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Abstract. We discuss some aspects of our relativistic framework for the few-nucleon sys-

tems (Ref. [1] to which we refer for further details), which were discussed at theWorkshop,

particularly the issue of renormalization.

The understanding of the few-nucleon systems based on Chiral Perturbation The-
ory (ChPT, see Ref. [2] for a review), provides the link of nuclear physics with
QCD: as a matter of fact the low-energy constants, in terms of which the chiral
nuclear forces are expressed, are QCD Green functions, in principle calculable on
the lattice. The ChPT setting is perturbative, in the sense that it is a low-energy
expansion, the small parameter being the typical momentum p divided by the
hadronic scale. This type of ordering is the only justification, from first principles,
of the hierarchy of nuclear forces. Indeed ChPT predicts that 3-nucleon forces are
suppressed by a factor O(p2) compared to 2-nucleon forces, 4-nucleon forces by
a factor O(p4), and so on. In order to mantain the power counting a non rel-
ativistic expansion of the ChPT Lagrangian is usually performed, referred to as
heavy baryon ChPT (HBChPT).Moreover, in the originalWeinberg’s definition of
a nucleon-nucleon effective potential, a non relativistic setting was used, based on
old-fashioned (time ordered) perturbation theory. By these two steps relativistic
corrections and chiral corrections get mixed together and are treated on the same
footing. However relativity and chiral symmetry are symmetries on a completely
different status: chiral symmetry (which is always approximate) can be useful
in this context as an ordering criterium, whereas Poincaré invariance is required
by Nature. There are several instances where one might want to have relativity
exactely. Most importantly, a relativistic scheme would allow to describe parti-
cle production, which is out of the scope of non-relativistic quantum mechanics.
Our aim is therefore to devise a scheme which satisfies all requirements of rela-
tivity and use chiral symmetry merely as a bookkeeping device to order terms,
in order to have a systematic expansion. This is why we have considered the
point-form formulation of relativistic quantum mechanics proposed in [3]. It re-
lies on a Bakamjian-Thomas construction, which is a way (although not the most
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general one) to solve Dirac’s covariance problem in the construction of a dynam-
ical theory of interacting particles. The problem constists of finding expressions
for the generators of the Poincaré group, H, P, J and K in terms of the coordi-
nates of the particles. In the usual formulation (instant-form of the dynamics) the
interactions are contained in the Hamiltonian H and in the boost generators K,
while the other operators are said kinematical, they are the same as in the non-
interacting theory. In the point-form the interactions are contained in all compo-
nents of the four-momentum, whereas Lorentz transformations are kinematical.
In the Bakamjian-Thomas construction this is accomplished by introducing aux-
iliary operators, the mass operatorM0 =

√
P

µ
0 P0µ and a four-velocity operator

Vµ such that Pµ
0 = M0V

µ (the subscripts 0 refer to the non-interacting theory);
one then adds the interactions only to the mass operatorM = M0 +MI, and re-
constructs the interacting four-momentum as Pµ =MVµ. Poincaré commutation
relations are then satisfied provided the interacting mass operator is a Lorentz
scalar which commutes with the four-velocity Vµ. It is therefore particularly con-
venient to consider the “velocity states” |v〉 [3]: these are linear combinations of
multiparticle momentum states which are eigenstates of the four-velocity opera-
tor. However, starting from a quantum-field theoretical Lagrangian the interact-
ing four-momentum is

P
µ
I =

∫
d4x

∂F(x)

∂xµ
δ(F(x) − τ2)HI(x), (1)

where in the point-form F(x) = x2. This operator is not diagonal in the four-
velocity,

〈v|Pµ
I |v ′〉 = 〈v|HI(0)|v

′〉
∫
d4xδ(x2 − τ2)2xµθ(x0)e−i(mv−m ′v ′)x (2)

and therefore it is not of the Bakamjian-Thomas type. In order to enforce that,
one has to introduce a velocity-conserving delta-function by hand, such that the
interacting four-momentum has matrix elements of the form

〈v|Pµ
I |v ′〉 = (2π)3δ3(v − v ′)vµ f(m,m

′)√
m3m ′3

〈v|HI(0)|v
′〉. (3)

The form factor f(m,m ′), depending on the relativistic energies, is meant to com-
pensate somehow for the neglect of the off-diagonal elements in the velocity, and
also to regulate the ultraviolet behaviour. The square-root factor in the denomi-
nator is included so that one recovers the quantum-field theoretical result when
v = v ′ and m = m ′ with f = 1. We have taken for f a real symmetric function
of its arguments, further specified as a Gaussian function centered around zero
with cutoff Λ,

f(m,m ′) = exp

[
−

(m −m ′)2

2Λ2

]
ξ. (4)

The cutoff Λ is to be understood as the scale at which new physics starts to be-
come relevant. Therewill be one such form factor for each vertex of the interaction
Hamiltonian. For some vertices the gaussian alone is not enough to regulate all
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integrals, so one has to include an additional cutoff ξ, function of the relativistic
invariants.

