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Abstract: Preventative maintenance is vital for delicate technical products. Electronic components or the whole system must be changed, and thus need a good
model that will indicate failure accurately. In this paper is presented a stochastic stress-strength quantitative model, following the five original hypotheses.
Proposed new model of failure prediction could be used by the system maintenance. Failure risk could be instantaneosly by calculated. The given theory
considers the influences of stress on the lifetime of electronic components, systems and products.

Model napovedovanja odpovedi

Kljuéne besede: izdelki tehniski, napovedovanje odpovedi, modeli odpovedi, enagbe diferencialne, vzdrzevanje preventivno, verjetnost odpovedi, zanes-
liivost delovanja, odpoved sistema, odpoved komponent, modeli obremenitev-odpornost, teorija, izraduni primerov, dobe trajanja, dobe uporabnosti

1zvie&ek: Preventivno vzdrzevanje zahtevnih tehnicnih izdelkov je zelo pomembno. Za kvalitetno vzdrzevanje potrebujemo model za napovedovanje odpovedi.
Zamenijati moremo posamezne elektronske komponente ali celoten sistem, zato je pomembno imeti tak model, ki bo dovolj dobro predstavit odpovedovanje
komponent ali celotnega sistema. V &lanku predstavimo stohastiéni kvantitativni model odpornosti glede na obremenitev. Izhajamo iz petih originalnih hipotez.

Predstavljena teorija je temelj za preudevanje vpliva obremenitev na Zivljensko dobo tehniénih proizvodov.

1. Introduction

Technical products can be divided into two categories: el-
ementary and composite products. Elementary products
cannot be decomposed without destroying them. These
products are for example electrical resistors, capacitors,
semiconductors and chips, etc. Composite technical prod-
ucts are put together from elementary ones or from previ-
ously made component parts. These are electronic boards,
electrical nets, computers, robots, etc.

The breakdown of technical products has unwelcome ef-
fects like accidents and costs. This is reason for detailed
research on how a breakdown arises and how it can be
announced and prevented.

An elementary technical product is not usable for its origi-
nal purpose after its breakdown. A composite technical prod-
uct fails when some of its components fail. If the whole
product was not destroyed at the breakdown point, all of its
failed components can be changed, making the product
usable again.

The period from the beginning of using the product to its
failure will be called the durability of the product. Durability
depends on the characteristics of the product and on the
way we use and maintain the product. The structure of the
matter is random, and manufacturing of the products is par-
tially random; therefore, the durability of equivalent prod-
ucts is different. Durability, therefore, is a random guantity.
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It is well known that the durability of a technical product is
less under greater stress. Durability, therefore, depends on
all the stresses on the product during its use and its proper-
ties. The product property that influences the product dura-
bility is called the strength of the product. Each physical
guantity that directly or indirectly reduces the durability of
the product will be called the stress of the product. Stress
is made up of electric voltage, electric current, power, elec-
tric field, force, lever, pressure, temperature, air moisture,
etc.

It is well known in electrostatics that an insulator is not cut-
through until its electric field (stress) exceeds its cutting-
through strength. If we generalize this knowledge, we can
say that any technical product resists any physical stress
with a level of strength that is of a physical quantity of the
same sort.

2. Main hypotheses

Failure incident, stress influence on product durability and
other matters that are connected with a breakdown of tech-
nical products can be quantitatively explained by five hy-
potheses.

1. The breakdown hypothesis: A technical product fails in
the moment when its stress reaches or exceeds its
strength.
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Technical product breakdown depends on
its stress and strength.

Figure 1.

The circumstances of the first hypothesis are shown in
figure 1. A technical product is in reality exposed simulta-
neously to many stresses. In the beginning, only one stress
will be taken into account. It can be seen that the product
breaks down in the moment when its strength is equaled by
the stress; again, durability is the time period from the be-
ginning of the use of the product to its failure.

The second hypothesis is set up according to the measure-
ments found in certain literature (e.g. /4/).

