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Abstract

In this paper, we prove the following theorem: If a graph X is a degree 2 (unramified)
covering of a hyperelliptic graph of genus g ≥ 2, then X is γ-hyperelliptic for some
γ ≤

[
g−1

2

]
. This is a discrete analogue of the corresponding theorem for Riemann surfaces.

The Bass-Serre theory of coverings of graphs of groups is employed to get the main result.
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1 Introduction
Let M be a compact Riemann surface and let G be its finite group of conformal automor-
phisms, admitting a partition. That is, G can be expressed as a set-theoretic union of its
certain subgroups with trivial pairwise intersections. In [2], R. D. M. Accola proved a for-
mula which relates the genera ofM ,M/G andM/Gi where subgroupsGi, i = 1, 2, . . . , s,
form a partition. This formula is as follows:

(s− 1)g(M) + |G|g(M/G) =

s∑
i=1

|Gi|g(M/Gi). (1.1)

Demonstrating the applications of the formula, in the same paper Accola proved the fol-
lowing theorem, first proved by H. M. Farkas [7] using theta functions: If M is a compact
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Riemann surface of genus three which is a two-fold unramified covering of a genus g = 2
hyperelliptic Riemann surface, then M is hyperelliptic. The case g > 2 was considered in
papers [1], [5]. For example, in the case of g = 3 it turns out that M is hyperelliptic or
1-hyperelliptic (M is a two-fold covering of a torus).

In this paper, we find a discrete version of results obtained in [1] and [5]. Finite con-
nected graphs here play the role of Riemann surfaces, and harmonic maps between graphs
play the role of holomorphic maps between Riemann surfaces. It turns out that the category
of graphs, together with harmonic maps between them, closely mirrors the category of Rie-
mann surfaces, together with the holomorphic maps between them. Namely, we prove that
if a graph X is a degree 2 (unramified) covering of a hyperelliptic graph Y of genus g ≥ 2,
then X is γ-hyperelliptic for some γ ≤

[
g−1

2

]
.

Graph X , from the statement above, has the property that its automorphism group
contains the Klein four-subgroup. In the proof, we use the fact that the Klein four-group
admits a partition, and apply an analogue of (1.1) from [14].

Also we employ the theory of graphs of groups (or the Bass-Serre theory) to uniformize
the coverings of a graph just as it works for Riemann surfaces. This approach was proposed
by A. Mednykh and I. Mednykh [12].

In his dissertation [8], M. T. Green generalized the Bass-Serre theory and for coverings
of graphs of groups obtained results similar to those in the topological theory of coverings.
We use some results from this Ph.D. thesis.

2 Preliminaries
2.1 Graphs

In the present paper, a graph is a finite connected multigraph. We allow a graph to have
loops. Denote by V (X) the set of vertices of X and by E(X) the set of directed edges of
X . Following J.-P. Serre [13], we introduce two maps ∂0, ∂1 : E(X)→ V (X) (endpoints)
and a fixed point free involution e → ē of E(X) (reversal of orientation) such that ∂iē =
∂1−ie. We put

St(a) = StX(a) = ∂−1
0 (a) = {e ∈ E(X) | ∂0e = a},

the star of a, and call deg(a) = |St(a)| the degree (or valency) of a. A morphism of graphs
ϕ : X → Y carries vertices to vertices, edges to edges, and, for e ∈ E(X), ϕ(∂ie) =
∂iϕ(e) (i = 0, 1) and ϕ(ē) = ϕ(e). Note that a morphism of graphs carries loops to loops.
Working with loops in a graph, one may encounter some problems. On those occasions,
one can use the approach with semiedges being developed in [9].

For a ∈ X we have the local map

ϕa : StX(a)→ StY (ϕ(a)).

A map ϕ is locally bijective if ϕa is bijective for all a ∈ X. We call ϕ a covering if ϕ
is surjective and locally bijective. A bijective morphism is called an isomorphism, and an
isomorphism ϕ : X → X is called an automorphism.

