
Informatica 33 (2009) 169-179 169

Applying SD-Tree for Object-Oriented Query Processing

I. Elizabeth Shanthi
Dept of Computer Science
Avinashilingam University for Women, Coimbatore, India.
E-mail: shanthianto@yahoo.com

R. Nadarajan
Dept of Mathematics and Computer Applications
PSG College of Technology, Coimbatore, India.
E-mail: nadarajan_psg@yahoo.co.in

Keywords: signature files, B+ tree, indexing, object oriented data bspases

Received: April 14, 2008

We follow signature-based approach to object-oriented query handling in this paper. The use of 
signature files as an index for full text search has been widely known and used.  Signature file based 
access methods initially applied on text have now been used to handle set-oriented queries in Object-
Oriented Data Bases (OODB). All the proposed methods use either efficient search method or tree 
based intermediate data structure to filter data objects matching the query. Use of search techniques 
retrieves the objects by sequentially comparing the positions of 1s in it.  Such methods take longer 
retrieval time. On the other hand tree based structures traverse multiple paths making comparison 
process tedious. In this paper we describe a new indexing technique for representing signature file using 
the dynamic balancing of B+ tree called Signature Declustering tree (SD-tree). The structure has the 
positions of 1s in the signatures distributed over a set of leaf nodes. Using this for a given query 
signature all the matching signatures can be retrieved cumulatively from a single node. Also for 
signature insertion an optimal search path is calculated by keeping a threshold value and by using 
forward pointers in leaf nodes. To promote optimal search between subsequent queries the backward 
leaf node pointers are used.  Experiments have been conducted to analyze the time and space overhead 
of the SD-tree by varying the signature length and the distribution of signature weight for varying query 
signature patterns. Also, to validate the proposed structure a hypothetical object schema is considered 
and sample queries evaluated.

Povzetek: SD drevesa so uporabljena za objektno obravnavo vprašanj.

1 Introduction
The advent of internet has made the volume of data 
going high everyday in all computer-based applications. 
This has entrusted researchers to design more powerful 
techniques to generate and manipulate large amounts of 
data to derive useful information. Indexing plays a vital 
role in the fast recovery of required data from large 
databases.

Among the many indexing techniques reported the 
signature file approach is preferred for its efficient 
evaluation of set-oriented queries and easy handling of 
insert and update operations. Initially applied on text data 
[2, 3, 12, 17, 21] it has now been used in other 
applications like office filing[6], relational and Object-
Oriented Databases[14,16,26] and hypertext[9]. 

Signatures are hash coded abstractions of the original 
data. It is a binary pattern of predefined length with fixed 
number of 1s. The attributes’ signatures are 
superimposed to form object’s signature. To resolve a
query, the query signature say Sq is generated using the 
same hash function and compared with signatures in the 

signature file for 1s sequentially and many non-
qualifying objects are immediately rejected. 

If all the 1s of Sq matches with that of the signature 
in the file it is called a drop. The signature file method 
guarantees that all qualifying objects will pass through 
the filtering mechanism; however some non-qualifying 
objects may also pass the signature test. The drop that 
actually matches the Sq is called an actual drop and drop 
that fails the test is called false drop.  The next step in the 
query processing is the false drop resolution. To remove 
false drops each drop is accessed and checked 
individually. The number of false drops can be
statistically controlled by careful design of the signature 
extraction method [7] and by using long signatures [3,6].

1.1 Related work
Different approaches have been discussed by researchers 
to represent Signature file in a way conducive for 
evaluating queries, such as Sequential Signature File[31], 
Bit-Slice Signature file[31], Multilevel Signature 



170 Informatica 33 (2009) 169–179 I.E. Shanthi et al.

file[25], Compressed Multi Framed Signature file[23], 
Parallel Signature file[20], S-Tree and its variants[13,24],  
Signature Graph[28] and Signature tree[27,29,30].

1.2 Motivation for the current work
The signature tree developed by Chen [30] is having the 
following drawbacks: 

 Signatures are inserted considering both 0s and 
1s whereas actual weight age is for set bits only.  

 Insertion path is dictated by the existing tree 
structure.  

 To process a query, bits appearing in the tree 
from root node are compared with query 
signature pattern for 0s and 1s and not by its set 
bits.  

 For a 0-bit in the query both left and right sub 
tree is followed leading to multiple traversals.  

These observations laid the foundation for the 
current work. We study a new indexing technique for 
OODBSs using the dynamic balancing of B+ tree called 
Signature Declustering (SD)-tree in which the positions 
of 1s in the signatures are distributed over a set of leaf 
nodes. Using this for a given query signature all the 
matching signatures can be retrieved cumulatively in a 
single node.

The rest of the paper is organized as follows. In 
section 2 we discuss briefly the different approaches used 
to represent the signature file. In section 3 the structure 
of the proposed SD-tree is shown. Section 4 is devoted to 
the algorithms for insert, search and delete operations. 
Section 5 proposes a sample data set and queries to 
validate the new structure. Section 6 reports the results of 
the experiments conducted with the analytical 
comparison of SD-tree with that of Signature tree [30]. 
Finally section 7 concludes the work with further outlook 
on the work.

