model adopting an instanton-induced
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Fig. 4. The magnetic form factors of proton (left) and neutron (right) divided by the exper-
imental dipole parametrization.

interaction, where all the characteristics of the observed spectra mentioned above
can be accounted for. In addition to that a reasonable reproduction of nucleon
form factors can be achieved.
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Abstract. We give an overview of the current theoretical status of proper time renormal-
ization group flow equations applied to QCD. These equations give the evolution of cou-
pling constants in an effective QCD Lagrangian as a function of an infra-red cut-off pa-
rameter. This parameter characterizes the resolution with which the system is looked at.
Decreasing resolution transforms partonic quarks into constituent quarks and generates
pion bound states. The evolution equations can also be applied to finite temperature and
finite density QCD.

Quarks and gluons are the ultimate building blocks of hadrons. Their inter-
action is governed by the QCD coupling which grows dynamically for low en-
ergies. With the increasing coupling gluons and quark-antiquark pairs multiply
indefinitely. Therefore QCD forms new structures of dominant collective units in
the infra-red. The renormalization group is the principal tool to investigate the
formation of these new structures. Its importance in quantum field theory can
only be compared to the Schrödinger equation in quantum mechanics. In this pa-
per I use the term renormalization group in a wide sense including the evolution
of systems of Lagrangians. It may well be that the degrees of freedom change un-
der evolution. Such an approach is not so well researched yet, but the necessity
of a theoretical framework for it - especially in QCD - is universally recognized. I
will try to give a summary of our work using renormalization group techniques
to handle quark degrees of freedom evolving into hadronic bound states.

The quark-hadron transition governs strong interaction physics when the
resolution is lowered below 1 GeV. Hadronic physics is well researched up to a
mass scale of 1.5GeV. Its spectroscopy still lacks a clear identification of glueballs
and hybrid states. Yukawa models like the sigma model are natural to describe
hadron physics at low energies. In order to bridge the gap between quark and
meson physics we choose a hybrid approach where the original action contains
a four-quark interaction which is bosonized into sigma and pion fields. These
mesonic degrees of freedom are not propagating fields in the ultraviolet, i.e.,
their kinetic term is zero. They couple to the quark fields and mimic the local
four-fermion interaction. In principle all the mesonic couplings arising from the
Fierz transformation of a local color exchange interaction should be taken into
account. Mean field theory shows a basic ambiguity to the possible Fierz trans-
formations [1]. The RG-equations can overcome this problem. At the ultraviolet

? Supported by the European Network on Electron Scattering off Confined Partons
(ESOP) under contract no. HPRN-CT-2000-00130
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scale the meson-quark Yukawa coupling can be set to unity. There is only the mass
parameter of the combined sigma and pion fields in the Wigner mode which sets
the mass scale for the evolving system. The renormalized Yukawa coupling de-
creases strongly in the infra-red which makes the evolution infra-red stable. In
the approximation with meson loops we have indications that the infra-red evo-
lution has fixed point character. Reversely the divergence of the Yukawa coupling
for large scales signals the unsatisfactory high energy behaviour of the hadronic
theory. Above the 1 GeV scale the compositeness of hadronic objects becomes
important and one has to choose a quark-gluon basis.

Quark Physics

Nuclear Physics

N    Physics∆
NN Physics

large distance

intermediate lengths

short distances

Fig. 1. The traditional separation of quark physics, the physics of the nucleon/delta and
nucleon-nucleon interaction and nuclear physics

In Fig. 1 we summarize the traditional approach to hadronic and nuclear
physics indicating the hierarchy between quark physics, nucleon-mesonic physics
and nuclear physics. A division into these subfields is highly efficient when spe-
cial topics in a field are researched, because then refined methods can be applied
to get maximum insight into a detailed aspect. On the other hand it is refreshing
to cross the borderlines of these fields and see how things are connected. Indeed
modern high energy experiments in nuclear physics look at nuclei with high res-
olution in electron nucleus collisions and at high excitation energies in relativistic
heavy ion collisions. They naturally relate nuclear physics to quark physics.

The renormalization group connects regions of different length scales and
is the appropriate tool for such an interdisciplinary approach. It avoids the ap-
pearance of arbitrary cut-off functions when additional quantum corrections ap-
pear. Going beyond the largeNc approximation in the Nambu Jona Lasinio (NJL)
model one needs to include meson loops which necessitates an additional cut-
off in the Schwinger-Dyson approach. The unifying aspect of the renormalization
group is shown in Fig. 2 and illustrated by the work here. Starting from the renor-
malization group in the vacuum, which only tests physics along the resolution
axis, I will cover high temperature physics and high density investigations in the
same theoretical framework.

Renormalization group flow equations describe the average of an effective
action and represent the continuum analogue of a block spin transformation. I
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Fig. 2. The renormalization group unifies physics along the three different axis: physics at
varying resolution, finite temperature and density

have tried before to use the Monte Carlo renormalization group to extend the
lattice gluon action of Wilson into the long distance region [2–4]. This approach
introduces new collective variables into the lattice action, namely the colordielec-
tric fields. The resulting QCD action has a strong coupling which is modulated by
the colordielectric field and confines. It reproduces results obtained on the finer
lattice with an accuracy of 10 %. A large numerical effort is needed to solve a set
of overdetermined Schwinger-Dyson equations. Already at that time it was de-
sirable to have an analytic scheme to follow the flow of couplings when high mo-
menta larger than a coarse-graining scale k are integrated out. The flow equations
proposed by Wegner and Houghton [5], Polchinsky [6], Wetterich and Berges [7,8]
present such a scheme. They are ultraviolet and infra-red finite through the intro-
duction of a scale dependent cut-off function. We use renormalization group flow
equations with a heat kernel cut-off [10–12] which we think are more practical.
Moreover, they are so simple that they are ideally suited to learn and teach renor-
malization in field theory. No infinities appear at any time. All integrals can be
done analytically and have a simple form. The solution of these RG-equations
includes complicated summations of diagrams which are similar to solutions
of a coupled set of Schwinger-Dyson equations. The heat kernel regularization
method [9] preserves the symmetries of the theory and keeps the physical in-
terpretation of the evolution equations particularly simple for phenomenological
applications.

We choose as a starting action at the UV scale the NJL Lagrangian

SNJL =

∫

d4x[q̄ iγ∂q+G
{
(q̄q)2 + (q̄iτγ5q)2

}
] (1)

which is embedded into a linear σ-model with Zq = 1, a vanishing wave function
renormalization constant ZΦ = 0 and an effective potential U(Φ2) = m2Φ2

2
. We

assume the linear σ-model to be a valid description of nature below scales of
1.5 GeV. In this region the gluon degrees of freedom are supposed to be already
frozen out. Confinement is not dealt with correctly. The physics is governed by
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chiral symmetry, which is spontaneously broken in the infra-red. The Euclidian
action of the linear σ-model in generalized form is given by

S[Φ, q̄, q] =

∫

d4x

(

Zq(Φ
2)q̄γ∂q+

1

2
ZΦ(Φ2) (∂µΦ

a)
(

∂µΦ
b
)

+ g(Φ2)q̄Mq+U(Φ2)

)

. (2)

The quark and meson fields are q̄, q and Φ, where Φ = (σ,π) is the O(4)-
and M = σ + iτπγ5 the chiral SU(2)L ⊗ SU(2)R-representation of the meson
fields. We consider this action to be preserved during the evolution and follow the
generalized couplings and the effective potential during evolution by calculating
the effective action Seff in a one-loop approximation.

Seff[Φ, q̄, q] = S[Φ, q̄, q]−
1

2
Tr log Sq̄q+

1

2
Tr log

(

SΦiΦj − 2SΦiqS
−1
q̄qSq̄Φj

)

, (3)

with

Sq̄q(x, y) =
δ2S[Φ, q̄, q]

δq̄(x)δq(y)

∣

∣

∣

∣

av

, (4)

SΦiΦj(x, y) =
δ2S[Φ, q̄, q]

δΦi(x)δΦj(y)

∣

∣

∣

∣

av

. (5)

The first logarithm results from the fermion loop fluctuations, whereas the
two terms in the second logarithm are the contributions of the bosonic and the
mixed loop, respectively. The derivative of Seff with respect to the evolution scale
can be computed after a cut-off function is introduced. For this purpose we rep-
resent the fluctuation determinants by Schwinger proper time integrals with the
cut-off function f(k2τ) =

(

1+ k2τ+ 1
2
(k2τ)2

)

e−k2τ

Tr log(A) = −Tr
∫∞

0

dτ

τ
e−τAf(k2τ). (6)

The heat kernel cut-off function f suppresses all fluctuations with momenta
below the cut-off scale k. Going to k → 0 means to include more and more infra-
red modes. Finally, all modes are included, because of the limiting behaviour
fk→0 → 1. The ultraviolet region is left undisturbed due to the extra τ and τ2

terms in front of the exponential. Therefore we can extend the τ-integration to
the interval [0,∞]. We further replace the masses and couplings of the classical
action by the running masses and running couplings of the effective action Seff.
Generically, we obtain the following evolution equation for Seff which contains
its second order derivatives S ′′

eff indicated in Eqs.(4,5):

∂Seff

∂k
= −

1

2
Tr

∫
dτ

τ
e−S

′′

eff(k) ∂

∂k
f(k2τ). (7)

This replacement of S ′′ by S ′′
eff turns the one-loop equation into a renor-

malization group improved flow equation, which goes beyond the standard one-
loop renormalization group running and includes higher loop terms successively
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into the proper time integral. Therefore it is capable to include nonperturbative
physics in the strong coupling region. The evolution equations are obtained by
comparing the derivative on Seff(k) with respect to kwith the formal expression
of Eq. (2) which contains the generalized couplings and the effective potential as
functions of k. The local potential terms are easy to evaluate and lead to nonlinear
partial differential equations containing derivatives of the potential with respect
toΦ2. The evolution of the other couplings can be obtained in a derivative expan-
sion which is an expansion in derivatives (momentum) over mass. This expansion
is well controlled because of two reasons. Firstly, we approach the infra-red, so
momenta become always smaller, we need only few terms in the expansion. Sec-
ondly, the infra-red cut-off scale k acts like a mass cut-off, so the expansion is
well defined even if the excitations themselves are massless, like the quarks in
the ultraviolet or the mesons in the infra-red region.

