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This paper formulates a new optimization pickup and delivery problem with time windows which 

take into account CO2 emissions. This new NP-hard combinatorial optimization problem is called 

green pickup and delivery problem with time windows (GPDPTW), the recent development in the 

vehicle routing problem and its variants, which extends PDP and PDPTW with respect to several 

constraints. The objective is to find a set of routes for a fleet of vehicles in order to serve given 

transportation requests with a minimization of  fuel consumption and CO2 emission to ensure the 

preservation of a clean and green environment. This paper presents a mathematical formulation 

and proposes a hybrid discrete artificial bee colony algorithm (HDABC) as a meta-heuristic 

algorithm which combines a discrete artificial bee colony with neighborhood operators to solve 

the GPDPTW model. To the best of our knowledge, this is the first time that an emission of CO2 

for the PDPTW is proposed. We performed computational experiments to evaluate the 

effectiveness of the proposed method, which provides the best result and can effectively find an 

optimal tour. Our results show that, (1) the shortest route is not necessarily the route that 

consumes the least fuel; (2) the fuel consumption is affected by the load and the number of 

vehicles. 

Povzetek: Članek predstavi novo metodo za optimizacijo prevzema in dostave s časovnimi okni z 

minimalizacijo porabe goriva in emisij CO2. 

 

1 Introduction 
Nowadays, the amount of CO2 emission caused by 

transportation is significant for wider environmental and 

social impacts rather than just economic costs. It has 

direct effects on human health, e.g., pollution, and 

indirect ones, e.g., climate change. The objective of 

harmonizing the environmental and economic costs is to 

implement an effective strategy to meet the 

environmental concerns and financial indices. One of the 

most important decisions concerns the routing of vehicles 

with the minimum amount of CO2 emissions, since it 

offers great potential to reduce the fuel consumption and 

to ensure the preservation of a clean and green 

environment. Thus, reducing fuel consumption can 

directly reduce carbon emissions. In addition, fuel 

consumption accounts for as much as 60% of the 

operating cost of a vehicle, according to [1]. Therefore, 

reducing fuel consumption can also reduce operating 

costs. 

The vehicle routing problem (VRP) is a generic name 

given to a class of problems to determine a set of vehicle 

routes, in which each vehicle departs from a given depot, 

serves a given set of clients, and returns back to the same 

destination. The basic VRP involves a single depot, a 

fleet of identical vehicles stationed at the depot, and a set 

of clients who require delivery of goods from the depot. 

The objective of basic VRP is to minimize the total 

routing cost, subject to the capacity constraints on the 

vehicles [2] [3].  

One variation of the classical vehicle routing problem 

considers clients that require pickup and delivery service 

[4]. This problem is called the Pickup and Delivery 

Problem with Time Windows (PDPTW). In this variant, 

PDPTW deals with a number of client requests that are to 

be served by a fleet of vehicles, while a number of 

constraints must be observed. Each vehicle has a limited 

capacity (the capacity constraint). A vehicle route usually 

starts and ends at a central depot. A request must be 

picked up from a pickup location to be delivered to a 

corresponding delivery location. The pickup and delivery 

pair must be served by the same vehicle (the coupling 
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constraint) and the pickup must precede the delivery (the 

precedence constraint). In addition, every request must be 

served within a predetermined time window interval (the 

time window constraint). If the vehicle arrives earlier 

than the allowed service time, it should wait until the 

beginning of the specified period. A vehicle may never 

arrive to a location after the end of the time window of 

the location. The PDPTW mainly involves transportation 

activities to complete/serve a set of requests, but the 

transportation has an impact on the environment due to 

pollution and CO2 emissions. 

In this paper, we consider the Green Pickups and 

Deliveries problem with Time Windows (GPDPTW) 

which is an extension of the PDPTW. The objective is to 

construct valid routes for the vehicles without violating 

vehicle capacity, time window, precedence and coupling 

constraints with minimal CO2 emissions. 

The contributions of this paper are twofold. First, the 

paper addresses the GPDPTW problem with precedence, 

coupling, capacity, time windows constraints and we 

introduce the factor of CO2 emission, which is applied to 

this variant of VRP for the first time. Second, we develop 

and implement the Hybrid discrete artificial Bee Colony 

(HDABC) algorithm to solve it. To the best of our 

knowledge, this study is the first attempt at applying the 

discrete artificial bee colony meta-heuristic. Our aim is to 

minimize the amount of CO2 emissions.  

The remainder of this paper is structured as follows. 

Section 2 discusses some related works on Pickup and 

Delivery Problem with Time Windows and the Green 

vehicle routing problem. Section 3 focuses on the 

formulation of the GPDPTW. Section 4 presents a brief 

definition of artificial bee colony. Section 5 describes a 

proposed hybrid discrete artificial bee colony. Then, a 

case study is presented in Section 6. The last section is 

devoted to conclusions and the research perspectives 

related to the current work. 

2 Related work 
Dumas et al [5], were the first to use column generation 

for solving PDPTW. They proposed a branch and bound 

method that is able to handle problems with up to 55 

requests. Sol et Savelsbergh [6]  proposed a branch and 

price algorithm to solve the PDPTW with the objective to 

minimize the number of vehicles and the total travel 

distance. Nanry et Barnes [7] are among the first 

researchers to present a meta-heuristic for PDPTW.     

The meta-heuristic is based on a reactive tabu search. 

First, a feasible solution is constructed using greedy 

insertion method. Next, tabu search is used to improve 

the initial solution. Three neighborhood moves are 

proposed in this paper. They are: single pair insertion, 

swapping pairs between route and within route insertion. 

