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Optimal Compression of Traffic Flow Data

lgor Grabet

Abstract

Experimental characterization of complex physicaai$ by probability
density function of measured data is treated. Rtg purpose we introduce
a statistical Gaussian mixture model comprised egfresentative data and
probabilities related to them. To develop an algon for adaptation of
representative data to measured ones we introcueenbdel cost function
by the sum of discrepancy and redundancy. All stats are expressed by
the information entropy. An iterative method is posed for searching the
minimum of the cost function that yields an optimalodel. Since
representative data are generally less numerous theasured ones, the
proposed method is applicable for compression oferafelming
experimental data measured by automatic data-aitipuissystems. Such a
compression is demonstrated on the characterizatianaffic flow rate on
the Slovenian roads network. The flow rate duringaaticular day at an
observation point is described by a vector commgrisE24 components. The
set of 365 vectors measured in one year is optymnadimpressed to just 4
representative vectors and related probabilitidseske vectors represent the
flow rate in normal working days and weekends otidays, while the
related probabilities correspond to the relativegirencies of these days.
However, the number of representative data depemdshe accuracy of
PDF estimation.

Keywords: data compression, Gaussian mixture modest function,
traffic flow.

PACS: 06.20.DK - Measurement and error theory, 028 - Probability
theory, stochastic processes, and statistics, 89c70Information science.

1 Introduction

Road traffic is a very complex stochastic phenomenshose basic properties
have to be specified by measurements (Helbing, 18@rner, 2004). Due to its
complexity measured data are overwhelming and thgeeerally appears a
qguestion how to process or archive them efficientderely by intuition, one
should suggest to use for this purpose a set ofessmtative data that cargy
proper amount of informatianHowever, the problem is to specify this amount
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so that it could be estimated automatically in aforimation processing system.
We expect that the corresponding specification woplovide a basis for a
development of a computer code by which represerggirototype data could be
created from measured ones. The basic requestais giototype data should
represent approximately the same information abdwe phenomenon as the
measured ones but should be less numerous.

It is known that evolution of human intelligence rslated to formation of
notions that are utilized in thought processes. ifbeons are primarily formed by
a self-organized interaction of neurons in the brbhased on excitation by very
complex signals generated by a network of sensors ianfact represent our
perceptions in a kind of compressed thought remtasen of the world. We
therefore expect that methods developed in thel fadl artificial intelligence in
relation to self-organized memory formation couldadeus to an efficient
compression of overwhelming traffic data to accepgarepresentative ones
(Grabec et al., 1997; Grabec, 1990; Kohonen, 19B#6j.this purpose we utilize
methods of experimental statistical modelling oyyglkal laws developed recently
(Grabec et al., 1997; Grabec, 2001, 2005). In tket rchapter we explain the
fundamentals of this modelling, which leads us tee tformulation of the
generalized Gaussian mixture model and its costtian. The adaptation of the
model to measured data that follows from the mizemion of the cost function
finally leads us to a proper specification of anioatl set of representative data.
For this purpose a new method is developed hereagptled to the formulation of
an optimal model of traffic flow in terms of repedative data. Its performance is
demonstrated on traffic data recorded on the roedwork in Slovenia.

2 Fundamentals

Let us consider a phenomenon characterizedNhyeasurements of a variabte
using an instrument with spafg, = (-L,L . Properties of the instrument are
specified by calibration on a unit The PDF of the instrument's output scattering
during calibration is described by the scatteringuclion g(x,m). When the
scattering is caused by mutually independent distwres in the instrument, the

scattering function can be assumed to be Gaus$aabec et al., 1997; Lesurf,
2002):

a1 -(x-X)*
9X) =~ exh — } (2.1)
We apply this function in our further treatment. eflmean valuex and
standard deviatiow can be estimated statistically by calibration perfed on the
measurement instrument using the uunit In addition to this we introduce a
uniform reference PDF:p(x)=1/(2L) indicating that all outcomes of the

experiment are hypothetically equally probable befexecuting an experiment.



