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Abstract

Interaction effects are usually modeled by means nobderated
regression analysis. Structural equation model#$ widn-linear constraints
make it possible to estimate interaction effectsilevhcorrecting for
measurement error. From the various specificatiQiseskog and Yang's
(1996, 1998), likely the most parsimonious, hasrbebosen and further
simplified. Up to now, only direct effects have bespecified, thus wasting
much of the capability of the structural equatioppeach. This paper
presents and discusses an extension of Joreskogrand's specification
that can handle direct, indirect and interactiofeetis simultaneously. The
model is illustrated by a study of the effects afiateractive style of use of
budgets on both company innovation and performance.

1 Introduction

Moderated regression analysi@MRA) - a particular specification of multiple
linear regression analysis- has been widely used amagement research for
testing models that involve the presence of a Wdeighat influences the impact of
an independent variable on a dependent variabletsimsual formulation, MRA
includes as an additional regressor a multiplicatierm between two exogenous
(independent) variables which represents the actéon effect (Jaccard et al.,
1990; Aiken and West, 1991; Hartmann and Moers,9198vin and McClelland,
2001). Instances of recent applications of MRA iamagement research can be
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found everywhere from Accounting (Li and Atuahenen@j 2001; Abernethy and
Brownell, 1999), to Marketing (Sethi et al., 2001).

However, because of measurement error, the estsmatke regression
coefficients in MRA are not consistent. Biased msiies -actually attenuated
estimates- limit the use of the technique to pupmbdictive purposes. This bias is
especially relevant for interaction effects that asually of low magnitude and
may easily go undetected if attenuated. Additionaltg estimated standard errors
of regression coefficients are also biased; so, coberent inferences about
population parameters or relationships among véesmban be made.

The use ofstructural equations modelSEM) for correcting for measurement
error has been proposed in the management literataninly by researchers in
marketing (Bagozzi and Yi, 1989; Homer, 1990; Ashetkal., 2002). However,
SEM have been proposed only rarely for estimatingeradtion effects in
management (Ping, 1995). This paper critically adsles the problem of modeling
and testing interaction hypotheses. It has threpqmes:

* to contribute to the discussion among methodolegmt SEM (J6reskog
and Yang, 1996; Ping, 1995, 1996; Jaccard and \W886; Li et al., 1998;
Joreskog, 1998; Algina and Moulder, 2001; Schumpack@02; Moulder
and Algina, 2002) by combining aspects of the ddferstrategies. We use
centered indicators as Jackard and Wan (1996) pepor avoiding
collinearity while using a single indicator for imgetion as Joreskog and
Yang (1996) propose to increase parsimony.

* to offer an extension of the usual specificatiom foodeling interaction
effects. So far, interaction has only been specifiatbng exogenous latent
variables, ignoring the usual case of having inctirsffects simultaneously.
This leads to the specification of a simultaneoggagion system.

* to use the full strength of SEM by distinguishingiveeen direct, indirect
and total effects, and discussing the interpretatd the interaction effects
in the context of a simultaneous equation model.

The paper is organized as follows. First, curreBMSapproaches for modeling
interactions are briefly reviewed. Second, a modifien of the Jéreskog and Yang
(1996) single indicator approach is discussed, @émal, a simultaneous equation
model is proposed as an extension of pmeduct indicant approacl{Kenny and
Judd, 1984) and specifically as a generalizationhef Jéreskog and Yang model.
Discussion of testing and interpretation of theeraction effects follows. Finally,
in order to illustrate this proposal, the new mosleécification is used to examine
the potential direct, indirect and moderating ef$eof an interactive use of
budgetsas management control systems on hotiovationand on performance
of firms.
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2 Approaches to model interactions with latent
variables

The constructs involved in management and marketgsgarch, such as the ones
just mentioned (i.e. innovation, performance, udebadgets) lead to models
including latent variables which contain measurememor. So, instead of using
observable regressors, researchers have tendedsdomultiple indicators to
measure an underlying assumed continuous constfhemn the latent variable is
specified by combining these indicators, frequentyysimply adding their scores
(Spector, 1992; Likert, 1932; Simpson, 1755) whilckes not completely solve the
problem, as regressors obained with summated rasngles still contain
measurement error.