In order to evaluate their work, the authors created 

PDPTW test instances from standard vehicle routing 

problems with time windows proposed by             

Solomon [8]. Li et Lim [9] developed a hybrid meta-

heuristic based on tabu search and simulated annealing to 

solve the PDPTW, and they also produced several test 

instances for the PDPTW which are generated from 

Solomon’s 56 benchmark instances [8]. A two phase 

method proposed by Lau et Liang [10] was developed. In 

the first phase, they applied a novel construction heuristic 

to generate an initial solution. In the second phase, a tabu 

search method is proposed to improve the solution. Lim 

et al [11] applied “Squeaky wheel” optimization and local 

search to the PDPTW. Another approach to this problem 

was proposed by Pankratz [12], who used a grouping 

genetic algorithm, and this is extended to a multi-strategy 

grouping genetic algorithm by Ding, Li et Ju [13]. Lu et 

Dessouky [14]  presented a new insertion-based 

construction heuristic to solve the multi-vehicle pickup 

and delivery problem with time windows. Their main 

contribution was to define new criteria to evaluate 

requests insertion based on reduction of time slack 

compared to the classical one based on the incremental 

distance measure. Bent and Van Hentenryck [15] 

proposed  a two-stage hybrid algorithm where the first 

stage uses a simple simulated annealing algorithm to 

decrease the number of routes, while the second stage 

uses a large neighborhood search to decrease the total 

travel cost. The heuristic was tested on the problems 

proposed by Li et Lim [9]. In addition, Dergis et Dohmer 

[16] showed that the approach of indirect local search 

with greedy decoding gives results which are competitive 

with both Li et Lim [9] and Pankratz [12]. Ropke et 

Cordeau [17] presented a new branch and cut and price 

algorithm in which the lower bounds are computed by the 

column generation algorithm and improved by 

introducing different valid inequalities to the problem. 

More recently, ant colony System was applied by 

Carabetti, De Souza et Fraga [18]. Harbaoui et al [19] 

presented an approach based on genetic algorithms and 

Pareto dominance method to give a set of satisfying 

solutions to the PDPTW minimizing total travel cost, 

total tardiness time and the vehicles number. 

After that, the green concept emerged as one of the 

latest extensions of the VRP literature in recent years. 

Researchers suggest that there are possibilities for 

reducing carbon dioxide (CO2) emissions by extending 

the traditional VRP objectives to account for wider 

environmental and social impacts rather than just 

economic costs [20] [21] [22]. Until now, little research 

for minimizing energy consumption in transportation 

planning has been carried out, such as the PhD 

dissertation of Palmer [23] that presented an integrated 

routing and emissions model for freight vehicles and 

investigates the role of speed in reducing CO2 emissions 

under various congestion scenarios and time window 

settings. However, Palmer did not take into account the 

vehicle loads in his model, although this was offered as a 

future research topic. Kara et al [24] considered a more 

realistic cost of transportation that is affected by the load 

of the vehicle as well as the distance of the arc travelled. 

They defined energy minimizing vehicle routing problem 

as the capacited vehicle routing problem with a new 

objective of cost, in which the cost function is a product 

of the total load (including the weight of the empty 

vehicle) and the length of the arc. However, they used 

their work to represent the energy so as to simplify the 

relationship between minimizing the consumed energy 
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and the variables of the vehicle conditions. Details of the 

formulation of fuel consumption are not provided. Maden 

et al [25] considered a vehicle routing and scheduling 

problem with time windows in which speed depends on 

the time of travel. Fagerholt et al [26] proposed an 

alternative solution methodology in which the arrival 

time was divided and the problem was solved as a 

shortest path problem on a directed acyclic graph. Xiao et 

al [27] proposed a Fuel Consumption Rate (FCR) 

considered Capacited Vehicle Routing Problem (CVRP), 

which extends CVRP with the objective of minimizing 

fuel consumption. In their paper, both the distance 

traveled and the load are considered as the factors which 

determine the fuel costs. FCR is taken as a load 

dependent function, where FCR is linearly associated 

with the vehicle’s load.  Kuo et Wang [28]  developed a 

tabu search heuristic in order to find feasible vehicle 

routes while minimizing the total fuel consumption. They 

incorporated the effect of vehicle speed into the fuel cost. 

They took the travel speed as a parameter and observed 

the effect of this by conducting experiments on four 

different data sets with differing travel speed patterns. 

Zhang et al [29] studied the capacited vehicle routing 

problem from an environmental perspective and 

introduced a new model called environmental vehicle 

routing problem (EVRP) with the aim of reducing the 

adverse effect on the environment caused by the routing 

of vehicles. The environmental influence is measured 

through the amount of carbon dioxide emission. They 

designed the hybrid artificial bee colony algorithm to 

solve the EVRP model. Zhang et al [30] studied a vehicle 

routing problem (VRP) with the consideration of fuel 

consumption and carbon emission.  They developed an 

improved tabu search algorithm named RS-TS for solving 

the model. In the RS-TS algorithm, they introduced a 

novel route encoding and decoding algorithm named 

WSS, in which three neighborhood search methods are 

applied. Poonthalir et Nadarajan [31] introduced a bi-

objective Fuel efficient Green Vehicle Routing Problem 

(F-GVRP) with varying speed constraint. The problem is 

solved using Particle Swarm Optimization with Greedy 

Mutation Operator and Time varying acceleration 

coefficient.  Liu et Jiang [32] introduced the load-

dependent vehicle routing problem with time windows. 

They designed a new constraint relaxation-based 

algorithm and they presented an effective execution 

scheme of local search procedures. Other VRP-related 

studies that aim at minimizing total fuel consumption 

include Apaydin et Gonullu [33], Maraš [34], 

Nanthavanij et al [35] and Tavares et al [36]. 

