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Optimal Compression of Traffic Flow Data 

Igor Grabec1 

Abstract 

Experimental characterization of complex physical laws by probability 
density function of measured data is treated. For this purpose we introduce 
a statistical Gaussian mixture model comprised of representative data and 
probabilities related to them. To develop an algorithm for adaptation of 
representative data to measured ones we introduce the model cost function 
by the sum of discrepancy and redundancy. All statistics are expressed by 
the information entropy. An iterative method is proposed for searching the 
minimum of the cost function that yields an optimal model. Since 
representative data are generally less numerous than measured ones, the 
proposed method is applicable for compression of overwhelming 
experimental data measured by automatic data-acquisition systems. Such a 
compression is demonstrated on the characterization of traffic flow rate on 
the Slovenian roads network. The flow rate during a particular day at an 
observation point is described by a vector comprised of 24 components. The 
set of 365 vectors measured in one year is optimally compressed to just 4 
representative vectors and related probabilities. These vectors represent the 
flow rate in normal working days and weekends or holidays, while the 
related probabilities correspond to the relative frequencies of these days. 
However, the number of representative data depends on the accuracy of 
PDF estimation.  

Keywords: data compression, Gaussian mixture model, cost function, 
traffic flow. 

PACS: 06.20.DK - Measurement and error theory, 02.50.+s - Probability 
theory, stochastic processes, and statistics, 89.70.+c - Information science. 

1 Introduction 

Road traffic is a very complex stochastic phenomenon, whose basic properties 
have to be specified by measurements (Helbing, 1997; Kerner, 2004). Due to its 
complexity measured data are overwhelming and there generally appears a 
question how to process or archive them efficiently. Merely by intuition, one 
should suggest to use for this purpose a set of representative data that carry a 
proper amount of information. However, the problem is to specify this amount 
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so that it could be estimated automatically in an information processing system. 
We expect that the corresponding specification would provide a basis for a 
development of a computer code by which representative prototype data could be 
created from measured ones. The basic request is that prototype data should 
represent approximately the same information about the phenomenon as the 
measured ones but should be less numerous. 

It is known that evolution of human intelligence is related to formation of 
notions that are utilized in thought processes. The notions are primarily formed by 
a self-organized interaction of neurons in the brain based on excitation by very 
complex signals generated by a network of sensors and in fact represent our 
perceptions in a kind of compressed thought representation of the world. We 
therefore expect that methods developed in the field of artificial intelligence in 
relation to self-organized memory formation could lead us to an efficient 
compression of overwhelming traffic data to acceptable representative ones 
(Grabec et al., 1997; Grabec, 1990; Kohonen, 1989). For this purpose we utilize 
methods of experimental statistical modelling of physical laws developed recently 
(Grabec et al., 1997; Grabec, 2001, 2005). In the next chapter we explain the 
fundamentals of this modelling, which leads us to the formulation of the 
generalized Gaussian mixture model and its cost function. The adaptation of the 
model to measured data that follows from the minimization of the cost function 
finally leads us to a proper specification of an optimal set of representative data. 
For this purpose a new method is developed here and applied to the formulation of 
an optimal model of traffic flow in terms of representative data. Its performance is 
demonstrated on traffic data recorded on the roads network in Slovenia.  

2 Fundamentals  

Let us consider a phenomenon characterized by N measurements of a variable x 
using an instrument with span ),( LLSx −= . Properties of the instrument are 

specified by calibration on a unit u. The PDF of the instrument's output scattering 
during calibration is described by the scattering function m)xg ,( . When the 

scattering is caused by mutually independent disturbances in the instrument, the 
scattering function can be assumed to be Gaussian (Grabec et al., 1997; Lesurf, 
2002):  
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We apply this function in our further treatment. The mean value x  and 
standard deviation σ  can be estimated statistically by calibration performed on the 
measurement instrument using the unit u. In addition to this we introduce a 
uniform reference PDF: L)/(ρ(x) 21=  indicating that all outcomes of the 

experiment are hypothetically equally probable before executing an experiment. 
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Let ix  denote the most probable instrument output in the i-th experiment. 

