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Index pC  Based on the Bootstrap-t Confidence 

Interval for the Standard Deviation 
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 Abstract 

This paper proposes a confidence interval for the process capability index 
based on the bootstrap-t confidence interval for the standard deviation. A 
Monte Carlo simulation study was conducted to compare the performance of 
the proposed confidence interval with the existing confidence interval based 
on the confidence interval for the standard deviation. Simulation results show 
that the proposed confidence interval performs well in terms of coverage 
probability in case of more skewed distributions. On the other hand, the 
existing confidence interval has a coverage probability close to the nominal 
level for symmetrical or less skewed distributions. The code to estimate the 
confidence interval in R language is provided. 

1 Introduction 

Statistical process quality control has been widely applied in many industries. One 
of the quality measurement tools used for improvement of quality and productivity 
is the process capability index (PCI). Process capability indices are practical tools 
for establishing the relationship between the actual process performance and the 
manufacturing specifications. Although there are many process capability indices, 
the most commonly used index is pC  (Kane, 1986; Zhang, 2010). In this paper, we 
focus on the process capability index ,pC  defined by Kane (1986) as:  

,
6p

USL LSLC
σ
−

=            (1) 

where USL  is the upper specification limit, LSL  is the lower specification limit, 
and σ  is the process standard deviation. The numerator of pC  gives the size of the 
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range over which the process measurements can vary. The denominator gives the 
size of the range over which the process actually varies (Kotz and Lovelace, 1998). 
Due to the fact that the process standard deviation is unknown, it must be estimated 
from the sample data 1{ ,..., }.nX X  The sample standard deviation ;S  

1/ 2
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n
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S n X X−
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 
= − − 
 

∑  is used to estimate the unknown parameter σ  in 

Equation (1). The estimator of the process capability index pC  is therefore  

ˆ .
6p

USL LSLC
S
−

=            (2) 

Although the point estimator of the capability index pC  shown in Equation (2) 
can be a useful measure, the confidence interval is more useful. A confidence 
interval provides much more information about the population characteristic of 
interest than does a point estimate (e.g., Smitson, 2001; Thompson, 2002; Steiger, 
2004). The confidence interval for the capability index pC  is constructed by using a 

pivotal quantity 2 2 2
( 1)( 1) / ~ .σ χ −= − nQ n S  Therefore, the (1 )100%α−  confidence 

interval for the capability index pC  is 
2 2

/ 2, 1 1 / 2, 1ˆ ˆ, ,
1 1
n n

p pC C
n n
α αχ χ− − −

 
 
 − − 

         (3) 

where 2
/ 2, 1nαχ −  and 2

1 / 2, 1nαχ − −  are the ( / 2)100thα  and (1 / 2)100thα−  percentiles of the 
central chi-square distribution with 1n −  degrees of freedom. 

The confidence interval for the process capability index pC  shown in Equation 
(3) is to be used for data that are normal. The coverage probability of this 
confidence interval is close to a nominal value of 1 α−  when the data are normally 
distributed. However, the underlying process distributions are non-normal in many 
industrial processes. (e.g., Chen and Pearn, 1997; Bittanti et al., 1998; Wu et al., 
1999; Chang et al., 2002; Ding, 2004). In these cases, the coverage probability of 
the confidence interval can be appreciably below 1 .α−  Cojbasic and Tomovic 
(2007) presented a nonparametric confidence interval for the population variance 
based on ordinary t-statistics combined with the bootstrap method for a skewed 
distribution. In this paper, we propose a new confidence interval for the process 
capability index pC  based on the bootstrap-t confidence interval proposed by 
Cojbasic and Tomovic (2007).  

The paper is organized as follows. In Section 2, the theoretical background of 
the existing confidence interval for the pC  is discussed. In Section 3, we provide an 
analytical formula for the confidence interval for the pC  based on the bootstrap-t 
confidence interval for the standard deviation. In Section 4, the performance of the 
confidence intervals for the pC  are investigated through a Monte Carlo simulation 
study. Conclusions are provided in the final section.  
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2 Existing confidence interval for the process 
capability index 

Suppose ( )2~ , , 1,2,..., ,iX N i nµ σ =  a well-known (1 )100%α−  confidence interval for 

the population variance 2 ,σ  using a pivotal quantity 2 2( 1) /σ= −Q n S , is (Cojbasic 
and Loncar 2011) 

2 2
2

2 2
1 / 2, 1 / 2, 1

( 1) ( 1) ,
α α

σ
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n n
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S n X X  and 2
/ 2, 1αχ −n  and 2

1 / 2, 1αχ − −n  are the ( / 2)100α th  and 

(1 / 2)100α− th  percentiles of the central chi-square distribution with 1−n  degrees of 
freedom, respectively. From Equation (4), we have  
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We obtain a (1 )100%α−  confidence interval for the pC  based on the confidence 
interval for the standard deviation which is 

2 2
/ 2, 1 1 / 2, 1

1
ˆ ˆ, .