Another problem that considers fuel consumption is 

the pollution routing problem (PRP). The PRP was 

proposed by Bektas et Laporte [22]. Its aims are to find a 

set of vehicle routes and vehicle speeds over the routes 

that minimize the operational and environmental costs, 

while respecting constraints on time and vehicle 

capacities. The PRP was addressed with a two-phase 

heuristic in Demir et al [37]. In the first phase, the vehicle 

routing problem with time windows is solved by means 

of an adaptive large neighborhood search, including five 

insertion operators and twelve removal operators. In a 

second phase, vehicle speeds are optimized using a 

recursive algorithm. A bi-objective variant considering 

fuel and driving time minimization is presented in Demir 

et al [38] and Franceschetti et al [39] considered the time-

dependent PRP. Kramer et al [40] proposed a method 

which combines a local search-based meta-heuristic with 

an integer programming approach to solve the Pollution 

Routing Problem. This approach was also used to solve 

two other environmental based VRPs, namely the fuel 

consumption vehicle routing problem and the energy 

minimizing vehicle routing problem, as well as the well-

known Vehicle Routing Problem with Time Windows 

(VRPTW) with distance minimization. Xiao et Konak 

[41] presented a Green Vehicle Routing and Scheduling 

Problem (GVRSP) considering general time-dependent 

traffic conditions with the primary objective of 

minimizing CO2 emissions and weighted tardiness. They 

proposed a new mathematical formulation to describe the 

GVRSP with hierarchical objectives and weighted 

tardiness. 

Other papers treated another variant of PDPTW that 

considered dynamic pickup and delivery problems with 

time window uncertainties [42], the same problem with 

time windows and electric vehicles was studied by [43] 

and [44] considered a setting in which a company not 

only has its own fleet of vehicles to service requests, but 

may also use the services of occasional drivers. 

3 GPDPTW formulation 
The GPDPTW can be formally defined as follows. Let   

G = (N, A) be a graph. The node set is N = {i ∈ N/i = 0, 

1, 2,…, m}, such that m denotes a location. The node 0 

denotes the depot. Since for each request we have a pair 

of pickup and delivery locations,  the set N+ = {i ∈ N / i = 

1, 2,…, m/2} represents pickup locations, and the set N- = 

{i ∈ N / i = (m/ 2) + 1,…, m} represents delivery 

locations. 

Each location i is associated with: 

• A demand qi, such that qi > 0 for a pickup 

location, qi < 0 for a delivery location and qi + qj = 

0 for the same customer’s pickup and delivery 

locations (q0 = 0). 

• A service time si (s0 = 0), which is the time needed 

to load or unload a pickup or a delivery demand. 

• A time window [ei, li] during which the location 

must be served, and li ≥ ei 

For each pair of nodes (i, j), travel time tij and a travel 

distance dij are specified. 

The GPDPTW consists of designing a set of routes 

such that: 

1. Each route starts and ends at the depot;  

2. Each location is visited exactly once by exactly one 

vehicle;  

3. The total vehicle load in any arc does not exceed the 

capacity of the vehicle assigned to it;  

4. The total duration of each route (including travel 

and service times) does not exceed a duration limit.  

5. If a vehicle arrives before the earliest pickup or 

delivery time of a loaction, it is allowed to wait until 

the start of the time window. 

https://www.sciencedirect.com/topics/economics-econometrics-and-finance/vehicle-routing-problem
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/vehicle-routing-problem
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/greenhouse-gas-emissions
https://www.sciencedirect.com/topics/economics-econometrics-and-finance/metaheuristics
https://www.sciencedirect.com/topics/engineering/decoding-algorithm
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6. The precedence constraint requires that each pickup 

location must precede the corresponding delivery 

location. 

7. The coupling constraint requires that the same 

pickup and delivery locations must be served by the 

same vehicle. 

Savelsbergh et al [45] showed that the VRP is a NP-hard 

problem. Since the GPDPTW is a generalization of the 

VRP, it’s a NP-hard combinatorial optimization problem, 

and the presence of many constraints makes the problem 

particularly complicated. The mathematical formulation 

of GPDPTW is a combination of Christofides et al [2], 

Savelsbergh et Sol [45], Xiao et al [27] and Zhang et al 

[29]. 

xijk a binary variable indicating whether arc (i, j) is 

traversed by vehicle k  

xijk = 1 if vehicle k traverses arc (i, j)  

xijk = 0 if vehicle k does not traverse arc (i, j)  

yik load of vehicle k while visiting node i 

Qk capacity of vehicle k 

Di departure time from the node i / Di ∈ [ei,li] , 

where Di = max{ Ai, ei }  

CE the CO2 emission rate 

FCR the fuel consumption rate 

ρ0 the empty load FCR 

ρ∗ the full load FCR 

ρ the FCR provided that load is q 

qijk the load of vehicle while k traverses arc (i, j) 

In this paper, we consider that each vehicle emits a 

certain amount of CO2 when traveling over an arc (i, j). 

This amount is dependent on a number of factors, such as 

load, number of vehicle and distance travelled, among 

others. Whereas the CO2 emission (CE) is fixed, it is 

estimated at 2.61 kg of CO2 for each liter of diesel 

consumed [46]. The formulation of fuel consumption is 

provided in [27]. It is determined by both the distance 

traveled and the load of vehicle. Our objective is to serve 

all client requests while minimizing the total cost of 

transport. This cost is related to the CO2 emission rate, 

the number of vehicles used and the distance travelled. 

