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Abstract

We prove that for any integer n ≥ 12, and for every r in the interval [3, . . . , bn−1
2 c], the

group An has a string C-group representation of rank r, and hence that the only alternating
group whose set of such ranks is not an interval is A11.
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1 Introduction
String C-group representations have gained much attention in recent years as they are in
one-to-one correspondence with abstract regular polytopes. More precisely, given an ab-
stract regular polytope and a base flag of the polytope, one can construct a string C-group
representation whose group G is the automorphism group of the polytope that is generated
by the set of involutory automorphisms sending the base flag to its adjacent flags [32, Sec-
tion 2E]. Hence the study of string C-group representations has interest not only for group
theory, but also for geometry.
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Classifications of string C-group representations received a big impetus thanks to ex-
perimental work of Leemans and Vauthier [31] and also Hartley [20]. These were pushed
further for instance in [11, 15, 21, 27]. The results obtained in [31] quickly led to the deter-
mination of the highest rank of a string C-group representation of Suzuki groups [26]. Other
families of almost simple groups were then investigated: the almost simple groups with so-
cle PSL(2, q) [14, 28, 29], groups PSL(3, q) and PGL(3, q) [5], groups PSL(4, q) [3],
small Ree groups [30], orthogonal and symplectic groups in characteristic 2, and finally,
symmetric groups [16] and alternating groups [17, 18]. In particular, only the last four fam-
ilies gave rise to string C-group representations of arbitrary large rank. In [2], it is shown
that, for all integersm ≥ 2, and all integers k ≥ 2, the orthogonal groups O±(2m,F2k) act
on abstract regular polytopes of rank 2m, and the symplectic groups Sp(2m,F2k) act on
abstract regular polytopes of rank 2m+ 1. A symmetric group Sn is known to have string
C-group representations of highest rank n− 1 [6] and an alternating group An is known to
have string C-group representations of highest rank bn−1

2 c when n ≥ 12 [8]. It is worth
noting that not only almost simple groups have been investigated. For instance, Cameron,
Fernandes, Leemans and Mixer determined the maximal rank of a string C-group represen-
tation of a transitive permutation group in [7]. Conder determined in [9] the smallest string
C-group representations of rank r. It turns out that when r is at least 9, all such groups are
2-groups. Further studies on string C-group representations of 2-groups are available for
instance in [23, 24].

The authors looked at the symmetric groups in [16] and proved three important facts.
Firstly, when n ≥ 5, the (n− 1)-simplex is, up to isomorphism, the unique string C-group
representation of Sn with rank n − 1. Secondly, they showed that when n ≥ 7, there is
also, up to isomorphism, a unique string C-group representation of rank n− 2. And finally,
they showed that for every n ≥ 4, and for every integer r in the interval [3, . . . , n − 1], a
symmetric group Sn has at least one string C-group representation of rank r. Therefore, the
symmetric groups have no gaps in their set of ranks. The first and second theorems have
been extended in [19] where the authors of this paper, together with Mark Mixer, classified
string C-group representations of rank n − 3 (for n ≥ 9) and n − 4 (for n ≥ 11) of the
symmetric group Sn.

Also with Mixer, the authors produced in [17, 18] string C-group representations of
rank b(n− 1)/2c of the alternating groups, with n ≥ 12. In the process of obtaining these
results, they computed all string C-group representations of An with n ≤ 12. They found
that the set of ranks for the alternating groups of small degree were as given in Table 1. The

Table 1: Set of ranks for small alternating groups.

Group Set of ranks

A5 {3}
A6 ∅
A7 ∅
A8 ∅
A9 {3, 4}
A10 {3, 4, 5}
A11 {3, 6}
A12 {3, 4, 5}
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case n = 11 turned out to be special in the sense that it was the only example encountered
so far of a group whose set of ranks presented gaps. In this paper, we prove a similar result
as the third theorem of [16]. Our main result is stated as follows.

Theorem 1.1. For n ≥ 12 and for every 3 ≤ r ≤ b(n− 1)/2c, the group An has at least
one string C-group representation of rank r.

This theorem shows indeed that the case n = 11 is special among the alternating
groups. The main tool in the proof of our main theorem is to find good permutation repre-
sentation graphs that turn out to be CPR graphs, for every rank 3 ≤ r ≤ b(n− 1)/2c once
n is fixed. We use a proof similar to that of the third theorem of [16] to tackle most cases
and are just left dealing with finding string C-group representations of ranks four and five
for An when n is even, and ranks four, five and six, when n ≡ 3 (mod 4).

The paper is organised as follows. In Section 2, we recall the basic definitions about
string C-groups. In Section 3, we recall the definitions of permutation representation graphs
and CPR-graphs and give some results that will be useful in proving Theorem 1.1. In
Section 4, we prove Theorem 1.1. In Section 5, we give some final remarks.

As to notation for groups, we denote a cyclic group of order n by Cn, a dihedral group
of degree n and order 2n by Dn, and by pn an elementary abelian group of order pn. Also,
if G is a permutation group, the group G+ is the subgroup of G generated by the even
permutations in G, and if G+ = G (so that all elements of G are even) then we call G an
even permutation group.

2 String C-groups
An abstract polytope is a combinatorial object which generalizes a classical convex poly-
tope in Euclidean space. When the automorphism group of an abstract polytope acts reg-
ularly on its set of flags, the polytope is called regular, and in that case, its automorphism
group admits a string C-group representation. Additionally, each abstract regular polytope
can be constructed from a string C-group representation, and thus abstract regular poly-
topes and string C-groups representations are basically the same objects. For more details
on the subject see [32, Section 2E].

A Coxeter group is a group with generators ρ0, . . . , ρr−1 and presentation

〈ρi | (ρiρj)mi,j = ε for all i, j ∈ {0, . . . , r − 1}〉

where ε is the identity element of the group, each mi,j is a positive integer or infinity,
mi,i = 1, and mi,j = mj,i > 1 for i 6= j. It follows from the definition, that a Coxeter
group satisfies the next condition called the intersection property.

