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1 INTRODUCTION

Nowadays, the designer has to face the
continuous growing complexity of engineering
problems, but also, the increasing economic
competition that have led to a specialization and
distribution of knowledge, expertise, tools and
work sites. Consequently, multi-objective
optimization (MOO) and multidisciplinary design
optimization (MDO) are more and more used to
provide one solution or an optimal set of solutions.

While single-discipline optimization is
mature, the design and optimization of complex
systems (more than one discipline) is still quite
young. Since the white papers provided in 1991
and 1998 by the AIAA [18] and [12], lot of research
has been done in the multidisciplinary optimization
domain: at the beginning centered on the aerospace
industries, they are now used in different kind of
enterprises (automotive, ship building, etc.) which
expect from such a tool a way to improve their
products, their organizations, Alexandrov and
Lewis [1] defined MDO as a “systematic approach
to optimization of complex coupled engineering
systems where “multidisciplinary” refers to the
different aspects that must be included in the design
problem“.

A classical way to describe a
multidisciplinary problem is presented in Figure
1. In a multidisciplinary problem, each sub-system
(discipline) has its own design variables, objective
and constraint functions. Some design variables,
common to at least two sub-systems, are called
common variables. Disciplinary outputs from one
discipline can be needed to evaluate another sub-
system. In this case there is a coupling between
two disciplines and these variables are called
coupling variables [8] and [5]. The third variable
type, state variables, are internal variables particular
to one discipline: they represent conditions that
have to be satisfied within the discipline. In each
discipline an evaluation/analysis is conducted that
allows to compute the outputs: functions,
constraints and coupling variables if needed.

Frequently, complex systems are non-
hierarchical implying that there is no reason to
process the optimization of one sub-system before
another [5]. In the optimization process of such
systems, the presence of coupling functions and
their recognition constitutes a real challenge for
researchers.

Several methods have been designed to deal
with coupling problems (MDF, IDF, AAO, CO,
CSSO, BLISS, etc. - section 2), but they are not

Guedas.pmd 10. 06. 08, 17:07413



414

��������	�
��
���	
�
�������
��
����������
�����������
�������� !
�"#����

0�1!�
	�#	�	21����1	�#

suited for the extended enterprise context where
disciplines and tools are distributed on multiple sites.
The main drawbacks of theses approaches are i) the
unique solution given to the designer and ii) their
mathematical formulation that is not always adapted
to the industrial context: most of these methods
centralize the optimization at the system level while
it should be handled by sub-system levels.
Collaborative Optimization Strategy for Multi-
Objective Systems (COSMOS) [19] is a method
aiming to fill the gap between classical MDO methods
and industrial needs by: i) taking advantages of the
multi-objective genetic algorithms and provides the
designer with a set of optimum solutions and ii),
giving more autonomy to the disciplines.

The next part of this paper will present the
MDO methods: the classical ones based on exact
mathematical approaches and some that try to
simulate an engineering process and are based on
multi-objective genetic algorithm. The third part
introduces the problems caused by the autonomy
of disciplines in the resolution process. Parts 4 and
5 describe the test examples and the result obtained
by COSMOS method on coupled problems. Finally,
some conclusions and perspective are given.

2 COUPLING FUNCTIONS IN
MULTIDISCIPLINARY OPTIMIZATION

METHODS

The ideal optimization process to solve a
multidisciplinary optimization problem consists in
separating the analysis phase from the optimization
phase: the multidisciplinary analysis (MDA)
computes the set of feasible solutions then the
optimization selects the optimum from the previous
set. This approach is not possible in practice

because of the high computational cost required to
determine the whole set of feasible solution.
Moreover in most problems the disciplines cannot
easily exchange data between each others.

2.1 A Multi-Objective Coupled Problem

Let’s consider a simplified model of two
disciplines D

1
 and D

2
 (it can be generalized to n

disciplines). Each discipline D
i
 has a state equation

E
i
(x

c
, x

i
, y

j
, u

i
) = 0. We will consider that there is an

implicit function e
i 
: X

c
 × X

i 
× Y

j
 → U

i
, where x

c 
∈

X
c
 is the design variables that are shared among

disciplines (common variables), x
i 
∈  X

i
 is the vector

of disciplinary variables, y
j 
∈  Y

j
 is a parameter given

by the discipline D
y
, and u

i 
∈  U

i
 the vector of state

variables given by the state equation e
i
. This results

in the following coupled problem:

(1).