Minimiser  f1=∑ ∑ ∑ 𝑋𝑖𝑗𝑘 ∗ 𝑑𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁𝑘∈𝐾                   (1)                            

Minimiser f2=∑ ∑ ∑ 𝐶𝐸 ∗ (𝜌0 +
𝜌∗−𝜌0

𝑄𝑘
𝑞𝑖𝑗𝑘) ∗𝑗∈𝑁𝑖∈𝑁𝑘∈𝐾

𝑋𝑖𝑗𝑘 ∗  𝑑𝑖𝑗𝑘                                                                    (2) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1 = 1,               𝑗 = 2, … , 𝑁𝑁

𝑖=1                       (3) 

∑ ∑ 𝑥𝑖𝑗𝑘
𝐾
𝑘=1 = 1,               𝑖 = 2, … , 𝑁𝑁

𝑗=1                       (4) 

∑ 𝑥𝑖0𝑘 = 1,𝑁
𝑖=1                         ∀ 𝑘 ∈ 𝐾                            (5) 

∑ 𝑥0𝑗𝑘 = 1,𝑁
𝑗=1                        ∀ 𝑘 ∈ 𝐾                            (6) 

∑ 𝑥𝑖𝑢𝑘 −  ∑ 𝑥𝑢𝑗𝑘
𝑁
𝑗=1 = 0,𝑁

𝑖=1 ∀ 𝑘 ∈ 𝐾, ∀ 𝑢 ∈ 𝑁            (7)    

𝑥𝑖𝑗𝑘 = 1  𝑦𝑗𝑘 = 𝑦𝑖𝑘 + 𝑞𝑖 , ∀𝑘 ∈ 𝐾, ∀ 𝑖, 𝑗 ∈ 𝑁           (8) 

𝑦0𝑘 = 0,                                    ∀𝑘 ∈ 𝐾                           (9) 

0 ≤ 𝑦𝑗𝑘 ≤ 𝑄𝑘                           ∀ 𝑘 ∈ 𝐾, ∀ 𝑗 ∈ 𝑁            (10) 

𝐷𝑝 ≤ 𝐷𝑑                                    ∀ 𝑝 ∈ 𝑁+, ∀ 𝑑 ∈ 𝑁−       (11) 

𝐷0 = 0                                                                         (12) 

𝑥𝑖𝑗𝑘 = 1  𝐷𝑖 + 𝑡𝑖𝑗𝑘 ≤  𝐷𝑗 , ∀𝑘 ∈ 𝐾, ∀ 𝑖, 𝑗 ∈ 𝑁           (13) 

𝑡0𝑖 + 𝑠𝑖 + 𝑡𝑖𝑗 < 𝑙𝑗 ,                  ∀ 𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗               (14) 

where K is the total number of vehicles, dijk is the travel 

distance from customer i to customer j by vehicle k. 

Constraints (3) and (4) form the feasible routes of 

vehicles, so that every customer is visited by exactly one 

vehicle, and every vehicle that arrives to a location must 

leave that location. Constraints (5) and (6) ensure that 

each vehicle is used to serve at most one route. Constraint 

(7) ensures the route continuity. Constraints (8), (9) and 

(10) show that the total demands of any route must not 

exceed the capacity of the vehicle. Constraints (11), (12) 

and (13) ensure the precedence constraint. Constraint (14) 

ensures that only edges satisfying the time window 

constraint are allowed. 

4 Artificial bee colony 
The Artificial Bee Colony (ABC) algorithm is a swarm 

intelligence technique inspired by the intelligent foraging 

behavior of honey bees. This algorithm was proposed by  

Karaboga et al [47] [24] [48] [49] [50] based on the 

foraging behaviour of honey bees. The ABC algorithm 

classifies the foraging artificial bees into three groups; 

namely, employed bees, onlookers and scouts. A bee that 

is currently exploiting a food source is called an 

employed bee. A bee waiting in the hive to make a 

decision in choosing a food source is named as an 

onlooker. A bee carrying out a random search for a new 

food source is called a scout. In the ABC algorithm, each 

solution to the problem under consideration is called a 

food source and represented by an n dimensional integer 

valued vector, whereas the fitness of the solution 

corresponds to the nectar amount of the associated food 

resource. Similar to the other swarm intelligence based 

approaches, the ABC algorithm is an iterative process. It 

starts with a population of randomly generated solutions 

or food sources. 

Initialization algorithm 

1 Let k = 0   {k is the number of vehicles used}  

Let list not empty {list contains all pickup 

node}  

repeat  

Initialize an empty route r 

k = k+1 

for (All unassigned requests) do 

A request pi is randomly selected from list 

Insert pi at the end of the current route r; 

Insert his corresponding di request into route r ; 

Call the IsFeasibleSolution algorithm to 

improve r  

if (r is a feasible route) then 

Mark pi as inserted 

until (All requests have been inserted) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 
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The ABC algorithm is usually used for continuous 

optimization problems. To apply it to discrete 

combinatorial problems, modifications and adjustments 

are needed. There are several strategies to implement in 

each part of the algorithm, and each combination can lead 

to a different Discrete Artificial Bee Colony (DABC) 

algorithm. The point is to know which strategy and which 

combination among them have to be used in order to 

enhance the performance of the algorithm for the problem 

at hand  [51].  

5 Proposed HDABC for GPDPTW 
The description of the proposed Hybrid Discrete 

Artificial Bee Colony (HDABC) is given as follows:  

5.1 Initialization 

The algorithm starts with the generation of N initial 

solutions. These solutions characterize the initial food 

sources that will be explored by the employed bees. Each 

food source in the discrete artificial bee colony algorithm 

is a feasible solution of GPDPTW, which consists of a list 

of routes. One route is associated with one vehicle. Each 

route consists of a sequence of request points (pickup and 

delivery) which are visited by the given vehicle. Figure 1 

represents the solutions under the form of food sources 

where 0 represents the depot and the integer numbers 

represents pickup or delivery location. 