Since the 1970s (Joreskog, 1973) a major advard§&EM is its capability to
correct the estimates of the linear relationshigéween latent variables, both
direct and indirect, for the measurement errors

In the 80’s Kenny and Judd (1984) proposed a posssecification for
modeling interaction effects under the SEM approaghich assumed that both
interacting variables are continuous. Kenny and Judipproach requires each
latent variable to relate to at least two indicat@nd implies the formation of
multiple indicators based on the products of thesesbed variables. These
products are then used as indicators of the latgataction. Different alternatives
have been proposed for developing Kenny and Juddpgcach. These include
Jaccard and Wan's (1995) multiple product indicatapproach, Jéreskog and
Yang's (1996) single product indicator approachngR (1995, 1996) two-step
single and multiple product indicators approachd &ollen and Paxton (1998)
two-stage least squares single indicator multiplgtrumental variables approach.
When one or both of the interacting variables aserte and the number of cases
in each class large enough, then a "multigroup"rapph should be applied (e.g.,
Batista-Foguet et al., 2001; Lomax, 1983).

Most of these product indicant approaches requE& $rograms that permit
the use of non-linear constraints. Developmentsdfiware and contributions by
Joreskog and Yang (1996) and Ping (1995) have ntatieich easier to apply the
Kenny and Judd approach, highlighting problems aswlies related to modeling
interaction effects in latent variable models.

2.1 Ways to obtain the indicators of a latent inteaction in SEM

It is not the aim of this paper to provide a conifmesive presentation of the
various procedures currently available for testingeraction effects in structural
equation modeling (See Li et al., 1998; or Schuraaakd Marcoulides, 1998).
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The Jaccard and Wan (1995) multiple indicator mdthsimultaneously
includes all cross-products of the original indor&t of both interacting latent
variables. So it is a straightforward but not paarsinious implementation of Kenny
and Judd’'s approach. In addition, this approachddeto problems of non-
normality of the indicators because the product wb tnormally distributed
variables is not itself normally distributed everthe original variables are.

Joreskog and Yang (1996) argued that multiple iattics for the interaction
are not necessary; pointing out that the model candentified with a single
indicator of the product variable, which leads tonadel with fewer parameters,
fewer complex constraints and fewer non-normal potdndicators.

Ping (1995, 1996) uses summated rating scales bopate scores for both
interacting latent variables, and then multipliéede scales to obtain a single
indicator of the interaction. The author derives #xpressions of the loading and
the error variance of the interaction indicator dxhson those of the original
indicators, which can be used in two alternativeysvdn a more convenient two-
step strategy to fix the values of the measuremamnarmeters of the full model,
using estimates obtained in a previous confirmatéagtor analysis of the
indicators of both latent variables that interdat.a more sophisticated one-step
strategy as a set of constraints involving the mesment parameters in the
estimation of the full model. The performance ot thtandard errors and test
statistics in the former two-step strategy has resrbstudied.

This paper focuses on the approach by Joreskog aadg Y(1996), and
developments by Yang Jonsson (1998) and Yang Watleartd J6reskog (2001).
These authors use non-centered indicators becaegyecbnsider the means of the
latent variables, which are related to the meanthefobserved indicators and to
other model parameters. However, this consideratigplies additional constraints
in the structure of the measurement model. Thesstcaints can be avoided if the
purpose of the analysis refers only to the covariarem@ong latent variables. We
therefore suggest modifying Joreskog and Yang's @gghr by using centered
indicators and modelling only covariances, whichngs the approach closer to
those of Jackard and Wan and of Ping. In additicentered indicators would
avoid collinearity with the latent interaction, aipobwhich we take up later.