∀J,K ⊆ {0, . . . , r − 1}, 〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K〉 = 〈ρj | j ∈ J ∩K〉

A Coxeter group G can be represented by a Coxeter diagram D. This Coxeter diagram D
is a labelled graph which represents the set of relations of G. More precisely, the vertices
of the graph correspond to the generators ρi of G, and for each i and j, an edge with label
mi,j joins the ith and the jth vertices; conventionally, edges of label 2 are omitted. By
a string (Coxeter) diagram we mean a Coxeter diagram with each connected component
linear. A Coxeter group with a string diagram is called a string Coxeter group.
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More generally, we define a string group generated by involutions, or sggi for short, as
a pair (G,S) where G is a group, S := {ρ0, . . . , ρr−1} is a finite set of involutions of G
that generate G and that satisfy the following property, called the commuting property.

∀i, j ∈ {0, . . . , r − 1}, |i− j| > 1⇒ (ρiρj)
2 = 1

Finally, a string C-group representation of a group G is a pair (G,S) that is a sggi and
that satisfies the intersection property. In this case the underlying “Coxeter” diagram for
(G,S) is a string diagram. The (Schläfli) type of (G,S) is {p1, . . . , pr−1} where pi is the
order of ρi−1ρi, i ∈ {1, . . . , r − 1}, and the rank of a string C-group representation (or
of a sggi) (G,S) is the size of S. When the context is clear, we sometimes do not specify
the set of generators S and we talk about a string C-group G instead of a string C-group
representation (G,S).

The set of ranks of a group G is the largest set of integers I such that for each r ∈ I ,
there exists at least one string C-group representation of G with rank r.

Let Γ := (G,S) be a sggi with S := {ρ0, . . . , ρr−1}. We denote by GI with I ⊆
{0, . . . , r − 1} the subgroup of G generated by the involutions with indices that are not
in I and let ΓI := (GI , {ρj : j 6∈ I}); it follows from the definition that if Γ is a string
C-group representation of G, each ΓI is itself a string C-group representation of GI . Also,
for i, j ∈ {0, . . . , r − 1}, we denote Gi = 〈ρj | j 6= i〉 and Gi,j := (Gi)j . The following
two results show that when Γ0 and Γr−1 are string C-group representations, the intersection
property for (G,S) is verified by checking only one condition.

Proposition 2.1 ([32, Proposition 2E16]). Let Γ := (G,S) be a sggi with S := {ρ0, . . . ,
ρr−1}. Suppose that Γ0 and Γr−1 are string C-group representations. If G0 ∩ Gr−1 =
G0,r−1, then Γ is a string C-group representation of G.

We point out that the inclusion G0 ∩ Gr−1 ≥ G0,r−1 is immediate, and thus we only
need to check that G0 ∩Gr−1 ≤ G0,r−1. The following proposition makes it even simpler
to check if a pair (G,S) is a string C-group representation when G0,r−1 is a maximal
subgroup of either G0 or Gr−1 (or both).

Proposition 2.2 ([18, Lemma 2.2]). Let Γ = (G,S) be a sggi with S := {ρ0, . . . , ρr−1}
and G := 〈S〉. Suppose that Γ0 and Γr−1, are string C-group representations of G0 and
Gr−1 respectively. If ρr−1 6∈ Gr−1 and G0,r−1 is maximal in G0, then Γ is a string
C-group representation of G.

3 Permutation representation graphs and CPR graphs
Let G be a group of permutations acting on a set {1, . . . , n}. Let S := {ρ0, . . . , ρr−1}
be a set of r involutions of G that generate G. We define the permutation representation
graph G of G, as the r-edge-labeled multigraph with n vertices and with an i-edge {a, b}
whenever aρi = b with a 6= b.

The pair (G,S) is a sggi if and only if G satisfies the following properties:

1. The graph induced by edges of label i is a matching;

2. Each connected component of the graph induced by edges of labels i and j, for
|i−j| ≥ 2, is a single vertex, a single edge, a double edge, or a square with alternating
labels.
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When (G,S) is a string C-group representation, the permutation representation graph
G is called a CPR graph, as defined in [33]. In rank 3, there are a couple of known results
to determine if a 3-edge-labeled multigraph is a CPR graph. For higher ranks, no such
arguments were accomplished.

One simple example of a CPR graph is the one corresponding to the (n − 1)-simplex
as follows:

0 1 2 3 n−2 n−1

In [16], for each rank 3 ≤ r ≤ n − 2, a string C-group representation of rank r of Sn
was found. In [18], the authors constructed a string C-group representation of rank r ≥ 4
of An for some n. This is summarized in the following two theorems, and the associated
CPR graphs are given in Table 2.

Theorem 3.1 ([16, Theorem 3]). For n ≥ 5 and 3 ≤ r ≤ n− 2, there is a string C-group
representation of rank r and type {n− r + 2, 6, 3r−3} of Sn.

Theorem 3.2 ([18, Theorem 1.1]). For each rank k ≥ 3, there is a string C-group repre-
sentation of rank k of An for some n. In particular, for each even rank r ≥ 4, there is a
string C-group representation of A2r+1 of type {10, 3r−2}, and for each odd rank q ≥ 5,
there is a string C-group representation of A2q+3 of type {10, 3q−4, 6, 4}.

Table 2: String C-group representations of Sn and An.

Group Schläfli type CPR graph

Sn {n− r + 2, 6, 3r−3} 0 1 0 1 2 3 r−2 r−1

(3 ≤ r ≤ n− 2)

A2r+1 {10, 3r−2}
1 2 3 r−2 r−1

0 1

0

2

0

3

0 0

r−2

0

r−1

0(r even and ≥ 4)

A2r+3 {10, 3r−4, 6, 4}
1 2 3 r−2 r−1 r−2

0 1

0

2

0

3

0 0

r−2

0

r−1

0

r−2

0(r odd and ≥ 5)

Permutation representation graphs are a very useful tool for the construction of string
groups generated by involutions. We will use them in the proof of our main theorem.