Let me give an overview of the results we have achieved so far. We have
solved in local potential approximation the vacuum evolution, the finite temper-
ature evolution and finite baryon density evolution [10–12]. There are strong sim-
ilarities between the vacuum evolution as a function of resolution scale and as a
function of temperature. Both show the transition from partons to constituent
quarks which has also been phenomenologically checked in deep inelastic scat-
tering at fixed energy

√
s as a function of photon virtuality Q2 see Ref. [13] and

Fig. (2). Numerically, the transition temperature 2πTc is about equal to the chiral
symmetry breaking scale kχsb where the quarks condense in the vacuum. Going
from the ultraviolet to the infra-red the strong attractive quark-antiquark interac-
tion leads to a condensation of quark pairs in the vacuum. At the resolution kχsb
the effective mass parameter of the mesons equals zero. The critical exponents
agree with the 0(4) critical exponents, but differ from the mean field values [14].

In large Nc approximation we have shown that the renormalization group
flow equations are identical to the gap equations of the NJL model [15]. Further it
is possible to calculate the eigenmode spectrum of the Euclidean Dirac operator
[16] which previously was only known for very small eigenvalues in random
matrix theories.

The full equations possess extra complexity via the expansion of all running
couplings and wavefunction renormalization parameters in Φ2. As mentioned
above the global form of the meson potential U(Φ2) changes from the parabolic
shape in the ultraviolet to a mexican hat shape in the infra-red. This evolution
leads to a change of the minimum of the effective potential with resolution k. We
track all couplings in Taylor series around this running minimum with terms up
to 5th order in Φ2. This leads to 20 coupled non-linear differential equations. In-
cluding meson loop terms the infra-red properties of the system depend only on
the mass term in the ultraviolet and no longer on the starting ultraviolet cut-off.
We have a real fixed point behaviour for the pion decay constant, meson quark
coupling, constituent quark mass and quark condensate. In comparison to NJL
the flow equations have predictive power since only one mass scale fixes all the
other dimensionful parameters.

For finite density [17] the model has similar deficiences as the conventional
NJL model. It overbinds and restores the chiral symmetry too early. We have im-
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proved the model by including ω-repulsion and plan to do this calculation in-
cluding loop corrections.

The very successful chiral perturbation theory alone cannot connect to QCD
in the ultraviolet. Typically it starts to fail when the resolution scale is of the or-
der of half the ρ mass. Hybrid models like the one presented here containing
meson degrees of freedom and quarks extend to larger momentum scales, which
is a definite advantage. There are, however, two problems: Firstly, the number of
mesons in the theory should include also the vector mesons. Secondly, the size of
the scalar Yukawa couplings increases dramatically in the ultraviolet, therefore it
seems difficult to cross over to the asymptotically free gauge theory of QCD. For
nuclei a theory with quarks and nucleons [18] seems to be the most efficient way
to describe the transition from purely nucleonic matter to quark matter at high
baryon density [19]. Our model like most of the other hybrid models lacks a field
theoretic mechanism to avoid the appearance of free quarks as asymptotic states.
A major progress would be to capture the smooth infra-red limit of lattice QCD
in a field theoretic continuum picture.

Acknowledgements: We thank B. J. Schaefer for his critical reading of the manuscript.
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Abstract. We review some basic properties of the N-∆ transition axial amplitudes and re-
late them to the strong πN∆ form-factor. In models with the pion cloud we derive a set
of constraints on the pion wave function which guaranty the correct behaviour of the am-
plitudes in the vicinity of the pion pole. Corrections due to the spurious center-of-mass
motion are calculated to the leading order in the inverse baryon mass. We give explicit ex-
pressions for the amplitudes in the Cloudy Bag Model and show that they rather strongly
underestimate the experimental values.

1 Introduction

The weak N-∆ transition amplitudes yield important information about the struc-
ture of the nucleon and the ∆, and in particular about the role of chiral mesons
since they explicitly enter in the expression for the axial part of the weak current.
There exist only very few calculations in quark models [1,2] yet none of them in-
cludes the mesonic degrees of freedom. This can be traced back to the difficulty
of incorporating consistently the pion field which is necessary to describe the cor-
rect low-Q2 behaviour of the amplitudes. Obviously, this can be done only in the
models that properly incorporate the chiral symmetry.

The aim of this work is to study the axial amplitudes of the N-∆ transition in
models with quarks and chiral mesons. In Sec. 2 we introduce expressions for the
axial helicity amplitudes and relate them to the experimentally measured quan-
tities, CAi , i = 3, 6, the so called Adler form-factors. We derive the analog of the
Goldberger-Treiman relation that relates the leading axial form factor, CA5 , to the
strong πN∆ coupling constant. In Sec. 3 we calculate the amplitudes in a simple
isobar model that includes the pion. In Sec. 4 we study some general properties
of the axial amplitudes in quark models that include the pion and possibly also
its chiral partner, the σ-meson. We derive a set of constraints on the pion field
and show that in models that satisfy these constraints the pion pole appears only
in the CA6 form-factor. Furthermore, if the meson self-interaction is absent in the
model, i.e. if the pion interacts only with quarks, the pion contributes solely to

? Talk delivered by B. Golli.
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the CA6 form-factor while the CA4 andCA5 form-factors pick up only the contri-
bution from quarks. In most quark models the nucleon and the ∆ are calculated
as localized states while the expressions for the amplitudes require states with
good linear momenta. In Sec. 5 we use the wave packet formalism to derive cor-
rections to the amplitudes calculated between localized states and show that the
approximations are valid for momenta that are small compared to typical baryon
masses. In Sec. 6 we give explicit expressions for the axial as well as the strong
form-factors in the Cloudy Bag Model (CBM) and make a simple estimate of their
strengths.

The calculation of the form-factors in the CBM as well as in the linear σ-
model that includes besides the pion also the σ-meson is presented and compared
to the experimentally measure form-factors in [3,4] and in the contribution of
Simon Širca [5] to these Proceedings.

2 Same basic properties of transition amplitudes

2.1 Definition of the helicity amplitudes

The weak transition amplitudes are defined as the matrix elements of the weak
interaction Hamiltonian

M = 〈∆|H|N,W〉 = W(−)
aµ 〈∆|Vaµ −Aaµ|N〉 (1)

where a is the isospin index. For simplicity we shall assume a = 0 and will not
write it explicitly. For the axial part alone we have:

MA =

√

4παW

2K0

∑

λ

eµλ〈∆|Aµ|N〉 =

√

4παW

2K0

[

〈∆|A0|N〉 −
∑

λ

ελ · 〈∆|A|N〉
]

,

(2)
where

K0 =
M2
∆ −M2

N

2M∆

and 4παW =
4πα

sin2 θW
≈ 0.443 . (3)

The 4-momentum of the incident weak boson (W) is

kµ = (k0, 0, 0, k) , k0 =
M2
∆ −M2

N −Q2

2M∆

, k =

√

k20 +Q2 . (4)

The helicity amplitudes are defined as

S̃A = −〈∆+(p ′), s∆ = 1
2
|A00(0)|N

+(p)sN = 1
2
〉 , (5)

ÃA3
2

= −〈∆+(p ′), s∆ = 3
2
|ε+ · A(0)|N+(p)sN = 1

2
〉 , (6)

ÃA1
2

= −〈∆+(p ′), s∆ = 1
2
|ε+ · A(0)|N+(p)sN = −1

2
〉 , (7)

L̃A = −〈∆+(p ′), s∆ = 1
2
|ε0 · A(0)|N+(p)sN = 1

2
〉 . (8)
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2.2 The Adler form-factors

Experimentalists measure the so called Adler form-factors defined as [6]:

〈∆+(p ′)|Aα(a=0)|N+(p)〉 = ū∆α
CA
4 (Q2)

M2
N

p ′
µq
µuN − ū∆µ

CA
4 (Q2)

M2
N

p ′
αq
µuN

+ū∆α C
A
5 (Q2)uN + ū∆µ

CA
6 (Q2)

M2
N

qµqαuN + ū∆α
CA
3 (Q2)

MN
γµq

µuN , (9)

where p ′
µ = (M∆; 0, 0, 0) and qµ = (ω; 0, 0, k), and u∆α is the Rarita-Schwinger

spinor:

uα(p, s∆) =
∑

λ ′,s

C
3
2
s∆

1λ ′ 1
2
s
eαλ ′(p)u(p, s) . (10)

Here

e
µ
λ(p) =

[

ελ · p
M∆

, ελ +
p(ελ · p)

M∆(p0 +M∆)

]

, (11)

and u(p, s) is the usual bispinor for a spin 1
2

particle. For the ∆ at rest it has a
simple form (e.g. [7], 414):

e
µ
λ = (0 , ελ) , u(p, s) =

(

1

0

)

χ 1
2
s , (12)

where ελ are the polarization vectors. The form-factor CA3 is small; in models
with s-wave quarks and p-wave pions it is even identically 0; we shall therefore
assume CA3 = 0 in the further derivations.