Remark 2.1. Note that the definition of a morphism of graphs given by M. Baker and
S. Norine in [3] and our definition differ in the following sense. Let ϕ : X → Y be
morphism of graphs and for some edge e ∈ E(X) let ϕ(∂0e) = ϕ(∂1e) = b ∈ V (Y ).
Then morphism ϕ, in the sense of [3], sends edge e to vertex b. In our case, morphism ϕ
must send edge e to a loop based at vertex b.
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2.2 Harmonic maps and harmonic actions

In this paragraph, we specify the class of morphisms of graphs, called harmonic maps, that
share most properties with holomorphic maps between Riemann surfaces. The notion of
harmonic maps between graphs was introduced by H. Urakawa [15] for simple graphs and
was generalized by M. Baker and S. Norine [3] for multigraphs.

Definition 2.2. A morphism ϕ : X → Y of graphs is said to be a harmonic map or
branched covering if, for all x ∈ V (X), y ∈ V (Y ) such that y = ϕ(x), the quantity

|e ∈ E(X) : x = ∂0e, ϕ(e) = e′|

is the same for all edges e′ ∈ E(Y ) such that y = ∂0e
′.

One can check directly from the definition that the composition of two harmonic mor-
phisms is again harmonic. Therefore the class of all graphs, together with the harmonic
morphisms between them, forms a category. We note also that an arbitrary covering of
graphs is a harmonic map.

Let ϕ : X → Y be harmonic and x ∈ V (X). We define the multiplicity of ϕ at x by

mϕ(x) = |e ∈ E(X) : x = ∂0e, ϕ(e) = e′|

for any edge e′ ∈ E(X) such that ϕ(x) = ∂0e
′. By the definition of a harmonic morphism,

mϕ(x) is independent of the choice of e′. Ifmϕ(x) > 1 for some vertex x ∈ V (X), such a
vertex is called a ramification point of ϕ. The image ϕ(x) of a ramification point is called
a branch point.

We define the degree of a harmonic map ϕ : X → Y by the formula

deg(ϕ) := |e ∈ E(X) : ϕ(e) = e′| (2.1)

for any edge e′ ∈ E(Y ). From the definition of a harmonic map of graphs and connectivity
of the graphs, it follows that the right-hand side of (2.1) does not depend on the choice of
e′ and therefore deg(ϕ) is well defined.

Let G < Aut(X) be a group of automorphisms of a graph X . An edge e ∈ E(X) is
called invertible if there is h ∈ G such that h(e) = ē. Let G act without invertible edges.
Define the quotient graph X/G so that its vertices and edges are G-orbits of the vertices
and edges of X . Note that if the endpoints of an edge e ∈ E(X) lie in the same G-orbit
then the G-orbit of e is a loop in the quotient graph X/G. Following S. Corry [6], we say
that the groupG acts harmonically on a graphX if for all subgroupsH < G, the canonical
projection ϕH : X → X/H is harmonic. If G acts harmonically and without invertible
edges, we say that G acts purely harmonically on X .

The genus of a graph is defined as the rank of the first homology group of the graph
(that is, its cyclomatic number). LetX be a graph of genus g′ and let a groupG < Aut(X)
act purely harmonically on X . Denote by g the genus of the quotient graph X/G. There
is an analogue of the Riemann-Hurwitz relation for graphs introduced in [3]. For the graph
morphism under consideration, the relation is proved in [11], and has the following form:

g′ − 1 = |G|(g − 1) +
∑

a∈V (X)

(|Ga| − 1), (2.2)

where Ga stands for the stabilizer of a ∈ V (X). Here |G| coincides with the degree of the
harmonic map ϕ : X → X/G and |Ga| coincides with the multiplicity mϕ(a) of ϕ at a.
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Remark 2.3. A graph X of genus g′ ≥ 2 is said to be hyperelliptic, if there is a degree 2
harmonic map F : X → Y , where graph Y is a tree (that is, a graph of genus 0). Since
at every ramification point x ∈ V (X) the multiplicity mF (x) = 2, by (2.2) the number of
ramification points of F is equal to g′ + 1.