2 A summary of signature file
techniques

2.1 Signature files
A Signature is a bit string formed from a given value. 
Compared to other index structures, signature file is more 
efficient in handling new insertions and queries on parts 
of words. Other advantages include its simple 
implementation and the ability to support a growing file. 
But it introduces information loss which can be 
minimized by carefully selecting the signature extraction 
method. 

Techniques for signature extraction such as Word 
Signature (WS) [2,3,4,6], Superimposed Coding (SC) 
[1,2,3,4,5,6,10], Multilevel Superimposed Coding [12], 
Run Length Encoding (RL) [3,4,6], Bit-block
Compression (BC) [3,4], Variable Bit-block 
Compression (VBC) [4,6] have been reported. The 
encoding scheme sets a constant number say m, of 1s in 
the range [1..F], where F is the length of the signature. 

The resulting binary pattern with m number of 1s and (F-
m) number of 0s is called a word signature.  The 
signature of a text block or object can be obtained by 
superimposing (logical OR operation) all its constituent 
signatures (i.e) word signatures for text block and 
attributes’ signatures for object. The set of all signatures 
form a signature file. An example of Superimposed 
Coding and a sample query evaluation is given below.

Information
Retrieval

0010 0100
0100 0001

Block Signature 0110 0101

Sample queries
Matching query

Keyword = Information     0010 0100
Query descriptor                0010 0100

Block signature matches              (Actual Drop)

False Match query
Keyword = Coding 0010 0001

Query descriptor               0010 0001
Block signature matches               (False Drop)
     but keyword does not 

Non-matching query
Keyword = Information   0010 0100
Keyword = Science          0000 0110
Query descriptor             0010 0110

Block signature does not match

2.2 Applications of signatures
Signatures are applied mainly in database access methods 
useful for text retrieval such as Full text scanning, 
Inversion, Clustering, Multi attribute retrieval methods 
like hashing and signature files. Such applications are 
discussed in [3,5,21]. Here the documents are stored 
sequentially in the “Text File”.

Signatures which are abstractions of the documents 
are stored in the “Signature File”. The latter serves as a 
filter on retrieval. It helps in discarding a large number of 
non-qualifying documents.  Signatures have been applied 
in areas rich in text documents like telephone directory 
[1], office systems [3,4,6], Optical and Magnetic disk
access [8],  Data base Management system and Library 
automation.

Other applications include
Access method for documents
Indexing method for large text file [17, 18].
Access method for formatted data[1].
To speed up searching in editor[7].
To compress a vocabulary[7].
For a spelling checking program[7].
In differential file[7].



APPLAYING SD-TREE FOR OBJECT-ORIENTED... Informatica 33 (2009) 169–179 171

   Text   

50

Figure 3: A typical Compressed  Bit-Sliced Signature 
File organization.

2.3 Physical representations of signature 
files

This section discusses briefly the various techniques used 
to represent signature files. We follow the lead of [30] 
for figures in this section.

2.3.1 Sequential Signature File (SSF)
The signatures are sequentially stored in a file called SSF 
as in Fig. 1. In single level signature methods every 
signature must be accessed and tested. Since signatures 
are abstractions of original data with smaller size, the 
method is faster than sequential scan of objects 
themselves. This method is easy to implement and 
requires low storage space and low update cost. The 
disadvantage is that more the number of objects exist, the 
more is the time spent on scanning signature file [8,31]. 
Therefore it is generally slow in retrieval. To support 
faster access multilevel signature methods are suggested.

Figure 1: A typical Sequential signature file.

2.3.2 Bit-Sliced Signature File (BSSF)

BSSF stores signatures in a column-wise manner as 
illustrated in Fig. 2. Thus F bit-slice files one for each bit 
position of the set signatures are used. In retrieval only a 
part of the F bit-slice files have to be scanned and hence 
the search cost is lower than SSF. However update cost is 
higher. This is because a new signature insertion requires 
about F disk accesses one for each Bit-slice file [8,31].

Figure 2: A typical Bit-Sliced Signature File.

2.3.3 Compressed Bit-Sliced Signature File 
(CBSSF)

By choosing a proper hashing function for signature 
extraction the number of 1s is forced to be one. Here, the 
signature length should be increased to maintain the false 
drop probability at minimum. This creates a sparse 
matrix which is easy to compress [8, 23]. A simple way 
to compress is to replace each 1 with its corresponding 
physical address. 
In Fig. 3 the hash table has a list of pointers pointing to 
the heads of linked list [8]. 

For example assume that the word Text has its   first 
bit set to 1 and it appears at the 50th byte of text file                

then searching the first bucket list, we find the position of    
the word Text.  Although this approach gives some space     
saving, the number of false drops will definitely be 
increased due to sparse signature files.

2.3.4 S-Tree
S-Tree [24] is a B+ tree like structure [11,22] with leaf 
nodes containing a set of signatures with their Object 
Identifiers (OIDs). The internal nodes are formed by 
superimposing the lower level nodes as shown in Fig. 4. 
For example to retrieve a query signature Sq = 
11000000, we search S-ree top down.  From root node v1 
we compare and move to v6. In the next level both v7 
and v8 match and finally we end up with signatures o11, 
o12 in v7 and o13 in v8. 