The helicity amplitudes can now be easily related to the form factors. For
α = 0 the evaluation is straightforward, while for α 6= 0 we multiply (9) by eαλ
and use the following relations:

eαλ ūα(p, s∆)uN = ελ
∑

λ ′,s

C
3
2
s∆

1λ ′ 1
2
s
(−ε∗

λ ′)ū(p, s)uN = −C
3
2
s∆

1λ 1
2
sN
, (13)

eαλqα = −kδλ,0 , ūµ(p, s∆)qµuN = −kC
3
2
s∆

1λ 1
2
sN
. (14)

We obtain

S̃A = −

[

k
CA4
M2
N

M∆ −ωk
CA6
M2
N

]

√

2

3
, (15)

ÃA3
2

= −

[

CA4
M2
N

ωM∆ + CA5

]

=
√
3 ÃA1

2
, (16)

L̃A = −

[

CA4
M2
N

ωM∆ + CA5 −
k2

M2
N

CA6

]

√

2

3
. (17)

The Adler form-factors read

CA6 =
M2
N

k2

[

−ÃA3
2

+

√

3

2
L̃A

]

, (18)
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CA5 = −

√

3

2

(

L̃A −
k0

k
S̃A
)

−
k20 − k2

M2
N

CA6 , (19)

CA4 =
M2
N

kM∆

[

−

√

3

2
S̃A +

k0k

M2
N

CA6

]

. (20)

2.3 The off-diagonal Goldberger-Treiman relation

Let us compute the divergence of the axial current between the∆ andN (9). Using
(14) we get (q2 ≡ −Q2):

〈∆+(P)|∂αAα|N+(p)〉 = ik
[

CA5 (q2) +
CA6 (q2)

M2
N

q2
]

C
3
2

1
2

10 1
2

1
2

. (21)

In the chiral limit the divergence has to vanish. From the above expression we
would conclude that CA5 (q2) = 0 which is experimentally not the case. Hence
CA6 (q2) should have a pole at q2 = 0 such that

CA6 (q2) = −
M2
NC

A
5 (q2)

q2
. (22)

As in the nucleon case, we relate this term to the term in the axial current that is
responsible for the pion decay: Aαapole(x) = fπ∂

απa(x). We can therefore identify
the CA6 -term in (9) with:

ū∆µ
CA6 (q2)

M2
N

qµqαuN = iqαfπ〈∆+(P)|π0(0)|N
+(p)〉 . (23)

Indeed, the pion propagator behaves as q−2 in the chiral limit.
In the real world the pion mass is finite and we write the pion field as

〈∆+(P)|π0(0)|N
+(p)〉 = i

GπN∆(q2)

2MN

ū∆µ q
µuN

−q2 +m2π

√

2

3
. (24)

while the vanishing of (21) is replaced by PCAC:

〈∆+(P)|∂αAαa|N
+(p)〉 = −m2π fπ〈∆+(P)|πa(0)|N

+(p)〉 . (25)

Replacing the LHS of (25) by (21) and using (23) and (24) we find

iqαū∆αuN

[

CA5 (q2) + fπ
GπN∆(q2)

2MN

q2

−q2 +m2π

√

2

3

]

=

iqαū∆αuN
GπN∆(q2)

2MN

m2π fπ

−q2 +m2π

√

2

3
. (26)

We finally obtain

CA5 (q2) = fπ
GπN∆(q2)

2MN

√

2

3
, (27)

the off-diagonal Goldberger-Treiman relation, which – strictly speaking – holds only
in the limit q2 → m2π. Assuming a smooth behaviour of the amplitudes for q2 in
the vicinity of m2π we can expect (27) to remain valid for sufficiently small q2 in
the experimentally accessible range.
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3 The axial current in a simple isobar model with pions

The aim of this section is to derive the amplitudes in a simple model in order to
study the contribution of pions to the amplitudes and to analyze the qualitative
behaviour of the amplitudes. The derivation in this section is based on the stan-
dard derivation of the diagonal Goldberger-Treiman relation and PCAC (see e.g.
[7]).

We investigate the axial hadronic current in a model with two structureless
fermion fields, the nucleon and the ∆, and the pion field. Since we are interested
here only in the nucleon-∆ transition we shall write down explicitly only the per-
tinent parts of the Lagrangian and of the hadron current. The nucleon and the ∆
(at rest) satisfy the Dirac equation

(iγµ∂µ − EN)ψN = 0 , (iγµ∂µ −M∆)ψ∆ = 0 . (28)

We assume the following form of the πN∆ interaction

LπN∆ = −iGπN∆ψ̄∆γ5TaψNπa , (29)

where we introduce the transition operator ~T (and Σ) by

〈3
2
t∆|Ta|

1
2
tN〉 = C

3
2
t∆

1a 1
2
tN
, 〈3

2
s∆|Σλ|

1
2
sN〉 = C

3
2
s∆

1λ 1
2
sN
. (30)

(Note that γµ has a more complicated structure:

γ =

∣

∣

∣

∣

0 S

−S 0

∣

∣

∣

∣

, (31)

where the generalized Pauli matrices S act in the space spanned by the S = 1
2

and
S = 3

2
subspaces:

S =

∣

∣

∣

∣

σ Σ

Σ† σ∆∆

∣

∣

∣

∣

. (32)

The generalized isospin is introduce in the same way.)
The nucleon bispinor can be written as

uN(p) =

√

EN +MN

2MN

(

1
Σ·p

EN+MN

)

χ 1
2
sN
ξ 1

2
tN

≈
(

1
Σ·p
2MN

)

χ 1
2
sN
ξ 1

2
tN
, (33)

with χ and ξ describing respectively the spin and isospin part of the bispinor, and

pµ = (EN,p) , EN =

√

M2
N + p2 ≈MN . (34)

We assume that ∆ is at rest, p ′µ = (M∆; 0, 0, 0), hence

u∆(p ′) =

(

1

0

)

χ 3
2
s∆
ξ 3

2
t∆
. (35)

In the model, the transition part of the axial current takes the form:

Aµa = g∆Aψ̄∆γ
µγ5

1
2
TaψN + fπ∂

µπa . (36)
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Using the Dirac equations (28) and the Klein-Gordon equation for the (pertinent
part of the) pion field:

(

∂µ∂
µ +m2π

)

πa = −iGπN∆ψ̄∆γ5TaψN (37)

we immediately obtain

∂µA
µ
a = ig∆A

1
2
(M∆ +MN)ψ̄∆γ5 TaψN − ifπGπN∆ψ̄∆γ5TaψN − fπm

2
π πa . (38)

In the limitmπ → 0 the current is conserved provided

1
2
(M∆ +MN)g∆A = fπGπN∆ (39)

which is the off-diagonal Goldberger-Treiman relation (27). The constant g∆A is related
to the experimentally measured CA5 (0) by

g∆A =
2MN

M∆ +MN

√
6CA5 (0) , CA5 (0) = 1.22± 0.06 . (40)

We now evaluate the matrix elements of the transition axial current. In this
case the solution of (37) is

〈∆(p ′)|πa(ω,k)|N(p)〉 = −i
GπN∆

2MN

〈∆| (−Σ · k) Ta|N〉
(−ω2 + k2 +m2π)

(41)

withω = M∆ −MN, k = −p. For the time-like component of the current we get

〈∆(p ′)|A0a(0)|N(p)〉 = −k
g∆A
2MN

〈∆|Σ0
1
2
Ta|N〉 + iωfπ〈∆(p ′)|πa|N(p)〉

= −

[

g∆A k

4MN

+
fπGπN∆

2MN

ωk

(−q2 +m2π)

]

〈∆|Σ0 Ta|N〉 . (42)

The spatial part is

〈∆(p ′)|Aa(0)|N(p)〉 = g∆A〈∆|Σ 1
2
Ta|N〉 + ikfπ〈∆(p ′)|πa|N(p)〉

= 1
2
g∆A〈∆|Σ Ta|N〉 −

fπGπN∆

2MN

k

(−q2 +m2π)
〈∆|(Σ · k) Ta|N〉 .

(43)

The helicity amplitudes introduced in the first section (for 4-vector momen-
tum transfer qµ = p ′µ − pµ = (ω; 0, 0, k)) are now expressed as

S̃A =

[

k
g∆A
4MN

+ k
fπGπN∆

2MN

ω

(−q2 +m2π)

]

√

2

3

2

, (44)

ÃA3
2

= −1
2
g∆A

√

2

3
=

√
3ÃA1

2
, (45)

L̃A =

[

−1
2
g∆A +

fπGπN∆

2MN

k2

(−q2 +m2π)

]

√

2

3

2

. (46)
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Using (39) we are now able to explicitly check that PCAC holds in the model:

〈∆+(p ′)|∂µA
µ
a=0|N

+(p)〉 = −i
(

ωS̃A − kL̃A
)

= −m2πfπ〈∆+(p ′)|π0|N
+(p)〉 . (47)

In this model we can express the Adler form-factors solely in terms of either g∆A
or GπN∆:

CA6 =
1√
6
fπMN

GπN∆

−q2 +m2π
, (48)

CA5 =
1√
6

M∆ +MN

2MN

g∆A =

√

2

3

fπGπN∆

2MN

, (49)

CA4 = −
1√
6

MN

2M∆

g∆A = −
M2
N

M∆(M∆ +MN)
CA5 ≈ −0.33CA5 . (50)

The relations derived above show that only CA6 exhibits the pole behavior while
in the other two amplitudes the pole behavior cancels out and the result is the
same as if we used only the fermion part of the axial current. In the next section
we shall see that this property holds in a vast class of models that fulfill certain
virial relations.

4 Helicity amplitudes in models with the pion cloud

We investigate quark models that include the pion and possibly also its chiral
partner, the σ-meson. The part of the Hamiltonian that involves pions can be
written in the following form:

Hπ =

∫

dr

{

1
2

[

~P2π + (∇2 +m2π)~π
2
]

+U(σ, ~π) +
∑

t

jtπt

}

. (51)

Here jt represents the quark pseudoscalar-isovector source term, t is the third
component of the isospin, and U(σ, ~π) a possible meson self-interaction term
(such as the Mexican hat potential of the linear σ-model). Let |N〉 and |∆〉 be
the ground state and the excited state describing the ∆ with H|N〉 = EN|N〉 and
H|∆〉 = E∆|∆〉, then we can write the following virial theorems (relations):

〈N|[H,~Pπ]|N〉 = 〈N|H~Pπ − ~PπH|N〉 = 0 , (52)

〈∆|[H,~Pπ]|∆〉 = 0 , (53)

〈∆|[H,~Pπ]|N〉 = (E∆ − EN)〈∆|~Pπ|N〉 = i(E∆ − EN)2〈∆|~π|N〉 . (54)

We have used ~Pπ = i[H, ~π] in the last line. We call (54) the off-diagonal virial relation
(theorem). (Note that there is no off-diagonal relation of this type for the σ-field
because it is scalar-isoscalar and the matrix elements vanish identically.)