2. Hypothesis about monotone decrease in strength: The
strength of a technical product is a monotone decreasing
time function.
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Strength process and technical product
breakdown at a constant stress level.

Figure 2.

The hypothesis is illustrated in figure 2. Many measure-
ments show that durability is a random quality that coin-
cides in figure 2.

Conditions for the next hypothesis are well known from dai-
ly experiences:

3. Hypothesis about stress influence: The speed at which
the strength of a technical product decreases is propor-
tional to the stress exerted on it. If the product is exposed
simultaneously to different stresses, then the decrease in
strength is proportional to all stresses.

The next hypothesis results from storerooms:

4. Hypothesis about strength preservation: A technical prod-
uct preserves its strength when it is not under stress.

The final hypothesis is;

5.Hypothesis about strength derivability: The strength ofa
technical product is a continuous and derivable time func-
tion.

This hypothesis is very difficult to verify. For each technical
product satisfying this condition, we can put down differen-
tial equations. The truth of the hypothesis can be proved
indirectly if we derive a differential equation or a system of
differential equations for atechnical product, as is shown in
this paper.

3. Quantity interpretation of the
phenomena

Let the time process of stress on a technical product be
denoted by Y and the value at a particular moment be Y{(t) =
y. Let X be the time process of a technical product strength
and X(f) = x its value at a specific moment. The stress and
the strength of a technical product are physical quantities,
determined by their guantity. Thus, we have a power stress
and a power strength, atemperature stress and atempera-
ture strength, etc. If we want to emphasize the quantity, we

add the quantity as an index. Thus Y1 means power stress,

XT temperature strength, etc.

Physical units for stress and strength are equal to the basic
unit. The unit for temperature stress and strength is Kelvin;
the unit for power stress and strength is Watt, etc.

Strength reduction by time unit — A Y/ Ay is called strength
declination and we will denote it with D. Thus, we denote

declination of power strength as D, = ~AX , / At. The

physical unit for power strength declination is Watt per sec-
ond (W/s) and for temperature strength declination, Kelvin
per second (K/s).

In the following section, we will mention only stresses Y,

which are integral real functions in the time interval [O, oo),
and strengths X, which are derivable real functions in the
same interval, except in a finite number of points.

Ifin the moment t the strength is a derivative function of the
time, then we define the strength declination in the moment

tas D(f) = =X (¢)/ dt.
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Let D (t,x,y) be the non-negative real random function that is

defined for all ¢ in the time interval [O, oo) and for which
holds true:
1)D({x0)=0

2) D(1,x,,))D(t,x, ), if |y,

From the hypotheses 2, 3 and 5, we determine that for

each re [O, oo), the strength derivative is almost surely

defined as a non-positive quantity; its absolute value is greater
when the strength is greater. In the period when the stress
equals zero, the derivative of the strength equals zero as
well, because of hypothesis 4. The function -D (¢, x,y) cor-
responds to hypotheses 2 to 5, therefore, we can express
the differential equation by

9—)-(—@ =-D(t,x,¥)
dr

Equations of this type are called stochastic differential equa-
tions whose solution is a stochastic process. Though many
theories exist for solving such equations /2/, the examples

; X(0)=a (1)

show how very simple cases of random function D(t, x, y)

are taken into consideration. For example, equation (1) can
be solved by using the ordinary differential equation theory.

The function D that is defined in the space [0,e0)x R?

will be called the strength declination process. D and a
can be dependent or independent.

Exactly one strength declination process D belongs to each
product that satisfies a hypothesis. If the initial value of the
strength X(f) = a and the strength declination process D is
known as a technical product, then we can recognize its
stochastic strength as any instance of stress. The basic task
connected with the determination of product durability is,
therefore, looking for a and D with the aid of observations
and experiments. After this has been done, all actions are
formally mathematical.

Sometimes the strength declination process can be devel-
oped as the following potential series

D(1,%,y) = fo(1, ) + (1, )5+ f,(£,1)%% +...()

If for each ;j > 2, the random coefficients f (¢, ) equal
zero, then the corresponding differential equation is linear.