Optimal Compression of Traffic Flow Data 27

Let x denote the most probable instrument output in ittle experiment.
Using g(x, %) we describe the properties of the explored phemumeluring the-

th experiment. Similarly, the properties in a seri@gf N repeated experiments,
which yield the basic data sék ;n=1,...,N), are described by the experimental

PDF over the kernel estimator:

0= 3 gxx) 22)

Properties of this estimator have been widely exeuielsewhere (Parzen,
1962; Fukunaga,1972; Duda et al.,, 1973; Révésh,l;1@abec et al. ,1997;
Grabec, 2001, 2005) and could be summarized aswsll With an increasing
number of experimental datd, the experimentally estimated PDF approaches the
hypothetical one and consequently the kernel estim&q.(2.2) resembles a
consistent estimator. Although it is biased, thasbcan be diminished if the
accuracy of experimental observation is improved d®creasing the standard
deviation 0. Hence, the kernel estimator appears to represeutid basis for an
acceptable experimental estimation of PDF. Howewerdeficiency is that the
formulation of the kernel estimator does not indua specification of a proper
number of experimental data, and consequently, wyetd improve it by the
definition of a generalized Gaussian mixture mo@dalkunaga, 1972; Duda et al.,
1973; Révésh, 1991http://en.wikipedia.org/wiki/Mixture ModelGrabec et al.,
1997).

3 Gaussian mixture model and representative data

During the experimental acquisition of data it sually observed that initial data
points are on average well separated. In this thsescattering functions in the
sum of Eq.(2.2) are not overlapping and it seenasogaable to keep them in the
PDF estimator. However, with a very large numberdataN, a new datum on

average falls into close vicinity of some previguakcquired one which results in
the overlapping of scattering functions, and coneedqly, it seems redundant to
include a new term into the estimator. A particuliata sample contributes to the
empirically estimated PDF at the sample point amamh that is proportional to its
probability weightp=1/N. This further means that overlapping results ineaer

finer adaptation of the experimentally estimatedFPi» the hypothetical one.
However, a similar effect can be achieved by jusing the probability weighd
of already existing data instead of increasingribenber of terms in the estimator.
This reasoning leads us to a slight generalizatibthe PDF estimator by changing
Eq.(2.2) to the Gaussian mixture model equation:
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0= b, dx.,) (3.)

Here the couplep,,,q,, denotes the probability,, and the centre,, of them-

th representative datumM such couples represent the parameters of the PDF
model. To simplify our expressions we further use the model basis functions
the notationg(x,q,) =9,,(X )

With the introduction of the model, there immedlgtappears a question how
could we judiciously determine a proper set ofptgameters. At the first glance
the problem could be classified as the adaptatioa parametric model to some
hypothetical probability density functian But this is in fact much more involved
since we do not know in advance neither the nunief representative data nor
the values(p,,,qd,;m=1...,M ) In addition, we also do not know the hypothetical
distribution f but just its empirical estimator given by Eq.(2.830 a proper
strategy for the solution of this problem has firstbe found. For this purpose we
introduce the model cost function.

In order to formulate the cost function we tempdyamassume that the
hypothetical probability density functionf(x), which characterizes the
phenomenon, is given, while later on we shall dibgcit experimentally by the
kernel estimator given by Eq.(2.2). Our goal isattapt the model PDH,, (x) to
the hypotheticalf (x). For this purpose we first describe their discrepa(e the
estimation error) by the Kullback-Leibner divergen&rabec et al. 1997; Cover et
al.,1991; Kolmogorov, 1956; MacKay, 2003):

D= L[fM (¥) - f(x)]log ffM(S;) dx (3.2)

Our goal is to diminish the discrepancy by adaptatof representative data.
However, we want to employ in the model just a gropumber of these data.
With this aim we proceed with the definition of meddnformation and redundancy
similarly as in previous articles (Grabec, 20010202009a,b). For this purpose
we describe the indeterminacy by the negative valude relative entropy:

_ fu(X)
H,, _—LX f,,(X) Iog{ p(x)} dx (3.3)

We next define the entropy of model basis functiossng means over model
probabilitiesp,,

H, =- y log 3> 4 3.4
£, 22 Pnon(log=2"" o (3.4)
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Using the difference of these two statistics wermethemodel information

Iy =H, —H, (3.5
Its maximal possible value isl, . =logM, and therefore the model
redundancy is defined as:
Ry, =logM -1, 63.