We now evaluate the commutators on the LHS using (51):

(−∆+m2π)〈N|πt(r)|N〉 = −(−1)t〈N|J−t(r)|N〉 , (55)

(−∆+m2π)〈∆|πt(r)|∆〉 = −(−1)t〈∆|J−t(r)|∆〉 , (56)

(−∆+m2π −ω2∗)〈∆|πt(r)|N〉 = −(−1)t〈∆|J−t(r)|N〉 . (57)
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We have defined ω∗ = (E∆ − EN) and

Jt(r) = jt(r) + (−1)t
∂U(σ, ~π)

∂π−t(r)
, (58)

and used
[πt ′(r ′), Pπ ,t(r)] = i(−1)tδt,−t ′δ(r ′ − r) . (59)

These relations hold for the exact solutions; in an approximate computational
scheme we can use these relations as constraints on the approximate states.

We now show an important property of the axial transition amplitudes which
holds for the states that satisfy the above virial relations. Let us split the axial cur-
rent into two parts:

~Aα = ~Aαnp + ~Aαpole , (60)
~Aαnp = ψ̄γαγ5

1
2
~τψ+ (σ− fπ)∂

α
~π− ~π∂ασ , (61)

~Aαpole = fπ∂
α
~π . (62)

We can now relate the non-pole contribution (61) to the first term in (36) and (ob-
viously) the pole contribution to the second term in (36). Since the off-diagonal
virial relation (57) coincides with (41), the evaluation is similar to the derivation
presented in the previous section. The pole term (62) contributes only to the lon-
gitudinal and the scalar amplitude, hence:

CA6 (pole) = −ifπ
M2
N

k

√

3

2
〈∆+
s∆= 1

2

|π0(0)|N
+
sn= 1

2

〉 , (63)

CA5 (pole) = 0 ,

CA4 (pole) = 0 .

5 Calculation of form-factors between localized states

The amplitudes (5)-(8) are defined between states with good 4-momenta p ′ and p
respectively while in the model calculations localized states are used. We can use
such states in our calculation of amplitudes by interpreting them as wave packets
of states with good linear momenta:

|B(r)〉 =

∫

dpϕ(p) eip·r|B(p)〉 . (64)

The spin-momentum dependence of |B(p)〉 is expressed by the bispinor

uB(p) =

√

E+M

2M

(

1
σ·p
E+M

)

χspin . (65)

Requiring (65) is normalized, 〈B(p)|B(p)〉 = 1, we have
∫

dr〈B(r)|B(r)〉 = (2π)3
∫

dp |ϕ(p)|2 = 1 . (66)
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We now relate matrix elements between localized states to matrix elements
between states with good momenta. We start by a matrix element between local-
ized states:

∫

dr eik·r〈∆|M(r)|N〉 =

∫

dr

∫

dp ′
∫

dp ei(k−p ′+p)·r〈∆(p ′)|M(r)|N(p)〉

×ϕ∗
∆(p ′)ϕN(p). (67)

Since the matrix element 〈∆(p ′)|M(r)|N(p)〉 does not depend on r (all r-depen-
dence is contained in the exponential) we can substitute it by its value at r = 0.
We then carry out the r integration yielding δ(p − p ′ + k), and the above matrix
element reads:
∫

dr eik·r〈∆|M(r)|N〉 = (2π)3
∫

dp 〈∆(p+k)|M(0)|N(p)〉 ϕ∗
∆(p+k)ϕN(p) . (68)

From the parameterization of the axial current (9) we can read off the p ′ and p
dependence and plug it into (68). We neglect terms of the order p2/M2, e.g. the
last term in the expression (11) for eµλ(p). We find:

ūα(p ′, s∆ = 1
2
)qαuN(s = 1

2
) =

[

M∆ −MN

M∆

p ′
3 − k

]

√

2

3
(69)

and

ū0(p
′, s∆ = 1

2
)uN(s = 1

2
) =

p ′
3

M∆

√

2

3
. (70)

We can carry out the integration over p since Ci(q2) do not depend on p. We
assume ϕ∆(p) ≈ ϕN(p) ≡ Π3i=1ϕ(pi). A typical integral gives:

(2π)3
∫

dpp3ϕ(p + k)ϕ(p) = 2π

∫

dp3 p3ϕ(p3 + k)ϕ(p3)

= 2π

∫

dq (q− 1
2
k)ϕ(q+ 1

2
k)ϕ(q− 1

2
k)

= −1
2
k

[

1− 1
2
k2

∫

dqϕ ′(q)2 + . . .

]

≈ −1
2
k
[

1− 1
2
k2〈z2c.m.〉

]

, (71)

where we have taken into account that ϕ are normalized and used the relation
(ϕ̃(z) is the Fourier transform of ϕ(q)):

∫

dqϕ ′(q)2 =

∫

dz z2ϕ̃(z)2 = 〈z2〉 . (72)

(Integrating p ′
3 we would get 1

2
k.) Here 〈z2c.m.〉 = 1

3
〈r2c.m.〉 is a typical spread

of the wave packet describing the center-of-mass motion of the localized state
and is of the order of the inverse baryon mass. Clearly, in this approximation it
is not meaningful to calculate the form-factor to very high k. We finally obtain
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(neglecting terms of the order k2/M2):

S̃A = −

[

k
M∆

M2
N

CA4 +
k

2M∆

CA5 −
ωk

M2
N

M∆ +MN

2M∆

CA6

]

√

2

3
, (73)

ÃA3
2

= = −

[

ω
M∆

M2
N

CA4 + CA5

]

=
√
3 ÃA1

2
, (74)

L̃A = = −

[

ω
M∆

M2
N

CA4 + CA5 −
k2

M2
N

M∆ +MN

2M∆

CA6

]

√

2

3
. (75)

We now express the experimental amplitudes in terms of the helicity amplitudes
as

CA6 =
M2
N

k2

[

−ÃA3
2

+

√

3

2
L̃A

]

2M∆

M∆ +MN

, (76)

CA5 = −

√

3

2

(

L̃A −
k0

k
S̃A
)

2M∆

M∆ +MN

−
k20 − k2

M2
N

CA6 , (77)

CA4 =
M2
N

kM∆

[

−

√

3

2
S̃A +

k0k

M2
N

M∆ +MN

2M∆

CA6

]

−
M2
N

2M2
∆

CA5 . (78)

The strong form-factor can be treated in the same way. The general coupling
of the pion field to the baryon is written in the form

HB−π =

∫

dr Jπa(r)πa(r) , (79)

where Jπa(r) is the baryon strong pseudoscalar- isovector current. The N-∆ tran-
sition matrix element is parameterized as

〈∆+(p ′)|Jπa(0)|N
+(p)〉 = −iū∆µ

GπN∆(q2)

2MN

qµuN , (80)

where q = p ′ − p. Using (69) we find

〈∆+(p ′)|Jπa(0)|N
+(p)〉 = −i

GπN∆(q2)

2MN

[

M∆ −MN

M∆

p ′
3 − k

]

C
3
2

1
2

10 1
2

1
2

. (81)

We now use of relation (68) as well as (71) to obtain

GπN∆(q2)

2MN

M∆ +MN

2M∆

=
1

ik
〈∆||

∫

dreik·rJ(r)||N〉 . (82)

6 Helicity amplitudes in the Cloudy Bag Model

The Cloudy Bag Model (CBM) is the simplest example of a quark model with the
pion cloud that fulfills the virial constraints (52)-(54) provided we take the usual
perturbative form for the pion profiles [8,9]. We also take the N-∆ splitting equal
to the experimental value,ω ≡M∆ −EN. Since the pion contribution to the axial



N-∆ axial transition form factors 57

current has the form of the pole term in (62), only the quarks contribute to the CA
5

and CA
4 amplitudes.

The helicity amplitudes and the Adler form-factors simplify further if we
make the usual assumption of the same quark profiles for the nucleon and the
∆. In this case the scalar amplitude picks up only the pion contribution while the
quark term is identically zero. The transverse amplitude ÃA3

2

=
√
3 ÃA1

2

has only
the quark contribution while the longitudinal amplitude has both:

ÃA3
2
(Q2) = −

1√
6

∫

dr r2
[

j0(kr)

(

u2 −
1

3
v2
)

+
2

3
j2(kr)v

2

]

〈∆||
∑

στ||N〉,(83)

L̃A(Q2) = −
2

3

{
1
2

∫

dr r2
[

j0(kr)

(

u2 −
1

3
v2
)

−
4

3
j2(kr)v

2

]

−
ωMIT

ωMIT − 1

mπ

2fπ

j1(kR)

kR

k2

(Q2 +m2π)

}

〈∆||
∑

στ||N〉 , (84)

S̃A(Q2) =
2

3

ωMIT

ωMIT − 1

mπ

2fπ

j1(kR)

kR

ωk

(Q2 +m2π)
〈∆||

∑
στ||N〉 . (85)

Here k and Q2 ≡ −q2 are related through (4),ωMIT = 2.04, and

〈∆||
∑

στ||N〉 =
√

ZNZ∆

{

2
√
2

+

√
2

27π
P

∫∞

0

dkk2 ρ2(k)

[

25

ω2k(ωk −ω)
+

2

ωk(ω
2
k −ω2)

]

+
25
√
2

27π

∫∞

0

dkk2 ρ2(k)

[

5

4ω3k
+

1

ω2k(ωk +ω)

]

}

, (86)

where

ρ(k) =
ωMIT

ωMIT − 1

j1(kR)√
2π fπ R3

. (87)

and ZN and Z∆ are the usual wave-function-renormalization constants [8].
The strong transition form-factor GπN∆(Q2) is:

