
Informatica 33 (2009) 431-440 431

Realization of UML Class and State Machine Models in the C# Code
Generation and Execution Framework

Anna Derezińska and Romuald Pilitowski
Institute of Computer Science, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland
E-mail: A.Derezinska@ii.pw.eu.pl, http://ii.pw.edu.pl/~adr

Keywords: state machine, UML, code generation, MDE, C#

Received: April 3, 2009

Many benefits are expected due to usage of code generation tools. A reliable application should be
created effectively based on complex structural and behavioral models. Model driven approach for
program development is realized in Framework for eXecutable UML (FXU). The tool transforms UML
models into C# source code and supports execution of the application reflecting the behavioral model.
The framework consists of two components: code generator and run time library. The generated and
executed code corresponds to structural model specified in class diagrams and behavioral model
described by state machines of these classes. All single concepts of behavioral state machines included
in the UML 2.x specification are taken into account, including all kinds of events, states, pseudostates,
submachines etc. The paper discusses the transformation of UML state machines into C# language. It
presents checking the correctness of classes and state machines decided in the framework in order to
run a model-related and high quality C# application. The solution was tested on set of UML models.

Povzetek: Predstavljeno je orodje za avtomatsko generacijo kode iz UML v C#.

1 Introduction
Model Driven Engineering (MDE) represents software
development approaches in which creation and
manipulation of models should result in building of an
executable system [1]. There are two general directions
towards model execution. The first one is aimed at the
direct model execution in a virtual machine of a
modelling notation. This idea resulted in the
development of the Foundation Subset for Executable
UML Models specification (FUML [2]). It defines a
basic virtual machine for UML.

The second trend assumes transformation of a model
into possibly more refined models, and finally into a
target code. The output code is usually expressed in a
general purpose language. It can be further modified,
completed and used for building a final application, with
commonly used development environments. In this paper
we discuss problems concerning building an executable
C# application from UML classes and state machines.

Industrial product development puts a lot of attention
on fast implementation of needed functionalities. Model-
driven approach to program development offers a
promising solution to these problems. Complex
behavioral models can be designed and verified at early
stages of the whole product creation cycle and
automatically transformed into the code preserving the
desired behavior.

State machines, also in the form of statecharts
incorporated in the UML notation [3], are a widely used
concept for specification of concurrent reactive systems.

Proposal for execution of behavioral UML models
suffers from the problem that no generally accepted
formal semantics of UML models is available. Therefore,
validation of UML transformation and model behavior
depicted in the resulting code is difficult. Rather than
completely formalizing UML models, we try to deal with
selected aspects of the models.

Inconsistency and incompleteness allowed by UML
can be a source of problems in software development. A
basic type of design faults is concerned with the well-
formedness of diagrams [3]. Typically, completeness of a
design requires that model elements are specified with
their features and usage of one element can imply a
usage of another, directly related model element. In the
current modeling CASE tools some completeness
conditions can be assured automatically (e.g., default
names of roles in associations, attributes, operations etc.).
Incompleteness of models can be strongly related to their
inconsistency, because it is often impossible to conclude
whether diagrams are inconsistent or incomplete [4].
Therefore, within this paper we will refer to model
defects as to correctness issues.

The Framework for eXecutable UML (FXU) offers a
foundation for applying MDA ideas in automation of
software design and verification [5]. The FXU
framework was the first solution that supported
generation and execution of all elements of behavioral
state machine UML 2.0 using C# language. In order to
build an application reflecting the modeled classes and

432 Informatica 33 (2009) 431–440 A.Derezińska et al.

their behaviors specified by state machines, we resolved
necessary semantic variation points [6]. Semantic
variation points are aspects that were intentionally not
determined in the specification [3] and its interpretation
is left for a user.

It was also necessary to provide some correctness
checking of a model. This paper is devoted to these
issues. To present potential problems we selected one
target application environment, i.e., creation of
application in C# language. The verification of an input
UML model is based on a set of hard coded rules. Some
of the rules are general and can be applied for any object-
oriented language, as they originate directly from the
UML specification [3]. Other rules depend on the
programming environment because they take also into
account the features of the target language - C#. The
verification is performed during transformation of class
and state machine models into the corresponding code; it
is so-called static verification. Other set of rules is used
during execution of the code corresponding to given state
machines; so-called dynamic verification. For all
correctness rules the appropriate reaction on the detected
flaws were specified.

One of the contributions of the paper is exploitation
of C# constructs to create concise representation of state
machines, including also all complex concepts of UML
behavioral state machines. Additionally, the correctness
rules for UML models are presented, aimed at executing
class and state machine models as C# applications.

In the next section we discuss the related works.
Next, the FXU framework, especially solutions used for
state machines realization, will be presented. In Sec. 4
we introduce correctness issues identified in the
transformation process and during execution of state
machines. Remarks about experiments performed and the
conclusions finish the paper.

