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Abstract

We give a sharply-vertex-transitive solution of each of the nine Hamilton-Waterloo prob-
lems left open by Danziger, Quattrocchi and Stevens.
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1 Introduction

A cycle decomposition of a simple graph I' = (V, E) is a set D of cycles whose edges
partition £. A partition F of D into classes (2-factors) each of which covers all V' exactly
once is said to be a 2-factorization of I'. The type of a 2-factor F' is the partition 7 =
[€7Y, ..., ¢¢"] (written in exponential notation) of the integer |V into the lengths of the
cycles of F'.

A 2-factorization F of K, (the complete graph of order v) or K, — I (the cocktail party
graph of order v) whose 2-factors are all of the same type 7 is a solution of the so-called
Oberwolfach Problem OP(v; 7). If instead the 2-factors of F are of two different types 7
and v, then F is a solution of the so-called Hamilton-Waterloo Problem HWP(v; 7, ¢; 1, s)
where 7 and s denote the number of 2-factors of F of type 7 and 1), respectively.

A complete solution of the OPs whose 2-factors are uniform, namely of the form
OP(¢n; [¢™]), has been given in [1] and [12]. Other important classes of OPs has been
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solved in [4, 15]. For the time being, to look for a solution to all possible OPs and, above
all, HWPs is too ambitious. Anyway it is reasonable to believe that we are not so far
from a complete solution of the HWPs whose 2-factors are uniform, namely of the form
HWP(v; [h*/"], [w®/*];r,s). We can say this especially because of the big progress re-
cently done in [10].

Danziger, Quattrocchi and Stevens [11] treated the HWPs whose 2-factors are either
triangle-factors or quadrangle-factors, they namely studied HWP(12n; [3"], [43"]; 7, 5). In
the following such an HWP will be denoted, more simply, by HWP(12n; 3, 4; 7, s). They
solved this problem for all possible triples (n,r, s) except the following ones:

(i) (4,7,23 —r) withr € {5,7,9,13,15,17};
(i) (2,r,11 —r) withr € {5,7,9}.

Six of the nine above problems have been recently solved in [14] where it was pointed
out that all nine problems were also solved in a work still in preparation [2] by the authors
of the present paper. Meanwhile, a solution for each of the remaining three problems not
considered in [14] have been given in [16]. Notwithstanding, in the present paper we want
to present our solutions to the nine HWPs left open by Danziger, Quattrocchi and Stevens
in detail. These solutions, differently from those of [14, 16], are full of symmetries since
they are G-regular for a suitable group G. We recall that a cycle decomposition (or 2-
factorization) of a graph I is said to be G-regular when it admits GG as an automorphism
group acting sharply transitively on all vertices. Here is explicitly our main result:

Theorem 1.1. There exists a O-regular 2-factorization of Kus — I having r triangle-
factors and 23 — r quadrangle-factors where O is the binary octahedral group and v €
{5,7,9,13,15,17}.

There exists a Qa4-regular 2-factorization of Koy — I having r triangle-factors and
11 — r quadrangle-factors where Qa4 is the dicyclic group of order 24 and r € {7,9}.

There exists a SLo(3)-regular 2-factorization of Koy — I having six triangle-factors
and five quadrangle-factors where SLo(3) is the 2-dimensional special linear group over
Zs.

2 Some preliminaries

The use of the classic method of differences allowed to get cyclic (namely Z,-regular)
solutions of some HWPs in [8, 9, 13]. Now we summarize, in the shortest possible way,
the method of partial differences. This method, explained in [7] and successfully applied
in many papers (see, especially, [6]), has been also useful for the investigation of G-regular
2-factorizations of a complete graph of odd order [9]. The G-regular 2-factorizations of a
cocktail party graph can be treated similarly.

Throughout this paper any group G will be assumed to be written multiplicatively and
its identity element will be denoted by 1. Let €2 be a symmetric subset of a group G,
this means that 1 ¢ € and that w € € if and only if w™! € Q. The Cayley graph on
G with connection-set Q, denoted by Cay[G : ], is the simple graph whose vertices
are the elements of G and whose edges are all 2-subsets of G of the form {g,wg} with
(g,w) € G x Q.