 

Figure1: Encoding solution. 

According to our method, firstly, a distributed initial 

population is generated. The method used for achieving 

initial solutions was set up in such a way that it led to 

achieve better quality solutions than random selection. In 

this paper, the initial population is created as follows; a 

random pickup point is selected as initial of the route, 

then the next requests consecutively are added to the 

route to ensure the constraints are satisfied and to get a 

feasible solution. The algorithm of initialization is 

defined as follows: 

5.2 Employed bee phase 

In the basic artificial bee colony algorithm, every 

employed bee determines a food source in the 

neighborhood of its currently associated food source and 

evaluates its nectar fitness. We know that each employed 

bee 𝑥𝑖𝑗  generates a new food source �́�𝑖𝑗  in the 

neighborhood of its present position as follows:          

�́�𝑖𝑗 = 𝑥𝑖𝑗 + 𝜑𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) 𝑘 = 𝑖𝑛𝑡(𝑟𝑎𝑛𝑑 𝐹𝑁) +  1 

where 𝜑𝑖𝑗= (rand−0.5)×2, ϕij is a uniformly distributed 

real random number within the range [−1, 1], FN  is the 

number of food sources, i ∈ {1, 2,…, FN }, k ∈ {1, 2, ... , 

FN } and k ≠ i, j {1, 2,… , FN } are randomly chosen 

indexes. But this method cannot be applied to a hybrid 

discrete artificial bee colony. In this paper, we will 

propose hybrid neighborhood strategies for the HDABC 

algorithm to solve the GPDPTW problems. The details of 

the hybrid neighborhood strategies are presented in 

Section 5.5.   

Hybrid neighborhood strategies are used to obtain a 

new solution x̀  from the current solution x of the 

HDABC meta-heuristic. Each method for the generation 

of neighboring food sources may have different 

performance during the evolution process. The set of 

pre-selected operators is determined by experimental 

testing. 

As for the selection, a new food source is always 

accepted if it is better than the current food source. The 

employed bee exploits the better solution. 

5.3 Onlookers bee phase 

After all employed bees complete their search, they come 

back to the hive and share their information about the 

nectar amount of their food sources with the onlookers 

waiting there; so the quality of the solutions are 

evaluated. 

In this paper, a binary tournament is applied to 

choose some foods sources by onlookers. The term 

“binary tournament” refers to the size of two in a 

tournament, which is the simplest form of tournament 

selection [52]. Binary tournament starts by selecting two 

food sources at random. Then, fitness values of these 

food sources are evaluated. The one having more 

satisfactory fitness is then chosen. One advantage of the 

tournament selection is its ability to handle minimization 

problems without any structural changes. So, the 

onlookers play the role as an objective function to 

evaluate generated solutions. Obviously, when the fitness 

of the food source decreases, the probability with the 

preferred source by a looker bee decreases proportionally. 

The onlooker bee produces a new food source by the 

hybrid neighborhood strategies method presented in 

section 5.5, the same as the employed bee does. Then, the 

new source will be evaluated and compared to the 

primary food solution. If the new source has a better 

nectar amount than the primary food solution, the new 

source will be accepted. 

5.4 Scout bee phase 

In the standard ABC algorithm, if a solution does not 

improve for a predetermined number of trails ‘‘limit’’, 

then this food source is abandoned by its employed bee 

and then the employed bee becomes a scout. The scout 

produces a food source randomly in the search scope. But 

this new solution cannot carry better information for the 

population. In Pan et al [53] advise that the scout 

generates a food source by performing several insert 

operators to the best food source in the population. In this 

paper, we will use the Insertion Inter-route operator to 

generate a new solution. 

5.5  Hybrid neighborhood strategies 

In this paper, to enrich the neighborhood structure and 

diversify the population, four neighboring approaches 

based on the Insertion Inter-route, Swap Inert-route, 

Swap Intra-route and Move operator are separately 

0    3+    2+    2-   1+    3-    1-     0    4+    5+   5-    4-    0 
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utilized to generate neighboring food sources for the 

employed bees and onlooker bees. On the whole, we 

expect that the chosen neighborhood strategies can 

perform distinct advantages; therefore, they can be 

effectively combined to solve different instances of green 

pickup and delivery problem with time windows. The 

applications of these neighborhoods are as follows: 

1 : Apply Swap Intra-route to a food source.  

2 : Apply Move to a food source. 

3 : Apply Insertion Inter-route to a food source.  

4 : Apply Swap Inter-route to a food source. 

Each operator for the generation of neighboring food 

sources may have different performances during the 

evolution process. Therefore, we believe hybrid 

neighborhood strategies can perfectly be solvable to the 

green pickup and delivery problem with time windows. 

Based on the above considerations, we proposed a new 

method called Hybrid Discrete Artificial Bee Colony 

(HDABC), the primary idea, is that at each generation, a 

new bee colony is created. The detail of each operator is 

as follows:  

Swap Intra-route 

The role of operator swap intra-route is to improve the 

quality of a route by changing the order in which request 

points are visited.  One route is selected at random. For 

each request from that route, we try to find a better 

location inside the same route. If there is such a place, we 

move a request to that place which satisfies all 

constraints for the problem. The swap intra-route 

operator is shown in Figure 2 (see Appendix). 

Move  

The role of move operator is to find the best position by 

changing the order in which request points (pickup-

delivery) are visited. For each request from that route we 

move a location inside or beside that route. If there is 

such a place, we move a request to that place which 

satisfies all constraints for the problem. The move 

operator is shown in Figure 3 (see Appendix). 