The advantage is simple tree searching way of 
obtaining signatures rather than searching the whole 
signature file.

Figure 4: A typical  S-tree organization.

The disadvantage is that due to superimposing, 
internal nodes in the upper level tend to have more 
weight which ultimately decreases selectivity. The S-
Tree has been further improved in [13, 14]. In [13] a 
number of new split methods namely Linear split, 
Quadratic split, Cubic split and hierarchical clustering for 
S-tree is proposed to improve query response time. In 
[14] a new hybrid scheme combining linear hashing, S-
tree and parametric weighted filter is used to evaluate 
subset-superset queries.

2.3.5 Multilevel Signature file
The structure is similar to S-Tree. However a signature at 
non-leaf node is formed by superimposed coding from all
text blocks indexed by the subtree of which the signature 
is the root. Fig. 5 shows multilevel    signature file for the
set of signature values depicted in                                                                                       

Hash 
table



172 Informatica 33 (2009) 169–179 I.E. Shanthi et al.

4 Fig 4. Though this method improves selectivity in an                                                                                                     
n internal node, it requires more space. An improved                     
e   method for multilevel signature file is discussed in 
[25].

2.3.6 Signature Graph 
The signature file is organized as a trie like structure 
[28,30].  However, the path visited in the graph to find a 
signature that matches a given query signature 
corresponds to a signature identifier which is not a
continuous piece of bits, differentiating the signature 
graph from trie.

Figure 5.A: Typical Multilevel Signature file
organization.                            

      
Though signatures are represented compactly, the 

search path length is not same for all queries. In other 
words the graph is not balanced. In worst case it degrades 
to a signature file. Fig. 6. shows the signature file and the 
corresponding signature graph.

Figure 6: A typical signature file and signature graph.

2.3.7 Signature Tree
The signature tree is a binary tree like structure with 
nodes representing the bit positions and left and right sub 
tree followed for binary values 0 and 1 respectively.  
Each signature is identified from the root by checking the 
bit positions dictated by the nodes. Nevertheless for a 
query signature the tree is searched top to bottom 
according to the bit positions dictated by the nodes rather 
than the 1s in query signature. Also, for a match with bit 
1, searching follows the right sub tree and for 0 at a node 
both left and right sub trees are followed. 

That is for a balanced signature tree more than one 
path is traversed. Fig. 7. indicates a signature file and its 
corresponding signature tree. The thick lines in Fig 7(b) 
indicates the signature identifier that corresponds to S3.
In the following section we discuss a quite different 
method called SD-tree which considers only the positions 
of 1s in a given signature and decluster them over a set of 
leaf nodes so that query response time is improved.

Figure 7:  A typical signature file and signature tree.

3 The Structure of SD-tree
In this section we describe the structure of SD tree. 
There are three types of nodes:

 Internal nodes
 Leaf nodes
 Signature nodes

The internal nodes and leaf nodes are somewhat 
similar to the internal nodes and leaf nodes of B+ trees 
respectively. The internal nodes form the upper tree and 
leaf nodes at last but one level. The signature nodes are 
at the bottom level of the SD-tree. We will now explain 
the structure of the nodes in detail. To make discussion 
simple, we assume the tree order as 3 for a signature file 
with 8 block signatures of length 12.

3.1 Structure of Internal node
An internal node of SD-tree is illustrated in Fig. 8. Like 
B+ tree internal node pointers and keys alternate each 
other. For a tree of order 3 the internal node has two keys 
K1 and K2 and three pointers P1, P2, P3. These pointers 
are tree pointers pointing to the nodes at the lower level. 

While searching, the left tree pointer is followed for
values less than or equal to the node value, else right 
pointer is followed for values greater than the node value 
as in B+ tree.

P
1

K
1

P
2

K
2

P
3

Figure 8: A typical structure of an internal node.

3.2 Structure of a leaf node
The leaf nodes appear in the last but one level of the SD 
tree. Like B+ tree all the key values appear in ascending 
order of their values in the leaf nodes and are connected 
to promote sequential   search.   But   unlike
B+ tree in SD-tree each value is followed by a signature 

node instead of data pointer. This is depicted in   Fig 2.
Pointers P1 and P2 point to the corresponding signature 
nodes for K1, K2; P3 is the sequential pointer to next leaf 
node and P4 is the backward pointer from next leaf node.

K
1

P
1

K
2

P
2

P
3 P4

Figure 9: A typical leaf node entry.



APPLAYING SD-TREE FOR OBJECT-ORIENTED... Informatica 33 (2009) 169–179 173

3.3 Structure of signature node
The structure of a signature node is shown in Fig. 10. 
The signature node for Ki has 2i-1 binary combinations 
denoting the possible prefixes. When a signature Su with 
1 in the i th position is to be inserted the intermediate 
prefix formed (explained in section 4) is compared with 
the binary combinations in the signature node at Ki and u 
is inserted in the list.