Remark 2.1. If X is an involution of a group G, then Cay[G : G \ {1, \}] is isomorphic
to K|g| — I. So, in the following, such a Cayley graph will be always identified with the
cocktail party graph of order |G|.
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Let Cycle(G) be the set of all cycles with vertices in G and consider the natural right
action of G on Cycle(G) defined by (c1,¢a,...,¢,)9 = (c19,c¢ag,...,cng) for every
C = (c1,¢2,...,¢,) € Cycle(G) and every g € G. The stabilizer and the orbit of any
C € Cycle(G) under this action will be denoted by Stab(C) and Orb(C), respectively.
The list of differences of C' € Cycle(G) is the multiset AC of all possible quotients zy~*
with (z,y) an ordered pair of adjacent vertices of C. One can see that the multiplicity
mac(g) of any element g € G in AC' is a multiple of the order of Stab(C'). Thus it makes
sense to speak of the list of partial differences of C' as the multiset C on G in which the
multiplicity of any g € G is defined by

_ mac(g)
mac(9) = Tabo)”

We underline the fact that OC' is, in general, a multiset. Note that if JC' is a set, namely
without repeated elements, then it is symmetric so that it makes sense to speak of the Cayley
graph Cay[G : C]. The following elementary but crucial result holds.

Lemma 2.2. If C € Cycle(G) and 9C does not have repeated elements, then Orb(C') is
a G-regular cycle-decomposition of Cay|G : OC].

By Remark 2.1, as an immediate consequence of the above lemma we can state the
following result.

Theorem 2.3. Let A be an involution of a group G. If {C1, . .., Cy } is a subset of Cycle(G)
such that \J._, 8C; = G\ {1, A}, then \J!_, Orb(C;) is a G-regular cycle-decomposition
OfK‘G‘ - L

We need, as last ingredient, the following easy remarks.

Remark 2.4. If C € Cycle(G) and V(C) is a subgroup of G, then Orb(C) is a 2-factor
of the complete graph on G whose stabilizer is the whole G.

If Cy,...,C; are cycles of Cycle(G) and Uzzl V(C;) is a complete system of repre-
sentatives for the left cosets of a subgroup S of G, then | J!_, Orbs(C;) is a 2-factor of the
complete graph on G whose stabilizer is .S.

3 Octahedral solutions of six Hamilton-Waterloo problems

Throughout this section G will denote the so-called binary octahedral group which is usu-
ally denoted by O. This group, up to isomorphism, can be viewed as a group of units of the
skew-field H of quaternions introduced by Hamilton, that is an extension of the complex
field C. We recall the basic facts regarding H. Its elements are all real linear combinations
of 1, 4, j and k. The sum and the product of two quaternions are defined in the natural way
under the rules that

i? =4 =k =ijk=—1
If ¢ = a + bi + c¢j + dk # 0, then the inverse of g is given by

1 a—bi—cj—dk
T Terrtet+
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The 48 elements of the multiplicative group G are the following:

+1, +i, 45, +k;
L1 +itj+k);

%(:I:x +vy), {z,y}e (“”"’j’“).

The use of the octahedral group G was crucial in [3] to get a Steiner triple system of any
order v = 96n + 49 with an automorphism group acting sharply transitively an all but one
point. Here G will be used to get a G-regular solution of each of the six Hamilton-Waterloo
problems of order 48 left open in [11]. We will need to consider the following subgroups
of G of order 16 and 12, respectively:

o L=(50—k), 3(-1—i+j+k).
3.1 An octahedral solution of HWP(48; 3, 4; 5,18)

Consider the nine cycles of C'ycle(G) defined as follows.