Insertion Inter-route 

The insertion inter-route moves a pickup-delivery pair 

from its current route to another route in the solution. 

They perform the following process for all pickup-

delivery pairs in the current solution. An admissible 

placement is one where both requests (pickup and 

delivery) satisfy all the constraints of the problem. To 

reduce the number of routes, the search process should be 

biased such that it tries to remove the request pairs from 

the shorter routes and insert them into longer routes 

which satisfy all constraints for the problem. The 

insertion inter-route operator is shown in Figure 4 (see 

Appendix). 

Swap Inter-route 

Swapping randomly requested pairs, i.e., a pickup 

followed by a delivery node between two different routes. 

For each pair, we check whether it can be relocated by 

exchanging its pickup and delivery positions with the 

pickup and delivery positions of any other request pair in 

another route which satisfies all constraints for the 

problem. The swap inter-route operator is shown in figure 

5 (see Appendix). 

5.6 Proposed HDABC 

In this paper, we propose a new method called Hybrid 

Discrete Artificial Bee Colony (HDABC), the primary 

idea is to hybridize neighborhood strategies at each 

generation to create a new bee colony. The above idea is 

illustrated in figure 6. 

In the proposed HDABC, there are four strategies to 

update the food sources. We present a food source as a 

route and apply the discrete operations to generate new 

neighborhood food source for three different bees. The 

heuristic in section 5.1 was used to initialize the 

population with certain quality and diversity. Then, the 

new hybrid neighborhood strategies were used to solve 

the green pickup and delivery problem with time 

windows. The procedure of HDABC proposed, is given 

as follows: 

6 Case study 

6.1 Data and parameters setting  

A numerical example is used to illustrate the applications 

of the proposed model and the solution algorithm. The 

data sets for the problem are derived from the instances 

created by Li et Lim [9] which are related to the well 

known Solomon instances. The datasets are available at 

the following link:  

http://www.sintef.no/Projectweb/TOP/PDPTW.  

The graph consists of one depot and 40 nodes. In 

each instance, nodes are located in geographical clusters 

and have a small vehicle capacity and narrow time 

windows. Instances were generated considering only 

the first 40 nodes which are represented by a complete 

graph, and all distances are Euclidean distances 

satisfying the triangle inequality. The pickup and 

delivery requests are paired and therefore, the number 

of nodes in the network, without the vehicle depots, is 

even. Each node has x and y coordinates, a demand qi, 

a time window [ei ,li], a service time si and the 

corresponding pickup (succ) or delivery (pred) node. 

The following table (Table 1) represents an example of 

instance used for the problem. The CO2 emission rate 

(CE) per liter of fuel, the fuel consumption rate for both 

empty-load (ρ
0

) and full-load (ρ∗) situations are set to 

2.61, empty load fuel consumption rate  = 0.296 and full 

load fuel consumption rate  0.390, respectively referring 

to a previous case study by [46]. 

http://www.sintef.no/Projectweb/TOP/PDPTW
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A robust parameter setting is required for the 

proposed HDABC algorithm to efficiently perform on 

different data sets. In order to select best parameter 

setting, tests are performed on three parameters: FN 

(Population of food sources), number of iterations, and 

limit (number of trails). Since an obvious correlation 

between the optimal settings of these parameters is 

observed, each one of them is tested individually for 

deciding on the standard parameter setting. After several 

preliminary experiments, the size of population is fixed to 

100, the number of iterations is fixed as 200 and the limit 

is 20.  

6.2 Analysis and discussion of results 

In this section, we present a numerical example for 

the GPDPTW problem and the corresponding optimum 

solution that is obtained from the proposed HDABC 

algorithm described in Section 5 which is coded in C++ 

Builder 2010 software running on a personal computer 

using Intel Core i5, 2.60 gigahertz, 64-bits processor 

with 4 gigabyte RAM and Windows 8 OS.                   

In order to analyze the performance of HDABC which 

is applying from the first time to the green pickup and 

delivery problem with time windows, we use problem 

instances with 40 nodes.  

 

Figure 6:The flow chart of HDABC algorithm. 

HDABC Algorithm: 