2 Related work

2.1 Code generation and execution support
There are different policies dealing with UML models to
be transformed. Transformation of a model into the
corresponding target code can be realized for any general
UML model. The main restrictions concern model
correctness but not the direct correspondence to any
target notation. Many code generators incorporated in
modeling tools, and also the FXU framework, support
this approach. It helps dealing with not complete and not
specialized models, which often encounter in software
development and evolution praxis.

An opposite strategy is the refinement of a model
towards the concepts of the target notation, which can be
a programming language. This refinement can be
completed, for example, using a set of stereotypes
included in a UML profile dedicated for the considered
notation. This approach is represented by IBM Rational
modeling extension for Microsoft .NET [7]. However, it
should be noted that the tool supports only selected C#
concepts and the relations between refined model

elements are not validated. Moreover, state machines are
not taken into account in code generation.

Many modeling tools have a facility of transforming
models into code in different programming languages.
However, the most of them consider only class models.
We compared functionality of twelve tools that could
also generate code from behavioral state machines. Only
few of them took into account more complex features of
state machines, like choice pseudostates, deep and
shallow history pseudostates, deferred events or internal
transitions. The most complete support for state
machines UML 2.0 is implemented in the Rhapsody tool
[8] of IBM Telelogic (formerly I-Logix). However it
does not consider C# language.

There exist different approaches to building an
executable application basing on behavioral UML
models. In the first one, the code created as the target of
model transformation includes the mapping of the state
machine structure as well as the logic supporting model
execution [9, 10]. Therefore, large number of code must
be generated even for simple state diagrams. All
semantic issues have to be resolved directly in the
generated code.

Another solution is usage of a kind of a run-time
environment. It assumes an existence of a library or
virtual machine that provides an engine for state machine
execution [8, 11, 12]. The generated code depicts only
the structure of the input state machine. The code is more
compact and easier to understand and to modify. The
FXU framework is based on the second solution,
applying a run-time library.

2.2 State machine semantics
A huge amount of research efforts is devoted to
formalization of UML models, specification of their
semantics and verification methods [13]-[17]. However
they are usually not resolving the practical problems
which are faced while building an executable code,
because of many variation semantic points of the UML
specification.

An attempt for incorporation of different variation
points into one solution is presented in [18]. The authors
intend to build models that specify different variants and
combine them with the statechart metamodel. Different
policies should be implemented for these variants.

The semantics defined in the FUML specification [2]
are generally a precise definition of a subset of the UML
semantics given in the UML 2.2 Superstructure
Specification. The FUML specification is limited to the
selected UML elements considered as mostly used.
Therefore it does not deal, for example, with all features
of state machines.

2.3 Model correctness
Our work relates also to the field of correctness of UML
models. The consistency problems in UML designs were
extensively studied in many papers. It could be
mentioned workshops co-located to the Models (former
UML) series of conferences, and other works [4, 19-22].

REALIZATION OF UML CLASS AND STATE… Informatica 33 (2009) 431–440 433

Checking of models is important in Model Driven
Architecture (MDA) approaches [23, 24] where new
diagrams and code are automatically synthesized from
the initial UML model: all the constructed artifacts
would inherit the initial inconsistency [19].

Current UML case tools allow constructing incorrect
models. They provide partial checking of selected model
features, but it is not sufficient if we would like to create
automatically a reliable application. More comprehensive
checking can be found in the tools aimed at model
analysis. For example, the OO design measurement tool
SDMetrics [25] gives the rules according to which the
models are checked. We used the experiences of the tool
(Sec. 4), but it deals neither with state machine execution
nor with C# language.

The consistency problems remain also using tools for
building executable UML models [26-28]. Different
subsets of UML being used and we cannot assure that
two interchanged models will behave in the same way.

Solutions to consistency problems in class diagrams
were presented in [29]. The problem refers to constrains
specifying generalization sets in class diagram, which is
still not commonly used in most of UML designs.

An interesting investigation about defects in
industrial projects can be found in [30]. However the
study takes into account only class diagrams, sequence
diagrams and use case diagrams. It discusses mostly
relations among elements from different diagram types.
The state machines were not considered.

3 Code generation and execution in
FXU

Transformation of UML models into executable
application can be realized in the following steps.

1. A model, created using a CASE modeling tool,
is exported and saved as an XML Metadata
Interchange (XMI) file.

2. The model (or its parts) is transformed by a
generator that creates a corresponding code in
the target programming language.

3. The generated code is modified (if necessary),
compiled and linked against a Runtime Library.
The Runtime Library contains realization of
different UML meta-model elements, especially
referring to behavioral UML models.

4. The final application, reflecting the model
behavior, can be executed.

It should be noted, that steps 1) and 2) can be
merged, if the considered code generator is associated
with the modelling tool.

The process presented above is realized in the FXU
framework [5]. The target implementation language is
C#. The part of UML model taken into account
comprises classes and behavioral state machines.
Protocol state machines are not considered.

The FXU framework consists of two components -
FXU Generator and FXU Runtime Library. The
Generator is responsible for realization of step 2. The
FXU Runtime Library includes over forty classes that
correspond to different elements of UML state machines.