3 Joreskog and Yang's specification in SEM for
modeling interaction effects. Single equation model

In general the following model has been specified the latent variables,
represented by the Greek lettgas opposed to the observed variables:
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Figure 1: Single equation SEM for modeling interaction effec

This latent exogenous variables model can be ptedeby the following
equation:

Na= Qa+ Basti+ Baz o + Bazlls + {4 (3.1)
where 17z=n1-1> (3.2)

where [i stands for the regression coefficient gf on 7 and {4 is the
disturbance term. In this approach all three vdesly, ,7, and 73 are exogenous
variables with free variancegi and covariancesiw. Although r7; and 7, are
centered/)s is not So, other parameters aE€r73)=as and Var{s)=(ua,

It is assumed, without loss of generality, that thest exogenous latent
variable has two indicators, the second three gugics, and the endogenous latent
variable (whose measurement error does not leadedficient bias) one indicator.
As is usual (JOoreskog and Yang, 1996; Yang Jonsse®8) the first indicator of
each variable is used to build the single indicawbrthe interaction ys=y1Ys).
These assumptions lead to a measurement modetahdte specified as follows:

r Y= ntAdum+ a

Yo= D+ A it &

Y= B3+ A2+ &

< V4= Ty +A42 Nt é (33)
V5= I5 +As2 1o+ &
Yo=T6 + Ae1 1+ A2 o+ As3/l3+ &

9 Y7 =14

For identification purposes, and without any losgyeherality, the scale of the
latent variables is fixed by constraining the loagirof the indicators that are used
to compute the product indicator:
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All =1 and/132 =1 (34)

Additional parameters of the measurement part aggy=6;.

The specification is completed with the assumptithved 171, 77;, and &, to & are
multivariate normally distributed with zero expedbat Additionally, & to & are
assumed to be mutualigdependen{not only uncorrelated) and independentof
1, and{,, andz independent of, andr..

These assumptions allow us to decompose the exXpmttavariance and
covariance of the product indicator, as well asdarive non-linear constraints,
relating its associated parameters. Thus, the mddibf the product indicant
variable involves the estimation of very few additab free parameters.

If y; andys; are used to fix the scale of the latent variabths, single product
term,ys, is computed as:

Yo = Y1Ys =(nt Mt &1) (T5+ 172+ £3) (3.5)
SnBRY BNt it t &

wheregs= BE;+ TEz+ MEst N2 Ert E1€3 (3.6)

The following constraints can be derived from thepressions ofys in
Equations 3.3 and 3.5:

le=— I 13

Ao1=T3

A62: 4 (37)
A63:1

The measurement error variances and covariances bearderived from
Equation 3.6, which involves the following constris:

{961 =E(&s&1) = BE(E1£7) = 13611 (3.8)
Os3 = E(c563) = nE(£363) = 11 B3

Os6 =Var(&)= Var(nes + nEs+ MmeEst Ny Ert £1€3)
=17 Var(e;) +1° Var(g)+Var(n)Var(e;)+ Var(n)Var(&z)
+Var(g)Var(es) (3.9)
=17 G11+ 176+ Y16+ rBi1+ 011633

Under bivariate normalityof the main effectg; and;, (Anderson, 1984), the
variance of the product of latent variables is:

Y3 = Var(nz)= Var(n.-,) = Var(n)Var(m)+Cov(mm) =g gpr + W1 (3.10)
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And its expectation:

a3 =E(173)=E(11112)=Cov(n112)= ¢ 21 (3.11)

Although this model leads to some extra parametéys Aes2, A63, Y3, Gs1, Gs3,
66, Ts and a3), it has been shown above that all of them canebpressed as
functions of other parameters of the model, so tisang these constraints the only
extra parameters to be estimated @, (s, (that is, the covariances of latent
variables that are customarily free and identifie)d f[i3, the parameter of
interest. So with a litle extra effort, one can cpe these constraints and this
model can be estimated. Constraint 3.10 (requinogmality) is not needed for
identification and can be omitted 4k and s, are non-normal.

4 Modification of the Joreskog and Yang approach to
model interactions

4.1 Use of centered indicators

It has to be noted that any indicant product apgioaay lead to substantial col-
linearity, precisely because the measures assocvatédthe interaction construct
are functions of the measures of the main effeatstmicts (Ridgeon et al., 1998).
Consequently, in order to avoid collinearity, we sesfgthat the analysis is
conducted orcentered indicators of the interacting variablesg&i et al., 1998;
and the Appendix in Irwin and McClelland, 2001, fmmore detailed discussion
on the elimination of collinearity by changing theigin of the variables which
interact). This involves computings from the centered indicatoss andys and
subsequently centering again.