The term sesqui-extension was first introduced in [18]. Let us recall its meaning. Let
Φ = 〈α0, . . . , αd−1〉 be a sggi, and let τ be an involution in a supergroup of Φ such
that τ 6∈ Φ and τ centralizes Φ. For fixed k, we define the group Φ∗ = 〈αiτηi | i ∈
{0, . . . , d − 1}〉 where ηi = 1 if i = k and 0 otherwise, and call this the sesqui-extension
of Φ with respect to αk and τ . In particular, a permutation representation graph having two
connected components, one of which is a single k-edge and the other contains at least one
k-edge, represents a sesqui-extention of a group (the group corresponding to the biggest
component) with respect to the generator k.
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Proposition 3.3 ([17, Proposition 5.4]). If Φ = 〈αi | i = 0, . . . , d− 1〉 and

Φ∗ = 〈αiτηi | i ∈ {0, . . . , d− 1}〉

is a sesqui-extension of Φ with respect to αk, then (Φ, {αi | i = 0, . . . , d− 1}) is a string
C-group representation if and only if (Φ∗, {αiτηi | i ∈ {0, . . . , d−1}}) is a string C-group
representation. Moreover one of the following situations occur.

(1) τ ∈ Φ∗, in which case Φ∗ is isomorphic to Φ× 〈τ〉 ∼= Φ× C2; or

(2) τ /∈ Φ∗, in which case Φ∗ is isomorphic to Φ.

Sesqui-extensions will be used later to check the intersection condition on the permu-
tation representations of the groups of our main theorem.

We also apply the techniques used in the proof of Theorem 3.1 based on a construction
of Hartley and Leemans available in [22]. The key of the proof of Theorem 3.1 was to start
from the CPR graph of the (n − 1)-simplex with generators ρ1, . . . , ρn−1 where ρi is the
transposition (i, i + 1) in Sn. Let d = n− 1. At each step, we start with a string C-group
representation of rank d and generators ρ1, . . . , ρd. We replace ρd−2 by ρd−2ρd and we
drop ρd. As proved in [16], we get in this way a new string C-group representation with
generators ρ1, . . . , ρd−1. We can repeat this until d = 3. We give in Table 3 an example of
this process for S7.

Table 3: The induction process used on S7.

Generators CPR graph Schläfli type

(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)
1 2 3 4 5 6 {3, 3, 3, 3, 3}

(1, 2), (2, 3), (3, 4), (4, 5)(6, 7), (5, 6)
1 2 3 4 5 4 {3, 3, 6, 4}

(1, 2), (2, 3), (3, 4)(5, 6), (4, 5)(6, 7)
1 2 3 4 3 4 {3, 6, 5}

(1, 2), (2, 3)(4, 5)(6, 7), (3, 4)(5, 6)
1 2 3 2 3 2 {6, 6}

In order to prove that the permutation groups of our main theorem are isomorphic to
alternating groups we use the following results.

Theorem 3.4 ([25]). Let G be a primitive permutation group of finite degree n, containing
a cycle of prime length fixing at least three points. Then G ≥ An.

Proposition 3.5 ([17, Proposition 3.3]). Let G = 〈ρ0, . . . , ρr−1〉 be a transitive permuta-
tion group acting on the points {1, . . . , n}with n ≥ 5, and letG∗ = 〈ρ0, . . . , ρr−1, ρr, ρr+1〉,
where

ρr = (i, n+ 1)(n+ 2, n+ 3) for some i ∈ {1, . . . , n}
ρr+1 = (n+ 1, n+ 2)(n+ 3, n+ 4).

Then G∗ = An+4 or Sn+4, depending on whether or not G is even.
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Proposition 3.6. The following graph, with n ≥ 8 vertices, n even and r ∈ {3, . . . , n−2
2 },

is a CPR graph for
(
Sn−4

2
× Sn+4

2

)+
.

0 1 0 1 0 1 0 1 2 r−2 r−1

0 1 0 1 2 r−2 r−1

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. Let us first consider r = 3.

0 1 0 1 0 1 0
3

1
2

2
1

0 1 0
4

1
5

2
6

We see that Γ0 and Γ2 are string C-group representations and asG0∩G2 = G0,2
∼= C2,

Γ is itself a string C-group representation by Proposition 2.1.
Let us prove thatG is isomorphic to

(
Sn−4

2
×Sn+4

2

)+
. We first prove thatG contains the

3-cycles (1, 2, 3) and (4, 5, 6) (the vertices of the above graph on the right). Let l be the least
integer such that (ρ0ρ1)l fixes all the vertices of the component of the graph on the bottom.
We see that (ρ1ρ2)2 = (1, 2, 3)(4, 5, 6). The latter element conjugated by (ρ0ρ1)l is equal
to α = (a, b, c)(4, 5, 6) with {a, b, c} ∩ {1, 2, 3} = {1}. Hence (α(ρ1ρ2)2)5 = (4, 6, 5)
and (1, 2, 3) = (4, 6, 5)(ρ1ρ2)2.

Now by transitivity in each of the two components of the graph we find that G has a
subgroup isomorphic to An−4

2
× An+4

2
. As in addition ρ2 /∈ An−4

2
× An+4

2
and G is a

group of even permutations, the group G is isomorphic to
(
Sn−4

2
× Sn+4

2

)+
.

Now let r > 3. We may assume by induction that Γr−1 is a string C-group represen-
tation and Gr−1 is isomorphic to

(
Sn−6

2
× Sn+2

2

)+
. In addition Γ0 is a string C-group

representation with group G0 isomorphic to Sr−1. By the intersection of the orbits of G0

and Gr−1 we conclude that G0 ∩ Gr−1 and G0,r−1 are both isomorphic to Sr−2. There-
fore Γ is a string C-group representation of G. Moreover it is clear that G is isomorphic to(
Sn−4

2
× Sn+4

2

)+
.

Proposition 3.7. The following graph, with n ≥ 10 vertices, n even and r ∈ {5, . . . , n−2
2 },

is a CPR graph for Sn.