It implements the general rules of state machine
behavior, independent of a considered model, e.g.,
processing of events, execution of transitions, entering
and exiting states, realization of different pseudostates. It
is also responsible for the runtime verification of certain
features of an executed model.

3.1 Model transformation
Transforming class models into C# code, all model
elements are implemented by appropriate C# elements.
Principles of code generation from class models are
similar to other object-oriented languages and analogues
to solutions used in other tools. It is not so
straightforward for state machine models.

State machines can be used at different levels of
abstraction as behavioral state machines or protocol state
machines. Protocol state machines are intended to model
protocols. Behavioral state machines specify behavior of
various model elements, like a class, a component, an
operation. These elements constitute a context of a
machine.

The primary application of behavioral state machine
in an object-oriented model is description of a class. A
class can have attributes keeping information about a
current state of an object. Classes have operations that
can trigger transitions, send and receive events. The FXU
framework is limited to the most typical case, when a
behavioral state machine models behavior of class
instances. Model elements available in the context of the
class are also available in the state machine.

A distinctive feature of FXU is dealing with all UML
elements of behavioral state machines and their
realization in C# application. Therefore we present
selected concepts of state machines with their
implementation in C#. We point out different C# specific
mechanisms used in the generated application. Using
selected solutions we would like to obtain an efficient
and reliable application.

For any state machine of a class, a new attribute of
StateMachine type is created. The structure of the state
machine is build in a method of the class - InitFXU().
States, pseudostates, regions, transitions and events are
created as local variables of the method.

Any state can have up to three types of internal
activities do, entry, exit. The activities of a state are
realized using a delegate mechanism of C#. Three
methods DoBody, EntryBody and ExitBody with empty
bodies are created for any state by default. If an activity
exists a corresponding method with its body is created,
using information taken from the model. Applying
delegate mechanism allows defining the methods for
states without using of inheritance or overloaded
methods. Therefore the generated code can be simple,
and generation of a class for any single state can be
avoided. A state machine is not generated as a design
pattern - “state” [31]. In the state design pattern, a single
class is created for any state and any substate; and we
would like to prevent an explosion of number of classes.

Signals, in opposite to other elements like states or
events, are not created as local variables of the

434 Informatica 33 (2009) 431–440 A.Derezińska et al.

initialisation method. They are created as classes,
because they can be generalized and specialized building
a signals hierarchy. If a certain signal can trigger an
event also all signals that are its descendants in the signal
hierarchy can trigger the same event. This feature of
signals was implemented using the reflection mechanism
of C# [32].

Three transition kinds can be specified for a
transition, external, internal and local transitions.
Triggering an internal transition implies no change of a
state, exit and entry activities are not invoked. If an
external transition is triggered it will exit its source state
(a composite one), i.e. its exit activity will be executed.
A local transition is a transition within a composite state.
No exit for the composite (source) state will be invoked,
but the appropriate exits and entries of the substates
included in the state will be executed.

A kind of a transition can be specified in a model,
but in praxis this information is rarely updated and often
inaccurate. Therefore we assumed that in case of
composite states a kind of generated transition is
determined using a following heuristics:

 If the target state is different than the source
state of a transition and the source state is a
composite state, the transition is external.

 Else, if the transition is defined in a model as
internal it is treated as an internal transition.

 Otherwise, the transition is local.
A transition can have its guard condition and actions.

They are created similarly to activities in states, using
delegate mechanism of C#. If a body of an appropriate
guard condition or action is nonempty in a model, it is
put in the generated code. It should be noted that
verification of logical conditions written in C# is
postponed to the compilation time.

Events should have some identifiers in order to be
managed. Change events and call events are identified by
unique natural numbers assigned to the events. A time
event is identified by a transition which can be triggered
by this event. A completion event is identified by a state
in which the event was generated. Finally, for a signal
event the class of the signal, i.e., its type, is used as its
identifier.

There are some elements of a UML model that
include a description in a form not precisely specified in
the standard, but dependent on a selected notation,
usually a programming language. There are, for example,
guard conditions, implementation of actions in transitions
or in states, body of operations in classes. They can be
written directly in a target implementation language (e.g.,
C#). During code generation these fragments are inserted
into the final code. Verification of the syntax and
semantics of such code extracts is performed during the
code compilation and execution according to a selected
programming language.

3.2 Model example
Fragments of an exemplary UML model are shown in
Fig. 1. Runway class belongs to an airport control
system. Selected attributes, operations and a state

machine of the class are presented. The state machine
describes different states of the runway. A runway can be
opened, closed or deleted. State deleted is simple; two
remaining states are composite ones. An opened runway
can be either free or occupied. A runway can be closed
due to temporary maintenance or emergency. Complex
state closed consists of simple state
temporaryMainenance, simple state preparation and
complex state restoration including two orthogonal
regions.

In guard conditions and triggers, the operations and
attributes of the class are used. Several entry and do
activities are omitted due to legibility reasons.