A finite group G is said to admit a partition {G1, . . . , Gs}, where Gi < G and s ≥ 2,
if G =

⋃s
i=1Gi and Gi ∩Gj = {1}, i, j = 1, 2, . . . , s, i 6= j. Let G < Aut(X) act purely

harmonically on a graph X and admit a partition {G1, · · · , Gs}. Recall that the Euler
characteristic χ(X) of a graph X is related to the genus g(X) of X via χ(X) = 1− g(X).
By Corollary 1 in [14], we have

(s− 1) g(X) + |G| g(X/G) =

s∑
i=1

|Gi| g(X/Gi). (2.3)

2.3 Graphs of groups

The theory of graphs of groups is employed in this paper to uniformize harmonic maps
between graphs. Following [4], we give the definition.

Definition 2.4. A graph of groupsX = (X,A) consists of

(i) a connected graph X;

(ii) an assignment A to every vertex a ∈ V (X) a group Aa, and
to every edge e ∈ E(X) a group Ae = Aē;

(iii) monomorphisms αe : Ae → Aa, where a = ∂0e.

In this paper we restrict ourselves to a class of graphs of groups having trivial groups
Ae = {1} for all edges e ∈ E(X) and finite groups Aa for all vertices a ∈ V (X). It will
be enough for application to the theory of harmonic maps between graphs.

There are two equivalent definitions of the notion of a fundamental group of a graph
of groups: the first is a direct algebraic definition via an explicit group presentation, and
the second one using the language of groupoids. The algebraic definition is easier to state.
Choose a spanning tree T in X . The fundamental group of X with respect to T , denoted
π1(X, T ), is defined as the quotient of the free product[(

∗
a∈V (X)

Aa
)
∗ F (E(X))

]
/R,

where F (E(X)) denotes the free group with basis E(X) and R is the following set of
relations:

(i) ē = e−1 for every e in E(X);

(ii) e = 1 for every e in E(T ).

There is also a notion of the fundamental group ofX with respect to a base-vertex a in
X , denoted π1(X, a), which is defined using the formalism of groupoids (see [8] and [4]
for details). It turns out that for every choice of a base-vertex a and every spanning tree
T in X, the groups π1(X, T ) and π1(X, a) are naturally isomorphic. We note also ([4],
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section 1.22) that for given a, b ∈ X the groups π1(X, a) and π1(X, b) are conjugate in the
fundamental groupoid ofX. In what follows we will use notation π1(X), ignoring the way
the fundamental group was constructed.

It follows from the above definition that ifX is a graph of genus g then F (E(X))/R =
Fg is the free group of rank g. Then

π1(X) =

(
∗

a∈V (X)
Aa
)
∗ Fg.

To every graph of groups X, with a specified choice of a base-vertex a ∈ X , one can
associate a Bass-Serre universal covering tree X̃ = (̃X, a), which is a tree admitting a
natural group action of the fundamental group π1(X) = π1(X, a) without edge-inversions.
Moreover, the quotient graph of groups X̃/π1(X) is naturally isomorphic toX.

2.4 Coverings of graphs of groups and harmonic maps

Let us take graph morphisms in the definition of a covering of graphs of groups, given in
[8] or [4], to be the class of all harmonic maps. Taking into consideration the fact that a
trivial group is assigned to any edge, the definition of a covering of graphs of groups can
be formulated as follows.

Definition 2.5. Let X = (X, A) and Y = (Y, B) be graphs of groups with trivial edge
groups. A covering F = (F, Φ) : X→ Y of graphs of groups consists of

(i) a harmonic morphism F : X → Y ;

(ii) a set Φ of monomorphisms Fa : Aa → BF (a), a ∈ V (X), such that
mF (a)|Aa| = |BF (a)|, where mF (a) is the multiplicity of F at the point a.

This definition was introduced in [12]. To illustrate the notion of a covering in the category
of graphs of groups, we provide a basic example.