Cr=(1 =51 = k), 30 —i=j k)

Co= (L (-1 =i+ R), J(-1+i= = 1K)

Cs= (L 3(-1+i+j—k), 5(-1—i—j+Fk)

Cy= (1, k, =1, —k)

Cs = (1, j, =1, —j)

Co= (1, S(—i+k), L +i+j+k), —S(+k)
Cr= (1 J5(i=3), Z5(1+1), 31 —i—j+k)
Cs=(1, (1 —i+j—k), k, —L5(1+7))

Co=(1, j5(1-1), ~5(1+1), 3(-1—i+j—h)

We note that Stab(C;) = V(C;) for 2 < i < 5 while all other C;’s have trivial
stabilizer. Thus, by Lemma 2.2, one can check that Orb(C;) is a £;-cycle decomposition

of Cay[G : ;] where ¢; is the length of C; and where the 2;’s are the symmetric subsets
of G listed below.

D= {1 —k),5(1—i—j—k),—J5(1+i)}"

L ={3(-1—i+j+k)}*

Qs = {3(-1+i+j -k}

0, = {k}:l:l

Q5 = (i}

Qo = {J5(~i+k), 5507 — k), 75 (1 = k), =75 (j + k)}*
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=) 5(L+i—j—k), J5(i+4), 5(1 —i—j+k)}*
(L—itj—k),—5(L+i+j+k), —J5(i+k), =51+ )}
(1 —),4, g5 (1+ ), 5 (=1 =i+ — k)}*

M\»—A

{7
{
{5

One can see that the §2;’s partition G \ {1, —1}. Thus, by Theorem 2.3 we can say
that C := U?:l Orbg(C;) is a G-regular cycle-decomposition of K45 — I. Now set F; =
Orbg,(C;) where

K fori=1;
S;i=<¢G for2<i<5;
L for6<¢<9.

By Remark 2.4, each F; is a 2-factor of K45 — I with Stab(F;) = S;, hence Orb(F;) has
length 3 or 1 or 4 according to whether? = 1,0r2 < ¢ < 5,0r6 < ¢ < 9, respectively. The
cycles of F; are triangles or quadrangles according to whether or not ¢ < 3. Thus, recalling
that C is a cycle-decomposition of K43 — I, we conclude that F := Uz L Orb(F;) is a
G-regular 2-factorization of K43 — I with 5 triangle-factors and 18 quadrangle-factors,
namely a G-regular solution of HWP(48; 3, 4; 5, 18).

3.2 An octahedral solution of HWP(48; 3,4;7,16)

Consider the seven cycles of C'ycle(G) defined as follows.

Cr=(1, —5(i+7j), 5(1—i+j+k)

Co=(1, 3(-1—i+j+k), 3(1—i—j—k))

Cs=(1, 5(-1+i+j—k), 3(-1—i—j+k))

Ci= (1, 5(=i+k), 5(1+i+j—k), —J5(j +k))

Cs = (1, J5(i—j), J5(1—k), %(Hi))

Co= (1, J5(L+k), —5(L+i+j+k), 5(1+7))

Cr=(1, -3(1+i+j+k), 31 —i+j—k), 3(1—i—j+k))

We note that Stab(C3) = V(C3) while all other C;’s have trivial stabilizer. Thus, by
Lemma 2.2, one can check that Orb(C;) is a ¢;-cycle decomposition of Cay[G : §);] where
£; is the length of C; and where the €2;’s are the symmetric subsets of G listed below.

D = {50+ 1) 5L =i +j+k), J5 (=i + k)}*
Qo={3(-1—i+j+k),2Q—i—j—k),3(-1—i+j—k}
Qg ={3(-1+i+j—k)}*

Q= {5 (=i +k),— 51— k), J5(i + k), =5 + k)}

Qs = {J5(i =), —5, 5(L—i+j— k), 5 (L+ )}

Q6 = {51 +k), 5(= 1+J) — 5L +1), g1+ )1
Qr={-3(1+i+j+k),—i,~ks(1—i—j+k}
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One can see that the €;’s partition G \ {1, —1}. Thus, by Theorem 2.3 we can say
that C := UZ:l Orbg(C;) is a G-regular cycle-decomposition of K4g — I. Now set F; =
Orbg, (C;) where

K fori=1,2;
Si=<¢G fori=3;
L for4<:<7.
By Remark 2.4, each F; is a 2-factor of Kyg — I with Stabg(F;) = S;, hence Orbg(F;)
has length 3 or 1 or 4 according to whether i = 1,2 ori = 3 or 4 < ¢ < 7, respectively.