1 1
n n

p pCI C C
n n
α αχ χ− − −

 
 =
 − − 

           (5) 

3 Proposed confidence interval for the process 
capability index 

The bootstrap introduced by Efron (1979) is a computer-based and resampling 
method for assigning measures of accuracy to statistical estimates (Efron and 
Tibshirani, 1993). For a sequence of independent and identically distributed (i.i.d.) 
random variables, the bootstrap procedure can be defined as follows (Tosasukul et 
al., 2009). Let 1 2, ,..., nX X X  be independently and identically distributed random 
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variables from some distribution with mean µ  and variance 2.σ  Let the random 
variables *{ ,1 }≤ ≤jX j m  be the result of sampling m  times with replacement from 

the n  observations 1 2, ,..., .nX X X  The random variables *{ ,1 }≤ ≤jX j m  are called the 
bootstrap samples from original data 1 2, ,..., .nX X X  A confidence interval for the 
population variance can be constructed using the  aforementioned pivotal quantity 

2 2( 1) / .σ= −Q n S  For large sample sizes, a central chi-square distribution with 1−n  
degrees of freedom can be approximated by a normal distribution with mean 1−n  
and variance 2( 1)−n  (Cojbasic and Tomovic, 2007). Therefore, the distribution of 
the standardized variable 

2

2 22

2

( 1) ( 1)

2( 1) var( )
σσ

−
− − −

= =
−

n S n SZ
n S

                

converges to a standardized normal distribution as n  increases to infinity. The 
bootstrap confidence interval for the 2σ  is calculated based on the statistic 



2 2

2
,

var( )

σ−
=

ST
S

 

where  2var( )S  is a consistent estimator of the variance of 2.S  Casella and Berger 
(2001) have shown the estimator of 2var( )S  for a non-normal distribution such that 


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After re-sampling B  bootstrap samples, in each bootstrap sample we compute 
the value of the following statistic  


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*
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,
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−
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S ST
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         (6) 

where *2S  is a bootstrap replication of statistic  2 ,S   *2 * *4
4

1 3var( ) ˆ
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 The (1 )100%α−  bootstrap-t confidence intervals for the 2σ  is 
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where *
/ 2α̂t  and *

1 / 2
ˆ

α−t  are the ( / 2)100α th  and (1 / 2)100α− th  percentiles of *T  shown in 
Equation (6). Additionally, the (1 )100%α−  confidence interval for the standard 
deviation σ  is 

1/ 2 1/ 22 2
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       (7) 

Then, from Equation (7), we construct the confidence interval for the pC  based on 
the bootstrap-t confidence interval for the standard deviation which is 
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Therefore, the confidence interval for the pC  based on the bootstrap-t confidence 
interval for the standard deviation is given by 
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All confidence intervals were implemented using the open source statistical 
package R (Ihaka and Gentleman, 1996); source code is available in Appendix. 

4 Simulation study 

To assess the performance of the proposed confidence interval, we conducted a 
Monte Carlo simulation study to estimate the coverage probabilities and expected 
lengths of the proposed confidence interval under different situations and compare 
them with the existing confidence intervals. The estimated coverage probability and 
the expected length (based on M  replicates) are given by 


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and  
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where #( )≤ ≤pL C U  denotes the number of simulation runs for which the true 

process capability index pC  lies within the confidence interval. The right-skewed 
data were generated with the population mean µ  = 50 and the population standard 
deviation σ  = 1 given in the Table 1. 
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Table 1: Probability distributions generated and the coefficient of skewness for  
Monte Carlo simulation. 

Probability Distributions Coefficient of Skewness 
(50,1)N  0.000 

(48.268, 51.732)Uniform  0.000 
10 (4.4375,13.3125) 47.5Beta× +  0.506 

(9,3) 47Gamma +  0.667 
(4,2) 48Gamma +  1.000 

(2.25,1.5) 48.5Gamma +  1.333 
(1,1) 49Gamma +  2.000 

(0.75,0.867) 49.1340Gamma +  2.309 
(0.5,0.707) 49.2929Gamma +  2.828 
(0.4,0.6325) 49.3675Gamma +  3.163 
(0.3,0.5477) 49.4523Gamma +  3.651 

(0.25,0.5) 49.5Gamma +  4.000 
 
The true values of the process capability index ,pC  LSL  and USL are set in the 
Table 2. 

 

Table 2: True values of ,pC LSL  and USL used for Monte Carlo simulation. 

True Values of pC  LSL  USL  
1.00 47.00 53.00 
1.33 46.01 53.99 
1.50 45.50 54.50 
1.67 44.99 55.01 
2.00 44.00 56.00 

 
The sample sizes simulated were 10, 25, 50 and 100 and the number of simulation 
trials was set to 10,000. The number of bootstrap samples is 1,000. The nominal 
confidence level was fixed at 0.95. All simulations were performed using programs 
written in the open source statistical package R (Ihaka and Gentleman, 1996). 