1    Set Popsize = FN     //Colony size = 2*FN 

2    Set Max.iter = Maximum number of iterations 

3          Set Max.trial = Maximum number of 

improvement trials 

4   Ei= ∅; i = ⧼1,..… , 𝑛⧽,  Ei is the set of neighbor 

solution of food source 

5    Generate FN food sources using the method 

presented in section 5.1 for initial population 

6   Evaluate initial population   // Calculate 𝑓(𝑥𝑖)  for 

each food sources 

7    Memorize best food source 𝑥𝑖 ; 

8    Set iteration  = 1 

9    For each food source i do, Set 𝑡𝑟𝑖𝑎𝑙𝑖   = 0 end 

for 

10  do while  iteration  ≤  Max.iter 

11   //*****EMPLOYED BEE PHASE***** 

12  For each food source 𝑥𝑖 do 

13  Apply hybrid neighborhood strategies    

//Produce a new neighbor solution �́�𝑖 

14  Evaluate �́�𝑖    //Calculate  𝑓(�́�𝑖) 

15  If (  f(xi)  >  f(�̀�𝑖) ) then 

16                                replace 𝑥𝑖 with �̀�𝑖  

17  Set 𝑡𝑟𝑖𝑎𝑙𝑖   = 0 

18                               Else 

19                     Set 𝑡𝑟𝑖𝑎𝑙𝑖   = 𝑡𝑟𝑖𝑎𝑙𝑖  + 1 

20   EndIf 

21   End For 

22   //*****ONLOOKER BEE PHASE***** 

23   For each onlooker do 

24   Select a food source using the binary tournament 

selection method 

25   Apply hybrid neighborhood strategies    

//Produce a new neighbor solution �́�𝑖 

26   𝐸𝑖 = 𝐸𝑖  ∪   �̀�𝑖 

27   End For 

28   For each food source 𝑥𝑖 and 𝐸𝑖 ≠ ∅ do 

29   If (  f(xi)  >  f(�̀�𝑖) ) then 

30                                 replace 𝑥𝑖 with �̀�𝑖  

31                                 Set 𝑡𝑟𝑖𝑎𝑙𝑖   = 0 

32                                 Else 

33                     Set 𝑡𝑟𝑖𝑎𝑙𝑖   = 𝑡𝑟𝑖𝑎𝑙𝑖  + 1 

34  End If 

35  End For 

36  //*****SCOUT BEE PHASE***** 

37  Set i = index of max(trial)      //Find the index that 

has the maximum trial value 

38  If (𝑡𝑟𝑖𝑎𝑙𝑖  >=Max.trial ) then 

39                                      replace 𝑥𝑖 with Insertion 

Inter-route operator  

40  End If 

41  Memorize global best solution 

42  end while 
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For proper comparison of the computational results, 

we conduct our experiments upon two cases; case one 

with the objective of the minimum amount of CO2 

emission and case two with the objective of shortest 

distance. We run the GPDPTW 10 times, and we 

compare the average minimum emission of CO2 and the 

average distance obtained for the two cases during the ten 

runs. The results are tabulated in tables 2–4 (see 

Appendix).  

All 40 nodes problem instances are solved to 

optimality. For our approach, we report a column CO2 

gap (%), which is the relative gap between the amount of 

CO2 found in the case of minimum CO2 emission and the 

amount of CO2 found in the case of shortest distance. For 

example, assuming that the amount of emissions of CO2 

for an instance in case 1 is CO2min and the amount of 

emissions of CO2 for the same instance in case 2 is 

CO2max, then gap (%) is calculated as 100 × (CO2min / 

CO2max − 1) and a column distance gap(%), which is the 

relative gap between the total travelled distance found in 

the case of minimum CO2 emission and the total travelled 

distance found in the case of shortest distance. For 

example, assuming that the total travelled distance for an 

instance in case 1 is distmax and the total travelled distance 

for the same instance in case 2 is distmin, then gap(%) is 

calculated as 100 × (distmax / distmin − 1). We can notice 

that comparing the case of minimum CO2 emission and 

the case of the shortest distance, the amount of CO2 could 

be reduced by 3,43% on average and the average on total 

distance traveling is increased by 4,60% , we can deduce 

that the amount of CO2 emission is not guaranteed for the 

vehicles along the shortest path. Thus, the distances 

between customers are shorter and the loading rate and 

the number of vehicles used in the routes are higher. 

Figure 7 shows that lc101, lc104, lc105, lc106 and 

lc109 have significant effects on the amount of CO2 

emissions. The savings percentages are respectively -

5,52%, 3,67%, 9,81%, 3,36% and 4,68%. In these 

instances, the second case, in addition to the total load of 

the vehicle, the number of vehicles used is reduced 

compared to the first case. Thus, the fuel consumption is 

reduced.  

7 Conclusion 
This paper proposes and develops a hybrid discrete 

artificial bee colony approach to solve and discuss the 

green pickup and delivery problem with time windows 

(GPDPTW), the recent development in the vehicle 

routing problem and its variants, which extends the 

classical vehicle routing problem by considering the 

coupling, the precedence, the time windows constraints 

and the CO2 emission by vehicles which make the NP-

hard combinatorial and optimization problem. The major 

contribution of this paper is two-fold. First, the GPDPTW 

model is presented and formulated. Second, a hybrid 

discrete artificial bee colony for solving the HDABC 

model is developed which combines a discrete artificial 

bee colony meta-heuristic with neighborhood operators. 

The objective is to minimize the amount of fuel 

consumption to minimize the CO2 emissions while 

respecting all constraints. Costs are based on fuel 

consumption which depends on many factors, such as 

travel distance, vehicle load and the number of vehicles. 

The solution approach is evaluated in terms of optimality 

to reach the best solution on the various test instances. 

Computational experiments show that the proposed 

method is effective and efficient and can solve the 

problem optimally. 

Research perspectives in the field highlight the 

application of the proposed method to accommodate 

multiple depot and heterogeneous vehicles. The 

GPDPTW is formulated by assuming only one depot and 

homogeneous vehicles. However, in many cases, 

companies may have multiple depots and different kinds 

of vehicle for pickup and delivery operations.  
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Appendix 

 
Figure 2: Swap Intra-route Operator. 

 
Figure 3: Move Operator. 

 
Figure 4: Insertion Inter-route Operator. 

 
Figure 5: Swap Inter-route Operator. 
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Instance 
Case 1-Minimum CO2 

emission 
Case 2-Shortest distance CO2 

gap(%) 

distance 

gap(%) CO2 distance vehicle CO2 Distance Vehicle 

lc101 498,31 686,63 4 527,43 643,49 5 -5,52 6,7 

lc102 513,39 675,17 3 523,60 668,29 3 -1,95 1,03 

lc103 410,91 532,75 2 411,01 523,14 2 -0,02 1,84 

lc104 510,30 690,23 3 529,74 636,21 4 -3,67 8,49 

lc105 487,41 699,78 4 540,43   627,90 5 -9,81 11,45 

lc106 535,09 717,36 4 553,69 694,60 5 -3,36 3,28 

lc107 522,01 690,23 4 529,74 675,09 4 -1,46 2,24 

lc108 436,10 570,26 6 437,74 559,07 6 -0,37 2 

lc109 413,46 563 4 433,77 539,64 5 -4,68 4,33 

Avg 480,78 647,27 - 498,57 618,60 - -3,43 4,6 

Table 2: Comparative analysis between the shortest distance and the minimum CO2 emissions. 