Finding the feasible solutions to this
problem is called multidisciplinary analysis
(MDA). We call A the set of feasible solutions of
the problem (the multidisciplinary feasible
solutions):

(2).
Multidisciplinary optimization consists in

adding an optimization problem to the satisfaction
of the coupled problem. We will focus on the case
where each discipline has its own optimization
problem which is to minimize an objective function
 : ip

i c i if X X U× × →�  with p
i
 the number of

objectives. A standard formulation of a two
disciplines multidisciplinary optimization problem
is then:

(3).
The set S of solutions to the problem is then:

(4).
With �  the order relation of Pareto

dominance: given a = (a
1
,...,a

n
) and b = (b

1
,...,b

n
),

{ }1,...,a b i n⇔ ∀ ∈� , { }1,...,i ia b j n≤ ∧ ∃ ∈ , a
j
 < b

j
.

Fig. 1. A fully coupled disciplines system
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Unfortunately, such a set of optimum
solutions is intractable under the hypothesis of
partitions of the variables in each discipline. Indeed,
a discipline i cannot access another discipline j
variables and does not know its coupling function.

Most of the MDO methods reported in the
literature are developed specifically for single-
objective problems with continuous variables and
differentiable objective. These MDO methods are
classified in two groups: mono-level and bi-level.
The single-level (mono-level) group implies
optimization at the supervisor level only. The bi-
level group allows each discipline to manage its
own optimization regarding its design variables.
Multidisciplinary problems are often written in a
simpler form, where the state variables are directly
given to the other discipline, so they are also
coupling variables:

(5).

This notation will be used in the next section
to present some multidisciplinary optimization
methods.

2.2 Mono-Level Approaches

The mono-level family contains three
multidisciplinary methods: Multidisciplinary
Feasible (MDF), All-At-Once (AAO) and
Individual Discipline Feasible (IDF) [16], [1], [14]
and [6]. All the given formulations have different
ways to handle the dependency of coupling
functions. Dennis et al. [9] proposed an extension
of all the above methodologies to the optimization
of system of systems.

2.2.1 Multidisciplinary Feasible (MDF)

MDF is the most used approach to solve a
MDO problem. A complete multidisciplinary
analysis is performed for each choice of the design
variables by the optimizer. This is conceptually very
simple, and once all disciplines are coupled to form
one single multidisciplinary analysis module, one
can use the same techniques used in single
discipline optimization.

In this formulation the optimization
variables are the design variables, the optimization
is global and each iteration gives a feasible
solution. Moreover the evaluation within the

disciplines are independent. Drawbacks are the
computational effort and the lack of guaranty for
the coupling variables to converge to a feasible
solution.

(6).

The optimization variables are x
c
, x

1
 and x

2
.

At each optimization step, the set of
feasible solutions - described as A in (2) - is
computed. The system of coupling equations must
be solved. A fixed point iteration (FPI) algorithm,
often used in this case, may not converge if the
functions are not convex and may avoid hidden
solutions [3].

2.2.2 All at Once (AAO)

All the variables (design, coupling, state)
are considered as design variables and the analysis
system equations becomes constraint. Hence, CPU
consuming iterative analysis of sub-system are
skipped but it increases the dimension of the design
space. The problem formulation can be expressed
by:

(7).

The optimization variables are x
c
, x

1
, x

2
, y

1

and y
2
.

2.2.3 Individual Feasible (IDF)

IDF is a compromise between AAO and
MDF. At each point, each discipline is feasible
but the whole system will only be feasible at
the end. In this methodology, coupling variables
are added to design variables and some auxiliary
variables, z

i
, are introduced to allow decoupling

the disciplines. Some equality constraints are
added that allow compatibil i ty between
coupling and auxiliary variables.  This
substitution relaxes the coupling between
disciplines: for some iterations, a point cannot
fulfill all the coupling.
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(8).