The simulation results are presented for four cases. As can be seen from 
Figures 1 and 2, the existing confidence interval ( 1CI ) provides more estimated 
coverage probabilities than the proposed confidence interval ( 2CI ) when the data 
were generated from symmetrical and less skewed distributions (coefficient of 
skewness between 0 and 2) for all sample sizes. Namely, 1CI  provides estimated 
coverage probabilities close to the nominal level 0.95, which is more than those of 
the 2CI  for the normal distribution. In addition, the expected lengths of 2CI  were 
shorter than those of 1CI  for all sample sizes (see Figures 5 and 6). 
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On the other hand, for more skewed distributions (coefficient of skewness 
between 2.309 and 4), the estimated coverage probabilities of 2CI  were greater than 
those of 1CI  for almost all sample sizes as shown in Figures 3 and 4. Figures 7 and 
8 present the results on the expected lengths of 1CI  and 2CI  in case of right-skewed 
distributions. We found that the expected lengths of 1CI  were shorter than those of 

2CI  for all sample sizes. 
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Figure 1: The estimated coverage probabilities of 1CI  and 2CI   for pC  in case of (50,1)N  
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Figure 2: The estimated coverage probabilities of 1CI  and 2CI  for pC   

in case of (4, 2) 48Gamma +  
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Figure 3: The estimated coverage probabilities of 1CI  and 2CI   for pC   

in case of (0.75,0.867) 49.1340Gamma +  
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Figure 4: The estimated coverage probabilities of 1CI  and 2CI  for pC  in case of 

(0.25,0.5) 49.5Gamma +  
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Figure 5: The expected lengths of 1CI  and 2CI  for pC  in case of (50,1)N  
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Figure 6: The expected lengths of 1CI  and 2CI  for pC  in case of (4, 2) 48Gamma +  
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Figure 7: The expected lengths of 1CI  and 2CI  for  pC   

in case of (0.75,0.867) 49.1340Gamma +  
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Figure 8: The expected lengths of 1CI  and 2CI  for pC  in case of (0.25,0.5) 49.5Gamma +  

5 Conclusions 

The existing confidence interval for the capability index pC  based on the 
confidence interval for the standard deviation was based on a normal distribution. 
However, the underlying distribution may be non-normal or skewed in some 
circumstances. A confidence interval for the capability index pC  based on the 
bootstrap-t confidence interval for the standard deviation was developed. The 
proposed confidence intervals were compared with the existing confidence interval 
through a Monte Carlo simulation study. The proposed confidence interval proved 
to be better than the existing confidence interval in terms of the coverage 
probability when the data have a coefficient of skewness > 2. On the other hand, 
when the data are symmetrical or have a coefficient of skewness ≤ 2, the estimated 
coverage probability of the existing confidence interval can be close to the nominal 
level. 
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Appendix: Source R code for all confidence intervals  

CI1 <- function (x,LSL,USL,alpha) 
{ 
 n <- length(x) 
 S <- sd(x) 
 chisq1 <- qchisq(alpha/2,df=n-1) 
 chisq2 <- qchisq(1-alpha/2,df=n-1) 
 K <- (USL-LSL)/(6*S) 
 ci.low <- K*sqrt(chisq1/(n-1)) 
 ci.up  <- K*sqrt(chisq2/(n-1)) 
 out <- cbind(ci.low,ci.up) 
 return(out) 
}  
 
CI2 <- function (x,LSL,USL,alpha) 
{ 
 n  <- length(x) 
 s2 <- var(x) 
 percentile.T.S <- percentile.T.star(x,alpha) 
 T1 <- percentile.T.S[1] 
   T2 <- percentile.T.S[2] 
 K1 <- (USL-LSL)/6 
 K2 <- s2*sqrt(2*(n-1))  
 ci.low <- K1*(K2/(2*T1+sqrt(2*(n-1))))^(-1/2) 
 ci.up  <- K1*(K2/(2*T2+sqrt(2*(n-1))))^(-1/2) 
 out <- cbind(ci.low,ci.up) 
 return(out) 
}  
 
percentile.T.star <- function (x,alpha) 
{ 
 B  <- 1000 
 n  <- length(x) 
 S2 <- var(x) 
 T.star <- numeric(B) 
  for (i in 1:B){ 
   xs <- sample(x,n,replace=TRUE) 
   s2.star <- var(xs) 
   T.star[i] <- sqrt((n-1)/2)*((s2.star/S2)-1) 
  } 
 T1 <- quantile(T.star,probs=alpha) 
 T2 <- quantile(T.star,probs=1-alpha) 
 out <- cbind(T1,T2) 
 return(out) 
}  
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