Using )xxg i,(  we describe the properties of the explored phenomenon during the i-

th experiment. Similarly, the properties in a series of N repeated experiments, 
which yield the basic data set ( ),...,Nn;xn 1= , are described by the experimental 

PDF over the kernel estimator: 
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Properties of this estimator have been widely examined elsewhere (Parzen, 
1962; Fukunaga,1972; Duda et al., 1973; Révésh, 1991; Grabec et al. ,1997; 
Grabec, 2001, 2005) and could be summarized as follows. With an increasing 
number of experimental data N, the experimentally estimated PDF approaches the 
hypothetical one and consequently the kernel estimator Eq.(2.2) resembles a 
consistent estimator. Although it is biased, the bias can be diminished if the 
accuracy of experimental observation is improved by decreasing the standard 
deviation σ . Hence, the kernel estimator appears to represent a solid basis for an 
acceptable experimental estimation of PDF. However, a deficiency is that the 
formulation of the kernel estimator does not include a specification of a proper 
number of experimental data, and consequently, we try to improve it by the 
definition of a generalized Gaussian mixture model (Fukunaga, 1972; Duda et al., 
1973; Révésh, 1991; http://en.wikipedia.org/wiki/Mixture_Model; Grabec et al., 
1997). 

3 Gaussian mixture model and representative data 

During the experimental acquisition of data it is usually observed that initial data 
points are on average well separated. In this case the scattering functions in the 
sum of Eq.(2.2) are not overlapping and it seems reasonable to keep them in the 
PDF estimator. However, with a very large number of data N, a new datum on 
average falls into close vicinity of some previously acquired one which results in 
the overlapping of scattering functions, and consequently, it seems redundant to 
include a new term into the estimator. A particular data sample contributes to the 
empirically estimated PDF at the sample point an amount that is proportional to its 
probability weight Np /1= . This further means that overlapping results in an ever 

finer adaptation of the experimentally estimated PDF to the hypothetical one. 
However, a similar effect can be achieved by just adapting the probability weight p 
of already existing data instead of increasing the number of terms in the estimator. 
This reasoning leads us to a slight generalization of the PDF estimator by changing 
Eq.(2.2) to the Gaussian mixture model equation:  

 



28 Igor Grabec  

) (x,qgp(x)f m

M

m
mM ∑

=

=
1

                                             (3.1) 

Here the couple mm qp ,  denotes the probability mp  and the centre mq  of the m-

th representative datum. M such couples represent the parameters of the PDF 
model. To simplify our expressions we further use for the model basis functions 
the notation )(xg)g(x,q mm = .  

With the introduction of the model, there immediately appears a question how 
could we judiciously determine a proper set of its parameters. At the first glance 
the problem could be classified as the adaptation of a parametric model to some 
hypothetical probability density function f. But this is in fact much more involved 
since we do not know in advance neither the number M of representative data nor 
the values ),...,1;,( Mmqp mm = . In addition, we also do not know the hypothetical 

distribution f but just its empirical estimator given by Eq.(2.2). So a proper 
strategy for the solution of this problem has first to be found. For this purpose we 
introduce the model cost function.  

In order to formulate the cost function we temporarily assume that the 
hypothetical probability density function )(xf , which characterizes the 

phenomenon, is given, while later on we shall describe it experimentally by the 
kernel estimator given by Eq.(2.2). Our goal is to adapt the model PDF )(xfM  to 

the hypothetical )(xf . For this purpose we first describe their discrepancy (ie the 

estimation error) by the Kullback-Leibner divergence (Grabec et al. 1997; Cover et 
al.,1991; Kolmogorov, 1956; MacKay, 2003): 
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Our goal is to diminish the discrepancy by adaptation of representative data. 