The optimization variables are x
c
, x

1
, x

2
, z

1

and z
2
.
In mono-level approaches, the optimization

problem is seen as a single global problem and all
the variables are accessible. Multi-level approaches
give more autonomy to the disciplines by allowing
them to solve their own optimization problem
locally.

2.3 Multi-Level Approaches

In the case of bi-level optimization method,
the original optimization problem is divided into
optimization at both system and sub-system levels.
Coordination between sub-systems is managed by
an optimizer in charge of solving inconsistencies
between the disciplines. Several strategies have
been developed and the most discussed are
Collaborative Optimization (CO) [7], and
Concurrent SubSpace Optimization (CSSO) [20].
Other methods like Bi-Level Integrated System
Synthesis (BLISS) [15], Analytical Target
Cascading (ATC) [2] or Physical Programming
(PP) [17] have been developed but will not be
detailed in this paper. The two firsts are part of the
Discipline Feasible Constraint (DFC) group. The
primary features of each of these architectures
include : i) the use of heterogeneous hardware or
software, specific to the domain, to solve the
subspace optimization problems, ii) the
decomposition keeps domain-specific constraint
information in the sub-problem, iii) the system
leaves most of the design decisions (selection of
local variables) to the disciplinary groups that
understand the local formulation.

2.3.1 Collaborative Optimization (CO)

In CO subspace optimizers are integrated
with each subsystem. Through sub-system
optimization each discipline can control its own set
of local design variables and is in charge of satisfying
its own domain specific constraints. Explicit

knowledge of the other groups constraints or design
variables is not required. The objective of each
subsystem optimizer is to agree upon the values of
the interdisciplinary variables with the other groups.
A system level optimizer is employed to coordinate
this process while minimizing the overall objective.
It promotes disciplinary autonomy while achieving
interdisciplinary compatibility.

The subsystem optimizer does not allow
discipline optimization but only tries to reach
consistency upon the common and coupled
variables. The optimization process remains global
at the system level.

All the methods described above are not
designed for multi-objectives problems and give
only a single solution to the designer.

2.4 Multi-Objective Multi-Level Approaches

As far as we are concerned, main advantage
of MDO methods should focus on their ability to
decompose a multidisciplinary problem into several
sub-problems of manageable size that can be solved
simultaneously. According to the current complexity
and antagonist objectives to achieve, it should also
be able to provide a set of solutions (not only a single
one that relies on an a priori choice of the designers)
and finally MDO should be adapted to the structure
of the enterprise and the way design of systems
including several disciplines is conducted.

The three methods presented thereafter are
a first answer to such specifications. They can solve
MDO problems that are decomposed into a
hierarchy of several subsystem-level problems each
of which has multiple objectives and constraints.
Among different optimization algorithms that can
be used for solving the subsystem problems, genetic
algorithms (GAs) are used in the three
methodologies. Using a population based
optimization approach at both levels (i.e., system
and subsystem levels) implies that a compromise
as to be found at the system level to map fitness of
solutions from multiple Pareto sets to a single
system level candidate solution.

2.4.1 Multidisciplinary Optimization and Robust
Design Approaches Applied to Concurrent
Engineering (MORDACE)

The MORDACE method [11] is based on a
robust design approach: finding solutions that are
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robust with respect to changes in variable values
due to discipline interactions. The MORDACE
approach allows to independently perform the
different discipline optimizations.

Each discipline aims at finding optimum
solution with respect to its own design variables
thank to a Multi-Objective Genetic Algorithm
(MOGA) in order to obtain for each discipline the
Pareto frontier as the set of best solution design.
When the independent optimization processes are
finished, the designer has to find a compromise on
common variable values. Changes in common
variable values in order to find the best trade-off
may worsen performance levels. This difficulty is
solved by adding to the set of design objectives f

i
,

a function that minimizes the effect of values
variation of common variables. As disciplines
simultaneously minimize objective functions f

i
 and

sensitive function, they are always multi-objectives.
Among available designs, the procedure chooses
Pareto designs plus all individuals that dominate
the original one with regard to different disciplines.
Then, it defines all possible couples made up of
solutions proposed by discipline 1 and 2,
respectively. At this stage, the calculation of a
distance parameter allows efficient solutions to be
sorted out from the very large set of all possible
couples. Thus, a limited number of couples are
automatically chosen. Those solutions show small
difference between discipline 1 and 2 common
variable values, and they are robust with regard to
changes in those values. Then, performances and
coupling functions of the compromise designs
defined by the new vectors of variables have to be
verified.