 

Instance Distance vehicle 
CO2 

emissions 
Visited nodes 

lc101 643,49 5 527,34 

0 20 24 32 31 18 19 8 10 15 16 14 12 6 2 0 

0 33 37 30 11 28 9 4 22 1 21 0 

0 3 13 17 35 39 23 0 

0 38 34 0 

0 5 7 25 27 40 29 26 36 0 

lc102 668,29 3 523,60 
0 24 32 33 25 27 40 29 26 1 7 11 30 38 36 37 34 23 21 0 

0 13 18 31 35 8 2 3 10 15 12 5 28 39 9 6 4 0 

0 20 17 19 16 14 22 0 

lc103 532,14 2 411,01 
0 32 33 18 17 19 16 25 40 35 27 30 31 38 37 39 36 34 23 4 2 1 26 29 28 

22 21 20 24 0 

0 15 14 13 3 8 12 10 5 11 7 9 6 0 

lc104 636,21 4 529,74 
0 17 19 40 35 5 15 14 11 31 38 0 

0 37 39 36 34 4 2 36 34 23 4 2 1 0 

0 26 29 28 22 21 20 24 0 

0 15 14 13 3 8 12 10 5 11 7 9 6 0 

lc105 627,90 5 540,43 

0 5 3 19 15 37 39 26 28 22 21 0 

0 7 29 30 9 16 14 23 6 2 1 0 

0 25 27 40 10 11 34 0 

0 20 24 17 13 18 32 33 31 35 38 36 12 0 

0  8 4 0 

lc106 694,60 5 553,69 

0 20 25 27 29 30 38 39 28 9 2 0 

0 3 31 40 8 4 36 34 22 0 

0 24 18 19 15 14 23 0 

0 7 5 13 17 33 32 35 37 10 11 0 

0 16 12 26 6 1 21 0 

lc107 675,09 4 529,74 
0 5 7 3 10 11 9 16 12 28 21 0 

0 40 8 2 23 0 

0 33 36 0 

0 20 24 32 31 25 13 17 18 19 15 27 35 37 29 14 30 39 38 34 6 26 22 4 1 0 

 lc108 559,07 6 437,74 

0 24 31 35 29 38 36 0 

0 20 32 40 15 12 39 34 22 0 

0 13 17 18 19 16 14 26 23 0 

0 25 33 37 30 28 21 0 

0 27 2 0 

0 5 3 7 8 10 11 9 6 4 1 0 

lc109 539,64 5 433,77 

0 32 33 31 37 38 34 0 

0 20 18 15 22 0 

0 29 26 13 12 24 25 40 27 0 

0 8 3 10 2 30 7 11 5 9 28 0 

0 39 37 34 6 4 23 21 1 0 

Table 3: Results concerning shortest distance. 
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Instance Distance vehicle  
CO2 

emissions 
Visited nodes 

lc101 686,63 4 498,31 
0 18 29 26 12 6 2 0 

0 3 13 17 33 37 38 34 23 0 

0 30 28 22 21 5 7 40 35 39 36 0 

0 20 24 32 31 25 27 19 8 10 15 11 16 14 9 4 1 0 

lc102 675,17 3 513,39 
0 31 32 33 17 19 35 38 16 14 36 0 

0 20 18 15 22 0 

0 29 26 13 12 24 25 40 27 8 3 10 2 30 7 11 5 9 28 39 

37 34 6 4 23 21 1 0 

lc103 532,75 2 410,91 
0 32 33 17 18 16 19 25 40 35 27 30 31 38 37 39 36 

34 23 4 2 22 21 1 26 29 28 20 24 0 

0 15 14 13 3 8 12 10 5 11 7 9 6 0 

lc104 690,23 3 510,30 
0 17 32 31 18 13 19 35 37 27 29 15 14 16 12 6 4 26 

22 0 

0 5 3 7 20 30 11 10 9 28 38 34 21 0 

0 8 40 23 2 24 25 33 36 39 1 0 

lc105 699,78 4 487,41 

0 20 24 17 25 31 35 27 19 29 30 15 16 14 12 23 6 2 1 

0 

0 40 28 22 34 0 

0 32 33 38 36 0 

0 5 3 13 18 8 7 10 11 37 39 9 4 26 21 0 

lc106 717,36 4 535,09 
0 33 37 26 21 18 19 15 14 6 1 0 

0 20 25 7 11 9 16 12 2 0 

0 24 32 35 23 8 4 5 10 0 

0 3 13  17 31 40 27 29 30 38 39 28 36 34 22 0 

lc107 690,23 4 522,01 

0 17 32 31 18 13 19 35 37 27 29 15 14 16 12 6 4 26 

22 0 

0 5 3 7 20 30 11 10 9 28 38 34 21 0 

0 8 40 23 2 0 

0 24 25 33 36 39 1 0 

lc108 570,26 6 436,10 

0 33 31 35 37 11 9 6 4 0 

0 27 40 39 38 36 2 0 

0 3 24 29 10 28 21 0 

0 25 7 8 30 0 

0 5 32 15 12 34 1 0 

0 20 13 17 18 19 16 14 26 23 22 0 

lc109 563 4 413,46 
0 20 24 8 10 29 26 9 2 23 21 7  19 12 4 0 

0 25 5 3 30 27 11 6 1 32 37 0 

0 33 31 40 35 39 36 38 34 0 

0 13 17 18 16 15 14 28 22 0 

Table 4: Results with minimum of CO2 emissions. 
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