B1 Signatures having prefix B1

B2 Signatures having prefix B2

... ...

Bn Signatures having prefix Bn

Figure 10: A typical signature node entry.

3.4 Overall structure of SD-tree  
Consider the partially filled SD-tree shown in Fig 11(a) 
for discussion. The tree has been constructed for 
signature length F = 12. It is obvious from Fig. 11(a) tree 
of order 3 has height 2.  Consider the signature file in Fig 
11(b). To insert signature S1 with first occurrence of 1 at 
position 2, access the leaf node with value 2, follow its 
signature node and write the signature value as 1 (for S1) 
with the prefix 0 (for bit 1). In the same way S2 is 
inserted in signature node 1 with no prefix and signature 
node 3 with prefix 10 (for bits 1 and 2).  S4 will be 
inserted at signature node 1 with no prefix and signature 
node 2 with prefix 1.

While inserting a signature there are two possible 
options to move to next 1s position in the leaf node. One 
is via the sequential pointer between leaf nodes and the 
other is the top-down traversal of tree from root. To 
ensure optimal search path the threshold (Th) is fixed at 
h+1 (h being the tree height plus one more level for 
accessing signature nodes).  As long as the number of 
sequential pointers traversed in leaf nodes is within the 
specified Th value, follow the sequential pointers.

This is calculated by finding the difference (d) 
between two consecutive 1s in a signature divided by the 
number of entries per leaf node. This is given by the 
condition

          d
        ──    ≤      Th   , where p is the order of the tree.
         p-1

The division here is integer division. When the above 
condition is not true, a new tree access is initiated from 
root.  Similarly to promote optimal query processing the 
query signature value Sq is taken in decimal form. The 
occurrence of the last one (in the least significant 
position) is found by performing D Mod 2 operation. The 
remaining binary prefix is formed in the process of 
decimal–to-binary conversion of D. The procedures for 
tree maintenance are explained in the following section.

                   

                                      (a)

S1 : 010……….
S2 : 101……….
S3 : 000……….
S4 : 110……….

                 (b)

Figure 11: Overall structure of SD-tree.

To minimize the number of false drops the database size 
is selected according to [4, 27, 30] as

    F ln 2  = mD                           ………………… (1)

where F is the signature length, m the number of set bits 
and D the average data block size.

4 Tree Search and Updates
This section lists the algorithms for signature insert, 
delete and search operations on SD-tree. A global flag F 
is set to 0 indicating the search path from the root of the 
tree by default.  In the procedure after the first 1’s 
insertion, depending on the d value F may be set to 1.

4.1 Insertion
The algorithm for signature insertion is outlined in 

this section. The call to procedure New(node) returns a 
new link in the signature node.
Insert (Su)

Input : The signature to insert Su ;  
1.  Let i1, i2, ….. in  be the positions of 1 in Su ;
     F ← 0;  Th = h+1;  // for tree of order p
2. Move i2 to in to queue Q.  B = NULL;
3. If (i1 = 1) then begin
Access leaf node i1;   // from root
New(node); 

        insert u;
        B = strcat ( B, ‘1’); // to denote bit 1 position
           end

     else begin
         for k = 1 to i1 – 1 do
         B = strcat ( B, ‘0’);

Rootnode

I
nterna

Leaf 
node

Signature 
node

    6         

    2

1          2 3          4 

  2              2          4   2              10         2  2              0          1

1           4



174 Informatica 33 (2009) 169–179 I.E. Shanthi et al.

         Access leaf node i1;   // from root
         New(node); write (B);
         insert u ;
         B = strcat ( B, ‘1’);
       end
        f = i1; // store the current bit position
        F ← 1; // enable sequential search in leaf   
                                                                  nodes               
4. While Q not empty do
     begin
         read x from Q;
         if (x = f+1) then
         begin
             Access leaf node x;  // via leaf node 
                                                           pointers

                     If (not(B)) then  New(node); // create 
                                                                         node

      Write(B);
      Write u @ prefix B;

                 end
               else begin

    d = x – f;
                          If (d/(p-1)) > Th then  F ← 0;  
                        for k = f +1 to x-1 do

                        B = strcat ( B, ‘0’);
                   Access leaf node x;
                   If (not(B)) then  New(node);
            Write(B);
              Write u @ prefix B
                  end
              B = strcat (B, ‘1’);
               f = x;
           end.  // until queue is empty

4.2 Searching
The following algorithm outlines the steps to search for 
signatures matching a given query signature Sq. In the 
procedure F ← 0 always and the algorithm lands up 
directly in the signature node corresponding to last 1 
from root. The match here is the exact match and the 
optimal signature length selected in equation (1) 
minimizes the false drops.
Search(Sq)

Input : The (query) signature to search as decimal D.
Output : The list of signatures matching the given   
               signature.
1 Repeat  i = D mod 2; D = D div 2; until i  = 1
2 Let n be the corresponding bit position of i.
3 Let B = toBinary(D);  // convert D to binary
4 Access leaf node n  // from root node
5 Search for B.
6 If Found() then read and output the list of 

signatures.