In those cases where the mean structure parametensit are not of interest
to the researcher, Equations 3.1 and 3.3 becometeshand constraints in
Equations 3.7 to 3.11 from Joreskog and Yang's a@pgn can be reduced
dramatically in both number ancbmplexity, thus simplifying the analysis while
preventing collinearity. Since for every original ¢tered indicator the
measurement intercept, is zero, and the expectations and interceptef all
latent variables are also zero (evgs is implicitly redefined asps-as) , these
equations and constraints become:

Na= P/t Bazllz + Paz s + {a (4.1b)
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rYi=mtéa

Vo= A1t &

V3= 1t &

< V4= /142 mté& (43b)
Y5= Asp 1o+ &
Y6= I3+ &

kY7= Na

Y6 =Y1Y3 = /I2/l1 + &6 (4.5b)

wheregs= niEs+ N2 Ert €163 (4.6b)
which leads only to the following simple constraints

Oss = Y163+ o O11+ 6116033 (4.9Db)

Yas = Yh1 Yoo + Yo (4.10b)

with )\63:1 andr6=)\61=)\62=661=663=0.

N1

¢ lle

Figure 2: Structural equation model including direct, indirand interaction effects
simultaneously.

4.2 A simultaneous equation system. Specification

Interactions with SEM have so far only been modeléth one equation, where the
regressors that interact are exogenous latent Masg Schumacker and Marcoulides,
1998; Li et al., 1998; Schumacker, 2002; Moulded &igina, 2002). This single
equation formulation discussed in the SEM literatand presented in the previous
section allows for correction of measurement ebrot, due to the use of a single
equation, it only makes it possible to estimate ititeraction effect. In order to
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also estimate indirect effects in the same moddinaultaneous equation system
must be specified which extends the usual singtecator specification by Yang
and Joreskog (1996), including direct, indirect andderating effects in the same
model. The structural part of our proposal is spiediin Figure 2.

The structural part of the model includes Equatdhib and an additional
equation for the relationship among the up to nawgenous variables); andn..

= Borini+ {2 (4.12)

Now only 7; and n73=m117, remain exogenous. Additional parameters of the
structural part are Vam)= ¢ k= 1 to 4.As in the one-equation specification, all
covariances betweery; andits constituentsn; and n, are model parameters:
Cov(ns,m)=yns and Cov{s (o)=ys2. Unlike the previous case, noys, involves a
disturbance term.

The main difference with the previous specificatisrihat not all the variances
and covariances of; and 7, are model parameters but rather functions of model
parameters that can easily be derived from pathyarslor from variance and
covariance algebra:

{Var@z )= oot o 1 (4.13)
Cov(n1,172) = Bo1 ha

The measurement part is specified as before in &mua4.3b. The
specification is completed with the assumptions tha &, 775, {4 and & to & are
multivariate normally distributed with zero expedtat In addition, thee terms
are independent, both mutually and with alhnd(. {4 is independent ofis, (> and 7
and{; is independent of;.

Substituting in Equation 4.9b the new expressiantli@ variance ofy, yields:

66 = Y11653+ (Bor’ Y+ Wo2) O11+ 61165 (4.9¢)

Finally, the variance of the product of the lateatigbles is:

Yss= Var(nzVar(r) + Cov(nu/,)= (4.10c)
Yh1 (1/122"‘,3221 1) + (B2 l//11)2= Yhi Yoo + 2ﬁ221 lﬂzll

Given that the model in this section is saturatedhwrespect to the
relationships for the latent variables and thusdsivalent to the previous model,
it leads to the same results for Equations 4.1b 4u3#h. However, the model in
this section also estimates the relationship betwee and 77, and thus both a
direct and an indirect effect fromy to 7.

We have chosen the simplest model with only two &qua where one
interacting variable has a causal effect on theeotlariable. However the same
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approach could also be used if one or more exogewaviables would have an
effect ons; and 77,. The formulation would remain the same, only a sitibist for
Equation 4.13 would have to be derived by path amslyiscluding Varg:) if
needed, which would have obvious implications foqu&tions 4.9c and 4.10c.