If (2) contains only the first summand, then we have a simple
differential equation

Xt __py, Y(1))

; X(0)=a (3)
with the solution
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X(y=a-[ DY (1)) dr @

If the strength declination process does not depend on time,
we have a homogenous differential equation:

X _

__D ,
py (x,y)

; X(0)=a (5)

The simplest homogenous linear differential equation is,
therefore,

KO _ _py))  ; XO)=a @
dt
and the solution
X(H=a —fD(Y(t» dr (7)
0

We derive the solutions to general (stochastic) differential
equations (1) as is described in references /2,5/.

We can say that a technical product will not break down as
long as Y (£){ X (¢) , but it will break down at the moment
when this is no longer the case. Thus, if we know the time

processes of the stress and strength of the product, we
derive its durability T by using

Y() = X(6) (8)

so that the random durability T is the minimal solution to this
inequality created by time. X(t) is a random variable for each
t, although Y(?) is a determinable quantity. We can deter-
mine well-known quantities from the random durability:

Cdf{t}=Pr{T <t} (9)
St{r} = Pe{T > 1} (10)
Pr{tOSTSZI}:J.dF(I) (11)

fo

[f the technical product satisfies hypothesis 5, thena and D
are random quantities that can be found by statistical meas-
urement. For this kind of product, its random durability can
be described in this way. If we know the stress process Y,
we can find the stress process X by the solving differential
equation (1). Then, we can determine the random durability
by solving the inequality (8).

Example 1. Let atechnical product have the next strength
declination process

D(y)= oy (12)
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where ¢¢ is a random quantity and the initial quantity
X (0) = a is arandom quantity. Since the initial strength
can be random, a is random in a sense that the structure
and manufacturing of the product have random components.
The differential equation that describes the strength behav-
jor of the product is

axy) _

=—a¥(t) -
I a¥(t)  X(0)=a (13)

and is an example of the differential equation (6). Therefore,
in accordance with (7), it has the solution

X =a-af¥(1)dt (14)

If the product stress is constant Y(t) = y, then with the aid of
(8) and from equation

y=a-oyT (15)
we determine that the product durability is
a —_—
T = 4 (16)
a

Thus, if we know random guantities a and ¢ and their prob-
ability distributions, we can use statistical transformation
rules to get the probability distribution of the random dura-
bility T.

When we use a technical product in everyday life, it is si-
multaneously exposed to multiple stresses, some of which
are dynamic. For example, a high-tension wire endures
stress from electric current, power, temperature, mechan-
ical tension, moisture in the air, concentration of corrosive
substances, etc.

If we generalize this situation, we can say that for each tech-
nical product that endures stress from two sources, the
increase in one of the stress influences the decrease in
both strengths. Stress declination is influenced in general
by all stresses on the product.

If 1,Y,,....,Y, represent different stresses and

X1 , X2 yeees Xn are adequate strengths, we get the system
of differential equations

dx
__L[):—‘Dl(t;xlax29'-‘9xn’y1’y2’""y")

dr
M:—D2(t;xlsx23'--5xn’y1’y2""’y”)

dt : :
o |
——?dﬂtg_)—:_Dn(f;xlax27'~-axn>y1’y2""’y”) (17)

with the initial conditions
X, (0)=a, X,(0)=a,,...., X, =aq,

We can use the vectorexpressions X = (X, X,,..., X, ),
X=(X,Xy 000X, ), Y=1,%,...1),

Y= Yases o) D=(D,D,,...D,),
a= (a1 , 0, ,...,an) and express the system of stochastic

differential equations (17)in short as

ax(:
df ) D(i,xy) 3 X(O=a ()

Consequently, in accordance to the hypothesis 3, for each
strength declination:
D(t,x,,%,,...,x,,0,0,...,0) =0 {(19)

n’

and
D (8,3, Xy 5000y X5 Yyseees Yjooews V)
D (2,0, Xy 50003 Xy Yiseens Yjoeens Vo)
when il (20)