GπN∆(Q2)

2MN

=
ωMIT

ωMIT − 1

1

2fπ

j1(kR)

kR
〈∆||

∑
στ||N〉 2M∆

M∆ +MN

. (88)

Similarly as in (47) we can now explicitly show that PCAC is fulfilled pro-
vided the off-diagonal GT relation holds in the model. Since the Lagrangian is
invariant under the chiral transformation both relation should hold for the exact
solution, but this is of course not obvious for the approximate solution. In the
model it is straightforward to evaluate the pertinent quantities atQ2 = −m2π. We
prefer to give here the expressions at Q2 = 0 which take much simpler forms,
e.g.:

CA5 (0) =
1√
6

∫

dr r2
[

j0(kr)

(

u2 −
1

3
v2
)

−
4

3
j2(kr)v

2

]

〈∆||
∑

στ||N〉 2M∆

M∆ +MN

,

(89)
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with k = K0 (see (3).
The constant (89) can be easily evaluated for the degenerate N and ∆ and

neglecting pion corrections to 〈∆||
∑
στ||N〉:

CA5 (0) =
1√
6

3g◦A
5
2
√
2 = 0.755 , (90)

where g◦A = 1.09 is the value of the nucleon gA in the MIT bag model. Clearly,
(90) strongly underestimates the experimental value (40). In the same limit, the
strong coupling is

gπN∆ ≡ GπN∆(0)
mπ

2MN

=

√

72

25
g◦πNN = 1.39 . (91)

Here g◦πNN = 0.82 is the CBM value without pion correction. Again, (91) strongly
underestimates the experimental value of 2.2, though the off-diagonal Goldberger-
Treiman relation is exactly fulfilled in this approximation.

In [3] we show that the pion corrections improve the results in particular
the ratio of the strong gπN∆ and gπNN coupling constants but the value of C5(0)
remains far below the experimental value. A possible solution, described and
discussed in [3–5] is to include the contribution of the σ-meson which enters the
expression for the axial current (61) and considerably increases the value of CA5 .

This work was supported by FCT (POCTI/FEDER), Lisbon, and by The Min-
istry of Science and Education of Slovenia.
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Abstract. The mass of ηb is estimated to be about 120 MeV below the mass of Υ, simi-
larly as in the case of charmonium. The estimate is based on the experimental fact that the
widths Γe+e− for Υ and J/ψ are equal (apart from the factor 4 due to quark charges), and
the hypothesis that both the spin-spin splitting and Γe+e− of vector mesons are propor-
tional to the density at the origin divided by quark mass squared.

1 Introduction

The comparison of the spin-spin splitting in charmonium and bottomium repre-
sents a valuable test of our understanding of the effective quark-quark interac-
tion. Since the bb̄ ground state, the ηb meson, has not yet been reliably observed,
the interest in this state gives a strong motivation to experimentalists. Moreover,
since theoretical predictions of the spin-spin splitting ∆m = m(Υ) −m(ηb) vary
strongly, this is also a challenge to theorists. (The estimates from perturbative
QCD, from potential models and from lattice-inspired potential models lie in the
range between 30 and 140 MeV.)

Recently, one candidate for ηb has been reported [1], with its mass 160±20±
20GeV/c2 below Υ. Though still inconclusive, such a large difference encourages
further studies whether quark models or lattice calculations allow a high value
for ∆m.

We present a theoretical estimate which is based on general properties of the
constituent quark models and depends only weakly on the details of the models.

2 Zero order approximation

2.1 Leptonic decay

The estimate for the mass of ηb is based on the remarkable fact that the partial
width Γe+e−(Υ) = 1.32 keV and Γe+e−(J/ψ) = 5.26 keV are equal (apart from the
factor 4 due to quark charges). Assuming point-like quarks the leptonic decay of
vector mesons can be represented by the graph in Fig. 1. The QQ̄γ vertex can be

? Talk delivered by D. Janc.



60 D. Janc, M. Rosina

expressed as zQe
√

ρ(0) where zQe is the quark charge. Then the partial width is
described by van Royen - Weisskopf formula:

Γ0e+e− = z2Q ρ(0)
16πα2

m2
. (1)

Fig. 1. The leptonic decay of vector mesons

Since the experimental values of Γe+e−/z2Q are equal for Υ and J/ψ this fixes
the ratio of the densities at the origin: ρ(0) are proportional tom2 wherem is the
vector meson mass. We conclude that (up to the assumed order of approximation)
ρΥ(0)/m2Υ = ρJ/ψ(0)/m2J/ψ.

2.2 Spin-spin splitting

In the nonrelativistic constituent quark model the spin-spin potential between
heavy quarks is assumed to be the result of one gluon exchange between quarks
which gives

∆Hoge =
4

3

2παs

3m2Q
δ(r)σ1 · σ2

For very heavy quarks the spin dependent part of this interaction can be treated
perturbatively and it yields the spin splitting between vector and pseudoscalar
meson ∆m proportional to ρ(0)/m2Q. If the quark mass is mQ = 1

2
m , ∆m is pro-

portional to Γe+e−/z2Q. Since the latter is equal for bottomium and charmonium,
it follows ∆m(Υ) = ∆m(J)/ψ = 117 MeV. This prediction is within the error of
the experimental candidate [1], but we have to wait for new experiments.

3 Corrections

It is well known, that there are large corrections to the van Royen - Weisskopf for-
mula. Apart from first order correction in αs, there are two additional corrections
due to approximations which are implied in Eq (1). First approximation is, that
we consider quarks to be point-like and the second is, that we neglect momentum
of quarks inside the meson. We can write the partial width as

Γe+e− = RΓ0e+e−

where the factor R is 1, if we ignore this correction, or it is R = (1−16αs/3π) if we
consider just first order corrections. The current values for αs at charmonium and
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bottomium relevant energies are αs(3.1GeV)= 0.249 ± 0.010 and αs(9.46GeV)=
0.178 ± 0.005, so neglecting other corrections, we have R = 0.57 and R = 0.70

respectively. It was shown [2] that the refinement due to momentum of quarks
inside the meson is also of the same order, and is larger in charmonium as in bot-
tomium. This correction depends on the potential model in which one calculate
the meson wave function. If one considers only the first order corrections in αs
and refinements due to quarks momentum, one obtains for both charmonium and
bottomium an overall correction to the original van Royen - Weisskopf formula
R = 0.85± 0.05. Since the factor R is almost the same in bottomium as in charmo-
nium, we can again assume that the densities at the origin are still proportional
tom2.

4 Test – the ηc(2S) meson

We now test the assumptions of our estimation by looking into the charmonium
sector, where we estimate the spin splitting between the 2S states ηc (2S) and
ψ (2S). There are two very different experimental results about the mass of ηc (2S)
state. The old results from 1982 is 3594± 5MeV [4] while the Belle Collaboration
reported the observation of ηc(2S) in exclusive B → KKsK−π+ decay [3] with the
mass 3654± 6 MeV. We can estimate the spin splitting from the leptonic decay
width of ψ (2S) which is known to a large accuracy Γe+e−(ψ(2S)) = 2.19± 0.15
keV:

mψ(2s) −mηc(2S) =
Γe+e−(ψ(2S))

Γe+e−(J/ψ)
·
m2ψ(2S)

m2
J/ψ

·
(

mJ/ψ −mηc

)

=

(0.42± 0.06) · 1.41 · 117MeV = 69MeV ± 10MeV.

meson m[MeV]
Γ
exp

e+e−

(3zq)
2 [keV] ∆mexp.[MeV] ∆mpredict.[Mev]

ηc(1S)

J/ψ
2979.7

3096.9 1.32± 0.09 117 117 (input)

ηc(2S)
{3654± 6 [3]

3594± 5 [4]

32± 6
92± 5 69± 10

ψ(2S) 3686 0.55± 0.04
ηb(1S)

Υ

9300± 40
9460 1.32± 0.07 160± 40 117

Table 1. Second column: masses of the heavy mesons from [3] and [4]. Third column:
leptonic decay width of vector meson. Fourth column: experimental data for spin-spin
splitting. Last column: our prediction on spin-spin splitting.

Since the evaluation of the ηc(2S) mass in [3] is still in progress, we have to
wait with our conclusions about our scheme.
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Abstract. The bound state of two B mesons (the ”tetraquark” bbūd̄) has been shown to
be bound by 100 MeV. Therefore it is stable against strong and electromagnetic decay and
can decay only weakly. It represents a very interesting four-body problem to test our ideas
about the effective quark-quark interactions and about the formation of the bb diquark
(which later gets dressed by two light antiquarks into the tetraquark). It represents also a
challenge to experimentalists. We shall discuss possible models of its formation, possible
characteristic decays and the possibility of detecting it in LHC.

1 Introduction

Different versions of the nonrelativistic constituent quark model agree that the
only long-living tetraquark should be bbūd̄ with the I=0, J=1 quantum numbers
[1–3]. The predictions of its energy are about 100 MeV below the threshold of
BB∗ and about 60 MeV below the threshold of B0B− (into which it cannot decay
anyway due to its quantum numbers). Therefore it can decay only weakly with
a lifetime of picoseconds which corresponds to a width of meV. It would be very
rewarding to confirm these predictions experimentally.

The estimates of the production and detection rate of the bbūd̄ tetraquark in
the present machines are very pessimistic and have for this reason not been pub-
lished. Therefore we consider the possibility of the production and detection of
such a heavy dimeson (tetraquark) in LHC . For production we assume a three-
step model.
(i) First, two b-quarks are formed in the process pp → bb̄bb̄ by a double par-
ton interaction fusion (g + g → b + b̄, (twice)) which is the leading production
mechanism [4]. One might wonder why we need a TeV machine to produce GeV
particles. The answer is simple. The two colliding protons can be considered as
two packages of virtual gluons whose number is huge for low Bjorken-x. Only the
number of gluons with x ∼ 0.001 turns out to be sufficient to make tetraquarks
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detectable.
(ii) In the second step, the two b-quarks join into a diquark.
(iii) In the third step, the diquark gets dressed either with one light quark into the
doubly-heavy baryon bbu, bbd or bbs, or with two light antiquarks to become a
tetraquark. We shall show that the rates are comparable and that the comparison
of the branching ratios may test our understanding of the process.