4.3 Deletion
The algorithm to delete a signature from SD-tree 

is described below.
Delete (Su)

Input : Su, the signature to delete.

1. Let i1, i2, ….. in  be the positions of 1 in Su.
2. For each ik (1 ≤ k ≤ n)  form prefix B as in Insert 

(Su). 
3. Access the leaf node and follow the signature 

node;
4. Access prefix B and search for u.
5. If present, delete it .
6. Repeat steps (2) through (5) for all iks.

5 A sample validation model
This section discusses the evaluation of sample Object-
Oriented queries on a hypothetical object base. Fig 12 
shows the class diagrams in UML notation [15,19]. The 
classes and their relationships are listed in Table 1.

S. No Class 1 Class 2 Relationship

1. University Dept Composition
2. University Student Aggregation
3. Student Programme Association

4. Dept Instructor Association
5. Student Male Generalization

6. Student Female Generalization
7. Programme Subject Association

Table 1: Class relationships

The sample hashing outputs of attributes values are listed 
in Table 2.

Dept-name Pgm-name
Mathematics – 1010 0000 M.E – 0001 0100
Computerscience–0100 1000      M.Sc (S.E) – 1000 1000
Physics – 0001 0010 M.Sc (Mat) – 0100 1000

M.sc (Phy) – 0011 0000

Inst-name Stud-name Male
John – 1000 0010 David – 0100 0010 Sex – 0010000
Adams – 1000 1000 Elena – 1001 0000 Female
James – 0000 1001 Maria – 0100 0001    Sex –00001001
Janes – 0110 0000  Peter – 0010 0001

Grace – 0000 1100
Antony – 0000 0011

Table 2: Sample attributes

The attributes’ hash coded values are superimposed 
to produce object’s signature. The set of all object 
signatures of a class correspond to the signature file. The 
signature files created for various attribute combinations 
of objects are listed in Table 3.



APPLAYING SD-TREE FOR OBJECT-ORIENTED... Informatica 33 (2009) 169–179 175

University
Name: str
Addr: str

Dept

Dept-name: str
Programs: Pgm-name[]

Student

Stud-name: str
Pgm-name: str

Instructor

Inst-name: str
Dept-name:str
Subjects: Sub-name[]

Programme

Pgm-name: str
Subjects: Sub-name[]

Male

Sex: str

Female

Sex: str

Subject

Sub-name:str;

has

contains

teaches

offers

assigned 
to chairperson

member

1 1..*

1..*

0..1

0..1

1..*

1..*

attends

Figure 12: Sample Object schema.

Table 3: Signature files of classes

Class : Subject
Sub-name

1. Software engg – 0100 0001
2. Comp. applns – 0010 1000
3. Comp. engg – 0100 0100
4. Applied Maths – 1000 0001
5. Calculus – 0010 0100
6. Nuclear physics – 0101 0000

Class : Male
Stud-name Pgm-name Sex Object 

signature
1. David M.Sc (S.E) Male 1101 1010
2. Peter M.E Male 1011 0101
3. Antony M.E Male 1001 0111

Class : Female
Stud-name Pgm-name Sex Obj signature
1. Elena M.Sc (S.E) Female 1001 1001
2. Maria M.Sc (S.E) Female 1100 1001
3. Grace M.Sc (Phy) Female 0011 1101

Class : Dept
Dept-name Programs Obj signature
1.Computer science M.E,M.Sc (S.E) 1101 1100
2. Mathematics M.Sc (Mat) 1110 1000
3. Physics M.Sc(Phy) 0011 0010

Class : Programme
Pgm-name Subjects Obj.

signature
1. M.E Comp.applns, 

Applied Maths
1011 1101

2. M.Sc (S.E) Software engg, 
Comp. engg

1100 1101

3. M.Sc(Phy) Comp. applns, 
Nuclear physics

0111 1000

Class : Instructor
Inst-
name

Dept-name Subjects Obj 
signature

1. John Comp.sc Software 
engg, 
Comp. 
applns

1110 1011

2. Adams Mathematic
s

Applied 
Mathematic
s, calculus    

1010 1101

3. James Comp.sc Software 
engg

0100 1001

4. Janes Physics Nuclear 
physics

0111 0010

Class : Student
Stud-name Pgm-name Obj signature
1. David M.Sc(S.E) 1100 1010
2. Peter M.E 0011 0101
3. Antony M.E 0001 0111
4. Elena M.Sc(S.E) 1001 1000
5. Maria M.Sc(S.E) 1100 1001
6. Grace M.Sc(Phy) 0011 1100



176 Informatica 33 (2009) 169–179 I.E. Shanthi et al.

6 Experimental results
To validate the proposed structure we implement SD-tree 
in Java and for every test run the tree is constructed 
statically before signature insertion. The parameters 
considered in the experiments’ data sets are Signature 
length (F), Signature weight (m) and signature weight
distribution (swd).

The experiments were carried out in a standalone 
system with Intel Pentium IV processor. The main 
memory size is 512 MB and the hard disk capacity is 80 
GB.