All the characteristics of the equation (1) are valid for the
system of differential equations as well; it can be linear or
homogenous. If we find its solution, we simultaneously get

all strength processes X = (X, X,,...,.X,). Thus, in
using the inequality

Y(t) = X,(t) @

foreach ifrom 1 to n, we get a potential random durability of
the product as a minimal time solution to the inequality (21).
A technical product can fail because of any of the given
stresses. Therefore, its durability equals

T =min{T,,7,...,T, } (22)

It is possible with the known a and D in general situation, as
well as with only stress, to determine the vector strength X
for the given vector stress Y with the help of (23). After that,
we can determine the durability of the product from equa-
tions (21)and (22). Finally, we can calculate the probability
(9), (10), (11).

4. Strength measurements

The measurement of voltage strength is well known. A ca-
pacitor is exposed to stress from rising voltage until it is
destroyed. Meanwhile, we measure the stress of the volt-
age. The voltage that has been present at the capacitor break-
down is its voltage strength.
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The essence of the described measurement is the follow-
ing: we increase the technical product stress and measure
it at the moment when the stress becomes equal to the
strength and the product fails. So, we are measuring the
strength indirectly in accordance to hypothesis 1.

We get instant values of the strength from the measure-
ments being described. The strength of the product incur-
ring stress decreases in time. If a capacitor has been ex-
posed to wetness and temperature changes for many years,
then the measurement of the old capacitor will show a less-
ervoltage strength than the new one. Similar results can be
expected for other technical products. We can measure
the instant strength value of an old technical product in the
following way: we expose the product at the moment { to
already known stresses. Then at the instant t we measure
the strength of the product by increasing the stress until the
product fails.

Let us analyze the aforementioned measurement using the
theory from the last paragraph.

Let M be a known process of stress being measured that is
increased until the product fails. Let M be a strictly monoto-
nously increasing continuous function that is defined for all
non-negative t and let the function be derivable any number
oftimes at t = 0. It can then be developed into the Maclau-
ren’s series, which is

MO, MO, MO,
T 2! !

M(t) = M(0)+

(23)
Because of the strict monotony of the function M, A/’ (£))0
foreach ¢ > (), and therefore, Af (0))0.

We cause stress on the product as is shown in figure 3 to
establish the instant strength X(f). Atthe chosen measure-
ment in the instance t, the product is under the known

stress }6 so that the product almost certainly does not fail.

We then put stress on the product from moment ¢ until its
failure at the measurement stress M. The total process of
stress therefore is:

Y(w), if ut
)«w:{kﬂu—ﬂ, it uxt

Itis also valid that M (0){ X (¢)

(24)
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Figure 3. Strength and stress processes at strength

measurement.

According to hypothesis 5, the strength process Xisa con-
tinuous function. Therefore, it is true for each t that

lirrol X(t+1)=X({) (25)

The function X is monotonously decreasing, while the func-
tion M is strictly monotonously increasing; therefore, from
(8) and figure 3 we get

Yt+2)=X({t+1) (26)
From (26) we get
Y(t+1)= M(7) (27)
(24), (25)and (26) give us
X(0)=lim M(1) (28)
70
The equation (28) means that M (7) nearly equals X(1),
when the time needed to break down is short enough. In

this case, in the series (23), only the first two articles of the
sum can be taken into account

M(17)= M(0)+ M (0) (29)
From (28) and (29), we get '
X(t)= M(0)+ M (0)1 (30)

Thus the random time needed to break down 7 as

X ()= M(0)

T ;
M (0)

In

(31)

The random value 7 is sufficiently smallin two cases: if M(0)
is only a little bit smaller than X(t), or if M*(0)is big enough,
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the measured stress increases enough. The time needed
to break down the product must be small enough so that in
this time interval the stress does not essentially influence
the reduction of the product strength.

According to hypothesis 4, we can unload the product at
any interval d after inflicting stress with }6 We can then
inflict stress on the product just after d, as figure 4 shows.

BREAK-DOWN M

d —— [
]

Stress and strength processes at strength
measurements with a pause during the
stress process.