Using an FXU template the resulting programming
class can be created for the Runway class and its
behavioral model. Extracts of the C# code corresponding
to the example and created by the FXU generator are
given in the Appendix.

The StateMachine attribute of the Runway class
defines the structure and features of its state machine.
Except of methods implementing operations modelled in
the class, the class has also two additional methods
InitFXU and StartFXU. The InitFXU method is
responsible for creation and initialization of all objects
corresponding to all elements of state machine(s)
associated with the class, such as regions, states,
pseudostates, transitions, activities, events, triggers,
guards, actions, etc. Bodies of entry, do, exit activities,
guard conditions and actions are implemented with
delegates. The StartFXU method is used for launching
the behavior of the state machine.

3.3 Model execution
The structure of basic elements of the FXU Runtime
Library corresponds to the simplified state machine
meta-model (Fig. 2). A vertex of a state machine graph is
handled as a state or a pseudostate. A specialized state
can be a state machine. Any transition is defined by its
source and destination vertices. A transition can be
triggered by an event. Classes of all events are a direct
specialization of the base class Event. Meta-model class
MessageEvent was omitted, because it is an intermediate
level abstract class and was not necessary to perform any
tasks. An additional class CompletitionEvent is
responsible for dealing with completion events. They are
triggered once the entry actions, do activities and
activities of the internal elements have been completed.
The completion event can be triggered just after entering
the state if there are no activities and no internal
elements.

Event processing during state machine execution is
performed according to the rules given in the UML
specification [3]. The processing of a single event
occurrence by a state machine is interpreted as a run-to-
completion step. Before initiation and after completion of
a step, a state machine is in a stable configuration. All
entry, exit or internal activities of all states (complex and
nested states) are completed, but do activities can last.

Basic algorithms of FXU realization, like execution
of a state machine, entry to a state, exit from a state, were

REALIZATION OF UML CLASS AND STATE… Informatica 33 (2009) 431–440 435

presented in [5]. For every state a queue was
implemented that pools incoming events (Fig. 2). Event

pool is served by a producers-consumer algorithm.

Figure 1: Example – Runway class, its state machine and class model

Figure 2: FXU Runtime Library - statemachines and event processing.

436 Informatica 33 (2009) 431–440 A.Derezińska et al.

Events can be broadcasted or sent directly to the
selected state machines. Events trigger transitions that
have an active source state and their guard conditions
evaluate to true. Transitions to be fired are determined as
the maximal set of non-conflicting transitions [3]. If
many transitions can be fired, transition priorities are
used for their selection and resolve some transition
conflicts. According to the specification, the priorities of
conflicting transitions are based on their relative position
in the state hierarchy. A transition originating from a
substate has higher priority than a conflicting transition
originating from any of its containing states.

Using this priority definition not all transition
conflicts are resolved in case many transitions can be
fired. Therefore, we had proposed and implemented an
extended definition of transitions priority. We obtained
one unique set of non-conflicting transitions in any
situation. The detailed algorithm of selecting non-
conflicting transitions and the extended firing priorities
can be found in [6]. Also resolving of other variation
points, especially dealing with entering and exiting
orthogonal states, is shown in [6].

Interpreting different concepts of state machines we
can use parallel execution. In the FXU RunTime Library
it is implemented by multithreading. Multithreading is
used for processing of many state machines which are
active in the same time, e.g., state machines of different
classes. It is used also for handling submachine states
and orthogonal regions working within states, and for
other processing of events. In the Appendix, examples of
an output trace generated during execution of an
application created from the model (Fig. 1) are shown.
Different threads, which were created to deal with
encountering events, are identified by number in
brackets. For example, realization of a transition from the
pseudostate fork to substate maintenance launched thread

”[14]”. Thread “[15]” was created to implement a
transition from the fork pseudostate to substate repair. In
other execution runs of the application, the numbers and
ordering of the threads can be different.

4 Checking of model correctness
While generating valid C# code from UML class and
state machine diagrams the certain conditions should be
satisfied. There are many possible shortcomings of
models that are not excluded by modeling tools, or
should be not prohibited due to possible model
incompleteness at different evolution stages. They were
analyzed taking into account the practical weaknesses of
model developers.

The prepared correctness rules were based on three
main sources: the specification of UML [3], the rules
discussed in related works and other comparable tools, in
particular in [25], and finally our own study, especially
taking into account the features of C# language - the
target of the model transformation [32].

Various shortcomings can be detected during
different steps of application realization (Sec. 3). Many
of them can be identified directly in the model, and
therefore detected during model to code transformation
step (step 2). Verification of such problems will be called
static, as it corresponds to an automated inspection of a
model. Other flaws are detected only during execution of
the resulting application (step 4). Such dynamic
verification will be completed by the appropriate classes
of the FXU Runtime Library.