0 1 0 1 0 1 0 1 2 r−2 r−1

0 1 0 1 2 r−2 r−1

r−2

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. The permutation representation graph is connected, hence G is
transitive. Let x be the first point on the left of the graph. The stabilizer of x has at most
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the same orbits as G0. Consider the vertices y and z as in the following graph.

x
0 1 0 1 0 1 y 0 1 2

z
r−2 r−1

0 1 0 1 2 r−2 r−1

r−2

We see that yρρ1ρ02 = z and ρρ1ρ02 fixes x. More generally the appropriate conjugations
of ρ2 by powers of ρ0ρ1 fuse the orbits of G0 while fixing x. Hence G is 2-transitive
and therefore primitive. Moreover, it contains a 3-cycle (explicitly given in the proof of
Proposition 3.6) and an odd permutation. Hence, by Theorem 3.4, it is isomorphic to
Sn−1. By Proposition 3.3 and [17, Table 2] we may conclude that Γ0 is a string C-group
representation of the group C2 × (C2 o Sr−1). By Proposition 3.6, the sggi Γr−1 is a string
C-group representation of

(
Sn−6

2
× Sn+2

2

)+
. From the intersection of the orbits of G0 and

Gr−1 we also conclude that G0 ∩Gr−1 = G0,r−1
∼= C2 ×

(
Sn−7

2
× Sn+1

2

)+
. Hence Γ is

a string C-group representation.

Proposition 3.8. The following graph, with n ≥ 10 vertices, n even and r ∈ {3, . . . , n−2
2 },

is a CPR graph for
(
Sn−4

2
× Sn+4

2

)+
.

1 0 1 0 1 0 1 2 r−2 r−1

1 0 1 2 r−2 r−1

Proof. Similar to that of Proposition 3.6.

Proposition 3.9. The following graph, with n ≥ 12 vertices, n even and r ∈ {5, . . . , n−2
2 },

is a CPR graph for Sn.

1 0 1 0 1 0 1 2 r−2 r−1

1 0 1 2 r−2 r−1

r−2

Proof. Similar to that of Proposition 3.7.

Proposition 3.10. The following graph, with n ≥ 8 vertices, n even and r = n/2, is a
CPR graph for Sn.

0 1 2 r−2 r−1

2 r−2 r−1

r−2

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. Removing the 0-edge from the graph we get a CPR graph for
a symmetric group of degree n − 1 (see Table 2 of [17]). Hence Γ0 is a string C-group
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representation. Now consider the sggi Φ := (H,T ) with the following permutation repre-
sentation graph.

0 1 2 r−2

2 r−2

For r = 4, Φ is a string C-group representation with H isomorphic to C2 × S4. Assume
by induction that Φr−2 is a string C-group representation with Hr−2 isomorphic to Sr−1×
Sr−3. As Φ0 is a string C-group representation and H0∩Hr−2 ≤ Sr−2×Sr−3

∼= H0,r−2,
Φ is a string C-group representation. Moreover H is isomorphic to Sr−1 × Sr−3. Now by
Proposition 3.3 the sggi Γr−1 is a string C-group representation and Gr−1 is isomorphic
to C2 × Sr−1 × Sr−3. By the intersection of the orbits of G0 and Gr−1 we find that
G0 ∩Gr−1 = G0,r−1 Hence Γ is a string C-group representation. As G0 is isomorphic to
Sn−1 and stabilizes the first vertex on the left, we conclude thatG is isomorphic to Sn.

Proposition 3.11. The following graph with n vertices, n ≡ 3 (mod 4) and n ≥ 11, is a
CPR graph for Sn.

0 1 0

2

1 0 1 1 2 3

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. The group G3 is an even transitive group containing a 3-cycle,
namely (ρ1ρ2)4, and the stabilizer of a point in G3 is transitive on the remaining points.
Hence by Theorem 3.4 the groupG3 is isomorphic toAn−1. ConsequentlyG is isomorphic
to Sn. Moreover as G3 is a simple group generated by three independent involution, the
sggi Γ3 is string C-group representation. It is also easy to check that Γ0 is string C-group
representation and that G3 ∩ G0 = G0,3, as it is sufficient to consider the case n = 11.
Hence Γ is a string C-group representation and G is isomorphic to Sn as wanted.

4 Proof of Theorem 1.1

For each n ≥ 12, the group An has at least one string C-group representation of rank three.
Indeed, we can rely on [12, 13] which covers all but a small number of small cases that can
be easily dealt with MAGMA [1], or [34]. Hence we have to construct examples of rank 4
and above. Also, the case where n = 12 is done in [18], hence we may assume n > 12.

We divide the rest of the proof is a series of theorems depending on the values of n and
r as described in Table 4. Theorem 4.1 comes from [17], and we use it in Theorem 4.2 to
construct string C-group representations of rank 6 ≤ r ≤ (n− 2)/2 for n even.

4.1 The even case

We will construct a family of CPR graphs of even ranks “reducing” the rank of a CPR graph
having highest possible rank. Let us consider the graph given in the following theorem.

Theorem 4.1 ([17]). If n ≥ 14 is even and r = n−2
2 ≥ 6, then the following graph is a
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CPR graph for An.

0 1 0 1 2 3 r−3 r−2 r−1

2 3 r−3 r−2 r−1

r−3 r−3

Moreover the corresponding string C-group representation has type {5, 6, 3r−6, 6, 6, 3}.

Theorem 4.2. If n is an even integer, n ≥ 14 and 6 ≤ r ≤ n−2
2 , then the group An admits

a string C-group representation of rank r, with Schläfli type {lcm(4 + i, i), 6, 3r−6, 6, 6, 3}
where i = (n− 2)/2− r + 1, and with the following CPR graph

0 1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

0 1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

for (n ≡ 2 (mod 4) and n− r even) or (n ≡ 0 (mod 4) and n− r odd) and the following
CPR-graph

1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

for (n ≡ 2 (mod 4) and n− r odd) or (n ≡ 0 (mod 4) and n− r even).