For the decay we consider two competitive processes, the independent decay
of the two B-mesons (for example B → D + anything), and the direct formation
of Υ with its characteristic energy and decay modes. While the former decay is
difficult to distinguish from the decay of two completely independent b-quarks,
the latter would require some kind of b → b̄ oscillation which is not easily feasible
for bound Bmesons.

2 Production

2.1 Double bb̄ production

The multiple bottom production in a double parton collision was first studied as
a possible contamination of the signal for the Higgs boson [4]. Such a double b
production is, however, also a promising source of doubly heavy baryons and
tetraquarks.

The forward detector LHCb will cover the pseudorapidity region 1.8 < η <
4.9 and will detect the B and B̄ hadrons in the low pT region. By requiring that
the two b are produced with |p1(j) − p2(j)| < ∆, j = x, y, z, we get the cross
section σ ≈ 0.4(∆/GeV)3 nb. The cross section is approximately proportional to
the momentum volume up to 2 GeV: dσ/d3p ≈ 0.4nb/GeV3.

We are interested in double-b production in which the two b-quarks are close
enough in phase space to synthesize a diquark. In our rough estimate we use
wave functions approximated by Gaussians and denote the oscillator parameter
of nucleon by B and of diquark by β. The quark model calculation of the diquark
gives an effective momentum of each quark 1.04 GeV which correspond to a mo-
mentum range∆3 ≈ 10GeV3 (see next subsection) and therefore to a cross section
of 4 nb. At the expected luminosity L=0.1 events/(second nb) this corresponds to
1440 interesting bb pairs per hour.

2.2 Formation of the diquark

We assume simultaneous production of two independent b-quarks with momenta
p1,p2, modulated with a Gaussian profile of the nucleon sizeB =

√

2/3
√
< r2 > =

0.69 fm:

N B exp(−r21/2B
2 + ip1r1)NB exp(−r22/2B

2 + ip2r2)

≡ N B/
√
2 exp(−R2/2(B/

√
2)2 + iPR)NB√2 exp(−r2/2(B

√
2)2 + ipr)

where the normalization factor Nβ = π−3/4β−3/2.
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Furthermore, we make an impulse approximation that such a two quarks
sate is instantaneously transformed in any of the eigenstates of the two-quark
Hamiltonian. Then the probability of the formation of the lowest energy diquark
is equal to the square of the overlap M between the two free quarks and the
diquark (with the same centre-of-mass motion). If we approximate the diquark
wavefunction with a Gaussian with the oscillator parameter β = 0.23 fm, we get
the overlap

M =

∫

d3rNB√2 exp(−r2/2(B
√
2)2 − ipr)Nβ exp(−r2/2β2)

=

√

2
√
2Bβ

2B2 + β2

3

exp [−(k2/2)(2B2β2/(2B2 + β2))]

and the production cross section

σ =

∫

d3p
dσ

d3p
M2(k) =

dσ

d3p

(

4π~
2

2B2 + β2

)3/2

≈ dσ

d3p

(√
2π~

B

)3

= 0.15nb.

This expression can be interpreted as

σ =
dσ

d3p
× ∆3 × fvol

where ∆3 = (
√
2π/β)3 ≈ 10GeV3 is the effective momentum range of the di-

quark and fvol = (β/B)3 = (0.23 fm/0.69 fm)3 = 0.04 is the volume ratio between
the diquark and nucleon. This cross section corresponds to 54 dibaryons/hour.

2.3 Dressing of the diquark into tetraquark

Since the diquark will soon get dressed by two antiquarks or more probably by a
single u, d or s quark, we guess a probability fdress to synthesize our tetraquark
smaller than 1/4, possibly fdress ∼ 0.1. This yields a production rate Lσfvolfdress
∼ 5− 6 events/hour.

The estimate fdress ∼ 0.1 is supported by the comparison with the dressing
of a single quark in the Fermilab experiment [5]:

b → B−,B0,Bs, Λb = 0.375± 0.015, 0.375± 0.015, 0.160± 0.025, 0.090± 0.028.

Since a heavy diquark acts similarly as a heavy quark, we expect similar branch-
ing ratios:

bb → bbd, bbu, bbs, bbd̄ū ≈ 0.37, 0.37, 0.16, 0.09.
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3 Decay and detection

The independent decay of the two B-mesons (for example B → D + anything)
is difficult to distinguish from the decay of two unbound b-quarks and is there-
fore not characteristic. Anyway, there are no good two-body decay channels of
B mesons to allow the reconstruction of the total energy of the tetraquark; more-
over, each separate exclusive decay channel has a low branching ratio of up to a
few percent.

We are looking for more characteristic decay channels of the tetraquark –
the direct formation of Υ with its characteristic energy and decay mode. This
would be a simple two-body channel Υ + π with c.m. energy of the tetraquark
which means a kinetic energy 876 MeV for both mesons (in the c.m. system).
Of course there would be a crowd of other Υ mesons, but few at this energy.
The inspiration comes from the B0 → B̄0 oscillation which unfortunately is not
feasible for bound Bmesons because the BB and BB̄ states are not degenerate. The
weak transition bū → ub̄ is negligible because of the low CKM amplitudes. New
ideas are needed!

The reader may wonder why are we so keen about the bbūd̄ tetraquark
rather than the ccūd̄ tetraquark which would be easier to produce and detect.
The answer is that in all reasonable models so far the cc-tetraquark is unbound.
However, a recent measurement at SELEX in Fermilab [6] hints at three ccu (ccd)
candidates with masses at 3519 , 3783 (and 3460) MeV. The 3519 MeV ground
state can be accomodated into present quark models and does not change the
conclusion that the cc-tetraquark is unbound. If the 3460 MeV state is confirmed,
it would require a major revision of our quark model calculations (3-body forces
?) and by further stretching parameters Tcc might even be bound [7]. But we do
not believe it since the 60 MeV isospin splitting is not believable and we rather
wait for futher experiments.
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S. Šircaa,b, L. Amoreirac,d, M. Fiolhaisd,e, and B. Gollif,b

aFaculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
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Abstract. We discuss electro-magnetic and weak production of pions on nucleons and
show how results of experiments and their interpretation in terms of chiral quark models
with explicit meson degrees of freedom combine to reveal the ground-state axial form
factors and axial N-∆ transition amplitudes.

1 Introduction

The study of electro-weak N-∆ transition amplitudes, together with an under-
standing of the corresponding pion electro-production process at low energies,
provides information on the structure of the nucleon and its first excited state.
For example, the electro-magnetic transition amplitudes for the processes γ?p →

∆+ → pπ0 and γ?p → ∆+ → nπ+ are sensitive to the deviation of the nucleon
shape from spherical symmetry [1]. Below the ∆ resonance (and in particular
close to the pion-production threshold), the reaction γ?p → nπ+ also yields in-
formation on the nucleon axial and induced pseudo-scalar form-factors. While
the electro-production of pions at relatively high [2] and low [3,4] momentum
transfers has been intensively investigated experimentally in the past years at
modern electron accelerator facilities, very little data exist on the corresponding
weak axial processes.

2 Nucleon axial form-factor

In a phenomenological approach, the nucleon axial form-factor is one of the quan-
tities needed to extract the weak axial amplitudes in the ∆ region. There are ba-
sically two methods to determine this form-factor. One set of experimental data
comes from measurements of quasi-elastic (anti)neutrino scattering on protons,
deuterons, heavier nuclei, and composite targets (see [4] for a comprehensive list
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of references). In the quasi-elastic picture of (anti)neutrino-nucleus scattering, the
νN → µN weak transition amplitude can be expressed in terms of the nucleon
electro-magnetic form-factors and the axial form factor GA. The axial form-factor
is extracted by fitting theQ2-dependence of the (anti)neutrino-nucleon cross sec-
tion,

dσ
dQ2

= A(Q2) ∓ B(Q2) (s− u) + C(Q2) (s− u)2 , (1)

in which GA(Q2) is contained in the A(Q2), B(Q2), and C(Q2) coefficients and is
assumed to be the only unknown quantity. It can be parameterised in terms of an
‘axial mass’ MA as

GA(Q2) = GA(0)/(1+Q2/M2
A)2 .

Another body of data comes from charged pion electro-production on pro-
tons (see [4] and references therein) slightly above the pion production thresh-
old. As opposed to neutrino scattering, which is described by the Cabibbo-mixed
V − A theory, the extraction of the axial form factor from electro-production re-
quires a more involved theoretical picture [5,6]. The presently available most pre-
cise determination forMA from pion electro-production is

MA = (1.077± 0.039) GeV (2)

which is ∆MA = (0.051 ± 0.044) GeV larger than the axial mass MA = (1.026 ±
0.021) GeV known from neutrino scattering experiments. The weighted world-
average estimate from electro-production data isMA = (1.069± 0.016) GeV, with
an excess of ∆MA = (0.043 ± 0.026) GeV with respect to the weak probe. The
∼ 5% difference in MA can apparently be attributed to pion-loop corrections to
the electro-production process [5].