4.3 Interpretation

The effect ofr, on 174 conditional on different values af;, can be obtained from
the expected value in the expression

E(74) = Baum+ Baz 2 + Bas NNz (4.14)

as the partial derivative(B,) with respect to7,.

0E(",)
a1,

=Bt Bidh (4.195)

Besides a direct main effect, this equation alsspldiys a typical interaction
effect, in which the effect ofy, on 17, depends on the value af;. Thus, the
interpretation of the main effeg, parameter is that occurring when the value of
the other variable is zero. if; and 7, are mean centere@,, can be more easily
interpreted as the effect for the mean value ofatier variable.

In order to assess the effect gf, its relationship tag, has to be taken into
account, so that:

0E(,)
on,

=B (4.16)

And the partial derivative of Equation 4.14, nowthvrespect tag; gives us
the total effect ofp; on 74 as:

0E(7,)
07,

= Bat BB+ Bas(1; + Barlh) (4.17)

This equation displays a direct main effg&t, an indirect effeciBi25,1, the
interaction effectBs3/7, and a combined interaction-indirect effg&g1/7:. Thus,
the effect of;, on 17, depends on the value @f, to a greater extent than one
should expect from the interaction effect alonew# omit all terms related to the
indirect effect we have the direct main and intéiaceffects as:

Bai * Bl (4.18)
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Standardization preventg; from being equal te;n, and thus Equation 4.14
from holding (see Jaccard et al., 1990). Thus,irstkrpretations in this section
must never be done with standardized parameters.

4.4  Estimation and testing

In general, for SEM normality is not required famnsistency of ML estimates (e.g.
Satorra, 1990), but only for the correctness ohdéad errors and test statistics.
However, in the interaction model case, the restncin equation 4.10c only
holds under normality of the main effects, and thosn-normality implies a
specification error and can lead to bias. The Hmient of the normality
assumption must thus be thoroughly assessed mrifitting this type of models. If
the main effect indicators appear to be non noren the model should be fitted
with constraint 9c only.

However, since the product indicant will not be matly distributed even if
the main effect indicators are, methods that compsiandard errors and test
statistics that are robust to departures from nditynare required even in the
normal case (Yang-Wallentin and J6éreskog, 2001).

Robust procedures in SEM appeared earlier on. Beo(l!984) suggested an
alternative asymptotically distribution free estima method that later research
has reported to be limited in all but extremelygrsamples (e.g. Muthén and
Kaplan, 1992; Fouladi, 2000).

Following a different path, Satorra and Bentler88,91994) developed robust test
statistics such as the mean-and-variance adjyétsthtistic, the mean scalgd statistic
and robust standard errors. These statistics arerigint ones to use under arbitrary
distributions when using the still consistent seaddVIL estimation method. Among these
robust statistics, the mean scalgdstatistic is preferred for smaller samples (Satorra
2001).

On the contrary, t-tests of significance of indiwvad parameters like the
interaction term using robust standard errors ave mrecommended for small
samples (Boomsma and Hoogland, 2001). Mean-sceletifferences should be
used instead. Unfortunately, the difference betweem mean-scaleg/ statistics
is not ¥ distributed, though some easy adjustments can dgenby hand (Satorra
and Bentler, 2001).

Let To andT ; be the mean-scale}d2 statistics,To and T, the standard MI,)(2
statistics,cyp andc, the scaling constants obtaineccgsTy/T oandc; =T4/T 1, andd, and
d; the degrees of freedom for two nested models hidlwModel O is more restrictive. The
robusty? difference can be computed as:
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T, -,
Robusty? difference= —2—1
¢ doCo - dlcl

(do - dl)

(4.19)

The LISREL8.5 program (Du Toit and Du Toit, 200hcludes these robust
statistics and allows the researcher to introdume-linear constraints and is thus
appropriate for the estimation of this model.

5 Anillustration
5.1 Background

The example we will use comes from a study by Bigb@02). He analyzes the
effects of the style of use of budgetg) on innovation £) and performances).