Figure 4.

The instant strength value X(t) measurement arises from such
statistical methods as the following: we randomly select
enough good sample products of the same kind. Then we
apply stress to all sample products at the same stress Y,

from the beginning point to the measurement instance t.
Then for each of the sample products, we measure the
strength X(f), as it was described by the equal measure-
ment stress M. Thus, the time needed for failure is
7, 1,,..., 1, for each sample product, and correspond-
ing strengths are M(1,), M(1,),..., M(1, ). Now, by
using well known statistical methods and (28), (29) and
(30), we get the probability distribution of the strength X(f) in
the instance f. The necessary condition for validity of the
measurement is that until the instance t, a negligible quan-

tity of sample products fail due to the stress Yo This can be
reached either by enough small amounts of stress }6 or by
using enough short increments of time t.

The measurements of the whole strength process are like
the following: the sample set S of all products of the same

sort must be separated into subsets 5, ,5, ,...,, , and

from the subset Sf, we measure X (7). We choose

1 (t,€..(t, and we try to find X (¢), X (£,),..., X (1)

so that we put all sample products of the set S under the
equal stress Y0 For example, all the products from the sub-

set S,l at the instance ¢, all the products from the subset
S,2 atthe instance ¢, etc. We measure the stress, as it was

described, for any subset S,‘ From the given values of the

random strengths {X(t1 ), X(ty),..., X(z, )}, we can

make conclusions about the strength for the chosen tech-
nical product.

Similarly, we also determine how the stress process )j in-

fluences the strength process Xl. for a product that incurs

stress by more stresses. For this measurement, we put
stress on a technical product until the instance t with the

0 .
known stress process Yj and then we increase the stress

X by the stress measurement process M[. untii the product
fails.

Finally, we can measure the influence of the vector stress
Y=(1.Y,...,Y,) onthe strength X . For this purpose,
we put stress on a technical product with the known vector

stress process ¥? = (YIO , Y2° s }j}o) and then we meas-

ure stress M, as in the previous example.

The strength measurement entails the damages down to all
sample products. After the measurement has been finished,
all elementary technical products are unserviceable and all
composite ones show damage to at least one component
that fails during the measurement.

5. Lookingforthe strength declination

After our measurement of the random strength value of the
chosen technical product, we look for its strength declina-
tion process D. The simplest way to achieve this would be
strength derivation. From the expression (1) it follows that
D = —dX /d¢- However, this is not possible because of
the following reason: the derivative of the process X is de-
fined as

dX() _ . X(t+An)

dt Al—0 At

Therefore, in order to make a proper determination we must

know the bounded random values (X (¢), X (¢ + At)) for
each . These could be measured if we measured the
strength of the same technical product twice, at moments t
and y + Ay However, this is not possible because the meas-
ured product has already become useless at the time of the
first measurement. Because of this reason, these measure-
ments do not determine either the strength time process of
the derivation dX/dt or, consequently, the strength declina-
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tion process D. Therefore, we must begin with extensive
research on every product. We must present some hypoth-
eses about D, and then by measuring, all hypotheses can
be accepted or rejected. If we succeed in finding declina-
tion D for one type of technical products, then we can ex-
pect that the declinations of similar products will be distin-
guished only by a parameter.

We can decide about the strength declination process by
using the average value of the strength. Because

(32)

E[dX(ﬂ}__dE[X(n]
& | dr

is valid, it follows from the differential equation (1) that:

dE[ X (1]

33
ar (33)

E[D(t,x, )] =~

By measuring, we can always determine the average value

of the strength E[X(t)] Therefore, we can always find

the average value E[D] except in the case when the

strength is not derivable - when the product does not satisfy
the hypothesis 5. It is suitable that we cause stress on the
product with the constant stress Y(t) = y when we are look-
ing for D. If the measurement shows that in this case the

derivative ——dE[X] / dtis also constant, there is a possi-

bility that D depends only on y, and not on t and x. In this
case, we have a linear differential equation (6) which has
the solution (7).