Proof. From the graph of Theorem 4.1 we construct a family of graphs with n vertices
and r ∈ {6, . . . , n−2

2 } adding, on the top and on the bottom of the graph, two sequences

Table 4: The structure of the proof depending on n and r.

n r Reference

n even 6 ≤ r ≤ (n− 2)/2 Theorem 4.2
n ≡ 0 (mod 4) r = 5 Theorem 4.6

r = 4 Theorem 4.5
n ≡ 2 (mod 4) r = 5 Theorem 4.4

r = 4 Theorem 4.3
n ≡ 1 (mod 4) 4 ≤ r ≤ (n− 1)/2 Theorem 4.7
n ≡ 3 (mod 4) r = (n− 1)/2 Theorem 4.8

7 ≤ r < (n− 1)/2 and r odd Theorem 4.9
r = (n− 1)/2− 1 Theorem 4.10

8 ≤ r < (n− 1)/2 and r even Theorem 4.11
r = 4 Theorem 4.12
r = 5 Theorems 4.13 and 4.15
r = 6 Theorem 4.14
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of edges, of the same size, with alternate labels 0 and 1. So we have the following two
possibilities.

0 1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

0 1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

Let Γ := (G,S) be the sggi having the permutation representation graph above. The
statement holds for n = 14 and r = 6 by Theorem 4.1. Assume n > 14.

The involution ρ1 can be decomposed as ρ1 = τα1 where α1 is the restriction of ρ1 to
the biggest G0-orbit and τ is the restriction of ρ1 to the union of G0-orbits of size 2. The
following CPR graph has group isomorphic to (2r : Sr)

+ as shown in [17, Lemma 6.6]. It
is exactly the graph we obtain by replacing ρ1 by α1 and forgetting about the points fixed
by G0.

1 2 3 r−3 r−2 r−1

1 2 3 r−3 r−2 r−1

r−3 r−3

We find that α1 = ρ2ρ1ρ2ρ1ρ2 ∈ G0, then also τ ∈ G0 and therefore by Propo-
sition 3.3, G0 is a sesqui-extension of the group (2r : Sr)

+ and G0 is isomorphic to
C2 × (2r : Sr)

+ ∼= 2r : Sr as τ ∈ G0. Moreover, Γ0 is a string C-group representation.
We use a similar argument to prove that Γr−1 is a string C-group, starting from the CPR

graph given in Proposition 3.7 when (n ≡ 2 (mod 4) and n− r even) or (n ≡ 0 (mod 4)
and n−r odd), and from the CPR graph given in Proposition 3.9 when (n ≡ 2 (mod 4) and
n− r odd) or (n ≡ 0 (mod 4) and n− r even). In that case, however, since the restriction
of ρr−2ρr−3 to the biggest orbit ofGr−1 is an element of even order, Gr−1

∼= Sn−2. Since
An acts primitively on the set of unordered pairs of points, the stabilizer in An of a fixed
pair is maximal in An, and such stabilizers have precisely the structure of Gr−1. As Gr−1

is a maximal subgroup of An and ρr−1 6∈ Gr−1, it follows that G is isomorphic to An. Let
us now prove that G0,r−1 = G0 ∩Gr−1. The orbits of G0 ∩Gr−1 have to be suborbits of
G0 and of Gr−1, hence G0 ∩Gr−1 ≤ (C2 × (2r−1 : Sr−1)×C2)+ ∼= G0,r−1. Hence, by
Proposition 2.1, Γ is a string C-group representation of An.

Let i = (n− 2)/2− r + 1. Then it is easy to see from the CPR-graph that the Schläfli
type of the string C-group representation of An of rank r obtained by this construction is
{lcm(4+ i, i), 6, 3r−6, 6, 6, 3}. The first entry of the symbol comes from the fact that there
are 0-1-components on the upper side of the graph and on the lower side of the graph and
the upper one has 4 more vertices than the lower one.

It remains to construct examples in rank 4 and 5 for n even. We split the discussion in
two cases, namely the case where n ≡ 0 (mod 4) and the case where n ≡ 2 (mod 4).
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Theorem 4.3. If n ≡ 2 (mod 4) with n ≥ 10, then the group An admits a string C-group
representation of rank 4, with Schläfli type {5, 6, n− 4}, with the following CPR-graph.

2

0

1 0 1 2 3 2 3 2 3 2 3 2 (F1)

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
In this case G3 is a sesqui-extension of a string C-group representation of A5, hence by
Proposition 3.3, G3

∼= C2 × A5 and Γ3 is a string C-group representation of rank 3.
Moreover, G0,3 is isomorphic to C2 ×D3

∼= D6 and therefore G0,3 is maximal in G3. So,
by Proposition 2.2, it remains to prove that Γ0 is also a string C-group representation. Now,
Γ0,3 and Γ0,1 are obviously string C-group representations of dihedral groups. The group
G0,1,3 is a cyclic group of order 2 and the subgroups G0,3 and G0,1 will have the same
intersection no matter what the value of n is. We can thus assume n = 10 and check by
hand or using MAGMA that G0 ∩G3 = G0,3. Hence Γ0 is a string C-group representation.
This concludes the proof that a sggi with permutation representation graph (F1) is a string
C-group representation. It remains to show that the four generators generate An. The
element ρ0ρ1 is a 5-cycle and G is primitive, as for instance ρ0 cannot preserve any block
system. Hence, by Theorem 3.4, G is isomorphic to An.

The Schläfli type is obvious from the permutation representation graph.

Theorem 4.4. If n ≡ 2 (mod 4) with n ≥ 10, then the group An admits a string C-group
representation of rank 5, with Schläfli type {5, 5, 6, n− 5}, with the following CPR-graph.

0 1 2

0

1 2 3 4 3 4 3 4 3 4 (F2)

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
In this case, G4 is a sesqui-extension of a group isomorphic to (S7 × C2)+ ∼= S7 whose
CPR graph is given in Table 2 of [17]. Hence Γ4 is a string C-group representation. By
Proposition 3.5 the group G0 is isomorphic to An−1. The subgroup G0,4 is isomorphic
to S6, in addition G0,1,4

∼= D6 and G0,1
∼= Sn−4. Increasing n will not change the

intersection betweenG0,1 andG0,4. Hence we can check with MAGMA thatG0,1∩G0,4 =
G0,1,4 for n = 10. Thus Γ0,1 is a string C-group representation and so is Γ0 and so is Γ, as
G0
∼= An−1 and G is transitive. Moreover G is isomorphic to An since it is transitive on n

points and the stabilizer of a point in G contains G0
∼= An−1.