Example 2.6. Let G be a group of automorphisms of a finite connected graph X . Suppose
that G acts on the set E(X) of directed edges of X freely and without edge inversions.
Consider the canonical map F : X → Y = X/G. Denote by StG(a) the stabilizer of a
vertex a in group G. Then F is a harmonic map with mF (a) = |StG(a)|, a ∈ V (X).
Denote by X the graph of groups obtained from X by prescribing a trivial group to each
vertex and each edge of X . Graph of groups Y is defined by prescribing to each vertex
b = F (a) of Y a group BF (a) isomorphic to StG(a) and assign a trivial group to each
edge of Y . Since G acts transitively on each fibre of F , the group BF (a) is well defined.
Let Φ be the set of trivial monomorphisms Fa : Aa → BF (a), a ∈ V (X). We have
mF (a)|Aa| = |BF (a)|. Then

F = (F, Φ) : X→ Y = X/G

is the covering of graphs of groups.
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3 Main result
A graph X of genus g′ ≥ 2 is said to be γ-hyperelliptic if there is a degree 2 harmonic
map F : X → Y onto a graph Y of genus γ. Each edge of Y has two pre-images under
F and there is an order 2 automorphism τ of X, which swaps these pre-images. This
automorphism is called γ-hyperelliptic involution. Note that γ-hyperelliptic involution acts
on X purely harmonically. The case γ = 0 coincides with the definition of a hyperelliptic
graph. The main result is stated in the following theorem.

Theorem 3.1. Let X be a degree 2 (unramified) covering of a hyperelliptic graph Y of
genus g ≥ 2. Then X is γ-hyperelliptic for some γ ≤

[
g−1

2

]
.

In the proof of Theorem 3.1 we use the following algebraic result.

Lemma 3.2. Let Γ be a free product of n > 1 copies of Z2. If F < Γ is a torsion-free
subgroup of index 4, then F C Γ and Γ/F is isomorphic to the Klein four-group.

Proof. The given group Γ has the presentation

Γ =
〈
x1, x2, . . . , xn | x2

1, x
2
2, . . . , x

2
n

〉
. (3.1)

Let F ≤ Γ be any torsion-free subgroup of index 4. The action of Γ on the right cosets
{F, Fy1, Fy2, Fy3} of F in Γ gives a transitive representation θ : Γ → S4. If some xi in
the presentation (3.1) of Γ has a fixed point, then for some y ∈ Γ we have y xi y−1 ∈ F
and F is not torsion-free, because

(
y xi y

−1
)2

= 1. Hence xi has no fixed points, so it is
represented in S4 by a double transposition (that is, by a permutation of cyclic type (2 2)).
So long as we deal with the transitive representation, we get an epimorphism θ : Γ → V4,
where V4 is the Klein four-group.

Let us show that F ≤ ker θ. Take any w ∈ F . Since w fixes the coset F , and there are
only double transposition actions and the trivial action, w must fix the remaining cosets.
So, w ∈ ker θ.

The reverse inclusion ker θ ≤ F is obvious. Thus, we get F = ker θ C Γ.

Proof of Theorem 3.1. Let φ : X → Y denote the covering from the theorem. The graph
Y is hyperelliptic, that is, there is an order two harmonic automorphism τ ∈ Aut(Y ), such
that the factor graph T = Y/〈τ〉 is a tree. Let ψ : Y → T be the corresponding harmonic
map. Let F stand for the composite harmonic map ψ ◦ φ.

Now we are going to find a group G0 of deck transformations of the harmonic map
F : X → T . To do that, we apply the Bass-Serre theory. Turn graphs X and T into graphs
of groups as follows. Let X = (X,A) be a graph of groups based on graph X , and where
A assigns a trivial group Az = {1} to each vertex and each edge z of X . Let T = (T,B)
be a graph of groups based on tree T , and where B assigns the group Bz = Z2 to each of
g + 1 branch points z of map ψ, and a trivial group Bz = {1} to every other vertex and
edge z of T .

Let us show that the map F : X → T can be extended to the covering F : X → T

of graph of groups. Since F is harmonic, it remains to check that, for any a ∈ V (X), the
trivial monomorphism Aa → BF (a) satisfies the condition mF (a)|Aa| = |BF (a)| or, since
all Aa = {1}, the condition

mF (a) = |BF (a)|. (3.2)
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The map φ is a covering, and so locally bijective. Hence, for any a ∈ V (X), mF (a) =
mψ(φ(a)). If φ(a) is a ramification point of ψ, then mψ(φ(a)) = 2, BF (a) = Z2, and
so (3.2) is correct. If φ(a) is not a ramification point of ψ, then mψ(φ(a)) = 1, BF (a) is
trivial, hence (3.2) is correct as well.