In tables I-III defects identified in classes and state
machines are presented. The last column shows severity
associated to the shortcomings. Three classes of severity
are distinguished. If a defect detected in a model is called
as critical the model is treated as invalid and the code

Table I
Defects detected in UML class diagrams (static)

No Detected defects Reaction Severity

1 A generalization of an interface from a class was detected Stop code generation critical

2 A name of an element to be generated (e.g. a class, an operation, an attribute) is
a keyword of C# language

Stop code generation critical

3 A class relates via generalization to more than one general class Stop code generation critical

4 A cycle in class generalization was detected Stop code generation critical

5 A name of an element to be generated is missing Generate the element pattern without
its name. The element name has to be
supplemented in the generated code

medium

6 A name of an element to be generated is not a valid C# name. It is assumed
that white characters are so common shortcoming that they should be
automatically substituted by an underline character

As above medium

7 An interface visibility is private or protected Use package visibility low

8 A class visibility is private or protected. Use package visibility low

9 An interface is abstract Treat the interface as no abstract low

10 An interface has some attributes Ignore attributes of the interface low

11 An interface has nested classes Ignore classes nested in the interface low

12 A class that is no abstract has abstract operations Treat the class as abstract low

REALIZATION OF UML CLASS AND STATE… Informatica 33 (2009) 431–440 437

generation is interrupted without producing the output.
Later cases are classified as medium and low. In both
cases the code generation is proceeded, although for
medium severity it can require corrections before
compilation. In all cases information about all detected
shortcomings is delivered to a user. A detailed reaction to
the found defect is described in the third column. While
assigning severity levels and reactions to given defects
we took into account general model correctness features
but also requirements specific for C# applications.

4.1 Verification of class models
Class diagrams describe a static structure of a system,
therefore many their features can be verified statically
before code generation. Table I summaries defects that
are checked during static analysis of UML class models.
It was assumed that some improvements can be added
more conveniently in the generated code than in a model.
The class models can be incomplete to some extent and
we can still generate the code. Admission of certain

model incompleteness can be practically justifiable
because of model evolution.

It should be noted that not all requirements of
generated code are checked by the generator. Some
elements are verified later by the compiler. It concerns
especially elements that are not directly defined by the
UML specification, like bodies of operations.

4.2 Verification of state machines
Similarly to class diagrams, different defects of state
machines can be detected statically in the models. They
are listed in Tab. II. Static detection of shortcomings in
state machines is realized twice. First, it is made before
model to source transformation (step 2). Second
correctness checking is fulfilled before state machine
execution. It is a part of step 4, during the initialization of
the structure of a state machine.

For example, a static verification can be illustrated
using a state machine from Fig. 1. Transition outgoing
state maintenace has an event trigger - calling of an

Table II.
Defects detected in UML state machines (static)

No Detected defects Reaction Severity

1 A cycle in signal generalization was detected Stop code generation critical

2 A signal inherits after an element that is not another signal Stop code generation critical

3 A signal relates via generalization to more than one general signal Stop code generation critical

4 A region has more than one initial pseudostate Stop code generation critical

5 A state has more than one deep history pseudostate or shallow history pseudostate Stop code generation critical

6 There are transitions from pseudostates to the same pseudostates (different than a
choice pseudostate)

Stop code generation critical

7 There are improper transitions between orthogonal regions Stop code generation critical

8 A transition trigger refers to an nonexistent signal Stop code generation critical

9 An entry point, join or initial pseudostate has no incoming transition or more than
one incoming transition

Stop code generation critical

10 A deep or shallow history pseudostate has more than one outgoing transition Stop code generation critical

11 A transition from an entry/exit point to an entry/exit point Stop code generation critical

12 An exit point has no any incoming transition Stop code generation critical

13 Transitions outgoing a fork pseudostate do not target states in different regions of
an orthogonal states

Stop code generation critical

14 Transitions incoming to a join pseudostate do not originate in different regions of
an orthogonal state

Stop code generation critical

15 There is a transition originating in an initial pseudostate or a deep/shallow history
pseudostate and outgoing a nested orthogonal state

Stop code generation critical

16 The region at the topmost level (region of a state machine) has no initial
pseudostate

Warn a user medium

17 A transition outgoing a pseudostate has a trigger Ignore the trigger medium

18 A transition outgoing a pseudostate (different from a choice or junction vertex)
has a nonempty guard condition

Ignore the guard condition medium

19 A transition targeting a join pseudostate has a trigger or nonempty guard condition Ignore the trigger and/or condition medium

20 A trigger refers to a non-existing operation The transition will be generated but
it cannot be triggered by this event

medium

21 A trigger refers to an abstract operation or to an operation of an interface as above medium

22 A time event is deferred Treat the event as not being deferred medium

23 A final state has an outgoing transition Warn a user medium

24 A terminate pseudostate has an outgoing transition Warn a user low

438 Informatica 33 (2009) 431–440 A.Derezińska et al.

operation open(). However, this transition targets the join
pseudostate. Therefore neither a trigger nor a guard
condition can be associated with the transition. It violates
the correctness rule 19 (Tab. II). This model flaw is quite
often and is not critical. The trigger will be omitted in the
generated code and the designer will be warned about
this exclusion.