However, we want to employ in the model just a proper number of these data. 
With this aim we proceed with the definition of model information and redundancy 
similarly as in previous articles (Grabec, 2001, 2005, 2009a,b). For this purpose 
we describe the indeterminacy by the negative value of the relative entropy: 
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We next define the entropy of model basis functions using means over model 

probabilities mp : 
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Using the difference of these two statistics we define the model information: 
 

bMM HHI −=                                                (3.5) 

 
Its maximal possible value is MI M logmax, = , and therefore the model 

redundancy is defined as: 
  

MM IMR −= log                                              (3.6) 
 

The model cost function is then introduced by the sum of discrepancy and 
redundancy: 
 

MMM RDC +=                                                 (3.7) 
 

In the case when the model closely fits the hypothetical PDF the model 
divergence MD  can be approximately expressed as .constID MM +−≈ . This 

expression then yields: .constRIC MMM ++−≈  The statistic C = MM RI +−  can be 

interpreted as the information cost function (Grabec, 2001, 2005),  and therefore 
the model cost function is in this case approximately determined by the 
information cost function: .constCCM +≈ . When proceeding to the strategy for 

model adaptation we may therefore take into account the properties of the 
information cost function explained in details elsewhere (Grabec, 2001, 2005). 

4 Adaptation of mixture model parameters to 
experimental data 

If we want to adapt the model Eq.(3.1) to an arbitrary hypothetical PDF )(xf  we 

must specify the number M and values of parameters ),...,1;,( Mmqp mm =  that yield 

the minimum of the model cost function. We cannot perform this by a standard 
variation method since M is an integer number (Grabec et al, 1997). Even if we 
know this number, equations derived by variation of cost function are non-linear 
and cannot be solved easily. Consequently we do not consider the general problem 
anymore, but rather, turn to the problem of model adaptation to an increasing 
number of experimental data values. Various approximate methods of growing and 
pruning have been proposed for this purpose in the field of neural networks 
(Haykin, 1999; Leonardis et al., 1998). The growing methods are mainly utilized 
when the model is adapted to an increasing number of experimental samples, while 
pruning is used when a large number of experimental samples is compressed to a 
smaller number of representative data. Since we do not want to store 
overwhelming traffic data we next consider just the case with the increasing 
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number of experimental samples. In the literature various criteria have already 
been proposed for this purpose, but at present there is still no generally accepted 
method (Haykin, 1999; Leonardis et al., 1998). Consequently, we here propose a 
new method that is based upon minimization of the model cost function stemming 
from experimental information. 

At the adaptation of the model to an increasing number of data we first 
substitute the hypothetical probability density function )(xf  by its experimental 

kernel estimator )(xfN  specified by Eq.(2.2) and then try to adapt )(xfM  to )(xfN . 

In order to proceed to a proper strategy for the solution of the adaptation problem 
let us consider the case when )(xfM  is well adapted to )(xfN : )()( xfxf NM ≈  and 

examine what happens when the number of experimental data values is increased 
from N  to 1+N . In this case the PDF estimator )(xfN  is changed to )(1 xfN + . The 

corresponding difference is:  
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The first term represents a localized contribution of the stN 1+ data sample, 

while the second one represents the decrease of the complete estimator in order to 
preserve the normalization of PDF. Since )()( xfxf NM ≈  we can most simply adapt 

the model to the last term of Eq.(4.1) by multiplying all probabilities 
Mmpm ,...,1; =  by the factor )1/()1/(11 +=+− NNN . Less direct is adaptation to 

the first term on the right side of Eq.(4.10). For this purpose let us consider two 
characteristic possibilities: 

I. The model already contains a prototypecq  that takes place in a close 

vicinity of the stN 1+ data sample 1+Nx  so that σ<<− +1Nc xq . In this case 

we can achieve a proper adaptation by joining the new sample 1+Nx  and the 

closest prototype cq . At this step the representative probability is 

increased: )1/(1 ++→ Npp cc  and its centre is moved to the centre of 

gravity of joined terms: 
)1/(1

)1/(1
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++→ +
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Nxpq
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c

Ncc
c . As the weight for 

calculation of centre of gravity we use the probability appertaining to the 
prototype and the sample value. 