In Bisbe’s study, following Simon’s framework (Sims, 1991, 1995, 2000) the
following hypotheses are formulated:

» Hypothesis 1it is postulated that the more interactive the osdudgets,
the greater the innovation. This is equivalentagisg thatf; is larger than
zero.

* Hypothesis 2it is postulated that, the greater the innovatibre, better the
performance. This hypothesis can be consideredltd ii Equation 4.15 is
greater than zero for all values in the usual rawogevariation of 7.
Hypotheses 1 and 2 together imply an indirect eff#cinteractive use of
budgets on performance.

* Hypothesis 3it is expected that the interactive use of buddets a larger
effect on performance when innovation is high, whieads to the inclusion
of an interaction ternms, and to the effegBsz being positive.

* Hypothesis 4:there may also be a direct effect of the interactuse of
budgets on performance. This is equivalent to gayitat Equation 4.18 is
larger than zero for all values in the usual rangeariation of7,. Even if
this hypothesis does not hol@;1 must also be included in the model as the
inclusion of interactions makes all main effectge®sary in order not to get
misleading interaction estimates (Irwin and McCdeld, 2001).

All these hypotheses make our model identical @t @Wf Figure 2. Note that
some of them are directly related to values of rgl@ model parameter while
others are not.
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5.2 Data and measurement instruments

Bisbe (2002) developed multi-item instruments foreasuring the following
constructs:

Interactive Style-of-use of Budgetsga:

y1: the extent to which information from the budggstem demands frequent
and regular attention from the top manager;

y2: the degree to which information from the budgedtem is discussed face-
to-face on a permanent versmerely on an exception basis.

Product Innovationry):

ys. part of the product portfolio corresponding teeatly launched products;
ya: rate of introduction of new products;
ys: tendency of firms to pioneer.

These five items were in a Likert format rangingnr 1 to 7. In those cases
where budgets were not used at all in the comptreyjtems y and ¥ were scored
zero. The three innovation items, referred to tast lthree years as compared to
industry average.

Performance (17;): Based on the multidimensional self-rating instent
developed by Govindarajan (1984, 1988), performanes assessed through a
battery of items that represent effectiveness @erées of financial (sales growth
rate, revenue growth rate, return on investmenofifgsales ratio) and customer
dimensions (customer satisfaction, customer red@ntcustomer acquisition and
increase in market share) over the last three yasarsompared with the industry
average. Items were weighted according to theiryimgr perceived relative
importance. Composite scales are not free fromsmeanent error, but this does
not introduce any parameter bias when the variaiasured with error does not
have any effect on any other variable.

Data were gathered through the administration efridten questionnaire to a
sample of chief executive officers of medium-sizetature manufacturing firms
with headquarters located in Catalonia, Spain (8js3002). The whole population
studied comprised 120 firms. 58 questionnaires wetarned, all of which were
complete. Thus, the response rate was 48.33%. Hewefor the sake of
consistency in the time framework of the study, esasvhere the executives
reported less than three years in their currentgobition (n=18) were excluded.
The resulting useable sample was thus n=40.

Even though a sample size of 40 can be consideattr small, in SEM the
precision and statistical properties of the estasadnd the power of the tests do
not only depend on sample size but also on a nuraberodel characteristics. In
regression models, parsimony, absence of colliteand high percentages of
explained variance reduce the sample sizes nedde€sEM, the list is completed
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with analogous characteristics referring to the sueament part: low numbers of
latent variables, high numbers of indicators péena variable, low number of free
parameters, and high reliabilities of the indicatocan reduce sample size
requirements (e.g. Saris and Satorra, 1988).

6 Results
6.1 Measurement model

First, we specified a three-factor confirmatoryttacanalysis (CFA) model where
the latent interaction has a single indicator asléneskog and Yang (1996). The
introduction of the latent interaction in the measunent model involves the
introduction of the constraints in Equations 4.9td a4.10b. Additionally, the
parsimony of the model was increased by assumiagttie units of measurement
were the same for all indicators of the same fa¢Exjuation 6.1). As mentioned
earlier, parsimony and high indicator reliabilityeagoing to be crucial witlour
small sample size. The estimates and path diagramth® model including
Equation 6.1 are in Figure 3.