The model cost function is then introduced by thensof discrepancy and
redundancy:

C, =D, +R, 3.

In the case when the model closely fits the hypothé PDF the model
divergence D,, can be approximately expressed &%, =-I, +const. This
expression then yieldC,, = -I,, + R, +const The statisticC =—-1,, +R, can be

interpreted as thenformation cost functior{Grabec, 2001, 2005), and therefore
the model cost function is in this case approxinyatdetermined by the
information cost function:C,, =C +const.. When proceeding to the strategy for

model adaptation we may therefore take into accotlngt properties of the
information cost function explained in details eldere (Grabec, 2001, 2005).

4 Adaptation of mixture model parameters to
experimental data

If we want to adapt the model Eq.(3.1) to an adritrhypothetical PDFf (x) we
must specify the numbévl and values of paramete(g,,,q,,;m=1....M that yield

the minimum of the model cost function. We cannetfprm this by a standard
variation method sinc# is an integer number (Grabec et al, 1997). Evewdf
know this number, equations derived by variationcoét function are non-linear
and cannot be solved easily. Consequently we daownsider the general problem
anymore, but rather, turn to the problem of modeamation to an increasing
number of experimental data values. Various appnaté methods of growing and
pruning have been proposed for this purpose in ftalel of neural networks
(Haykin, 1999; Leonardis et al., 1998). The growmegthods are mainly utilized
when the model is adapted to an increasing numbexperimental samples, while
pruning is used when a large number of experimesdaiples is compressed to a
smaller number of representative data. Since we rtd want to store
overwhelming traffic data we next consider just tba@se with the increasing
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number of experimental samples. In the literatuagious criteria have already
been proposed for this purpose, but at presenetlsestill no generally accepted
method (Haykin, 1999; Leonardis et al., 1998). Gapeently, we here propose a
new method that is based upon minimization of theelet cost function stemming
from experimental information.

At the adaptation of the model to an increasing hemof data we first
substitute the hypothetical probability density ¢tion f(x) by its experimental
kernel estimatorf, (x )specified by Eq.(2.2) and then try to addpt(x to)f,(x).

In order to proceed to a proper strategy for thieitsen of the adaptation problem
let us consider the case whdp (x is)well adapted tof(x :) f,,(X)= f,(x) and
examine what happens when the number of experirheiata values is increased
from N to N +1. In this case the PDF estimatdg(x i changed tof,,,(x .)The
corresponding difference is:

D00 = fu00 = 109 = 600 = 1 () (4.1)

The first term represents a localized contributminthe N +1%data sample,
while the second one represents the decrease afotin@lete estimator in order to
preserve the normalization of PDF. Singg(x) = f,(x wg can most simply adapt
the model to the last term of EQ.(4.1) by multiplyi all probabilities
p,,m=1...M by the factor1-1/(N +1) = N/(N +1). Less direct is adaptation to
the first term on the right side of Eq.(4.10). Rbrs purpose let us consider two
characteristic possibilities:

I.  The model already contains a prototgpethat takes place in a close

vicinity of the N +1*data samplex,,, so that|qC — Xys| << 0. In this case

we can achieve a proper adaptation by joining #ne samplex,,, and the

closest prototypeq.. At this step the representative probability is

increased: p, - p,+1/(N+ 1)and its centre is moved to the centre of

Qe P + Xy /(N +1)

p. +1/(N +1)

calculation of centre of gravity we use the prolipiappertaining to the
prototype and the sample value.