Within the MORDACE method the designer
needs to use a compromise method limited by the
number of evaluation of potential solutions the
designer allows.

MORDACE uses approximations (response
surfaces) of the coupling functions in each
discipline.

2.4.2 Entropy-Based Multi-Level Multi-Objective
Genetic Algorithm (E-MMGA)

This method relies on a decomposition of
the optimization at the disciplinary level. A first
proposal was given in [13], but do not take into
account the coupling functions and was limited to
hierarchical system.

Each multi-objective GA at the sub-
problems operates on its own population of (x

c
, x

i
).

The population size, n, for each sub-problem is kept
the same. In addition, E-MMGA maintains two
populations external to the sub-problems: the grand
population and the grand pool. Both are populations
of complete design variable vector: (x

c
, x

1
, ... , x

d
).

The grand population is an estimate of the solution
set to the overall optimization problem. The grand
pool is an archive of the union of solutions
generated by the sub-problems. The size of the
grand population is the same as the sub-problem
population size, n. The size of the grand pool is d
times the size of the subsystem’s population (d is
the number of sub-problems or disciplines).

The population of the grand population set
is used as the initial population for each sub-
problem. Since the sub-problem multi-objective
GAs operates on its own variables (x

c
, x

i
), only the

chromosomes corresponding to x
c
 and x

i
 are used

in the ith sub-problem. After each run of sub-
problem multi-objective GA there will be d
populations having n individuals each. As each of
the d populations contains only the chromosomes
of only (x

c
, x

i
), i = 1,...,d, they are completed using

the rest of the chromosome sequence (x
1
, ... , x

i-1
,

x
i+1

, ... , x
d
) from the grand pool. After the

chromosomes in all d populations are reconstituted
to form the complete design variable vector, they
are added to the grand pool. Then based on an
entropy index that preserves the diversification of
the solutions set, n individuals are chosen within
the grand pool and replace the n individuals from
the grand population.

An important drawback is that the size of the
grand pool increases very quickly with the number
of disciplines and individuals. A variant has been
proposed in [4]: in each subsystem only one solution
is selected on the Pareto frontier and its objectives
and constraints values are used to assign a fitness
value for the system level individual. The so-called
best solution for each disciplines is chosen by an
algorithm thank to the designer or decision maker
preferences. The coupling functions are taken into
account thanks to supplementary constraints -added
both at system and subsystem levels- and auxiliary
variables. Note that the shared variables can be
treated as parameters in the subsystems and it
reduces the dimensionality of the subsystem level
optimization problems. In this last case, the coupling
variable values are not passed to the system level.
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2.4.3 Collaborative Optimization Strategy for
Multi-Objective Systems (COSMOS)

Two variants (COSMOS-G and COSMOS-
L [19]) have been proposed and the fundamental
difference between them resides in a different
treatment of common design variables. In the
following, COSMOS refers to COSMOS-G.

Lets n the size of the population and d the
number of disciplines. During the initialization the
supervisor creates a population of common design
variables X

c
, with x

c,k
 the kth element of the n-tuple

X
c
 = (x

c,1
,...,x

c,n
). Each discipline i also creates a

population of disciplinary variables X
i
 = (x

i,1
,...,x

i,n
).

In order to get a fully determined population, the
supervisor sends the n-tuple of coupling design
variables X

c
 to each discipline. Each discipline i

builds a disciplinary population
{ }, ,( , ) 1i c k i kPop x x k n= ≤ ≤  for which it can

evaluate objective and constraint functions. An
initial population can be created by the aggregation
of common and disciplinary design variables and
saved in Pop

memorized
.