The cycles of F; are triangles or quadrangles according to whether or not ¢ § 3.

Thus, recalling that C is a cycle-decomposition of K45 — I, we conclude that F :

UZ 1 Orbg(F;) is a G-regular 2-factorization of K4 — I with 7 triangle-factors and 16
quadrangle-factors, namely a G-regular solution of HWP(48; 3,4; 7, 16).

3.3 An octahedral solution of HWP(48; 3,4;9,14)
Consider the eight cycles of Cycle(G) defined as follows.

(i+7), 3(1—i—j—k))

1
Co= (1, —5(1 = k), J5(1+))

Cy= (1, 2(-1—i+j+k), 3(1+i—j+k))
Co= (1, Z5(=i+k), 5(1-1), 5(-1—i+j—Fk)
Cs=(1, 5(i—j), 3(-1+i+j+k), -0 +k)
Co = (1, J5(1+1), 5(1—4), 3(1—i—j+k)
Cr= (1, k, =1, —k)

Cs = (1, j, =1, —j)

We note that Stab(C;) = V(C;) for i = 7,8 while all other C;’s have trivial stabilizer.
By Lemma 2.2, one can check that Orb(C;) is a £;-cycle decomposition of Cay|[G : €]
where /; is the length of C; and where the 2;’s are the symmetric subsets of G listed below.
Q= {5 +3), 3L =i —j — k), Lo (~1+ i)}
Q= {~J5(1 = k), 51 +45), 5(-1+i+5+ k)
Q={3(-1—i+j+k),3(1+i—j+k),3(-1—i—j+k)}*
Q= {(—i+k),5(1—i+j+k), 56 +k),5(-1—i+j—k)}*
Qs ={ 50— 1) J5( = k) =5 (L + 1), =5 + R}
Qs = {5 +1i),i, g5(1 — k), 5(1 —i—j+k)}*
Q7 = {k}*!
Qs = {5}

ow note that the £2;’s partition ,—1}. Thus, eorem 2.3 we can say that C :=
N hat the £2,’s partition G\ {1, —1}. Thus, by Th 23 y that C
U§:1 Orb(C;) is a G-regular cycle-decomposition of Kyg — I. Now set F; = Orbg, (C;)

1

V2

+
(1
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where
K forl<i<3;
S;=<qL ford<i<6;
G fori=717,8.

By Remark 2.4, each F; is a 2-factor of K5 — I with Stabg(F;) = S;, hence Orbg(F;)
has length 3 or 4 or 1 according to whether 1 < ¢ < 3or4d < i < 6or: = 7,8,
respectively. The cycles of F; are triangles or quadrangles according to whether or not
1 < 3. Thus, recalling that C is a cycle-decomposition of K43 — I, we conclude that
F = U7 1 Orbg(F;) is a G-regular 2-factorization of K4g — I with 9 triangle-factors and
14 quadrangle-factors, namely a G-regular solution of HWP(48; 3,4; 9, 14).

3.4 An octahedral solution of HWP(48; 3,4;13, 10)

Consider the nine cycles of C'ycle(G) defined as follows.

Ci=(1, —5@+j), —51+)))

Co= (1, 5(1—i+j—k), —75(i +k))

C3= (1, Z5(=i+j), s(1—i—j—k)

Co= (1, 5(-1+i-j+k), (k)

Cs=(1, 3(-1—i+j+k), 2(-1+i—j—k))

Cs = (1, k, =1, —k)

Cr= (1, j, -1, —j)

Cs= (1, 31 +i+j+k), s(-1+i—j+Fk), 5(1+7))
Cy= (1, =L +k), =k, 3(~1+i+j—k))

We note that Stab(C;) = V(C;) for 5 < i < 7 while all other C;’s have trivial G-
stabilizer. Thus, by Lemma 2.2, one can check that Orb(C;) is a ¢;-cycle decomposition
of Cay[G : ;] where ¢; is the length of C; and where the §2;’s are the symmetric subsets
of G listed below.

m#—%(iﬂ%—%(lﬂ)é( +i+j— k)
Qo= {5(L—i+j—k),—5(i +k), J5(1+0)}*

Q= {5~ Z+J),2(1—Z—J—k)7%(3 k)yH
Q= {3(-1+i—j+k), J5(i —k),— 5 +k)}*

.