Azl =1, Agz =1 and /]52 =1 (61)

L|J11:2.051

Y1 |[€— 61,=0.889; R=0.698

Yy, |4—  6,,=0.503; F"=0.80¢

Y3 |g— 03:=1.136; R=0.564
€4— 6.,=1.315; R=0.528

Vs

)\52:1

P3,=-0.108

nas,Interaction

Figure 3: Estimates of the measurement model.

P3,=0.771 €— 05:-0.426; R=0.776

Vs

l.|J33:3.420

Ve — 0,:=4.649; F?=0.42¢
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The robusty? difference test statistic for the constraints iquBtion 6.1 was
0.38, with three degrees of freedom and is thusarblenon-significant (p-
value=0.94). The removal of the constraints wouidrease standard errors by
54%, on averageover all parameters. This is comparable to the e@ase in
standard errors that takes place if the sample isizéivided by about two and a
half. The high estimates of the reliabilities oetimdicators and the low estimates
of factor correlations (0.37 was the highest valneabsolute terms) of the
constrained model also help reduce small sampétaélproblems.

The goodness of fit of the model with the constteim Equation 6.1 was
excellent with a SatorrBentler scaledy?, of 14.602 with 11 degrees of freedom
(p-value=0.201).

6.2 Structural model
The measurement and structural part are, of coaest@nated simultaneously (See
in the appendix the setup for modeling the inteaoactvith LISREL 8.51) but since

measurement estimates have already been presantedure 3 we only give the
results of the structural part here, which is showthe path diagram of Figure 2 .

Table 1: Estimates of the structural model

Estimate Robustx® Robust

Parameter / diferencé p-value
Index

Lz 0.306 5.89 0.015
Bio 0.415 2,19 0.139
Bur 0.073  0.24 0.624
L1 -0.309 3.63 0.057
R2(1,) 0.132

R2(1) 0.552

robusk®  15.80

d.f. 14

p-value 0.326
! Equal loading constraints as in Equation 20 wewgoised
2 Robusty? difference statistic to test the significance loé t
individual parameter, with 1 d.f.

For testing the effect of the latent interactionpmrformance (constraints=0)
we used the robugf difference statistic. The statistic is 5.89, witllegree of freedom
and is thus clearly significant (p-value=0.015)eTrelevance of the interaction effect is
also revealed by the fact that fReof the equation ofy, would drop from 0.552 to 0.286 if
the interaction effect was removed. HypothesistBus clearly supported.
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No other effects are significant. However, we cagua that the significance of
the By3 interaction effect implies that th&,, and 5,1 main effects must also be in
the model even if non-significarftrwin and McClelland, 2001). Hypothesis 1 is
clearly not supported, while Hypotheses 2 and 4oinvwg main effects are
assessed next.

The interpretation of the interaction effect follewaturally. A statistically
significant interaction indicates that there isanfadditive effect (i.e. independent
and proportional effects) of both factors parformancebut rather that the effect
of each factor depends on the value of the otherother wordsthe expected
effect of a factor should be interpreted conditiooma the value of the other
moderating factor.

For instance, Figure 4 illustrates how the effectnrmovationon performance
depends on the value of theteractive style-of-use of budgetsy showing the
decomposition of the total effects of both factorsperformancefor the values 0
and 1 of the other factor.

B43=0.30

B4=0.41

0,0 AI77:1 I72>

Figure 4: Decomposition of the total effect of innovation parformance.