6.1 Signature tree Versus SD-tree
In this section the parameters which are generally 
considered in the analysis of indexing structures like time 
and space complexities are reported. We compare the 
results of Y. Chen’s Signature tree [30] with that of the 
SD-tree. The observed results are listed in Table 5.

6.2 Time Complexity
Like in other signature applications we use the response 
time as the performance measure [23]. The time 
complexity of the insert algorithm initially is the sum of 
time taken to construct the B+ tree of order p and the 
time taken for inserting. Here B+ tree is constructed with 
values 1,2, ….. , F where F is the length of the signature 
for a given dataset. Hence compared to the use of B+ tree 
as index structure for large datasets the value F is small 
which reduces the time taken for SD-tree construction 
considerably. In algorithm 4.1 the time complexity for 
insertion is bounded by O(nm) where n is the number of 
signatures in the file and m is the number of 1s in the 
given signature as against the O(nF) in the signature tree 
insertion[30], n being the number of signatures in the file 
and F is the full length of signature including 0’s and 1’s. 
Since deletion follows similar steps as insertion the time 
complexity is same for both. Another desirable 
characteristic of SD-tree is that for higher F values, by 
varying p, the value of h, height of the tree can be kept 
small to promote faster search. It is observed that the 

time taken for tree construction when F = 10 and p = 3 is 
2015421 nano seconds.

Table 5:  Signature tree Vs SD-tree

In Table 5,
n -  Number of signatures in signature file
F – Length of signature
m -  Number of set bits 
p – Order of SD-tree
λ – Number of path traversed in query searching
a – Average no. of signatures / signature node
k – log 2 n
f -  Average no. of prefix values / signature node

Similarly search time is the sum of time taken to access 
the leaf node (Tl ) and signature node search time (Tsi). 
This is given by

Ts = Tl +Tsi

Here, Tl is constant for all leaf nodes for a 
dynamic balanced structure like SD- tree and Tsi is 
directly dependent on the i value and the number of 
signatures inserted in the signature node. In the worst 
case the search time is bounded by O(Tl + 2 i -1).

To analyze the query response time the signature 
weight distribution was fixed as 100% , 70%, 50% and
30% for signature lengths 10 and 30. The values are 
plotted in Fig. 13. through Fig. 16. The weight of the 

Parameter Signature tree SD-tree Inference

Time  
complexity

O(nF) O(nm)
m < F; 
Faster 
insertion

Tree height O(log 2 n) O(log p (F/(p-1)) p>2 ; 
Shorter tree

Search cost O(λ.log 2 n) O(log p F+a )
F < n; 
Cost < Sig. 
tree

Space 
complexity

nlog 2 F + 2 ∑ 2 i  

(i+1)
i=0 to k

O(F(a+f))
< Sig. tree 
when k>F

1. List of students doing a 
given programme

Pgm-name       = 
M.Sc(S.E)

Student 1000 1000 1100 1010 (David)
1001 1000 (Elena)
1100 1001 (Maria)

2. Instructors handling a 
given subject

M.Sc(S.E) in 
subjects

Instructor 0100 0001 1110 1011 (John)
0100 1001 (James)

3. Dept(s) offering a given 
subject

1. Comp. applns in 
subjects

2. Pgm-name = 
00010100,
00110000

Programme

Dept

0010 1000 1011 1101 (M.E)
0111 1000 (M.ScPhy)

1101 1100 (Comp.sc)
0011 0010
(Phy)

3. All instructors of a given 
dept

Dept-name = 
Comp.sc

Instructor 0100 1000 1110 1011 (John)
0100 1001 (James)

4. Female students attending 
a given programme

Pgm-name = 
M.Sc(S.E)

Female 1000 1000 1001 1001 (Elena)
1100 1001 (Maria)

Table 4: Sample queries



APPLAYING SD-TREE FOR OBJECT-ORIENTED... Informatica 33 (2009) 169–179 177

signature was biased in upper byte(U), lower byte(L) or 
uniformly distributed(M) and time values noted.

For 100% swd the insertion and search time is a 
constant of the signature weight bias. This is depicted in 
Fig. 13.  In the same way the swd was fixed at 70, 50 and 
30 and the observed values are plotted in Fig. 14, Fig. 15 
and Fig. 16 respectively. The query response time 
between two consecutive queries is minimized by 
following the backward pointers in leaf nodes when the 
following condition is true. That is,

                         d i,j  

                      ────    ≤     Th
                          p-1

where d i,j  is the difference in Sqi’s last 1’s position and 
Sqj’s first 1’s position.

All the graphs show that the time taken for signature 
insertion grows linearly with the values of swd, F and the 
weight bias. Insertion time increases in upper nodes due 
to the complexity of the circuit in creating prefixes.

SD-tree maintenance and space overhead
SD-tree  maintenance is quite simple that the tree is not 
subject to extensive node split or merge. This is because 
the insertions and deletions do not affect the node values 
or the height of the tree. Operations are reflected only in 
the signature node. In the experiments the binary prefix 
pattern nodes are created dynamically. The space 
consumption for insertion of a signature number at a 
signature node depends on the binary prefix length (l), 
the pointer size (p) and the space for writing the 
signature number(n). The prefix is created anew each 
time if it does not exist. Hence, the space complexity to 
insert with prefix for a signature of weight (w) is given 
by O[w((l+2p)+(n+p))]. Similarly the space complexity 
of a signature for which prefix already exists is bounded 
by O[w(n+p)].