V2 V2
Qs ={i(-1—i+j+k)}*
Q6 = {k}*!
Q7 = {j}*

Qs = {=3(1+i+j+k),i, J5(—1+1), I5 (1 +5)}*
Qg = {~J5(L+k), 5 (1L —k), (L —i+j+k), (-1 +i+j—k)}*
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Now note that the €2;’s partition G\ {1, —1}. Thus, by Theorem 2.3 we can say thatC :=
U?Zl Orb(C;) is a G-regular cycle-decomposition of K45 — I. Now set F; = Orbg, (C;)
where

K forl<i<4;
S;=<G for5<i<T;
L fori=28,9.
By Remark 2.4, each F; is a 2-factor of Kyg — I with Stabg(F;) = S;, hence Orbg(F;)
has length 3 or 1 or 4 according to whether 1 < ¢ <4orb < < 7ori = 8,9, respectively.

The cycles of F; are triangles or quadrangles according to whether or not ¢ < 5.
Thus, recalling that C is a cycle-decomposition of K43 — I, we conclude that F :=
U?:l Orbg(F;) is a G-regular 2-factorization of K45 — I with 13 triangle-factors and
10 quadrangle-factors, namely a G-regular solution of HWP(48; 3, 4; 13, 10).

3.5 An octahedral solution of HWP(48; 3, 4; 15, 8)
Consider the seven cycles of Cycle(G) defined as follows.

Cr=(1, 5(-1—i+j+k), 5(i+k))
L —Z5(i+4), —z(1+7))

=(1, 3(-14+i+j—k), s1—i+j+k)
= (L 5(L+i+j+k), 5(1+7))

(
(
(
(
(

17 _j7 ka _%(1 —k))
07:( T5(i=3), 3(-1—i+j—k), 5(~1+i+j+k))

Here, every C; has trivial stabilizer. Thus, by Lemma 2.2, one can check that Orb(C;)
is a ¢;-cycle decomposition of Cay|[G : ;] where ¢; is the length of C; and where the ;s
are the symmetric subsets of G listed below.

QG ={i(-1-i+j+k

), i+ k), (g )}
O = {~ (i), ~ (1 +
k).

3,31 +i+j— k)

Qg_{%( T4+it+j— %(1—z+]+k),2( 1—i+j—k)}*!
= {5 +i+j+k), J5(1+]), J5(1+i)}*
= {31 —i+j—k), J5(i — k), 55 (j + k)}*

Q= {—j, +i, 5 (1 = k), =75 (1 = k)}*

Q7 = {50 =), =5 (L +1), +k, 5 (=1 +i+j + &)}

Now note that the €2;’s partition G \ {1, —1}. Thus, by Theorem 2.3 we can say that
C .= U:Zl Orb(C;) is a G-regular cycle-decomposition of Ky5 — I. Set F; = Orbg, (C;)
where
g — K forl<i:<5;
L fori=6,7.
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By Remark 2.4, each F; is a 2-factor of K45 — I with Stabg(F;) = S;, hence Orbg(F;)
has length 3 or 4 according to whether 1 < i < 5 or ¢ = 6,7, respectively. The cycles of
F; are triangles or quadrangles according to whether or not ¢ < 5. Thus, recalling that C is
a cycle-decomposition of Kyg — I, we conclude that F := UZ 1 Orbg (F;) is a G-regular
2-factorization of Kyg — I with 15 triangle-factors and 8 quadrangle-factors, namely a
G-regular solution of HWP(48; 3, 4; 15, 8).

3.6 An octahedral solution of HWP(48; 3,4;17,6)

Consider the ten cycles of C'ycle(G) defined as follows.