If the stress is constant Y(t) = y = cons., the expression (7)
has the form

X(t)y=a-D(y)t (34)
with the average value

E[X(0)]=E[a]-E[D(W)]t (35)

If at a constant stress level the average value E[X(t)] is
constantly decreasing by time, we can conclude that
D(t,x,y) hasthe form D(y). To determine the function D

in this case, we cause stress on the product with the con-
stant stress y until it fails, when it follows according to (8)
that

X(I)=y (36)
W e get

a-y
T

D(y) = (37)

from (34) and (36). We know the stress y and can thus
determine T and a = X(0) using statistical measurements.

28

In a similar way, we look for D at the vector stress
Y=(1,Y,,...,Y ) with the strength declination compo-

nents D, (¢,x,y), and vectors x = (x,,X,,...,X,) and
Y=Y Yy5-.05 Y, ) We use the constant, vector stress
Y(t) = y, and other measurements to determine the average

strength values E[X,. (z‘)] If it is constantly decreasing in
time, then D), depends only on y:

X, (t)=a,-D,(y)t (38)

Further searching will be done in ways similar to those used
for a single stress.

After we have found D mathematically, we check the given
result so that we put the technical product to the test with
the known changeable stress Y. Then we compare the rela-
tion of measuring the strength X’ to calculating the strength
X that is itself calcutated from (1) or (18). If the results are
almost always equal, then we have found the exact strength
declination process D.

If there is a technical product for which it is impossible to
find its D, then hypothesis 5 is not valuable for this product.

A sufficient condition for this is that E[X] is not a derivable

function. In this case, the dependence between the stress
and the strength does not have the form (1), and we must

find the operator ¢p sothat ¥ = @( X') isvalid.

6. Optimal exploitation of technical
products

Each technical product has its operator ¢ so that any stress
process Y is followed by exactly one process of strength

X = ®(Y). The dependence ¢ can be adifferential equa-

tion or some other operator. Let V be a value space and let
the function F be given so that exactly one value

v=F(X,Y) belongs to each pair (X,Y), that equals
v=F(®(Y),Y). In the case that we can choose the

stress on the technical product by ourselves, it is signifi-
cantto choose the stress process Y* so that the belonging

value v* = F(D(Y*),Y*)is optimal. The value v*can be

the best durability of the technical product, the smallest
cost of maintenance, the greatest profit, etc.

Example 2. When an electric motoris under a power stress
Y, (t), we know its strength declination process is D(y)
and the initial power strength X, (0) = a. Let the useful

power of the electric motor Pk (¢)be linearly proportional
to its power stress.

£ (1) = nYp(1) (39)
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We are looking for the process Y; of power pumping from

the electrical network that would enable the most useful
work of the electric motor until its failure. The useful work at
the moment T is an integral of the useful power

T
A =[P d (o)
0

It is valid because of (39)

T
A = v,0) dr 1)
0

The solution of the differential equation (6) and the expres-
sion (7) means that the process of power strength is

Xgmza—fDOxﬂ)m (42)
0

Ifthe power stress process is continuous, then we get ran-
dom durability as a solution of the equation X, (¢) = ¥, ()

in time. From {42) and (41), we get the system of integral
equations

T
A =n[ Y1) dt
0

nuvza—fDOKO)m (43)

which have three unknown values A4, , T, Y,. To solve
this problem we add

*
Y, = maxY,
Ay

as the power stress process so that useful work is maximal.
The problem lies in the field of variation calculus. We will
present the solution for a simple example when the power

stress for each tis constant ¥, (f) = y,. The system of
equation (43) now becomes

Ak = 77y1>T
yp=a—D(y,)T (44)

From here we get

4 = nypla=y,)

45
T D(yy) “5)

Now we calculate the greatest value of Ak by looking for
the extreme, thus, by solving the equation

d4,

k=0
dy,

for Vp- Because D(0) = O is valid we get, when Ypgoes to
zero, the undetermined expression 0/0. Let it be valid that

tim $202) _
y=0dy,

Then after derivation of the nominator and denominator of
(45), we get the limit

lim 4, =— T =
yp—0 llmodD(J’P)/dyP 46
Yp—

With this electric motor we can theoretically do as difficult
work as we desire, if we reduce size power stress enough.
However, this work requires a lot of time. The condition