For illustration purposes, we consider the simple case of a scalar nucleon
field Ψ interacting with a pion field φ, with the interactions provided by a Hamil-
tonian density of the form H(x) = gΨ†(x)Ψ(x)φ(x). Creation of nucleon-anti-
nucleon pairs is neglected and a truncation of the Fock space to a given maximum
number of pions is considered from the beginnning. In the 1-nucleon sector, trun-
cating the states containing two or more pions, the mass operator takes the form

M =

(
mN + δren1 gK

gK† D1+1

)
, (5)

where mN is the physical nucleon mass, and D1+1 is the relativistic 1-nucleon +
1-pion free particle energy. The counterterm δren1 is needed for the mass renormal-
ization. Due to the form of H(x), the interactions show up as off-diagonal entries
in the mass operator. The nucleon mass renormalization and pion-nucleon scat-
tering are described as eigenvalue-eigenvector problems for this mass operator.
For instance, for the eigenvalue mN, the physical nucleon mass, one finds an
equation for the counterterm

δren1 = g2K†(D1+1 −mN)−1K, (6)

with D1+1 = ωk +ωπ
k , having defined ωk ≡

√
m2

N + k2 and ωπ
k =

√
M2

π + k2.

Taking the expectation value of the above equation between 1-nucleon states and
inserting a complete set of velocity states in the subspace of 1-nucleon + 1-pion
states one arrives at the nucleon mass renormalization due to the “pion cloud”,

δren1 =
g2

2mN

∫
d3k

(2π)3

1

4ωkω
π
k

|f(1)(mN,ωk +ωπ
k )|

2

ωk +ωπ
k −mN

. (7)

The superscript (1) refers to the sector of the Fock space with baryon number 1:
the mass operator commutes with the baryon number, and there is the freedom
to choose a different structure function f for each sector of the Fock space.

In the 2-nucleon sector, an analogous equation describes the deuteron,

(D2 + δren2 )φD
2 + g2K†(mD −D2+1)−1KφD

2 = mDφ
D
2 , (8)

where φD
2 is a state vector in the subspace of 2-nucleon states, and the operators

D2 and D2+1 are respectively the relativistic 2-nucleon and 2-nucleon + 1-pion
energy. As in the 1-nucleon sector, a counterterm δren2 is introduced in the corre-
sponding diagonal element of themass operator, in order to properly renormalize
the 2-particle states. By left-multiplying Eq. (8) with the bra 〈v,k,−k| represent-
ing a 2-nucleon state with four velocity v and relative momentum (in the center-
of-mass system) 2k, one arrives, after insertion of a complete set of states in the
subspace of 2-nucleon + 1-pion states, to an eigenvalue wave equation for the
center-of-mass wave function φD

2 (k) = 〈v = (1, 0),k,−k|φD
2 〉,

(2ωk + δren2 (k))φD
2 (k)+2ωkA(k)φD

2 (k)+

∫
d3q

(2π)3
B(k,q)φD

2 (q) = mDφ
D
2 (k), (9)
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The term proportional to A(k) represents a wave function renormalization of the
two-nucleon state: it describes diagrams in which the nucleon lines are discon-
nected and dressed with pion loops. Its explicit expression reads

A(k) =

∫
d3q

(2π)3






g2

16ω2
kωqω

π
k+q

∣∣∣f(2)(2ωk,ωk +ωq +ωπ
k+q)

∣∣∣
2

mD −ωk −ωq −ωπ
k+q

+ q↔ −q





.

(10)
We can choose the counterterm δren2 so as to cancel the disconnected kernel,
δren2 (k) = −2ωkA(k). Correspondingly, the NN scattering is described by the
Lippmann-Schwinger equation for the scattering amplitude,

T(q,k) = V(q,k) +

∫
ωp

d3p

(2π)3

V(q,p)T(p,k)√
s − 2ωp + iǫ

, (11)

where the potential consists only of the connected kernel B,

V(q,k) = g2〈v,q,−q| K†
[√
s −D2+1

]−1
K

∣∣∣
conn

|v,k,−k〉 = B(q,k). (12)

The renormalization of the 2-nucleon lines describing NN scattering, realized by
the choice of the counterterm δren2 (k) = −2ωkA(k), and of the 1-nucleon line,
Eq. (7), correspond to the same physical processes, as can be seen diagrammat-
ically. Physical considerations would require that, when the two nucleons are
far apart and at rest, their energies should be renormalized as their respective
masses. This implies the condition

δren2 (0) = 2δren1 , (13)

which can be regarded as the manifestation of the cluster decomposition princi-
ple in the simple case of two particles. We can see by direct inspection, replacing
in Eq. (10) mD by

√
s = 2mN, since we are considering the case of two widely

separated nucleons at rest, that the equation is fulfilled provided f(1) = f(2) = f,
with f depending on m −m ′ as in Eq. (4), independently of the baryon number
sector. Notice that this would not happen had we chosen the original formula-
tion of Ref. [3]: the crucial point was the inclusion of a different normalization for
the matrix elements of the interacting mass operator, Eq. (3), which in turn was
dictated by a proper matching to the quantum field theory. The cluster decom-
position principle, satisfied by local quantum field theories, could in general be
violated by a truncation of the full quantum field theory to a relativistic quantum
mechanics. In view of the above consideration, we can drop the superscripts and
use the same structure function f for all sectors of the Fock space.

Having identified the general features of the construction of the interacting
mass operator from a vertex Lagrangian, one can proceed to make full use of
the constraints given by chiral symmetry. Most importantly, the Goldstone theo-
rem requires that the coupling between pion and nucleons be of derivative type
(suppressed at low energy). This provides a power-counting justification for the
truncation of the Fock space, since the creation of pions brings more and more
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powers of momentum. The complete combined analysis of πN and NN systems
at the leading order of the chiral counting can be found in Ref. [1]. By comparison
with the non relativistic limit (realized in our framework as mN → ∞), the (all
order) relativistic effects are found to be smaller than the NLO chiral corrections,
in the NN case, while they are sizeable in the πN case.

I thankMitja Rosina, Bojan Golli and Simon Sirca for the very niceWorkshop.
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