II. All prototypes take place far away from th&l +1"data sample:
|qm _XN+1| >> g for all m. In this case we can achieve a proper adaptatyon b

gravity of joined terms:q, - As the weight for

creating a new representative by the sample valgg;, =x,, and
probability p,,,, =1/(N + 1).
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We have found by numerical investigations (Grab2@)9 a,b) that in both
cases the model cost function is minimally chandédhe model is well adapted
to N data, then its cost function is approximately miaimSince the addition of
the new sample changes it for approximately minipa$sible amount, the cost
function of the model adapted td +1 samples by the corresponding step | or Il is
again approximately minimal one and we can expdtit tthe estimation
i (X) = f,.(X) is still valid.

It is instructive to examine what in fact happeriswie follow the above
described procedure of adaptation. In the firstecdkee number of prototyped
and logM are preserved, the model information is minimallijasged and

consequently also the redundancy as well as the ftoxtion are minimally
changed. In the second case, the number of repaasen dataM and logM are

increased, but the corresponding change of modsk donction is properly
counterbalanced by the increased experimental mmdbion so that the cost
function minimum is again approximately preserved.

The adaptation steps described in | and Il canibgly transformed into a
computer code. A transition from the first to thecend possibility occurs when
the distance between a new sample and the clospsésentative surpasses the
width o of the model basis function. The resulting proaedwstarts with
equalizing the first data sample with the first {otgpe: x, =g, and yields an

approximately optimal model. If there is given arveowvhelming set of
experimental data samples, the corresponding Gamssiattering functions in the
experimental estimator of PDF Eq.(2.2) exhibit eegmive overlapping which
corresponds to a high information cost. In suchasecwe can expect that the
corresponding optimal model would be comprisedsseatially less representative
data whose basis functions would be just slightrertapping, while the resulting
PDF estimator would approximately correspond to thypothetical PDF. The
proposed method thus represents an efficient cosspye of data without essential
loss of information, and is therefore proposed fioe treatment of traffic data
before their preservation in memory units.

At the application of the proposed method thereeapp a problem when the
width o of the scattering function is not known. In thiase the value ol
should be specified by the user and with respedh&wanted accuracy of PDF
modelling. Quite generally one can suggest to ndéimeathe variablex with

respect to its variance. This vyields a relative iaale: x =x/,/var(x).
Specification ofo, that corresponds to this variable then determimes detailed
is the modelling of the PDF. Such a treatment aé&wlers possible comparison of
various models. A problem also appears when the@menon is characterized by
a vector variablg =(x,x,,....X; ) In this case one can suggest to normaiite
component separately with respect to its variancg:=x/,var(x). If the

components represent similar properties of the phmmon, then some common
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averageo can be applied as a relative measure for the gdsuor of the level
separating the steps | and Il of the method. In suivssequent example of traffic
flow modelling we apply this method.

In relation to the formulation of the mixture modgVen in Eq.(3.1) one could
expect that there is possible still further genieetlon by adapting also the width
of basis functionso - o,,. Although such a generalization could yield stilbre

compressed presentation of the PDF (Kohonen,198®),interpretation of the
model basis functions in terms of scattering fumies is lost, and consequently a
representative datum cannot be interpreted as iadlypesult of a measurement.
For an application in the framework of traffic dataalysis this is not convenient,
and consequently, we do not proceed here withrteig step of generalization.

TRAFFIC FLOWY RATE - ORIGINAL
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Figure 1: An example of traffic flow record from a Sloveniamad in the year 2007.

5 Example of the optimal traffic flow model

In order to demonstrate the applicability of thepssed optimal modelling we
consider observation of traffic flow rate at a eemtpoint of road. As an example
we utilize here data obtained in the year 2007 frantounter 822 at some
representative point on a high-way in Slovenia guiblished by the Slovenian
Roads Agency on a CD as the file: PROMET_ASP_QLI®7 STM822.xls.