II. All prototypes take place far away from the stN 1+ data sample: 

σ>>− +1Nm xq  for all m. In this case we can achieve a proper adaptation by 

creating a new representative by the sample value: 11 ++ = NM xq  and 

probability )1/(11 +=+ NpM .  
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We have found by numerical investigations (Grabec, 2009 a,b) that in both 
cases the model cost function is minimally changed. If the model is well adapted 
to N data, then its cost function is approximately minimal. Since the addition of 
the new sample changes it for approximately minimal possible amount, the cost 
function of the model adapted to 1+N  samples by the corresponding step I or II is 
again approximately minimal one and we can expect that the estimation 

)()( 1 xfxf NM +≈  is still valid. 

It is instructive to examine what in fact happens if we follow the above 
described procedure of adaptation. In the first case the number of prototypes M 
and Mlog are preserved, the model information is minimally changed and 

consequently also the redundancy as well as the cost function are minimally 
changed. In the second case, the number of representative data M and Mlog are 

increased, but the corresponding change of model cost function is properly 
counterbalanced by the increased experimental information so that the cost 
function minimum is again approximately preserved.  

The adaptation steps described in I and II can be simply transformed into a 
computer code. A transition from the first to the second possibility occurs when 
the distance between a new sample and the closest representative surpasses the 
width σ  of the model basis function. The resulting procedure starts with 
equalizing the first data sample with the first prototype: 11 qx =  and yields an 

approximately optimal model. If there is given an overwhelming set of 
experimental data samples, the corresponding Gaussian scattering functions in the 
experimental estimator of PDF Eq.(2.2) exhibit expressive overlapping which 
corresponds to a high information cost. In such a case we can expect that the 
corresponding optimal model would be comprised of essentially less representative 
data whose basis functions would be just slightly overlapping, while the resulting 
PDF estimator would approximately correspond to the hypothetical PDF. The 
proposed method thus represents an efficient compression of data without essential 
loss of information, and is therefore proposed for the treatment of traffic data 
before their preservation in memory units. 

At the application of the proposed method there appears a problem when the 
width σ  of the scattering function is not known. In this case the value of σ  
should be specified by the user and with respect to the wanted accuracy of PDF 
modelling. Quite generally one can suggest to normalize the variable x with 

respect to its variance. This yields a relative variable: )var(/ xxxr = . 

Specification of rσ  that corresponds to this variable then determines how detailed 

is the modelling of the PDF. Such a treatment also renders possible comparison of 
various models. A problem also appears when the phenomenon is characterized by 
a vector variable ),...,,( 21 dxxx=x .  In this case one can suggest to normalize i-th 

component separately with respect to its variance: )var(/, iiir xxx = . If the 

components represent similar properties of the phenomenon, then some common 
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average σ  can be applied as a relative measure for the description of the level 
separating the steps I and II of the method. In our subsequent example of traffic 
flow modelling we apply this method. 

In relation to the formulation of the mixture model given in Eq.(3.1) one could 
expect that there is possible still further generalization by adapting also the width 
of basis functions mσσ → . Although such a generalization could yield still more 

compressed presentation of the PDF (Kohonen,1989), the interpretation of the 
model basis functions in terms of scattering functions is lost, and consequently a 
representative datum cannot be interpreted as a typical result of a measurement. 
For an application in the framework of traffic data analysis this is not convenient, 
and consequently, we do not proceed here with this next step of generalization.  

 

 

Figure 1: An example of traffic flow record from a Slovenian road in the year 2007.  

5 Example of the optimal traffic flow model 

In order to demonstrate the applicability of the proposed optimal modelling we 
consider observation of traffic flow rate at a certain point of road. As an example 
we utilize here data obtained in the year 2007 from a counter 822 at some 
representative point on a high-way in Slovenia and published by the Slovenian 
Roads Agency on a CD as the file:  PROMET_ASP_QLD6_2007_STM822.xls. 
For the sake of simplicity we consider just a single category of cars and describe 
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the measured traffic flow rate by the variable Q. This variable depends on time of 
observation t so that a measurement yields a record of corresponding time series: 

{ TttttQ ,...,2,,0;)( ∆∆= }. Here t∆  denotes the length of time interval between 
successive measurements. In our treatment we normally use one hour intervals: 

h1=∆t which we also adopt here. An example of the record spanning over the year 
2007 is shown in Figure 1. Without loss of generality for the description of traffic 
phenomenon, we further decompose the recorded time series into a set of traffic 
flow day-vectors that are comprised of data recorded over a day d : 

))(),...,(()( 241 dQdQd =Q . The day-vectors extracted from the record in Figure 1 are 
shown by green lines in Figure 2 together with the mean day-vector denoted by  (-
*-). As the index of traffic day-vector component we use the hour of its recording. 