Fig. 17 shows the space overhead of SD-tree. The 
tree is created statically. Signature nodes are created 
dynamically and are of fixed size. It is clear from the 
graph that the space consumption increases linearly with 
F and w. It is obvious that for all combinations of values
the query search time for SD-tree is lesser than signature 
insertion time.

For swd of 70%, 50% and 30% the signature weight 
was biased in lower byte, upper byte or uniformly 
distributed and values noted.  All the outputs clearly 
indicate that the time taken for signature insertion and 
query response is slightly higher in upper levels.

Sig. wt. distrn = 100%

0
50000

100000
150000
200000
250000
300000

L -
10

M -
10

U -
10

L -
30

M -
30

U -
30

Sig. wt. bias

T
im

e
 i

n
 N

a
n

o
 s

e
c

Search Time

Insert Time

Figure 13:  100% swd.

Sig. wt. distrn = 70%

0
50000

100000
150000
200000
250000

L -
10

M -
10

U -
10

L -
30

M -
30

U -
30

Sig. wt. bias

T
im

e
 i

n
 N

a
n

o
 s

e
c

Search Time

Insert Time

Figure 14: 70% swd.

Sig. wt. distrn = 50 %

0

50000

100000

150000

200000

L -
10

M -
10

U -
10

L -
30

M -
30

U -
30

Sig. wt. bias

T
im

e
 i

n
 N

a
n

o
 s

e
c

Search Time

Insert Time

Figure 15: 50% swd.

Nevertheless the query response time is lesser than 
signature insertion time. As the structure complexity 
increases in signature nodes in upper levels the swd was 
analyzed for both ends separately.

Sig. wt. distrn = 30 %

0

50000

100000

150000

L -
10

M -
10

U -
10

L -
30

M -
30

U -
30

Sig. wt. bias

T
im

e 
in

 N
an

o
 s

ec

Search Time

Insert Time

Figure 16: 30% swd.



178 Informatica 33 (2009) 169–179 I.E. Shanthi et al.

Space overhead

0

500

1000

1500

30% 50% 70%

Sig. wt. distrn

M
em

or
y 

(in
 B

yt
es

)

F = 10

F = 20

F = 30

Figure 17: Space overhead of SD-tree.

7 Conclusion and research 
directions

In this paper we presented a novel way to represent 
signatures in a B+ tree like structure called SD-tree and 
analyzed the performance for query response time. 

By varying the signature length and distribution of 
1s in the signature the query response time was noted and 
results plotted.  It is clear from the graphs that 
considerable search time is saved.

The space overhead in SD-tree may be higher due to 
the presence of binary prefixes in higher order signature 
nodes, but the flexibility provided by the SD-tree 
outweighs all besides simple maintenance and faster 
query retrieval time.

The work is proposed to extend in the following 
directions. The synthetic data sets are to be replaced 
with, run and verified on a real Object Oriented Data 
Base system. Another direction is when the signature 
weight is more than 50%, use 0s so that number of 
signature nodes accessed for insertion and search is 
optimal. Also the structure can be modified to support 
point and range queries in Object Oriented Data Base 
system.

References
[1] Charles S. Roberts, (1979) Partial-Match Retrieval 

via the Method of Superimposed Codes, Proc. of 
IEEE, Vol. 67, No. 12, pp 1624 – 1642.

[2] Chris Faloutsos, Stavros Christodoulakis, (1984) 
Signature Files: An Access Method for Documents 
and Its Analytical Performance Evaluation, ACM 
Trans on Office Information Systems, Vol.2, No. 4, 
pp 267 – 288.

[3] Christos Faloutsos, (1985)  Access Methods for 
Text”, ACM Computing surveys, Vol. 17, No. 1, pp 
49 – 74.

[4] Chris Faloutsos, (1985) Signature files: Design and 
performance comparison of some signature 
extraction methods”  Proc. of ACM SIGMOD, pp 
63 – 82.

[5] Christos Faloutsos, Stavros Christodoulakis,(1985)
Design of a Signature File Method that Accounts 

for Non-Uniform Occurrence and Query 
Frequencies, Proc. of VLDB, pp 165 – 170.

[6] Christos Faloutsos, Stavros Christodoulakis,(1987) 
Description and Performance Analysis of Signature 
File Methods for Office Filing, ACM Trans on 
Office Information Systems, Vol. 5, No. 3,  pp 237 
– 257.

[7] Christos Faloutsos, Stavros Christodoulakis, (1987) 
Optimal Signature Extraction and Information
Loss, ACM Trans. On Database Systems, Vol. 12, 
No. 3, pp 395 – 428.

[8] Christos Faloutsos, Raphael Chan, (1988) Fast Text 
Access Methods for Optical and Large Magnetic 
Disks: Designs and Performance Comparison, 
Proc. of VLDB, pp 280 – 293.