}jg})dD(yp)/dyp:O holds for the function

D(y) = ", where n)1. If n = 1, from (56) we get the
expression

4, ="La-y,) (47)
0]

which shows a random linear decreasing amount of useful
work by the amount of power stress. In this case, we get the
limit
. na
lim 4, = — (48)
a

Yp—0

If the stress is increased to the initial value of strength a,
then it is almost sure that

lim 4, =0 (49)
In this case, the electric motor breaks down almost certain-
ly at the beginning of its operation and does not allow for
any useful work. Actually, the electric motor undergoes more
stresses that we have not taken into account {temperature,
wet, etc.). Therefore, its amount of useful work is also limit-
ed if the limit of power stress is zero.

Example 3. We would like to have technical products that
hold up strongly against stress and have great durability.
Both postulations contradict one another. We will demon-
strate the way and amount that we apply stress to a technical
product continuously so that it would have maximal durabil-
ity. We know that the product fails in the moment Twhen the
stress becomes equal to the product strength, thus
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Y(T") = X(T). Therefore, we must create stress on the
product in a way that the stress is near the strength, yet it
does not ever reach it. Assume that y+ is the boundary

stress when the product almost fails, thus * (H)y=X(1)

for each t. The initial stress is X(0) = a and the strength
declination is D(t,y). From (4) we derive the strength proc-
ess.

Because y+ — Y, we getthe process y+asthe solution
of the integral equation

X(t)=a-| D@1, X(1)) dt (50)
0

This is a simple form of Voltaire's integral equation that can
be solved by an approximation procedure /6/. We can solve
it also in the differential form if we derive (60) and get

@
o D(t, X (1))

; X(0)=a  (51)
Let us determine the boundary process of the stress y+ in

the simplest case, when it is true that D(y) = qp, where
¢ is a random quantity. The differential equation (51) now
has the form

dX(t) = —aX(1)

; X(0)=a (52)
dr

Its solution is the exponential function
Y'(t)=aexp(—at) (53)

The exponential flow of boundary stress y+ gives a clear
indicator that we must decrease the maximal stress of the
technical product when it becomes fatigued, if we wish to
prolong its durability.

7.  Failure prediction in maintenance

The durability of a technical product during its exploitation
can be increased in two ways:

1. by decreasing unnecessary stress,

2. by prolonging its strength during its use.

In the first case, we will add a refreshing unit to the transistor
body or blow fresh air, if we deal with power transistors. We
will also diminish wet or corrosive stress by covering them
with plastic or painting.

In the second case, we increase the strength by using com-
posed technical products in such a way that we partially ex-
change a component before it fails, as is shown in figure 5.

30

Increasing the durability of a technical product by its user
belongs to the field of preventive maintenance.

X\
Y
[
O PV O PM O
—_—ep [
Figure 5. Strength is decreasing during the technical

product operation (Q) because of stress.
Breakdown is prevented by repeated
preventive maintenance (PM).

Increasing the durability of the technical product is the re-
sponsibility of the user and belongs in the field of preventive
maintenance. Preventive maintenance or exchanging of the
product must be done before the product fails or before the
stress exceeds the strength. We will demonstrate how we
can do this with the computer.

In everyday circumstances it is almost impossible to exact
and dynamically predict the effect of the stresses on atech-
nical product, but we can measure them and use the given
results. If we know the initial strength a and the process of
strength declination D for the product, we can use the meas-
urement process of the stress to calculate its strength. Then
from the measured stress Y, we can dynamically calculate
the value of strength at a particular moment, the risk of fail-
ure and other quantities that have been mentioned in this
paragraph, as shown in figure 6.