Figure 4 illustrates the interpretation of the wmstardized total effect aj, on
N4, according to Equation 4.15, as the direct effght) plus the interaction effect
(Bs1m1). Thus, each additional unit afnovationraises the expected increase in
performanceby 0.721 if the interactive use of budgets eqdals

Thus, to assess hypotheses 2 and 4, which relateetanain effects ofj; and
n. on performance, these main effects have to be abtedpaccording to Equations
4.15 and 4.18 and must be evaluated conditiontieaange of plausible values of
the other factor. To represent this range, we tihekpercentiles 5, 25, 50, 75 and
95 of the itemg/; andys that are used to fix the scale pfand s, respectively.
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Table 2: Conditional effects on performance.

percentle 5 25 50 75 95

conditioned ony,= - - - 1.77 2.70
2.23 1.23 0.23
Equation 4.15 (Hypothesis 2). Conditional to -
effect of 77, on 7, 0.27 0.04 0.34 0.96 1.24
conditioned ony,= - - - 0.90 2.90
2.10 1.10 0.10
Equation 4.18 (Hypothesis 4) Condit. non indir - -
effect of7,0n 74 0.57 0.26 0.04 0.35 0.96

Table 2 clearly shows how much the effect of eaabtdr on performance
could differ when the values of the other factog saried. They can have negative
effects for low values of innovation and of theeardactive use of the budgethile
the magnitude of the effects can be considerablermtine factors take on high
values. The fact that negative effects are possibltecertain values does not
support hypotheses 2 and 4.

7 Discussion

From the introduction, the reader is aware thatghegose of this paper is mainly
methodological. The paper provides a modificationd @n extension of J6reskog
and Yang’s approach for modeling interactions.

This paper started by referring to the need fordiag measurement errors
through SEM instead of using MRA for modeling irgetion as marketing studies
usually do. A re-analysis of the same data usingAMiR summated rating scales
yielded a R for performance equal to 0.29, about the half e B® obtained in
this paper. This is the result of measurement eattnuation.

Given that most analyses refer only to covarianghke mean structure being
unnecessary to identify the relevant regressiompeslparameters) we propose a
modification of Joreskog and Yang's SEM strategy d¢®ntering the original
indicators prior to computing the interaction terrand then centering the
interaction term as well. In this way we avoid aodarity while parsimony
increases in the single indicator approach. As asequence, the additional
constraints involved in the measurement model'scdtire are simplified, which
dramaticallyreduces the software set up. The only disadvantagg be a small
loss in precision of the estimates due to the lolssne degree of freedom as a
result of the constraints imposed on the mean sirac This drawback could not
be observed for our data, for which standard emase even 2% lower on average
when analysing only the covariance structure. Clarig the point estimates were
also very minor.
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Finally, the crucial question this paper tries tswer is: if one of the strengths
of SEM is modeling indirect and direct effects tdg, why should interaction
always be modeled only with direct effects? The gragpecifies a simultaneous
equation system to jointly estimate direct, indtremd interaction effects in a
single step and in the same model using full infation estimation procedures.
The covariance structure involved by the simultareequation system is also set
forth. In addition, the paper proposes an originakery straightforward
interpretation of the results, analysing the tagHects in terms of direct, indirect
and interaction effects (Equations 4.14 to 4.18uFe 4 and Table 2). Though
only one very simple case has been presented, dtenial for generalizations is
large. Only the variances and covariances of batiables that interact have to be
expressed as a function of model parameters by snebpath analysis.
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Appendix

Setup for modeling the interaction and indirect efécts with LISREL 8.51

Modified Joreskog and Yang’'s model of interaction a nd indirect
effects

DA NI=7 NO=40

LA

y1ly2 y3y4y5y6y7

CM fi=mlcm.cm

AC fi=mlcm.ac

MO NY=7 NE=4 LY=FU,FI BE=FU,FI TE=DI,FR PS=SY,FI
LE

etal eta2 eta3 etad

FR be(2,1) be(4,1) be(4,2) be(4,3)

FR ps(3,1) ps(3,2) ps(1,1) ps(2,2) ps(3,3) ps(4,4)

VA 1 1y(1,1) ly(2,1) ly(3,2) ly(4,2) ly(5,2) ly(6,3 ) ly(7,4)

Fl te(7,7)

CO te(6,6) = ps(1,1)*te(3,3)+ps(2,2)*te(1,1)+be(2,1 )**2*ps(1,1)* ¢
te(1,1)+te(3,3)*te(1,1)

CO ps(3,3) = ps(1,1)*ps(2,2)+2*be(2,1)**2*ps(1,1)** 2

OuU ML