The same rule is violated in a transition outgoing
state inspection. The guard [OK] can not be used in this
context. The generated code will be incomplete and the
warning reminds of the correcting the state machine
model.

State machines model system behavior; therefore not
all their elements can be verified statically. A part of
defects is detected dynamically, i.e., during execution of
state machines. For example, a situation that two enabled
transitions are outgoing the same choice pseudostate can
be detected after evaluation of appropriate guard
conditions, namely during program execution. Defects
detected dynamically in state machines are listed in
Tab. III.

5 Experiments
The FXU framework is not directly associated with any
modelling tool but UML models are passed between
tools using files. Input models in some XMI variants,
UML2 and UML formats, supported by Eclipse, are
accepted. Therefore the solution is not tool-dependent.
However, all experiments mentioned in this Section were
performed with UML models created using IBM
Rational Software Architect [33].

The presented approach for building the C# code and
executing the automatically created applications was
tested on over fifty models. The first group of ten models
was aimed at classes. In experiments the correct and
incorrect constructions encountering in class diagrams
were checked, concerning especially association and
generalization. Moreover, two bigger projects were
tested. The first one was a design of a web page, which
was a part of MDA project called Acceleo [34]. The
model described a design of a web page. The second one
presented a metamodel of an object-oriented modeling
language [35].

Models from the next group (above forty models)
comprised different diagrams, including both classes and
their state machines. All possible constructs of UML 2.x
behavioral state machines were used in different
situations in the models. The biggest design included five
state machines with about 80 states and 110 transitions,
using complex and orthogonal states, different kinds of
pseudostates and submachine states.

The programs realizing state machines were run
taking into account different sequences of triggering
events. The behavior modeled by state machines was
observed and verified using detailed traces generated
during program runs. They helped to test whether the
obtained program behavior conforms to desired state
machine semantics. For complex models, filtered traces
that included selected information were also used.

In the performed experiments, applications realizing
behavior specified in state machine models were
developed in an automated way. For example, different
airport subsystems were modeled in order to simulate a
desired behavior. The essential part of the class model of
Airport_FlightControl subsystem is shown in Fig. 1. It
models occupation of runways and airplane parking
places. Behavior of classes can be defined by state
machines realising different policies. One exemplary
state machine is shown for Runway class. Comparison of
the policies is easily performed combining code
generated for different versions of state machines in final
applications.

6 Conclusion and future work
In this paper we discussed the problems of creation of
valid C# applications realizing ideas modeled by classes
and their state machines. Different C# mechanisms were
effectively used for implementation of the full state
machine model defined in the UML 2.x specification.
We showed which correctness issues of models have to
be checked during model transformation (static
verification) and during application execution (dynamic
verification). The detailed correctness rules help a
developer to cope with possible flaws present in UML
models. In the difference to other tools, using FXU the
state machines including any complex features can be

Table III.
Defects detected in UML state machines (dynamic)

No Detected defects Reaction Severity

1 There is no enabled and no “else” transition outgoing a choice or junction
pseudostate

Suspend execution - terminate critical

2 A deep or shallow history pseudostate was entered that has no outgoing
transitions and is “empty”, i.e. either a final state was a last active substate or
the state was not visited before

Suspend execution - terminate critical

3 More than one transition outgoing a choice or junction pseudostate is enabled Select one enabled transition and
ignore the others

medium

4 There is no enabled transition outgoing a choice or junction pseudostate and
there is one or more “else” transition outgoing this pseudostate

Select one “else” transition and
ignore other transitions

medium

5 More than one transition outgoing the same state is enabled Select one transition and ignore
the others

medium

REALIZATION OF UML CLASS AND STATE… Informatica 33 (2009) 431–440 439

effectively transformed into corresponding C#
application. The tool support assists building of reliable
applications including complex behavioral specifications.
It can be especially useful for developing programs in
which non-trivial state machines are intensely used, e.g.,
dependable systems, embedded reactive systems.

In the future work, we prepare other complex models
implementing telecommunication problems. Capability
of using advance state machine features and building
reliable applications is very important in these cases.

As a complementary approach, another solution for
C# code generation based on C# profiles is under
development. Transform OCL Fragments Into C#
(T.O.F.I.C.) tool supports labelling of UML model
elements with stereotypes reflecting C# concepts. Target
code is generated from a refined UML model and OCL
constraints. In this approach, a model can be verified
both during placing stereotypes and/or code generation
process. Using dedicated profiles enforce more precise
mapping to a given target language and therefore also
checking of model correctness. However it requires more
effort of a developer while creating a refined model.