The Schläfli type is obvious from the permutation representation graph.

Theorem 4.5. If n ≡ 0 (mod 4) with n ≥ 16, then the group An admits a string C-
group representation of rank 4, with Schläfli type {3, 12, lcm(n−8, 6)}, with the following
CPR-graph.

g 3
a

2
d

h
3

0

c
2

0

e

0,1,3

l
0
p

1
m

2
i

3

1

b
2

1

j
3
k

2
f

3 2

(F3)
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Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above. In
this case,G3 is isomorphic to 22 : S3×S3 andG0,3 is isomorphic toD12 no matter what the
value of n is, thanks to the shape of the graph. Observe that the left connected component
of the graph, obtained when removing the 3-edges, gives the CPR graph of the octahedron.
Thus it can easily be checked with MAGMA that Γ3 is a string C-group representation with
type {3, 12}. The group G0 is transitive on n − 1 points, namely all vertices of the graph
except l. Moreover, the stabilizer of l and p in G has at most two more orbits thanks to
the connected components of the permutation representation graph obtained by removing
edges labelled 0 and 1. The element (ρ1ρ2ρ3ρ2)3 moves point i to point dwhile fixing both
l and p. Hence G0 is 2-transitive on n − 1 vertices (all but l). Therefore G0 is primitive
on these points. Now the element (ρ1ρ2ρ3ρ2) = (l)(p, j,m)(i, e, g, d, h)(a, c, f, b) . . . has
the property that the cycles we did not write are transpositions. Indeed, ρ1 does not do
anything on these points and so the action on these points is given by ρ2ρ3ρ2 = ρρ23 which
is an involution. Hence (ρ1ρ2ρ3ρ2)12 ∈ G0 is a 5-cycle fixing more than three points.
By Theorem 3.4, we can therefore conclude that G0 is isomorphic to An−1. As G0 is a
simple group, since it is generated by three involutions (namely ρ1, ρ2, ρ3), two of which
commute, Γ0 is a string C-group representation by [10, Theorem 4.1]. It remains to check
that G0,3 = G0∩G3 to prove that these graphs give indeed string C-group representations.
This can be checked with MAGMA for n = 12 and the result can be extended for any n.

The Schläfli type is obvious from the permutation representation graph.

Theorem 4.6. If n ≡ 0 (mod 4) with n ≥ 12, then the group An admits a string C-group
representation of rank 5, with Schläfli type {3, 4, 6, n− 7}, with the following CPR-graph.

2 1 2 3 4 3 4 3 4 3 4

2 1 2

0 0

(F4)

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
In this case, G4 is a sesqui-extension of the group of a string C-group representation of
S9, that can be found for instance in the atlas [31]. The sggi Γ0,1 is a string C-group
representation of Sn−6 and G0,4 is isomorphic to S5 × D4. Now ρ2ρ3 has order 6, so
G0,1,4 is isomorphic toD6 and it is obvious from the permutation representation graph that
G0,4 ∩ G0,1 = G0,1,4 and G0,4 ∩ G1,4 = G0,1,4. Hence Γ0 and Γ4 are string C-group
representations by Proposition 2.1. As G0∩G4 must have orbits that are suborbits of those
of G0 and of those of G4, we readily see that G0 ∩ G4 = G0,4. This concludes the proof
that every graph of shape (F4) gives a string C-group representation. As G is a primitive
group generated by even permutations and (ρ2ρ3)2 is a 3-cycle, we see thatG is isomorphic
to An by Theorem 3.4.

The Schläfli type is obvious from the permutation representation graph.

4.2 The odd case

Theorem 4.7. If n and r are integers with n ≥ 13, n ≡ 1 (mod 4) and 4 ≤ r ≤ (n−1)/2,
then the group An admits a string C-group representation of rank r, with Schläfli type
{10, 3

n−1
2 −2} when r = n−1

2 and {10, 3r−4, 6, n−1
2 − r+ 3} when r < n−1

2 , and with the
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following CPR graph.

1 2 3 r−2 r−1 r−2 r−2 r−1 r−2

0 1

0

2

0

3

0 0

r−2

0

r−1

0

r−2

0 0

r−2

0

r−1

0

r−2

0

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
Clearly G is a group of even permutations and it must be primitive as ρ0 cannot preserve a
non-trivial block system. Let us prove that G is isomorphic to An. We see that (ρ0ρ1)2 is a
5-cycle, hence by Theorem 3.4, the groupG is isomorphic toAn. It remains to prove that Γ
satisfies the intersection property. We know that for n = 13, the sggi Γ is a string C-group
representation of rank 6 and Schläfli type {10, 3, 3, 3, 3}. It can be checked with MAGMA
that Γ is also a string C-group representation for n = 13 and r ∈ {4, 5}. By induction we
may assume that Gr−1 is a sesqui-extension of the group of a string C-group representa-
tion. Hence by Proposition 3.3, the sggi Γr−1 satisfies the intersection property. By the
first line of Table 2, it is easy to see that Γ0 is a string C-group representation. Finally,
G0,r−1 = G0 ∩ Gr−1

∼= Sr−1 × C2. By Proposition 2.1, we conclude that Γ is a string
C-group representation. Using this technique, we have just constructed string C-group rep-
resentations of rank r for every 4 ≤ r ≤ n−1

2 . Their Schläfli types are {10, 3
n−1
2 −2} when

r = n−1
2 and {10, 3r−4, 6, n−1

2 − r + 3} when r < n−1
2 .

The following theorem gives the string C-group representations of rank r = (n− 1)/2
in the case where n ≡ 3 (mod 4).

Theorem 4.8 ([17]). If n and r are integers with n ≥ 15, n ≡ 3 (mod 4) and r =
(n−1)/2, then the groupAn admits a string C-group representation of rank r, with Schläfli
type {5, 5, 6, 3r−7, 6, 6, 3}, and with the following CPR graph.