Optimization at sub-system level: The
supervisor provides a set of common design
variables X

c
 to the disciplines. Each discipline i

optimizes the design variables of a population of
individuals (x

c,k
, x

i,k
) where 1 k n≤ ≤ . The n-tuple

X
c
 is fixed in order to keep the disciplinary

population coherent with the other disciplinary
populations. At the end of the disciplinary
optimizations, each discipline sends a vector of
disciplinary design variables optimized *

iX  to the
supervisor. Since the vector of common design
variables has not been modified in the discipline, a
global population can be built and is naturally
coherent: { }* *

current , 1, ,( , ,..., ) 1c k k d kPop x x x k n= ≤ ≤ .
Optimization at system level: The goal is

to propose new and better common design variables
(in order to improve the population). So, the current
population, Pop

current
, is assembled with the

memorized population, Pop
memorized

, in order to
provide a double-sized population: Pop

double
. This

population is ranked by the Fonseca and Fleming’s
criterion (notion of Pareto domination) according
to all the objective functions of the problem. The
best individuals are selected to build a normal-sized
population, Pop

current
. This population will be sent

to the disciplines. In parallel, cross-over and
mutations are made on the common design
variables of the population. This new population

is saved: Pop
memorized

. It will be evaluated once by
the disciplines in order to determine its objective
and constraint functions.

Coupling function treatment: All the
values of the coupling variables y

i
 computed in the

discipline i at the end of its sub-system optimization
are stored in an array. This array contains all the
couples (y

i,k
, x

c,k
) where x

c,k
 is the vector of coupled

variables of the kth individual of the population, and
y

i,k
 is the coupled variables computed by the

coupling function l
i
 in the discipline i with the

common k
cx  and disciplinary variables *

,i kX
obtained at the end of the sub-system optimization.
When another discipline j needs the value of y

i
, for

all its x
c,k

 it will search the corresponding y
i,k

 - when
it exists - in the array. If the array does not contain
the desired x

c,k
, the closest is picked. In other words,

for each discipline i, there is a table T
i
 of couples

(x
c
, y

i
) such as i c iT X Y⊆ × . Thus, T

i
 is the graph

of the relation T
i
 =(X

c
, Y

i
, T

i
) which is given to the

discipline j.
Our main objective, in this paper, is to study

the behavior of COSMOS on coupled problems and
more precisely the evolution of the error of
approximation of the coupled variables introduced
by using the relation T

i
  instead of the function l

i
.

We will first introduce the problems caused by the
separation of the design problem into more
autonomous sub-problems.

3  PROBLEMS CAUSED BY DISCIPLINE
AUTONOMY

In order to study the treatment of coupled
functions, we need to point out the types of
difficulties that coupled functions and division of
work in subsystems may introduce in
multidisciplinary problems.

From a global point of view, a multi-
objective multidisciplinary problem is composed
of two steps: analysis and optimization. Within the
natural organization - set A in Figure 2 - analysis
could be performed on the whole system aside from
the optimization but distribution of work in multiple
disciplines implies to split the problem in a way
that suit to industrial context - set B in Figure 2.
This raises new difficulties in problem solving
because optimization and analysis are no more fully
solved at each step. Indeed, they are split in two
sub-problems in which optimization and analysis
are partially performed for each discipline.
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3.1  Dependency Between Optimization and
Analysis

The mix of optimization and analysis in each
discipline can lead to two problems:
1. optimization disturbs analysis: optimization could

tend towards solutions that may not be feasible
2. analysis disturbs optimization: analysis tend

towards non-optimum solutions

1) Optimization leads analysis
Optimization is treated first, and the results

are given to the coupling functions. The values
computed by the analysis do not influence the
objective values, but just ensure that the design
variables allow to find a feasible solution or not.
The design variables are seen by the coupling
functions as simple parameters so it cannot
influence on their choice. The multidisciplinary
feasibility becomes more difficult to reach.

2) Analysis leads optimization
The analyzers give solutions to the

optimizers which select the optimum. The analyzer
may give solutions which are not optimum.