3 N-∆ weak axial amplitudes

The experiments using neutrino scattering on deuterium or hydrogen in the ∆
region have been performed at Argonne, CERN, and Brookhaven [7–11]. (Addi-
tional experimental results exist in the quasi-elastic regime, from which MA has
been extracted.) For pure ∆ production, the matrix element has the familiar form

M = 〈µ∆ |νN〉 =
GF cos θC√

2
jα 〈∆ |Vα −Aα | N〉 ,

where GF is the Fermi’s coupling constant, θC is the Vud element of the CKM
matrix, jα = uµγα(1 − γ5)uν is the matrix element of the leptonic current, and
the matrix element of the hadronic current Jα has been split into its vector and
axial parts. Typically either the ∆++ or the ∆+ are excited in the process. The
hadronic part for the latter can be expanded in terms of weak vector and axial
form-factors [12]

M =
G√
2
u∆α(p ′)

{ [

CV
3

M
γµ +

CV
4

M2
p ′
µ +

CV
5

M2
pµ

]

γ5F
µα + CV

6 jαγ5

+

[

CA
3

M
γµ +

CA
4

M2
p ′
µ

]

Fµα + CA
5 j
α +

CA
6

M2
qαqµjµ

}

u(p)f(W) ,
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where Fµα = qµjα − qαjµ, u∆α(p ′) is the Rarita-Schwinger spinor describing
the ∆ state with four-vector p ′, and u(p) is the Dirac spinor for the (target) nu-
cleon of massMwith four-vector p. (In the case of the ∆++ excitation, the expres-
sion on the RHS acquires an additional isospin factor of

√
3 since 〈∆++ | Jα | p〉 =√

3〈∆+ | Jα | p〉 =
√
3〈∆0 | Jα | p〉.) The function f(W) represents a Breit-Wigner de-

pendence on the invariant mass W of the Nπ system.
The matrix element is assumed to be invariant under time reversal, hence all

form-factors CV,A
i (Q2) are real. Usually the conserved vector current hypothesis

(CVC) is also assumed to hold. The CVC connects the matrix elements of the
strangeness-conserving hadronic weak vector current to the isovector component
of the electro-magnetic current:

〈∆++ |Vα | p〉 =
√
3 〈∆+ | JαEM(T = 1) | p〉 ,

〈∆0 |Vα | p〉 = 〈∆+ | JαEM(T = 1) | p〉 .

The information on the weak vector transition form-factors CV
i is obtained from

the analysis of photo- and electro-production multipole amplitudes. For∆ electro-
excitation, the allowed multipoles are the dominant magnetic dipole M1+ and
the electric and coulomb quadrupole amplitudes E1+ and S1+, which are found
to be much smaller thanM1+ [2,3]. If we assume thatM1+ dominates the electro-
production amplitude, we have CV

5 = CV
6 = 0 and end up with only one indepen-

dent vector form-factor
CV
4 = −

M

W
CV
3 .

It turns out that electro-production data can be fitted well with a dipole form for
CV
3 ,

CV
3 (Q

2) = 2.05

[

1+
Q2

0.54GeV2

]−2

.

An alternative parameterisation of CV
3 which accounts for a small observed devi-

ation from the pure dipole form is

CV
3 (Q

2) = 2.05
[

1+ 9
√

Q2
]

exp
[

−6.3
√

Q2
]

.

The main interest therefore lies in the axial part of the hadronic weak current
which is not well known.

Extraction of CA
i (Q2) from data

The key assumption in experimental analyses of the axial matrix element is the
PCAC. It implies that the divergence of the axial current should vanish as m2π →

0, which occurs if the induced pseudo-scalar term with CA
6 (the analogue of GP

in the nucleon case) is dominated by the pion pole. In consequence, CA
6 can be

expressed in terms of the strong πN∆ form-factor,

CA
6 (Q2)

M2
= fπ

√

2

3

GπN∆

2M

1

Q2 +m2π
,
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while CA
5 and CA

6 can be approximately connected through the off-diagonal Gold-
berger-Treiman relation [13]. In a phenomenological analysis, CA

3 (Q2), CA
4 (Q2),

and CA
5 (Q2) are taken as free parameters and are fitted to the data. The axial

form-factors are also parameterised in “corrected” dipole forms

CA
i (Q2) = CA

i (0)

[

1+
aiQ

2

bi +Q2

] [

1+
Q2

M2
A

]−2

.

In the simplest approach one takes ai = bi = 0. Historically, the experimental
data on weak pion production could be understood well enough in terms of a
theory developed by Adler [14]. For lack of a better choice, Adler’s values for
CA
i (0) have conventionally been adopted to fix the fit-parameters at Q2 = 0, i. e.

CA
3 (0) = 0 , (3)

CA
4 (0) = −0.3 , (4)

CA
5 (0) = 1.2 . (5)

In such a situation, one ends up withMA as the only free fit-parameter.
Several observables are used to fit the Q2-dependence of the form-factors.

Most commonly used are the total cross-sections σ(Eν), and the angular distribu-
tions of the recoiling nucleon

dσ
dΩ

=
σ√
4π

[

Y00 −
2√
5

[

ρ̃33 −
1

2

]

Y20 +
4√
10
ρ̃31 ReY21 −

4√
10
ρ̃3−1 ReY22

]

,

where ρ̃mn are the density matrix elements and YLM are the spherical harmonics.
Better than from the ρ̃mn coefficients, the Q2 dependence of the matrix element
can be determined from the differential cross-section dσ/dQ2. In particular, since
the dependence on CA

3 and CA
4 is anticipated to be weak at Q2 ∼ 0, then

dσ
dQ2

(Q2 = 0) ∝ (CA
5 (0) )2 .

The refinements of this crude approach are dictated by several observations.
If the target is a nucleus (for example, the deuteron which is needed to access
specific charge channels), nuclear effects need to be estimated. Another important
correction arises due to the finite energy width of the ∆. In addition, the non-zero
mass of the scattered muon may play a role at low Q2.

All these effects have been addressed carefully in [15]. The sensitivity of the
differential cross-section to different nucleon-nucleon potentials was seen to be
smaller than 10% even at Q2 < 0.1GeV2. In the range above that value, this
allows one to interpret inelastic data on the deuteron as if they were data obtained
on the free nucleon. The effect of non-zero muon mass is even less pronounced:
it does not exceed 5% in the region of Q2 ∼ 0.05GeV2. The energy dependence
of the width of the ∆ resonance was observed to have a negligible effect on the
cross-section. The final value based on the analysis of Argonne data [9] is

CA
5 (0) = 1.22± 0.06 . (6)



Axial currents in electro-weak pion production 71

At present, this is the best estimate for CA
5 (0), although a number of phe-

nomenological predictions also exist [16]. We adopt this value for the purpose of
comparison to our calculations. There is also some scarce, but direct experimental
evidence from a free fit to the data that CA

3 (0) is indeed small and CA
4 (0) is close to

the Adler’s value of −0.3 (see Figure 1). We use CA
4 (0) = −0.3 in our comparisons

in the next section.

σ

σ

1

3

0

0−1−2

−2

−1

1

1

2

2
C  (0)

C  (0)

A

A

3

4

Fig. 1. One- and three-standard deviation limits on CA
3 (0) and CA

4 (0) as extracted from
measurements of νµp → µ−∆++. The square denotes the model predictions by Adler
[14]. (Figure adapted after [7].)

4 Interpretation of CA
i
(Q2) in the linear σ-model

The axial N-∆ transition amplitudes can be interpreted in an illustrative way in
quark models involving chiral fields like the linear σ-model (LSM), which may
reveal the importance of non-quark degrees of freedom in baryons. Due to dif-
ficulties in consistent incorporation of the pion field, the model predictions for
these amplitudes are very scarce [17]. The present work [18,19] was partly also
motivated by the experience gained in the successful phenomenological descrip-
tion of the quadrupole electro-excitation of the ∆ within the LSM, in which the
pion cloud was shown to play a major role [20].

4.1 Two-radial mode approach

We have realised that by treating the nucleon and the ∆ in the LSM in a simpler,
one-radial mode ansatz, the off-diagonal Goldberger-Treiman relation can not be
satisfied. For the calculation of the amplitudes in the LSM, we have therefore
used the two-radial mode ansatz for the physical baryon states which allows for
different pion clouds around the bare baryons. The physical baryons are obtained
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from the superposition of bare quark cores and coherent states of mesons by the
Peierls-Yoccoz angular projection. For the nucleon we have the ansatz

|N〉 = NNP
1
2 [ΦN|Nq〉 +ΦN∆|∆q〉] , (7)

where NN is the normalisation factor. Here ΦN and ΦN∆ stand for hedgehog co-
herent states describing the pion cloud around the bare nucleon and bare ∆, re-
spectively, and P 1

2 is the projection operator on the subspace with isospin and
angular momentum 1

2
. Only one profile for the σ field is assumed. For the ∆ we

assume a slightly different ansatz to ensure the proper asymptotic behaviour. We
take

|∆〉 = N∆
{

P
3
2Φ∆|∆q〉 +

∫

dkη(k)[a†mt(k)|N〉] 3
2

3
2

}

, (8)

where N∆ is the normalisation factor, |N〉 is the ground state and [ ]
3
2

3
2 denotes

the pion-nucleon state with isospin 3
2

and spin 3
2

. We have interpreted the lo-
calised model states as wave-packets with definite linear momentum, as elabo-
rated in [13].

4.2 Calculation of helicity amplitudes

We use the kinematics and notation of [13]. For the quark contribution to the two
transverse (λ = 1) and longitudinal (λ = 0) helicity amplitudes we obtain

Ã
(q)

s∆λ
= −〈∆s∆

1
2
|

∫

dr eikzψ†αλγ5
1
2
τ0ψ|Ns∆−λ 1

2
〉

Ã
(q)

s∆λ
= −1

2
N∆

∫

dr r2
{

[

j0(kr)

(

u∆uN −
1

3
v∆vN

)

+
2

3
(3λ2 − 2) j2(kr)v∆vN

]

〈∆b||στ||N〉

− cη

[

j0(kr)

(

u2N −
1

3
v2N

)

+
2

3
(3λ2 − 2) j2(kr)v

2
N

]

×
[

4

9
〈N||στ||N〉 +

1

36
〈N||στ||N(J = 3

2
)〉
]}

C
3
2
s∆

1
2
s∆−λ1λ

C
3
2
1
2

1
2
1
2
10
.