0 1 0

2

1 2 3 r−3 r−2 r−1

3 r−3 r−2 r−1

r−3 r−3

From these examples, we construct examples of the same rank but for groups of degree
n+ 4k where k is an integer, by adding a sequence of alternating 0- and 1-edges of length
4k between the first and the second 2-edge (counting from the left).

Theorem 4.9. If n and r are integers with n ≥ 15, n ≡ 3 (mod 4) and 7 ≤ r < (n−1)/2,
r odd, then the group An admits a string C-group representation of rank r, with Schläfli
type {n− 2(r − 2), 12, 6, 3r−7, 6, 6, 3}, and with the following CPR graph.

0 1 0

2

1 0 1 1 2 3 r−3 r−2 r−1

3 r−3 r−2 r−1

r−3 r−3

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
The group G0 is acting as S2(r−1) on the orbit of size 2(r − 1) and as D4 on the orbit of
size 4, making G0 isomorphic to A2(r−1) : D4. Observe that G0 has a structure that only
depends on the rank, not on the degree of G.
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The group G0,r−1 is isomorphic to S2(r−2) : D4. It is a maximal subgroup of G0.
Hence G0 ∩Gr−1 = G0,r−1.

Let us now prove that Γ0 and Γr−1 are string C-group representations. We start with
Γ0. The groupG0,1 is the same (up to removing the fixed points) as the one of Theorem 4.8.
Hence Γ0 is a string C-group representation. The sggi Γ0,r−1 has the following permutation
representation graph, where there might be more than one 1-edge disconnected from the
rest of the graph.

1 2 1 1 1 2 3 r−3 r−2

3 r−3 r−2

r−3 r−3

If we prove that the sggi corresponding to the following permutation representation
graph is a string C-group representation, we may then apply Proposition 3.3 in order to
show that Γ0,r−1 is also a string C-group representation.

1 2 1 1 2 3 r−3 r−2

3 r−3 r−2

r−3

Let us call Φ := (H,T ) the sggi having this permutation representation graph. By
Proposition 3.10 the connected component on the right of the graph above gives a string C-
group representation. By Proposition 3.3 the graph that we obtain from the graph pictured
above by removing the 2-edge on the left is a CPR graph. Since removing the 2-edge on
the left does not change the order of the group H1, by [32, Proposition 2E17] we find that
Φ is a string C-group representation. Hence Γ0 is a string C-group representation.

Let us now prove that Γr−1 is a string C-group representation.
The group Gr−2,r−1 is a sesqui-extension of the group K of the sggi Ψ := (K,U)

having the following permutation representation graph.

0 1 0

2

1 0 1 1 2 3 r−3

3 r−3

Let a and b be the sizes of the connected components of the graph above. For r = 6, K
is a sesqui-extension of the group of the string C-group representation of Proposition 3.11,
hence by Proposition 3.3, K is isomorphic to Sa ∼= (Sa × 2)+. By induction we may
assume that Ψr−3 is a string C-group representation and Kr−3 is isomorphic to (Sa−1 ×
Sb−1)+. As Ψ0 is a string C-group representation andK0∩Kr−3 = K0,r−3 we find that Ψ
is itself a string C-group representation. Moreover K is clearly isomorphic to (Sa × Sb)+.
With this, using Proposition 3.3, we see that Γr−2,r−1 is a string C-group representation.
Finally G0,r−1 ∩Gr−2,r−1 ≤ (D4 × S2(r−3) × 2)+ ∼= G0,r−2,r−1.

Hence we have proved that Γr−1 is a string C-group representation and therefore G
itself is a string C-group.

It is easy to see from the permutation representation graph in the theorem that the
Schläfli type of the string C-group representation of rank r of An obtained by this con-
struction is {n− 2(r − 2), 12, 6, 3r−7, 6, 6, 3}.



306 Ars Math. Contemp. 17 (2019) 291–310

The previous two theorems enable us to construct examples of all possible odd ranks
at least 7 for An with n ≡ 3 (mod 4) and n ≥ 15. We now construct an example of rank
(n − 3)/2 for An from the example of rank (n − 1)/2, that we will use to construct all
examples of even rank at least 8.

Theorem 4.10. If n and r are integers are such that n ≥ 19, n ≡ 3 (mod 4) and r =
(n − 1)/2 − 1, then the group An admits a string C-group representation of rank r, with
Schläfli type {5, 5, 6, 3r−8, 6, 6, 6, 4}, and with the following CPR graph.

0 1 0

2

1 2 3 r−4 r−3 r−2 r−1 r−2

3 r−4 r−3 r−2

r−4

r−1

r−4

r−2

r−4 r−4

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
The group Gr−1 is a sesqui-extension of the group given in Theorem 4.8. Hence Γr−1

is a string C-group representation. The sggi Γ0 can be proved to be a string C-group
representation using similar techniques to those the proof of the previous theorem. The
fact that G0 ∩Gr−1 = G0,r−1 follows from the fact that Gr−1 is a sesqui-extension of the
group given in Theorem 4.8 and the orbits of the respective subgroups.

As in the case of odd ranks, from these examples we construct examples of the same
rank but for groups of degree n + 4k where k is an integer, by adding a sequence of
alternating 0- and 1-edges of length 4k between the 1-edge and the second 2-edge (counting
from the left).

Theorem 4.11. If n and r are integers such that n ≡ 3 (mod 4), n ≥ 19 and 8 ≤ r <
(n− 1)/2− 1, r even, then the group An admits a string C-group representation of rank r,
with Schläfli type {n− 2(r− 1), 12, 6, 3r−8, 6, 6, 6, 4}, and with the following CPR graph.

0 1 0

2

1 0 1 1 2 3 r−4 r−3 r−2 r−1 r−2

3 r−4 r−3 r−2

r−4

r−1

r−4

r−2

r−4 r−4

There are two ways to prove this theorem, either by a proof similar to that of Theo-
rem 4.9 or by a proof similar to that of Theorem 4.10. We leave the details to the interested
reader.