COSMOS uses the first solution: the first
goal is to reach the disciplines objectives, and the
coupled variables are just results computed at the
end of the disciplinary optimization process that
are needed in other disciplines. This can be
illustrated by using another notation derived from
the standard two discipline multidisciplinary
optimization problem (1) where the objective is to
minimize the state variables:

(9).
In the notation described in (5), coupling

functions and state equations are confused, and the
evaluation of the objective function comes after
the analysis. However, in the latter notation (9),
objective and state function are confused, and
evaluation of the coupling functions only comes
after optimization.

From this point of view, disciplinary
optimization is more important than
multidisciplinary consistency. This means that
COSMOS is more suited to problems where
disciplinary optimization is difficult but coupling
between disciplines is weak.

Moreover, if we remove u
i
 in the right side

of the coupling functions, the resolution with
classical mono-level methods is obvious because
the multidisciplinary analysis consists in function
evaluations. This sort of coupling is only difficult
when optimizers and analyzers cannot access all
the disciplinary variables at the same time. These
organizational constraints cannot be handled by
mono-level methods, only by multi-level ones as
presented previously. An approximation of the
coupling function has to be found.

3.2  Approximation of Coupling Variables

A discipline D
i
 needs a coupling variable y

j

from discipline D
j
 to solve its problem. Giving the

value of the coupling variable y
j
 at a time t is not

useful without knowing the parameters x
c
, x

j
, y

i
 used

to find it. One way to do it, is to let the system
level in charge of proposing a set of variables to
the disciplines and ensure that it is consistent with
the values computed in the disciplines (as in CO).
Another one, is to use an approximation of the
coupling function l

j
 in the discipline D

i

(CSSO,MORDACE). COSMOS has a different
approach using an array at each system iteration,
the x

c
 are consistent, the x

i
 are the ones obtained at

the end of optimization of each discipline and the
y

j
 are approximated using the table T

i
.

If we call iy�  the approximation of y
j
 found

in T
i
, it seems that as the population converge to

the optimum solutions, the distance between iy�

and y
j
 tends toward zero. The next section

describes the test problems designed to verify this
hypothesis.

Fig. 2. Decomposition of the problem
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4 TEST PROBLEMS

To test the behaviour of COSMOS, we have
implemented several examples. Problems #1, #2
and #3 are built to show normal conditions. #4 and
#5 were especially designed to exhibit specific
behaviours in limit conditions.

All the problems given are multi-objectives
per sub-systems. They remain simple because our
goal is to understand the behaviour of the
approximation method on coupled problems. Thus
the results should not be hidden by the complexity
of the other parts of the problem.

4.1  Problem #1

Sub-system 1

(10)

Sub-system 2

(11)

4.2  Problem #2

Sub-system 1

(12)

Sub-system 2

(13)

Sub-system 3

(14)

4.3  Problem #3

Sub-system 1

(15)

Sub-system 2

(16)

4.4  Problem #4

Sub-system 1

(17)

Sub-system 2

(18)

4.5  Problem #5

Sub-system 1

(19)

Sub-system 2

(20)
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5 RESULTS

COSMOS has been run on each test problem
with two sets of parameters: the first with a
population of 20 individuals, 20 system iterations
and 20 subsystem iterations (light); the second one
with 100 individuals, 50 system and subsystem
iterations (heavy).

Two criteria are verified for the validation
of results. First, the convergence of the approximate
coupled variable to its real value, and then the
quality of the solutions obtained.

5.1 Convergence of Coupled Variables

During subsystem optimization, each
discipline only knows the coupled variable
computed in the other subsystem at the previous
system iteration and uses it to find an
approximation of its real value.

We only evaluate the evolution of the error
of the approximation of the coupling functions
along time (i.e., at each iteration) and not the
evolution of coupling variables to their optimum
value at the end of the optimization process. We

also verify if the y
i
 which is put in the array T

i
 is

the one that would give the best approximation
among all the y

i
 which have been computed during

the sub-system optimization.
Table 1 presents the results computed on the

problems #1, #2, #3 #4 and #5 with the light and
heavy sets of parameters. The results are given in
% of the error relative to the size of the domain of
the coupled variables.