Appendix
The appendix includes selected extracts of C# code
generated for an exemplary class and its state machine
shown in Fig. 1. Code of class operations is omitted.
Method InitFxu() creates appropriate structure of the
state machine and method StartFxu() initializes its
behavior.

public class Runway {
 private bool free;
// other attributes and operations (omitted)
//
 StateMachine sm1 =

new StateMachine("RunwayStateMachine");
public void InitFxu() {

 Region r1 = new Region("Region1");
 sm1.AddRegion(r1);
 InitialPseudostate v2 = new

InitialPseudostate("");
 r1.AddVertex(v2);
 State v4 = new State ("opend");
 r1.AddVertex(v4);
//...
 State v8 = new State ("closed");
 r1.AddVertex(v8);
 v8.EntryBody = delegate(){ close(); };
 Region r3 = new Region("Region1");
 v8.AddRegion(r3);
//...
 State v11 = new State ("restoration");
 r3.AddVertex(v11);
 Region r4 = new Region("Region1");
 v11.AddRegion(r4);
 Region r5 = new Region("Region2");
 v11.AddRegion(r4);
//...
 State v14 = new State ("maintenance");
 r5.AddVertex(v14);
 v14.DoBody = delegate(){ maintain(); };
//
 Fork v15 = new Fork("");
 r3.AddVertex(v15);
//
 Transition t1 = new Transition(v2, v4);
 Transition t8 = new Transition(v8, v4);

 t8.AddTrigger(new CallEvent("open", 1))
//...
 Transition t11 = new Transition(v10, v10);
 t11.GuardBody = delegate()

{return not free;};
 t11.ActionBody = delegate(){remove(); };
//...
} //End of InitFXU
public void StartFxu(){

 sm1.Enter(); }
}

Log items selected from a detailed execution trace of
the exemplary state machine (Fig. 1) are shown below.
All labels of the items, including time stamps and item
types (Warning, Information, Debugging), are omitted
for the brevity reasons. A number in brackets denotes a
number of a thread that realizes a considered part of
machine execution.

[1] State diagram < RunwayStateMachine >: Entered.

[1] State diagram < RunwayStateMachine >: Execution of
entry-activity started. State is now active.

[1] State diagram < RunwayStateMachine >: Execution of
entry-activity finished.

[7] Initial pseudostate < RunwayStateMachine::
Region1{::UnNamedVertex}>: Entered.

[7] Transition from Initial pseudostate < RunwayState
Machine::Region1{::UnNamedVertex}> to State
< RunwayStateMachine::Region1::opend>: Traversing started.

[7] State < RunwayStateMachine::Region1:: opend>: Execution
of entry-activity started. State is now active.

After emergencyClose trigger
[3] State diagram < RunwayStateMachine >: Call-event
<emergencyClose [ID=1]> has been dispatched.

[9] State < RunwayStateMachine::Region1:: opend::
Region1::occupied>: Execution of exit-activity started.

Transition to fork from preparation state
[3] State diagram < RunwayStateMachine >: Completion
event <> generated by State < RunwayStateMachine::
Region1::closed::Region1::preparation> has been dispatched.

[12] State < RunwayStateMachine::Region1::closed::
Region1::preparation >: Execution of exit-activity started.

[13] Transition from State < RunwayStateMachine::
Region1::closed::Region1::preparation > to Fork
< RunwayStateMachine::Region1::closed::Region1{::UnName
dVertex}>: Traversing started.

[14] Transition from Fork < RunwayStateMachine::
Region1::closed::Region1{::UnNamedVertex}> to State
< RunwayStateMachine::Region1::closed:::restoration::Region
2::maintenance>: Traversing started.

[16] State < RunwayStateMachine::Region1::closed:::
restoration >: Execution of entry-activity started. State is now
active.

[15] Transition from Fork < RunwayStateMachine::
Region1::closed::Region1{::UnNamedVertex}> to State
< RunwayStateMachine::Region1::closed:::restoration::Region
1::repair>: Traversing started.

Acknowledgement
The authors would like to thank Kamil Raś for his help in
preparing UML models.

440 Informatica 33 (2009) 431–440 A.Derezińska et al.

References
[1] R. France, B. Rumpe (2007). Model-driven

Development of Complex Software: A Research
Roadmap. Future of Software Engineering at
ICSE'07, IEEE Soc., pp. 37-54.

[2] Semantics of a foundation subset for executable
UML models (FUML) (2008). http://www.omg.org/
spec//FUML/

[3] Unified Modeling Language Superstructure v. 2.1.2
(2007). OMG Document formal/2007-11-02,
http://www.uml.org

[4] C. Lange at al. (2003). An empirical investigation
in quantifying inconsistency and incompleteness of
UML designs. in Proc. of 2nd Workshop on
Consistency Problems in UML-based Software
Development co-located at UML’03 Conf., San
Francisko, USA, Oct 2003, pp. 26-34.

[5] R. Pilitowski, A. Derezinska (2007). Code
Generation and Execution Framework for UML 2.0
Classes and State Machines. T. Sobh (eds.)
Innovations and Advanced Techniques in Computer
and Information Sciences and Engineering,
Springer, pp. 421-427.

[6] A. Derezinska, R. Pilitowski (2007). Event
Processing in Code Generation and Execution
Framework of UML State Machines. in L.
Madeyski at al. (eds.) Software Engineering in
progress. Nakom, Poznań, pp.80-92.