For the sake of simplicity we consider just a senghtegory of cars and describe
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the measured traffic flow rate by the variable QisTvariable depends on time of
observation t so that a measurement yields a reebabrresponding time series:

{Q(t);t:O'At’ZAt""'T}. Here At denotes the length of time interval between
successive measurements. In our treatment we nbrraaé one hour intervals:

At =1hwhich we also adopt here. An example of the repanning over the year
2007 is shown in Figure 1. Without loss of gendyalor the description of traffic
phenomenon, we further decompose the recorded sienes into a set of traffic
flow day-vectors that are comprised of data recdrdever a day d

Q(d) = (Qu(d),-,Qu(d)) | The day-vectors extracted from the record in Fegl are
shown by green lines in Figure 2 together with tiean day-vector denoted by (-
*-). As the index of traffic day-vector componenéwse the hour of its recording.
In order to proceed to the modelling we must spesidme criterion for the
separation of the steps | and Il of the adaptagoocess. For this purpose we
calculated variance of each day-vector componemgustatistical average over all
days of the year. Using the corresponding varianees introduced for each
component the relative distance between a givenveayor and a representative

one as:d =(Q —q)/4var@) . Using it we introduced a measure of discrepancy
between the day-vector and the representative gnénd mean square relative

24
distance over a daycS:de /24. As a separation level between the steps | and Il
i=1

we then used the valué = . Zhis value has been selected based upon numerical
testing of modelling performance in which we haveeb looking for a
characteristic level that provides for a formatioh prototypes corresponding to
characteristic days of the week.

Using the day-vectors and the level of separatiyr= we formed the

representative vectors as described by steps | HBndThe corresponding

representative vectors are shown by black lineBigure 2 as well as separately in
Figure 3. In order to demonstrate applicability fpresentative vectors we
calculated from the model PDF the mean day vedtsmecord is shown in Figure
3 by the line (-0-) and coincides well with the oed of the mean vector calculated
directly from the complete set of day-vectors (-*This coincidence confirms a
correct representation of traffic variable PDF bg model.
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TRAFFIC DAY-VECTOR
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Figure 2: Traffic day-vectors formed from traffic flow reod presented in Figure 1
(green) representative vectors (black) and the nveator (-*-).
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Figure 3: Representative traffic day-vectors formed fronfftcaflow record presented in
Figure 1 (black). The coincidence of the mean vedetermined from all day-vectors (-
*.) and the mean vector determined from represérgatectors (-0-) indicates a proper

presentation of the complete phenomenon by the imode
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The probabilities corresponding to representatredfic day-vectors are shown
in Figure 4 in dependence of representative ventdex k. It is interesting that
365 day-vectors from the complete year are in taise properly represented by 4
prototype day-vectors that closely correspond twoemal day with the higheg,
and 3 days around weekends or holidays with apprately 6 times smallg.
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Figure 4: The distribution of probabilities correspondingrapresentative traffic day-
vectors formed from traffic flow record presentadFigure 1.
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Figure 5: Presentation of traffic day-vectors in dependeoftendext and probabilityp.
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6 Conclusions

We have shown how the PDF of a stochastic varialae be estimated non-
parametrically from the experimental data by takingp account the scattering
function of the instrument. In order to avoid défiecies of the kernel estimator
we have generalized it to the Gaussian mixture rhadéd introduced the model
information, redundancy, and cost function. The tressential terms of the model
cost function are the estimation error and the neidncy.

During the minimization of the model cost functidhe estimation error
provides for a proper adaptation of the model tpexkmental data, while the
redundancy prevents excessive effort of experinteortaThe search for the model
cost function minimum also yields an estimate ofpeoper number of the
acquisition system data storage cells. This numisr be surprisingly low in
comparison to all acquired data samples since ¢denmdancy and the estimation
error are evenhandedly treated in the cost funcfidre Gaussian mixture model is
an effective PDF estimator that is applicable itoawatic measurement systems. It
could be of especial importance for compressiorowerhelming traffic data at
their storage in memory media.

The proposed adaptation represents an innovatiypeoaph to processing of
complex data that could be applied also in modglini artificial neural networks
(Grabec et al., 1997; Haykin, 1999; Leonardis et 41998). Adaptation of
prototypes by the steps | and Il is an essentiatig-linear process that resembles
self-organized formation of notions in thought pgeses of intelligent beings and
can therefore substitute an intelligent operatahatarchiving of traffic data.
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