1, —o5(1—k), —55(i +k))

1, =25 +j), 3(-1+i+j+k))

L g(+i—j—k), —71+7))

1, 2 (—i+j), f( i+k))

L3 —i+j—k), J5(1-5)

L i(-1—i+j+k), 3(-1+i—j—k))
L A(-1+i4+j—k), 3(-1—i—j+k))
1, k, -1, —k)

L, 4, =1, =j)

L, 51 +14), 5(1—i),5(1—i—j+k))

N[ =

N

)

|| || H || ||
[T ST ST

(
(
(
(
(
(
(
(
(
(

We note that Stab(C;) = V(C;) for 6 < ¢ < 9 while all other C;’s have trivial
stabilizer. Thus, by Lemma 2.2, one can check that Orb(C;) is a ¢;-cycle decomposition
of Cay[G : Q;] where ¢; is the length of C; and where the ;s are the symmetric subsets
of G listed below.

= {051 —k), — (i + k), 5 (-1 —i+j—k)}*
={—J5(i+7),5(-1+i+j+k), J5(-1+i}*"
= {50 +i—j—k), =51 +1), 50+
={ (=i +]), J5(—i+k),5(L—i—j -k}
={3(1—i+j—k), 5(1-3), 550 -k}
={3(-1—i+j+R}
={3(-1+i+j- R}

ng{k}il

0y = {j}*

o = {J5(1+14),i, J5(L— k), 5(1—i—j+ &)}

Now note that the ;’s partition G \ {1,—1}. Thus, by Lemma 2.2 we can say that
C:= U 1 Orb(C;) is a G-regular cycle-decomposition of K45 — I. Set F; = Orbg, (C})
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where

K forl<i<5;

S; =< G for6<:<9;

L fori=10.
By Remark 2.4, each F; is a 2-factor of Kyg with Stabg(F;) = S;, hence Orbg (F;) has
length 3 or 1 or 4 according to whether 1 <¢ < 50r6 < ¢ < 9ori = 10, respectively. The
cycles of Fj are triangles or quadrangles according to whether or not ¢ < 7. Thus, recalling
that C is a cycle-decomposition of K4g — I, we conclude that F := U:gl Orbg(F;) is

a G-regular 2-factorization of Kyg — I with 17 triangle-factors and 6 quadrangle-factors,
namely a G-regular solution of HWP(48; 3, 4;17,6).

4 Dicyclic solutions of two Hamilton-Waterloo problems

In this section G will denote the dicyclic group of order 24 which is usually denoted by
(Q24. Thus G has the following presentation:

G={(abla?=1,=a b lab=a"")

Note that the elements of G can be written in the form a?’ with 0 < 7 < 11 and
j = 0,1. The group G has a unique involution which is a® and we will need to consider
the following subgroups of G:

o H=(b)={1,b,a°% a%};

o K = (a%) ={1,a% a* a% a8 a'"};

o L =(a?b,a®) = {1,a3,a%,a’, a%b, a®b, a®b, a''b}.

4.1 A dicyclic solution of HWP(24; 3,4;7,4)
Consider the four cycles of Cycle(G) defined as follows.

We note that the Stab(C5) = V(C3) while all other C;’s have trivial stabilizer. Thus,
by Lemma 2.2, one can check that Orb(C;) is a ¢;-cycle decomposition of Cay[G : ;]
where /; is the length of C; and where the 2;’s are the symmetric subsets of G listed below.

Q1 = {a®b, a®, a®b} !
Qy = {a?, ab, a®b}*H!
QB _ {a4}i1

Q4 = {b, a37a4b,a}i1

Now note that the ;s partition G\ {1, a%}. Thus, by Theorem 2.3 we can say that C :=
U?Zl Orb(C;) is a G-regular cycle-decomposition of K4 — I. Now set F; = Orbg, (C;)
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where
L fori=1,2;
S; =< G fori=3;
K fori=4.

By Remark 2.4, each F; is a 2-factor of Koy — I with Stabg(F;) = S;, hence Orbg (F;)
has length 3 or 1 or 4 according to whether ¢ = 1,2 or ¢ = 3 or ¢ = 4, respectively.