[7] L. K. Kishore, D. Saini, IBM Rational Modeling
Extension for Microsoft .NET, http://www.ibm
.com/developerworks/rational/library/07/0306_kish
ore_saini/

[8] Rhapsody, http://www.telelogic.com/
[9] A. Niaz, J. Tanaka (2004). Mapping UML

Statecharts into Java code. in Proc. of the IASTED
Int. Conf. Software Engineering, Acta Press,
Anheim, Calgary, Zurich, pp. 111-116.

[10] SmartState, http://www.smartstatestudio.com
[11] Hugo/RT, http://www.pst.ifi.lmu.de/projekte/hugo/
[12] A. Knapp, S. Merz (2002). Model Checking and

Code Generation for UML State Machines and
Collaborations. In D. Haneberg, G. Schellhorn, and
W. Reif, Eds, Proc. 5th Workshop Tools for System
Design and Verif., pp. 59-64. Tech. Rep. 2002-11,
Inst. für Informatik, Univ. Augsburg,

[13] D. Harel, H. Kugler (2004). The Rhapsody
Semantics of Statecharts (or On the Executable
Core of the UML) (preliminary version), SoftSpez
Final Report, LNCS, vol. 3147, Springer,
Heidelberg, pp. 325-354.

[14] STL: UML 2 Semantics Project, References,
Queen's University http://www.cs.queensu.ca/
home/stl/internal/uml2/refs.htm

[15] M. Crane, J. Dingel (2005). UML vs. Classical vs.
Rhapsody Statecharts: Not All Models are Created
Equal. in: MoDELS/UML 2005, LNCS, vol. 3713,
Springer, Heidelberg, pp. 97-112.

[16] Y. Jin, R. Esser and J. W. Janneck (2004). A
Method for Describing the Syntax and Semantics of

UML Statecharts. Software and System Modeling,
vol. 3 no 2, Springer, 2004, pp. 150-163.

[17] H. Fecher, J. Schönborn (2007). UML 2.0 state
machines: Complete formal semantics via core state
machines. in FMICS and PDMC 2006, LNCS vol.
4346, Springer, Hildelberg, pp. 244-260.

[18] F. Chauvel, J-M. Jezequel (2005). Code Generation
from UML Models with Semantic Variation Points.
MoDELS/UML 2005, LNCS, vol. 3713, Springer,
Heidelberg, pp. 97-112.

[19] A. Baruzzo, M. Comini (2006). Static verification
of UML model consistency. Proc. of the 3rd
Workshop on Model Development, Validation and
Verific., at MoDELS'06, Genoa, Italy, pp. 111-126.

[20] A. Egyed (2007). Fixing inconsistencies in UML
designs, in Proc. of 29th Intern. Conf. on Software
Engineering, ICSE'07, IEEE Comp. Soc.

[21] S. Prochanow, R. von Hanxleden (2007).
Statecharts development beyond WYSIWIG, in G.
Engels et al. (Eds.) MODELS 2007, LNCS 4735,
Springer, Berlin Heidelberg, pp. 635-649.

[22] L-K. Ha, B-W Kang. (2003). Meta-Validation of
UML Structural Diagrams and Behavioral
Diagrams with Consistency Rules. Proc. of IEEE
PACRIM, Vol. 2., 28-30 Aug. pp. 679-683.

[23] MDA Guide Ver. 1.0.1 (2003). OMG Document
omg/2003-06-01.

[24] S. Frankel (2003). Model Driven Architecture:
Appling MDA to enterprise computing. Wiley
Press, Hoboken, NJ.

[25] J. Wuest, SDMetrics - the UML design
measurement tool, http://www.sdmetrics.com/
manual?LORules.html

[26] S. J. Mellor, M. J. Balcer (2002). Executable UML
a Foundation for Model-Driven Architecture.
Addison-Wesley.

[27] C. Raistrick, at al. (2004). Model Driven
Architecture with Executable UML Cambridge
University Press.

[28] K. Carter, iUMLite - xUML modeling tool,
http://www.kc.com (visited 2009)

[29] A. Maraee, M. Balaban (2006). Efficient decision
of consistency in UML diagrams with constrained
generalization sets. Proc. of the 1st Workshop on
Quality in Modeling, co-located. at MoDELS'06,
Genoa, Italy, pp. 1-14.

[30] F. J. Lange, M. R. V. Chaudron (2007). Defects in
industrial UML models - a multiple case study.
Proc. of the 2nd Workshop on Quality in Modeling,
at MoDELS'07, Nashville, TN, USA, pp. 50-64.

[31] E. Gamma, R. Helm, R. Johnson, J. Vlissides
(1995). Design patterns: elements of reusable
object-oriented software. Boston Addison-Wesley.

[32] J. Liberty (2005). Programming C#, O'Reilly
Media.

[33] IBM Rational Software Architect, http://www-
306.ibm.com/software/rational

[34] Acceleo project http://www.acceleo.org
[35] G. Booch, Metamodel of object-oriented modeling

language, http://www.booch.com/architecture/
architecture/artifacts/architecture.emx.