[9] Chris Faloutsos, Raymond Lee, Catherine Plaisant, 
Ben Shneiderman, (1990) 

[10] Incorporating String Search in a Hypertext System: 
User Interface and Signature File Design Issues, 
Hypermedia, Vol. 2, No. 3, pp 183 – 200.

[11] D. Dervos, Y. Manolopoulous, P. Linardis, (1998) 
Comparison of Signature File Methods with 
Superimposed Coding, J. Information Processing , 
65, pp 101 – 106.

[12] Douglas Comer, (1979) The Ubiquitos B-Tree, 
Computing Surveys, Vol. 11, No. 2,  pp121 – 137.

[13] Dik Lun Lee, Young Man Kim, Gaurav Patel,
(1995) Efficient Signature File Methods for Text 
Retrieval, IEEE TKDE, Vol. 7, No. 3, pp 423 –
435.

[14] Eleni Tousidou, Alex Nanopoulos, Yannis 
Manolopoulos, (2000) Improved Methods for 
Signature-Tree Construction, The Computer
Journal, Vol. 43, No. 4, pp 301 – 314.

[15] Eleni Tousidou, Panayiotis Bozanis, Yannis 
Manolopoulos, (2002) Signature-based structures 
for objects with set-valued attributes, Information 
Systems, Vol. 27, No. 2, pp 93 – 121.

[16] Grady Booch, James Rambaugh, Ivar Jacobson,
(2003) The Unified Modeling Language User 
Guide, Pearson Education Pte Ltd.

[17] Hwan-Seung Yong, Sukho Lee, Hyoung-Joo Kim, 
(1994) Applying Signatures for Forward Traversal 
Query Processing in Object-Oriented Databases, 
Proc. 10th Intl. conf. Data Engg, pp 518 – 525.

[18] Justin Zobel, Alistair Moffat, Kotagiri 
Ramamohanarao, (1988) Inverted Files Versus 
Signature Files for Text Indexing, ACM Trans. On 
Database systems, Vol. 23, No. 4, pp 453 – 490.

[19] A. Kent, R. Sacks-Davis, K. Ramamohanarao,
(1990) A Signature File Scheme Based on  Multiple 
Organizations for Indexing Very Large Text 
Databases,   J. Am. Soc. Information Science,  
1990, Vol. 41, No. 7, pp 508 – 534.

[20] Martin Fowler, Kendall Scott, (2003) UML 
Distilled, A brief guide to the standard Object 
Modeling Language, II edition, Pearson Education 
Pte Ltd.

[21] Paolo Ciaccia, Paolo tiberio, Pavel Zezula, (1996) 
Declustering of Key-Based Partitioned Signature 



APPLAYING SD-TREE FOR OBJECT-ORIENTED... Informatica 33 (2009) 169–179 179

Files, ACM Trans. On Database Systems, Vol. 21, 
No. 3, pp 295 – 338.

[22] Per-Ake Larson, (1984) A Method for Speeding up 
Text Retrieval, ACM SIGMIS, Database Winter, 
Vol.15, No. 2, pp 19 – 23.

[23] Rudolf Bayer, Karl Unterauer, (1977) Prefix B-
Trees, ACM Trans. On Database Systems,Vol. 2, 
No. 1, pp 11 – 26.

[24] 23. Seyit Kocberber, Fazli Can, (1999) Compressed 
Multi-Framed Signature Files: An Index Structure 
for Fast Information Retrieval, Proc. ACM Symp. 
Applied Computing, pp 221 – 226.

[25] 24. Uwe Deppisch, (1986) S-Tree: A Dynamic 
Balanced Signature Index for Office Retrieval, 
Proc. ACM SIGIR conf, pp 77 – 87.

[26] Walter W. Chang, Hans J. Schek, (1989) A 
Signature Access Method for the Starburst 
Database System, Proc. of VLDB, 145 – 153.

[27] Wang-chien Lee, Dik L. Lee, (1992) Signature File 
Methods for Indexing Object-Oriented Database 
Systems, Proc. 2nd Intl. Comp. Sc. Conf, pp 616 –
622.

[28] Yangjun Chen, (2002) Signature Files and 
Signature Trees, Information Processing Letters, 
82, pp 213 -221.

[29] Yangjun Chen, Yibin Chen, (2004) Signature File 
Hierarchies and Signature Graphs: a New Index 
Method for Object-Oriented Databases, Proc. of  
ACM Symp. on Applied Computing, pp 724 – 728.

[30] Yangjun Chen, (2005) On the Signature Trees and 
Balanced Signature Trees, Proc. of  ICDE,  pp 742 
– 753.

[31] Yangjun Chen, Yibin Chen, (2006) On the 
Signature Tree Construction and Analysis, IEEE 
TKDE ,Vol.18,No.9, pp 1207 – 1224.

[32] Yoshiharu Ishiwaka, Hiroyuki Kitagawa, Nobuo 
Ohbo, (1993) Evaluation of Signature Files as Set 
Access Facilities in OODBs, Proc. of ACM 
SIGMOD, pp 247 – 256.