The cycles of F; are triangles or quadrangles according to whether or not 7 < 3.
Thus, recalling that C is a cycle-decomposition of K43 — I, we conclude that F :=
U?Zl Orbg(F;) is a G-regular 2-factorization of Ky4 — I with 7 triangle-factors and 4
quadrangle-factors, namely a G-regular solution of HWP(24; 3,4;7,4).

4.2 A dicyclic solution of HWP(24; 3, 4; 9, 2)
Consider the four cycles of Cycle(G) defined as follows.

Cy = (1,(141)7 aG,alob)
Cs = (1,a4,a7b)
Cy = (1,a3b7 agb)
Cs = (a4,a7,a5)

We note that Stab(C;) = V(C;) for i = 1,2 while all other C;’s have trivial stabilizer.
By Lemma 2.2, one can check that Orb(C;) is a £;-cycle decomposition of Cay[G : €]
where /; is the length of C; and where the €2;’s are the symmetric subsets of G listed below.
Ql — {b}:l:l
Q2 _ {a4b}j:1
Q3 = {a*, ab,a®b}*!
Q4 = {a®b, a®b, a®}H!
Q5 _ {al,a2,a3}:|:1
Also here the ;s partition G \ {1,a%}, hence C := U§=1 Orba(C;) is a G-regular
cycle-decomposition of K54 — I by Theorem 2.3. Now set:
F1 = OT’bg(Cl), F2 = O?“bg(CQ),
F3 = OT’bL(C3), F4 = OTbH(O4) U O’I’bH(C5)

By Remark 2.4, each Fj is a 2-factor of K94 — I and we have
Stabg(F1) = Stabg(Fy) = G;  Stabg(F3) = L;  Stabg(Fy) = H

so that the lengths of the G-orbits of F, ..., Fy are 1, 1, 3 and 6, respectively. The cycles
of F; are triangles or quadrangles according to whether or not ¢ > 3. Thus, recalling that
C is a cycle-decomposition of K4g — I, we conclude that F := Uf’:l Orbg(F;) is a G-
regular 2-factorization of K94 — I with 9 triangle-factors and 2 quadrangle-factors, namely
a G-regular solution of HWP(24; 3,4;9, 2).
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5 A special linear solution of HWP(24; 3, 4; 5, 6)

In this section G will denote the 2-dimensional special linear group over Zg, usually de-
noted by SLs(3), namely the group of 2 x 2 matrices with elements in Z3 and determinant
one. The only involution of G is 2E where F is the identity matrix of G. The 2-Sylow
subgroup () of G, isomorphic to the group of quaternions, is the following:

R R R R B i R H e R

We will also need to consider the subgroup H of G of order 6 generated by the matrix

[O 1} . Hence we have:

e IR IR LD

The use of the special linear group G was crucial in [5] to get a Steiner triple system of
any order v = 144n + 25 with an automorphism group acting sharply transitively an all but
one point. Here G will be used to get a G-regular solution of the last Hamilton-Waterloo
problem left open in [11].

Consider the six cycles of Cycle(G) defined as follows.

(1 0] [2 o] [1 2
Cl<_o "2 2]" |1 OD

(1 0] Jo 2] [2 1]
C2_<_O |1 2] |2 0_)

(1 0] Jo 1] [2 2]
03_(_0 |2 2] |1 0_)
O — (1 0] Jo 1] [2 o] [o 2]
7 \lo 1] (2 o] o 2] [t o0
o 1 0] [1 1] [2 o] [2 2]
P70 17|t 20 (0 2] |2 1
O = 1 0] [2 1] [2 11 [1 1]
S=\lo 1] [t 1] |0 2] [0 1]

Here the stabilizer of C; is trivial for ¢ = 1, 6 while it coincides with V(C;) for 2 <14 < 5.
By Lemma 2.2, one can check that Orb(C;) is a £;-cycle decomposition of Cay[G : 2]
where /; is the length of C; and where the 2;’s are the symmetric subsets of G listed below.

S RN
{3} {2
e} e (G
o= B B R
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Once again we see that the §2;’s partition G \ {E, 2E}, therefore C := U?:l Orb(C;)
is a G-regular cycle-decomposition of K24 — I. Now set F; = Orbg, (C;) with

Q fori=1;
S;=<G for2<i<5;
H fori=06.