We observe that the error between the
approximation and the real value is quite small
except for y

12
 and y

13
 in example #2 as shown in

Figures 4 and 5. The fact that a coupling function
is used in two different disciplines at the same time
seems to disturb its approximation. We also notice
that the mean value of the error is close to the
minimum value except for this coupling variable
that seems to indicate that there are as many good
values as bad ones. Two phenomena could explain
these errors:
• The values of *

cx  do not cover its domain: the
optimum x

c
 for disciplines 1, 2 and 3 are

respectively in {-20}, [-20,4] and {20} so
[ ] { }* 20,4 20cx ∈ − ∈ . For values of ] [4;20cx ∈  the

approximation will not be good.

����� ����� �	
�� ���� ����� ����

��
��� ��� ��� ������� ������� �������

� �	� ���� ������� ������� ��������

� � ���� ������� ������� ��������

� �
� ��� ������� ������� �������

� � ��� ������� ������� �������

� � ��� ������� ������� �������

� � ��� ������� ������� �������

� ��� ��� ������� ������� ��������

� � ��� ������� ������� ��������

��	��� ��� ��� ������� ������� �������

� �	� ���� ������� �������� ��������

� � ���� ������� ������� �������

� �
� ��� ������� ������� �������

� � ��� ������� ������� �������

� � ��� ������� ������� �������

� � ��� ������� ������� �������

� ��� ��� ������� ������� �������

� � ��� ������� ������� �������

� ��� ��� �	����� �	����� �	�����

� � ��� �	����� �	����� �	�����

� � ��� �	����� �	����� �	�����

� � ��� �	����� �	����� �	�����

Table 1. Minimum, mean and maximum value of the error of approximation (%); 1 minimum, mean and
maximum value of the error of approximation (%)
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• The optimum value of x
1
 is not unique but in

[-20;3] When this value is unique, the other
discipline only has one choice for the
corresponding x

c
. Here the discipline increases

its probability to pick an x
c
 corresponding to

the x
1
 that does not give the optimum value of

y
1
x for its own discipline.

There is no strict decrease of the error along
time. But we notice a global decrease around the five
firsts iterations which is stabilized then (Figs. 3 and 6).

The error of the approximation, in the general
case, does not decrease but stays quite small along
time. Moreover, the tests performed with the heavy
set of parameters are less chaotic (e.g., the differences
between Figures 4 and 5). We explain this by the
spread of the values of v in the coupling table. Indeed,
the larger the population is, the more chance we have
to find a x

c
 in the table which is close to the value we

need. This error should also tend toward zero if the
population tends to a unique x

c
.

To summarize, on most cases we distinguish
two phases in the evolution of the error of
approximation of the coupled variables illustrated
by Figure 7. The first phase is a global decrease of
the error due to the convergence of the individuals
(disciplinary variables). The second phase is a state
where the error is stabilized and does not show
noticeable changes. The evolution is chaotic and
its amplitude decreases when we add more
individuals in the population. The distance d
decreases by increasing the population size.

This description seems to be relevant on
examples where the objective functions are convex.
Under this assumption, to each x

c
, there is a single

and unique *
ix  that minimize f

i
. Thus, there is a

function s
i
 : X

c
 → X

i
 × U

i
 that allow to replace the

Fig. 3. Relative error of y on #1 (light) Fig. 4. Relative error of y
12

 = y
13

 on #2 (light)

Fig. 5. Relative error of y
12

 = y
13

 on #2 (heavy) Fig. 6. Relative error of y
1
 on #3 (light)
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function l
i
 = (X

c
 × X

i
 × U

i
, Y

i
, G

li
) by a simplified

one t
i
 = (X

c
, Y

i
, G

ti
) with G

ti
 = {( x

c
, y

i
)((x

c
, s(x

c
)), y

i
)

∈  G
li
}, where G

f
 is the graph of the function f: G

f
 =

{(x, y)|y = f(x)}. We have T
i
  t

i
, thus if the objective

functions are convex, T
i
 is a good candidate for the

approximation of l
i
.

Moreover, - as shown on Figure 6 - the
approximation at the system level is not always the
best computed at subsystem level. This is true in
two conditions:
• the optimum of the x

i
 are unique and the system

did not yet converge to these solutions.
• the optimum of the x

i
 are not unique and as

explained above, the x
i
 value picked by the first

discipline does not correspond to the x
i
 that

gives the best (x
c
, x

i
) that can lead to the

optimum solution of the coupled variable for
the other discipline.