Here u and v are upper and lower components of Dirac spinors for the nucleon
and the ∆, while cη is a coefficient involving integrals of the function η(k) ap-
pearing in (8). The reduced matrix elements of στ can be expressed in terms of
analytic functions with intrinsic numbers of pions as arguments. In all three cases,
we take s∆ = 3

2
. For the scalar amplitudes, we take λ = 0 and s∆ = 1

2
, and obtain

S̃(q) = −〈∆ 1
2

1
2
|

∫

dr eikzψ†γ5
1
2
τ0ψ|N 1

2
1
2
〉

=
1

3
N∆

∫

dr r2 j1(kr) (u∆vN − v∆uN) 〈∆b||στ||N〉 .

For the non-pole meson contribution to the transverse and longitudinal helic-
ity amplitudes we assume the same σ profiles around the bare states, but different
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for the physical states. Introducing an “average” σ field σ̄(r) ≡ 1
2
(σN(r) + σ∆(r))

we obtain

Ã
(m)

s∆λ
= 〈∆s∆

1
2
|

∫

dr eikz ((σ− fπ)∇λπ0 − π0∇λσ) |Ns∆−λ 1
2
〉

=
4π

3

{∫

dr r2 j0(kr)

[(

(σ̄− fπ)

(

dϕ∆N

dr
+
2ϕ∆N

r

)

−
dσ̄
dr
ϕ∆N

)]

+(3λ2 − 2)

∫

dr r2 j2(kr)

[(

(σ̄− fπ)

(

dϕ∆N

dr
−
ϕ∆N

r

)

−
dσ̄
dr
ϕ∆N

)]}

×C
3
2
s∆

1
2
s∆−λ1λ

C
3
2
1
2

1
2
1
2
10
,

where ϕ∆N = 〈∆ |π | N〉. To compute the scalar amplitude, we make use of the
off-diagonal virial relation derived in [13] and define

σP(r) =

∫∞

0

dkk2
√

k2 +m2σ

√

2

π
j0(kr)σ(k) .

We obtain

S̃(m) = −〈∆ 1
2

1
2
|

∫

dr eikz ((σ− fπ)Pπ0 − Pσπ0) |N 1
2

1
2
〉

= −
8π

3

∫

dr r2 j1(kr)
{
1
2

(

σPN(r) − σP∆(r)
)

ϕ∆N(r) − (σ̄(r) − fπ)ω∗ϕ∆N(r)
}
.

By using

Ãs∆λ =
(

A0 − (3λ2 − 2)A2
)

C
3
2
s∆

1
2
s∆−λ1λ

C
3
2
1
2

1
2
1
2
10
,

the quark and non-pole meson contributions to the transverse amplitudes can
finally be broken into L = 0 and L = 2 pieces,

ÃA
3
2

=

√

2

3

(

A0 −A2
)

, (9)

ÃA
1
2

=
1√
3
ÃA

3
2

=

√
2

3

(

A0 −A2
)

, (10)

L̃A =
2

3

(

A0 + 2A2
)

, (11)

and inserted into (76), (77), and (78) of [13]. The pole part of the meson contribu-
tion is

CA
6 (pole)(Q

2) = fπ
GπN∆(Q2)

2MN

M2
N

m2π +Q2

√

2

3
.

The strong N∆ form-factor GπN∆ can be computed through

GπN∆(Q2)

2MN

M∆ +MN

2M∆

=
1

ik
〈∆ ‖

∫

dr eikr J(r) ‖ N〉 ,
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where the current J has a component corresponding to the quark source and a
component originating in the meson self-interaction term (see (58) of [13]),

J0(r) = j0(r) +
∂U(σ, ~π)

∂π0(r)
.

4.3 Results

Fig. 2 shows the CA
5 (Q2) amplitude with the quark-meson coupling constant of

g = 4.3 and mσ = 600MeV compared to the experimentally determined form-
factors. The figure also shows the CA

5 (Q2) calculated from the strong πN∆ form-
factor using the off-diagonal Goldberger-Treiman relation.

Fig. 2. The amplitude CA
5 (Q2) in the two-radial mode LSM. The experimental uncertainty

at Q2 = 0 is given by Eq. (6). The error ranges are given by the spread in the axial-mass
parameter MA as determined from neutrino scattering experiments (broader range, [11])
and from electro-production of pions (narrower range, Eq. (2)). Full curves: calculation
from helicity amplitudes (9), (10), and (11); dashed curves: calculation from GπN∆.

The magnitude of CA
5 (Q2) is overestimated in the LSM, with CA

5 (0) about
25% higher than the experimental average. Still, the Q2-dependence follows the
experimental one very well: the MA from a dipole fit to our calculated values
agrees to within a few percent with the experimental MA. On the other hand,
with CA

5 (Q2) determined from the calculated strong πN∆ form-factor, the abso-
lute normalisation improves, while theQ2 fall-off is steeper, withMA ≈ 0.80GeV.
Since the model states are not exact eigenstates of the LSM Hamiltonian, the dis-
crepancy between the two calculated values in some sense indicates the quality
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of the computational scheme. At Q2 = −m2π where the off-diagonal Goldberger-
Treiman relation is expected to hold, the discrepancy is 17%. The disagreement
between the two approaches can be attributed to an over-estimate of the meson
strength, a characteristic feature of LSM where only the meson fields bind the
quarks.

Essentially the same trend is observed in the “diagonal” case: for the nucleon
we obtain gA = 1.41. The discrepancy with respect to the experimental value of
1.27 is commensurate with the disagreement in CA

5 (0). The overestimate of gA

and GA(Q2) was shown to persist even if the spurious centre-of-mass motion
of the nucleon is removed [21]. An additional projection onto non-zero linear
momentum therefore does not appear to be feasible.

The effect of the meson self-interaction is relatively less pronounced in the
strong coupling constant (only ∼ 20%) than inCA

5 (Q2). BothGπN∆(0) andGπNN(0)

are over-estimated in the model by ∼ 10%. Still, the ratio GπN∆(0)/GπNN(0) =

2.01 is considerably higher than either the familiar SU(6) prediction
√

72/25 or
the mass-corrected value of 1.65 [22], and compares reasonably well with the ex-
perimental value of 2.2. This improvement is mostly a consequence of the renor-
malisation of the strong vertices due to pions.

Fig. 3. The amplitude CA
4 (Q2) in the two-radial mode linear σ-model, with model param-

eters and experimental uncertainties due to the spread in MA as in Fig. 2, and in the
Cloudy-Bag Model (see below for discussion). Experimentally, CA

4 (0) = −0.3 ± 0.5 (see
[7] and Fig. 1). For orientation, the value for CA

4 (0) is used without error-bars.

The determination of the CA
4 (Q2) is less reliable because the meson contribu-

tion to the scalar component of this amplitude [13] is very sensitive to small vari-
ations of the profiles. However, the experimental value is very uncertain as well.
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Neglecting the non-pole contribution to the scalar amplitude and CA
6 (Q2) (with

the pole contribution canceling out), CA
4 (Q2) is fixed to −(M2

N/2M
2
∆)CA

5 (Q2). At
Q2 = 0, this is in excellent numerical agreement with (4). In the LSM, the non-
pole contribution to CA

6 (Q2) happens to be non-negligible and tends to increase
CA
4 (Q2) at small Q2, as seen in Fig. 3. An almost identical conclusion regarding
CA
4 (Q2) applies in the case of the Cloudy-Bag Model, as shown below.

The CA
6 amplitude is governed by the pion pole for small values of Q2 and

hence by the value of GπN∆ which is well reproduced in the LSM, and under-
estimated by ∼ 35% in the Cloudy-Bag Model. Fig. 4 shows that the non-pole
contribution becomes relatively more important at larger values of Q2.

Fig. 4. The non-pole part and the total amplitude CA
6 (Q2) in the two-radial mode linear

σ-model. Model parameters are as in Fig. 2.

5 Interpretation of CA
i
(Q2) in the Cloudy-Bag Model

For the calculation in the Cloudy-Bag Model (CBM) we have assumed the usual
perturbative form for the pion profiles using the experimental masses for the nu-
cleon and ∆. Since the pion contribution to the axial current in the CBM has the
form fπ∂

απ, only the quarks contribute to theCA
4 (Q2) andCA

5 (Q2), whileCA
6 (Q2)

is almost completely dominated by the pion pole (see contribution by B. Golli
[13]). With respect to the LSM, the sensitivity of the axial form-factors to the non-
quark degrees of freedom is therefore almost reversed.

In the CBM, only the non-pole component of the axial current contributes
to the amplitudes, and as a result the CA

5 (0) amplitude is less than 2/3 of the
experimental value. The behaviour of CA

5 (Q2) (see Fig. 5) is similar as in the pure
MIT Bag Model (to within 10%), with fittedMA ∼ 1.2GeV fm/R. The off-diagonal
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Goldberger-Treiman relation is satisfied in the CBM, but CA
5 from GπN∆ has a

steeper fall-off with fittedMA ∼ 0.8GeV fm/R.

Fig. 5. The amplitude CA
5 (Q2) in the Cloudy-Bag Model for three values of the bag radius.

Experimental uncertainties are as in caption to Fig. 2.

The large discrepancy can be partly attributed to the fact that the CBM pre-
dicts a too low value for GπNN, and consequently GπN∆. We have found that the
pions increase the GπN∆/GπNN ratio by ∼ 15% through vertex renormalisation.
The effect is further enhanced by the mass-correction factor 2M∆/(M∆+MN), yet
suppressed in the kinematical extrapolation of GπN∆(Q2) to the SU(6) limit. This
suppression is weaker at small bag radii R: the ratio drops from 2.05 at R = 0.7 fm
to 1.60 (below the SU(6) value) at R = 1.3 fm.

The determination of the CA
4 (Q2) is less reliable for very much the same rea-

son as in the LSM. The non-pole contribution to CA
6 (Q2) tends to add to the ex-

cessive strength of CA
4 (Q2) at low Q2, as seen in Fig. 3. Never the less, the exper-

imental data are too coarse to allow for a meaningful comparison to the model.
For technical details regarding the calculation in the CBM, refer to [13].
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