Let H = π1(X) and Γ = π1(T) be fundamental groups, and X̃ and T̃ be universal
covering trees of graphs of groups X and T respectively. Note that since φ has no ramifi-
cation points, by the Riemann-Hurwitz relation (2.2), X has genus 2g − 1 and so H is a
free group on 2g − 1 generators; group Γ is a free product of g + 1 copies of Z2.

By the Bass uniformization theorem ([3], Proposition 2.4) there exists a lift of F to an
isomorphism F̃ : X̃→ T̃ between the covering trees equivariant under the action of H and
Γ on X̃ and T̃ respectively. Note that X ∼= X̃/H and T ∼= T̃/Γ. Identifying X̃ and T̃ via
F̃ we replace the covering F : X → T by the covering F′ : X̃/H → X̃/Γ induced by
the group inclusion H < Γ, where H is of index 4 in Γ. By Lemma 3.2, since any free
group is a torsion-free group, H is a normal subgroup in Γ. Therefore, by Theorem 8.1 in
[8], covering F′ is regular and its covering transformation group is G0 = Γ/H . Returning
to the category of graphs, we get the underlying harmonic map of graphs X → X/G0

coinciding with F : X → T where X/G0
∼= T . Group G0 is isomorphic to the Klein

four-group. So it admits a partition {G1, G2, G3} into three subgroups of order two. Note
that every subgroup Gi ≤ G0 corresponds to a harmonic map X → X/Gi and one of
X/Gi is isomorphic to Y . Let g′ and gi be the genera of X and X/Gi, i ∈ {0, 1, 2, 3},
respectively. By (2.3) we have

g′ + 2g0 = g1 + g2 + g3.

Here g0 = 0, g′ = 2g − 1 and one of gi must be g, so we get

g − 1 = g1 + g2.

The possible cases for g1 and g2 (up to a symmetry) are

g1 g2

0 g − 1

1 g − 2

2 g − 3

. . . . . .[
g − 1

2

] [
g − 1

2

]
(+1, if g is even).

Taking γ to be the minimum of g1 and g2 in each case, we get that X is γ-hyperelliptic for
some γ ≤

[
g−1

2

]
.

Finally, we show that the bound is sharp. That is, for any g ≥ 2 there exists a graph
X of genus 2g − 1, and the smallest genus of graphs Y, such that X → Y is a degree 2
harmonic morphism, is equal to

[
g−1

2

]
. Let g be odd. Consider graph X1 of genus 2g − 1,

depicted on Figure 1 in the case g = 5. Its automorphism group contains five involutions.
Their actions on X1 are horizontal and vertical flips, h, v, two diagonal flips, d1, d2, and
the rotation r on π around the center of the graph. The corresponding factor-graphs have
genera g−1

2 , g−1
2 , g − 1, g − 1 and g respectively.
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Now let g be even. Consider graph X2 of genus 2g − 1, depicted on Figure 2 in
the case g = 6. Its automorphism group contains three involutions. They act on X2

as horizontal and vertical flips, h, v, and the rotation r on π around the center of the graph.

Figure 1: Graph X1 in the case g = 5 and its factor-graphs.

The corresponding factor-graphs have genera
[
g−1

2

]
,
[
g−1

2

]
+ 1 and g respectively. Hence,

the bound in the theorem is sharp.

h

r

X2 vX2

hX2 rX2 

v

Figure 2: Graph X2 in the case g = 6 and its factor-graphs.

The immediate consequences of the theorem are the assertions below. The first one has
been proved by I. Mednykh [10] by exhaustive search.

Corollary 3.3. Suppose X is a graph of genus 3 which is a degree 2 (unramified) covering
of a hyperelliptic graph Y of genus 2. Then X is hyperelliptic.
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Corollary 3.4. If X is a graph of genus 5 which is a degree 2 (unramified) covering of a
hyperelliptic graph of genus 3, then X is hyperelliptic or 1-hyperelliptic.

Remark 3.5. In both corollaries, the genus ofX is not an extra hypothesis, but a necessary
consequence of the degree 2 cover due to Riemann-Hurwitz relation (2.2).
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