In order to proceed to the modelling we must specify some criterion for the 
separation of the steps I and II of the adaptation process. For this purpose we 
calculated variance of each day-vector component using statistical average over all 
days of the year. Using the corresponding variances we introduced for each 
component the relative distance between a given day-vector and a representative 

one as: )var(/)( iiii QqQd −= . Using it we introduced a measure of discrepancy 

between the day-vector and the representative one by the mean square relative 

distance over a day: 24/
24

1

2∑
=

=
i

idδ . As a separation level between the steps I and II 

we then used the value 2=sδ . This value has been selected based upon numerical 

testing of modelling performance in which we have been looking for a 
characteristic level that provides for a formation of prototypes corresponding to 
characteristic days of the week.   

Using the day-vectors and the level of separation 2=sδ  we formed the 

representative vectors as described by steps I and II. The corresponding 
representative vectors are shown by black lines in Figure 2 as well as separately in 
Figure 3. In order to demonstrate applicability of representative vectors we 
calculated from the model PDF the mean day vector. Its record is shown in Figure 
3 by the line (-o-) and coincides well with the record of the mean vector calculated 
directly from the complete set of day-vectors (-*-). This coincidence confirms a 
correct representation of traffic variable PDF by the model. 
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Figure 2: Traffic day-vectors formed from traffic flow record presented in Figure 1 

(green) representative vectors (black) and the mean vector (-*-).  

 

 
Figure 3: Representative traffic day-vectors formed from traffic flow record presented in 
Figure 1 (black). The coincidence of the mean vector determined from all day-vectors (-
*-) and the mean vector determined from representative vectors (-o-) indicates a proper 

presentation of the complete phenomenon by the model.  
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The probabilities corresponding to representative traffic day-vectors are shown 
in Figure 4 in dependence of representative vector index k. It is interesting that 
365 day-vectors from the complete year are in this case properly represented by 4 
prototype day-vectors that closely correspond to a normal day with the highest p, 
and 3 days around weekends or holidays with approximately 6 times smaller p.  

 
 
 

 
Figure 4: The distribution of probabilities corresponding to representative traffic day-

vectors formed from traffic flow record presented in Figure 1.  

 

 
 

Figure 5: Presentation of traffic day-vectors in dependence of index t and probability p. 
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6 Conclusions 

We have shown how the PDF of a stochastic variable can be estimated non-
parametrically from the experimental data by taking into account the scattering 
function of the instrument. In order to avoid deficiencies of the kernel estimator 
we have generalized it to the Gaussian mixture model and introduced the model 
information, redundancy, and cost function. The most essential terms of the model 
cost function are the estimation error and the redundancy.  

During the minimization of the model cost function the estimation error 
provides for a proper adaptation of the model to experimental data, while the 
redundancy prevents excessive effort of experimentation. The search for the model 
cost function minimum also yields an estimate of a proper number of the 
acquisition system data storage cells. This number can be surprisingly low in 
comparison to all acquired data samples since the redundancy and the estimation 
error are evenhandedly treated in the cost function. The Gaussian mixture model is 
an effective PDF estimator that is applicable in automatic measurement systems. It 
could be of especial importance for compression of owerhelming traffic data at 
their storage in memory media.  

The proposed adaptation represents an innovative approach to processing of 
complex data that could be applied also in modelling of artificial neural networks 
(Grabec et al., 1997; Haykin, 1999; Leonardis et al., 1998). Adaptation of  
prototypes by the steps I and II is an essentially non-linear process that resembles 
self-organized formation of notions in thought processes of intelligent beings and 
can therefore substitute an intelligent operator at the archiving of traffic data. 
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