Yy

1 TECHNICAL | X
PRODUCT |——>

MEASUREMEN’IJI @ D

X0
[ X
Nt D)
. T
COMPUTER |7 () "

A )] R, (u)
N, (u; &)
L

it

The computer can give us the data for
preventing breakdown by using past and
present measurements.

Figure 6.
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From the past stress process to the instant { we can predict,
with previousty known statistical methods, the next strength

process }j* and X: from the relationship X; = q)()j*)‘
With the aid of (8), we can continuously predict the moment
of the product breakdown 7; by solving the inequality

Y (u) = X (u) (54)

for the smallest u. In the case of continuous stress Y[*, the
inequality almost certainly becomes the equality

Y (T) =X (1) (55)
At any moment t the computer can dynamically calculate
F(u)=Pr{T, <u} (56)
R (u)=Pr{T, > u} (57)
Pr{uo <T < “1}: J-d F(u) (58)

Hy

forallu, u,, u, = 1

When the current stress value Y(¢) moves to the current

strength value X (1) of the technical product, itis probable
that the product will fail. Therefore, we call failure risk

N(:8)=Pr{X(t)-Y(1)< 5} (59)

the probability that the difference between the strength and
the stress is not greater than the chosen positive quantity 4.
The computer can call our aftention to the instant t when the
failure risk becomes greater for the first time than the setup
threshold p that lies between O and 1. Thus

N(;0)=2p (60)

We can predict the failure risk dynamically if we use the

predicted processes of the stress }7* and the strength X [*.
In this case, there is the predicted failure risk forany ¢ > ¢

N8 =P X )~ Y <S8} 61

We can also dynamically predict the moment u,+, when the

predicted failure risk reaches the set threshold p for the first
time by the minimal solution of the inequality

N, (u;0)=2 p (62)

for u. Preventive maintenance or exchange of the product
must be done before the failure risk reaches the set thresh-
old p.

Example 4. If the strength declination process depends
only on stress D = D(y), then we get for 4, > ¢ from (1)
the solution

X(u)=X(t)~ [ D(¥(1)) dt (63)

The data for a and D is put into the computer in advance,
and the data for stress Y'is put into the computer by meas-
urements taken at specific moments, as shown in figure 6.
We get the simplest prediction of the stress process by

taking Y,*(u) = y;=cons. for each ¢ > ¢, which equals
the average value of the past stress

. 1
Y, :;IY(u) du (64)
0

The strength prediction from (63) and (64) is

X ()= X(0)~D(y))u-1)  (68)

The failure moment 7; is dynamically predicted by the aid of
(55) so thatit holds true that

X/(T)=y, (66)

From the equations (65) and (66) we get the predicted du-
rability at that moment as

7o XO+ D)=y,
D(y;)

From the strength process (7) and (59) the computer calcu-
lates the failure risk

(67)

N(58)=Pria~ [ D(¥(1) di~Y(1) <8 (sg)

0

The computer predicts the failure risk by the aid of (61) and
(65)as

N,(u;8)=Pr{X(1)= D(y))u~1)~y, <&} (69)

The preventive maintenance or exchange of a technical
product must be carried out while the inequality is

N(t;0)p

right before the risk reaches the threshold p. By using (62),

the computer can predict in any instant { the moment uf )z ,
when the risk reaches the threshold p for the first time or

31



Informacije MIDEM 32(2002)1, str. 22-32

A. Zizek, O. Tezak, . Celan: Failure Prediction Model

when it gets above the threshold p when dynamically solv-
ing the next inequality for minimal u

Pe{X (1)~ D(y)u~1)-y <Syzp (70

8. Conclusions

We have explained the influence of the stress on technical
product strength and how the product durability can be cal-
culated. We have shown how this theory could be used in
practice, by preventative maintenance. Further research
on technical elements and systems can show the long-
term advantages of the described model. The established
reliability theory treats stress as a constant. Almost all tech-
nical systems incur stress dynamically in their use. Pre-
sented stress-strength model considers stress as a varia-
ble. Consequently, we are of the opinion that this new mod-
el is more useful in specific circumstances.
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