Example #5 does not fit to the same category
of problems tested. The coupling functions have
been chosen as a system of equation that do not

converge with a Fixed Point Iteration algorithm.
On this problem, COSMOS does not converge
either. The error of approximation increases during
time.

5.2 Quality of Solutions

The solutions found for problems #1 and
#3 are optimum. They correspond to the solutions
that are Pareto-optimum in the both disciplines at
the same time. Thus, we are sure that they are on
the global Pareto front. Indeed, for the first test
problem, COSMOS globally converged to the
solutions x* = (a, 1, 3, 3, 5) with a ∈  [3;7] which
are optimum solutions of the problem. Results of
the third test problem are satisfying too (Figs. 8
and 9). The thin lines at the bottom of the figures
are the Pareto frontiers of the two sub-problems
solved independently. The larger line corresponds
to the Pareto front for fixed values of the other sub-
problems at their optimum (i.e. x

3
 = 3 and x

4
 = 5 in

the first discipline, and x
1
 = 1 and x

2
 = 3 for the

second one). The solutions found by COSMOS are
close to this second Pareto front.

On example #4 the coupled variable
converged but COSMOS did not find the right
solution. Indeed, the optimum solution is unique
and ( * * * *

1 2 3 4, , ,f f f f ) = (-10, -10, -10, -10) but
COSMOS converged to a unique point (f

1
, f

2
, f

3
, f

4
)

= (0, 0, 0, 0). We explain this behavior by the fact
that the population is used at the same time to fit
the objectives and to fit the approximation of the
coupling functions. Here, this interference is

Fig. 7. Scheme of the evolution of the error along
time

Fig. 8. Pareto front f
1
-f

2
 on #3 Fig. 9. Pareto front f

3
-f

4
 on #3
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explicit because the common variables are also the
coupling variables.

If we call P, the set of solutions found by
COSMOS, and S

t
 the set of theoretical solutions

found for the global optimization problem, the P
solution are all in the Pareto set of the global problem
S

t
 (i.e., tP S⊆ ) but they are not spread on the whole

Pareto front (i.e., 0tP S∩ ≠ ). This comes from the
decomposition of a multi-objective problem in
multiple multi-objective sub-problems. One way to
obtain lost solutions is described in [10].

6 CONCLUSION

Many methods have been proposed to solve
multidisciplinary problems. Mono-level ones
(MDF, IDF, AAO), are global methods and thus
are not adapted to the context of extended enterprise
where each discipline has to solve its own
optimization problem without direct access to the
others variables. Multi-level methods give more
autonomy to the disciplines but most of them are
not specifically designed for multi-objective
problems and need adaptations to propose more
than one solution to the designer. COSMOS has
been developed to fulfil these problems.

In this paper, we pointed out problems that
can arise in the treatment of coupling variables in
multi-objective multidisciplinary optimization.
COSMOS, as a first step, has only be tested on
simple example problems and it would be
interesting to perform more tests and particularly
real industrial problems.

Nevertheless, it appears that in this case and
under the assumption of “to a given common
variable x

c
, it exists one and only one value *

ix  of
the disciplinary variable x

i
 that minimizes the

objective function f
i
”, the array that uses COSMOS

to approximate the coupling functions is a good
approximation of the coupling functions. This
assumption comes true if the objective function is
convex. However, in general case our tests indicate
that if this condition is not verified, the method is
not capable of determining the correct value for
approximation. Moreover, we showed that the
values that are kept for approximation - the ones
found at the end of subsystem optimization - are
not always the values which give the best results.
The system tends to solutions that are optimum for
the objective functions but not enough to solutions
that respect the coupling functions.

Taking into account these results, future
research will focus on improving the method of
approximation of coupling functions.

All the above methods have been intensively
studied in the literature, many classification of
methods exists but nothing about the problems. The
difficulties pointed out in this paper could be use
as a basis of a classification of multi-objective
multidisciplinary design problems. This would
permit to run tests on specific class in order to test
the methods.
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