Theorem 4.12. If n ≡ 3 (mod 4) with n ≥ 15, then the groupAn admits a string C-group
representation of rank 4, with Schläfli type {10, 7, 4} for n = 15 and {2(n − 10), 14, 4}
for n > 15, with the following CPR-graph.

0 1 0 1 0 1 0

2

1 2 1 2

2 1

3

2

3

1 2 1

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
The group G0 is isomorphic to 26 : A7 : C2 for n = 15 and 26 : A7 : C2 ×C2 for n ≥ 19,
no matter how big n is. It can easily be checked with MAGMA that Γ0 is a string C-group
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representation for n = 15 and n = 19 and since adding more points to the graph will not
change the structure of G0, we can conclude that Γ0 is a string C-group representation for
every n ≥ 15. The groupG3 acts as Sn−7 on the vertices of the top of the graph and acts as
D7 on the remaining vertices, and is a subgroup of (An−7 ×D7)+. We can thus conclude
that G3 is An−7×D7. The group G0,3 is isomorphic to D7 for n = 15 and C2×D7 when
n ≥ 19 (as there are extra 1-edges in the graph). The group G2,3 is isomorphic to D(n−10).
It is obvious from the permutation representation graph that G0,3 ∩ G2,3 is isomorphic to
C2. Hence, by Proposition 2.1, the sggi Γ3 is a string C-group representation. Now, the
intersection G0∩G3 = G0,3 need only to be checked in the cases n ∈ {15, 19}, which can
be done with MAGMA. Hence, again, by Proposition 2.1, we see that Γ is a string C-group
representation.

It remains to show that G is isomorphic to An. The structure of G3 shows that the
action of G3 on the (n − 7) vertices at the top of the graph is An−7. Hence there exists
a cycle of order 3 in G0 acting on those vertices. This cycle necessarily fixes the 7 other
vertices, so it is a cycle of G. Moreover, that action is (n−9)-transitive on the top vertices.
Hence the stabilizer, in G, of the leftmost vertex of the graph must be transitive on the
remaining vertices and G is 2-transitive, therefore primitive. Then, by Theorem 3.4, we
can conclude that G ≥ An. Since all generators of G are even permutations, we conclude
that G is isomorphic to An.

The Schläfli type follows immediately from the permutation representation graph.

Theorem 4.13. If n ≡ 3 (mod 4) with n ≥ 15, then the groupAn admits a string C-group
representation of rank 5, with Schläfli type {n−10, 6, 6, 5}, with the following CPR-graph.

0 1 0 1 0 1 0 1 2 3 4 3 4

3 4

2

3 4

2 2

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above. The
groupG0 is isomorphic to S12 no matter how large n is. One can easily check with MAGMA
that the permutation representation graph corresponding to Γ0 is a CPR graph. The group
G0,4 is isomorphic to 23 : S3×S3 no matter how large n is. G3,4 is isomorphic to Sn−9 by
Theorem 3.4, as it contains a cycle of length 3, namely (ρ1ρ2)2 and is obviously 2-transitive
on n−9 vertices. Moreover, by [10, Theorem 4.1], Γ3,4 is a string C-group representation as
it is generated by three involutions, two of which commute. The groupG0,3,4 is isomorphic
toD6. Looking at the respective orbits ofG0,4 andG3,4 we can conclude thatG0,4∩G3,4 =
G034 and therefore Γ4 is a string C-group representation. Moreover, one can check that the
group G4 is isomorphic to An−8 × C2 : S3 but this is not needed to finish the proof. Now,
it is easy to check with MAGMA thatG0∩G4 = G0,4 for n = 15 and this intersection does
not depend on the degree of G. Therefore, by Proposition 2.1, we may conclude that Γ is
a string C-group representation with the given permutation representation graph. A similar
argument as in the proof of Theorem 4.12 shows that G is isomorphic to An. The Schläfli
type follows immediately from the permutation representation graph.

Theorem 4.14. If n ≡ 3 (mod 4) with n ≥ 15, then the group An admits a string C-
group representation of rank 6, with Schläfli type {n − 10, 6, 3, 5, 3}, with the following
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CPR-graph.

0 1 0 1 0 1 0 1 2 3 4 5

3

5

3

4
24

5

2

4

2 3,5

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above. The
group G0 is isomorphic to S12 no matter how big n is. One can easily check with MAGMA
that the permutation representation graph corresponding to Γ0 is a CPR graph. We have
G0,5

∼= S7 × A5 no matter how big n is. Here G3,4,5
∼= Sn−9 as proven in the previous

theorem (for G34 in the previous theorem is the same group as G3,4,5 here). Similarly, we
have G0,4,5

∼= 22 : S3 × S3. As G3,4,5 ∩G0,4,5 = G0,3,4,5 independently on how big n is,
we can conclude by Proposition 2.1 that Γ4,5 is a string C-group representation. Similarly,
as G0,5 ∩ G4,5 = G0,4,5 no matter how big n is, we can conclude by Proposition 2.1 that
Γ5 is a string C-group representation. Finally, as G0 ∩G5 = G0,5 no matter how big n is,
we conclude that Γ is a string C-group representation.

It remains to show that G is isomorphic to An. Similar arguments as in the proof of the
previous two theorems lead to that conclusion. The Schläfli type follows immediately from
the permutation representation graph.

Observe that this last family of string C-group representations of rank 6 gives, using the
same general construction we used in Theorems 4.2 and 4.7, a family of string C-groups of
rank 5 with Schläfli type {n− 10, 6, 5, 3}.

Theorem 4.15. If n ≡ 3 (mod 4) with n ≥ 15, then the groupAn admits a string C-group
representation of rank 5, with Schläfli type {n− 9, 6, 5, 3}, with the following CPR-graph.

2 1 2 1 2 1 2 1 2 3 4 5

3

5

3

4
24

5

2

4

2 3,5

We leave the proof of this last theorem to the interested reader as it is very similar to
the previous proofs.

5 Concluding remarks
Mark Mixer mentioned a similar result in 2015 at the AMS Fall Eastern Sectional Meeting
in Rutgers (talk 1115-20-283).

The techniques we developed in this paper inspired Brooksbank and the second author
to develop a general rank reduction technique, now available in [4].
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