By Remark 2.4, each F; is a 2-factor of K54 — I and we have Stabg(F;) = S; so that the
lengths of the G-orbits of F1, ..., Fg are 3, 1, 1, 1, 1 and 4, respectively.

The cycles of F; have length 3 or 4 according to whether or not ¢+ < 3. Thus, recalling
that C is a cycle-decomposition of Koy — I, we conclude that F := U?Zl Orbg(F;) is
a G-regular 2-factorization of Koy — I with 5 triangle-factors and 6 quadrangle-factors,
namely a G-regular solution of HWP(24; 3, 4; 5, 6).

References

[1] B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach problem and
factors of uniform odd length cycles, J. Combin. Theory Ser. A 52 (1989), 2043, doi:10.1016/
0097-3165(89)90059-9.

[2] S.Bonvicini and M. Buratti, Sharply vertex transitive factorizations of Cayley graphs, in prepa-
ration.

[3] S. Bonvicini, M. Buratti, G. Rinaldi and T. Traetta, Some progress on the existence of
1-rotational Steiner triple systems, Des. Codes Cryptogr. 62 (2012), 63-78, doi:10.1007/
$10623-011-9491-3.

[4] D. Bryant and V. Scharaschkin, Complete solutions to the Oberwolfach problem for an infinite
set of orders, J. Combin. Theory Ser. B 99 (2009), 904-918, doi:10.1016/j.jctb.2009.03.003.

[5] M. Buratti, 1-rotational Steiner triple systems over arbitrary groups, J. Combin. Des. 9 (2001),
215-226, doi:10.1002/jcd.1008.abs.

[6] M. Buratti, Rotational k-cycle systems of order v < 3k; another proof of the existence of odd
cycle systems, J. Combin. Des. 11 (2003), 433-441, doi:10.1002/jcd.10061.

[71 M. Buratti, Cycle decompositions with a sharply vertex transitive automorphism group, Le
Matematiche 59 (2004), 91-105 (2006), https://www.dmi.unict.it/ojs/index.
php/lematematiche/article/view/164.

[8] M. Buratti and P. Danziger, A cyclic solution for an infinite class of Hamilton-Waterloo prob-
lems, Graphs Combin. 32 (2016), 521-531, doi:10.1007/s00373-015-1582-x.

[9] M. Buratti and G. Rinaldi, On sharply vertex transitive 2-factorizations of the complete graph,
J. Combin. Theory Ser. A 111 (2005), 245-256, doi:10.1016/j.jcta.2004.11.014.

[10] A. Burgess, P. Danziger and T. Traetta, On the Hamilton-Waterloo problem with odd orders, J.
Combin. Des. (2016), doi:10.1002/jcd.21552.

[11] P. Danziger, G. Quattrocchi and B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3
and 4, J. Combin. Des. 17 (2009), 342-352, doi:10.1002/jcd.20219.

[12] D. G. Hoffman and P. J. Schellenberg, The existence of C-factorizations of Ko, — F', Discrete
Math. 97 (1991), 243-250, doi:10.1016/0012-365x(91)90440-d.

[13] E Merola and T. Traetta, Infinitely many cyclic solutions to the Hamilton-Waterloo problem
with odd length cycles, Discrete Math. 339 (2016), 2267-2283, doi:10.1016/j.disc.2016.03.
026.



14 Ars Math. Contemp. 14 (2018) 1-14

[14] U. Odabasi and S. Ozkan, The Hamilton-Waterloo problem with Cy and C,, factors, Discrete
Math. 339 (2016), 263-269, doi:10.1016/j.disc.2015.08.013.

[15] T. Traetta, A complete solution to the two-table Oberwolfach problems, J. Combin. Theory Ser.
A 120 (2013), 984-997, doi:10.1016/j.jcta.2013.01.003.

[16] L. Wang, F. Chen and H. Cao, The Hamilton-Waterloo problem for C'3-factors and C,,-factors,
2016, arXiv:1609.00453 [math.CO].



